1
|
Fernandes Q, Folorunsho OG. Unveiling the nexus: The tumor microenvironment as a strategic frontier in viral cancers. Cytokine 2025; 185:156827. [PMID: 39647395 DOI: 10.1016/j.cyto.2024.156827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Viral infections are a significant factor in the etiology of various cancers, with the tumor microenvironment (TME) playing a crucial role in disease progression. This review delves into the complex interactions between viruses and the TME, highlighting how these interactions shape the course of viral cancers. We explore the distinct roles of immune cells, including T-cells, B-cells, macrophages, and dendritic cells, within the TME and their influence on cancer progression. The review also examines how viral oncoproteins manipulate the TME to promote immune evasion and tumor survival. Unraveling these mechanisms highlights the emerging paradigm of targeting the TME as a novel approach to cancer treatment. Our analysis provides insights into the dynamic interplay between viruses and the TME, offering a roadmap for innovative treatments that leverage the unique characteristics of viral cancers.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, PO. Box 3050, Doha, Qatar.
| | - Oginni Gbenga Folorunsho
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 5000, Nova Gorica, Slovenia
| |
Collapse
|
2
|
Wang C, Wang L. Resistance mechanisms and potential therapeutic strategies in relapsed or refractory natural killer/T cell lymphoma. Chin Med J (Engl) 2024; 137:2308-2324. [PMID: 39175124 PMCID: PMC11441923 DOI: 10.1097/cm9.0000000000003152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Indexed: 08/24/2024] Open
Abstract
ABSTRACT Natural killer/T cell lymphoma (NKTCL) is a malignant tumor originating from NK or T cells, characterized by its highly aggressive and heterogeneous nature. NKTCL is predominantly associated with Epstein-Barr virus infection, disproportionately affecting Asian and Latin American populations. Owing to the application of asparaginase and immunotherapy, clinical outcomes have improved significantly. However, for patients in whom first-line treatment fails, the prognosis is exceedingly poor. Overexpression of multidrug resistance genes, abnormal signaling pathways, epigenetic modifications and active Epstein-Barr virus infection may be responsible for resistance. This review summarized the mechanisms of resistance for NKTCL and proposed potential therapeutic approaches.
Collapse
Affiliation(s)
- Chengji Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
3
|
Wu YK, Jiang TT, Su YH, Mei L, Sun TK, Li YH, Wang ZD, Ji YY. The Potential Role of Virus Infection in the Progression of Thyroid Cancer. World J Oncol 2024; 15:382-393. [PMID: 38751704 PMCID: PMC11092407 DOI: 10.14740/wjon1830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/16/2024] [Indexed: 05/18/2024] Open
Abstract
Multiple factors have engaged in the progression of thyroid cancer (TC). Recent studies have shown that viral infection can be a critical factor in the pathogenesis of TC. Viruses, such as Epstein-Barr virus (EBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may play an essential role in the occurrence, development, and even prognosis in TC. This review mainly explored the potential role of viral infection in the progress of TC. The possible mechanisms could be recognizing the host cell, binding to the receptors, affecting oncogenes levels, releasing viral products to shape a beneficial environment, interacting with immune cells to induce immune evasion, and altering the pituitary-thyroid axis. Thus, comprehensive knowledge may provide insights into finding molecular targets for diagnosing and treating virus-related TC.
Collapse
Affiliation(s)
- Yong Ke Wu
- Department of General Surgery, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- The two authors contributed equally to this work
| | - Tian Tian Jiang
- Department of General Surgery, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- The two authors contributed equally to this work
| | - Yuan Hao Su
- Department of General Surgery, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Lin Mei
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ting Kai Sun
- Department of General Surgery, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yun Hao Li
- Department of General Surgery, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhi Dong Wang
- Department of General Surgery, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yuan Yuan Ji
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
4
|
Šimičić P, Batović M, Stojanović Marković A, Židovec-Lepej S. Deciphering the Role of Epstein-Barr Virus Latent Membrane Protein 1 in Immune Modulation: A Multifaced Signalling Perspective. Viruses 2024; 16:564. [PMID: 38675906 PMCID: PMC11054855 DOI: 10.3390/v16040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The disruption of antiviral sensors and the evasion of immune defences by various tactics are hallmarks of EBV infection. One of the EBV latent gene products, LMP1, was shown to induce the activation of signalling pathways, such as NF-κB, MAPK (JNK, ERK1/2, p38), JAK/STAT and PI3K/Akt, via three subdomains of its C-terminal domain, regulating the expression of several cytokines responsible for modulation of the immune response and therefore promoting viral persistence. The aim of this review is to summarise the current knowledge on the EBV-mediated induction of immunomodulatory molecules by the activation of signal transduction pathways with a particular focus on LMP1-mediated mechanisms. A more detailed understanding of the cytokine biology molecular landscape in EBV infections could contribute to the more complete understanding of diseases associated with this virus.
Collapse
Affiliation(s)
- Petra Šimičić
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, Vinogradska cesta 29, 10 000 Zagreb, Croatia;
| | - Margarita Batović
- Department of Clinical Microbiology and Hospital Infections, Dubrava University Hospital, Avenija Gojka Šuška 6, 10 000 Zagreb, Croatia;
| | - Anita Stojanović Marković
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Snjezana Židovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Mirogojska 8, 10 000 Zagreb, Croatia
| |
Collapse
|
5
|
Incrocci R, Monroy Del Toro R, Devitt G, Salimian M, Braich K, Swanson-Mungerson M. Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A) Enhances ATP Production in B Cell Tumors through mTOR and HIF-1α. Int J Mol Sci 2024; 25:3944. [PMID: 38612754 PMCID: PMC11012313 DOI: 10.3390/ijms25073944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Epstein-Barr Virus (EBV) exists in a latent state in 90% of the world's population and is linked to numerous cancers, such as Burkitt's Lymphoma, Hodgkin's, and non-Hodgkin's Lymphoma. One EBV latency protein, latency membrane protein 2A (LMP2A), is expressed in multiple latency phenotypes. LMP2A signaling has been extensively studied and one target of LMP2A is the mammalian target of rapamycin (mTOR). Since mTOR has been linked to reprogramming tumor metabolism and increasing levels of hypoxia-inducible factor 1 α (HIF-1α), we hypothesized that LMP2A would increase HIF-1α levels to enhance ATP generation in B lymphoma cell lines. Our data indicate that LMP2A increases ATP generation in multiple Burkitt lymphoma cell lines that were dependent on HIF-1α. Subsequent studies indicate that the addition of the mTOR inhibitor, rapamycin, blocked the LMP2A-dependent increase in HIF-1α. Further studies demonstrate that LMP2A does not increase HIF-1α levels by increasing HIF-1α RNA or STAT3 activation. In contrast, LMP2A and mTOR-dependent increase in HIF-1α required mTOR-dependent phosphorylation of p70 S6 Kinase and 4E-BP1. These findings implicate the importance of LMP2A in promoting B cell lymphoma survival by increasing ATP generation and identifying potential pharmaceutical targets to treat EBV-associated tumors.
Collapse
Affiliation(s)
- Ryan Incrocci
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Rosalinda Monroy Del Toro
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Grace Devitt
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (G.D.); (M.S.)
| | - Melody Salimian
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (G.D.); (M.S.)
| | - Kamaljit Braich
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (G.D.); (M.S.)
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (G.D.); (M.S.)
| |
Collapse
|
6
|
Hogan CH, Owens SM, Reynoso GV, Liao Y, Meyer TJ, Zelazowska MA, Liu B, Li X, Grosskopf AK, Khairallah C, Kirillov V, Reich NC, Sheridan BS, McBride KM, Gewurz BE, Hickman HD, Forrest JC, Krug LT. Multifaceted roles for STAT3 in gammaherpesvirus latency revealed through in vivo B cell knockout models. mBio 2024; 15:e0299823. [PMID: 38170993 PMCID: PMC10870824 DOI: 10.1128/mbio.02998-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor signal transducer and activator of transcription 3 (STAT3). To better understand the role of STAT3 during gammaherpesvirus latency and the B cell response to infection, we used the model pathogen murine gammaherpesvirus 68 (MHV68). Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak MHV68 latency approximately sevenfold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to wild-type (WT) littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeric mice consisting of WT and STAT3 knockout B cells. We discovered a dramatic reduction in latency in STAT3 knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that MHV68 infection shifts the gene signature toward proliferation and away from type I and type II IFN responses. Loss of STAT3 largely reversed the virus-driven transcriptional shift without impacting the viral gene expression program. STAT3 promoted B cell processes of the germinal center, including IL-21-stimulated downregulation of surface CD23 on B cells infected with MHV68 or EBV. Together, our data provide mechanistic insights into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.IMPORTANCEThere are no directed therapies to the latency program of the human gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus. Activated host factor signal transducer and activator of transcription 3 (STAT3) is a hallmark of cancers caused by these viruses. We applied the murine gammaherpesvirus pathogen system to explore STAT3 function upon primary B cell infection in the host. Since STAT3 deletion in all CD19+ B cells of infected mice led to altered B and T cell responses, we generated chimeric mice with both normal and STAT3-deleted B cells. B cells lacking STAT3 failed to support virus latency compared to normal B cells from the same infected animal. Loss of STAT3 impaired B cell proliferation and differentiation and led to a striking upregulation of interferon-stimulated genes. These findings expand our understanding of STAT3-dependent processes that are key to its function as a pro-viral latency determinant for oncogenic gammaherpesviruses in B cells and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Chad H. Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Shana M. Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Monika A. Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaofan Li
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Anna K. Grosskopf
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T. Krug
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
7
|
Li JW, Deng C, Zhou XY, Deng R. The biology and treatment of Epstein-Barr virus-positive diffuse large B cell lymphoma, NOS. Heliyon 2024; 10:e23921. [PMID: 38234917 PMCID: PMC10792184 DOI: 10.1016/j.heliyon.2023.e23921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
EBV positive Diffuse Large B-cell lymphoma, not otherwise specified (EBV+DLBCL-NOS) referred to DLBCL with expression of EBV encoded RNA in tumor nucleus. EBV+DLBCL-NOS patients present with more advanced clinical stages and frequent extranodal involvement. Although rituximab-containing immunochemotherapy regimens can significantly improve outcomes in patients with EBV+DLBCL, the best first-line treatment needs to be further explored. Due to the relatively low incidence and regional variation of EBV+DLBCL-NOS, knowledge about this particular subtype of lymphoma remains limited. Some signaling pathways was abnormally activated in EBV+DLBCL-NOS, including NF-κB and JAK/STAT pathways) and other signal transduction pathways. In addition, immune processes such as interferon response, antigen-presenting system and immune checkpoint molecule abnormalities were also observed. Currently, chimeric antigen receptor T-cell (CAR-T) therapy, chemotherapy combined with immunotherapy and novel targeted therapeutic drugs are expected to improve the prognosis of EBV+DLBCL-NOS patients, but more studies are needed to confirm this.
Collapse
Affiliation(s)
- Ji-Wei Li
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Chao Deng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Renfang Deng
- Department of Oncology, The Second Hospital of Zhuzhou City, Zhuzhou, 412000, China
| |
Collapse
|
8
|
Mishra M, Yadav M, Kumar S, Kumar R, Sen P. TIM-3 increases the abundance of type-2 dendritic cells during Leishmania donovani infection by enhancing IL-10 production via STAT3. Cell Death Dis 2023; 14:331. [PMID: 37202419 PMCID: PMC10195822 DOI: 10.1038/s41419-023-05848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
The outcome of the disease visceral leishmaniasis (VL), caused by Leishmania donovani (LD), largely relies on the relative dominance of host-protective type-1 T helper (Th1) cell response versus disease-promoting type-2 T helper (Th2) cell response. The Th1 and Th2 responses, in turn, are believed to be elicited by type-1 conventional dendritic cells (cDC1) and type-2 conventional DCs (cDC2), respectively. However, it is still unknown which DC subtype (cDC1 or cDC2) predominates during chronic LD infection and the molecular mechanism governing such occurrence. Here we report that in chronically infected mice, the splenic cDC1-cDC2 balance shifted toward the cDC2 subtype and that the receptor T cell immunoglobulin and mucin protein-3 (TIM-3) expressed by DCs played a key role in mediating this effect. Transfer of TIM-3-silenced DCs in fact prevented the predominance of the cDC2 subtype in mice with chronic LD infection. We also found that LD actually upregulated TIM-3 expression on DCs by triggering a TIM-3-mediated signaling pathway STAT3 (signal transducer and activator of transcription 3)→interleukin (IL)-10→c-Src→transcription factors Ets1, Ets2, USF1, and USF2. Notably, TIM-3 promoted STAT3 activation via a non-receptor tyrosine kinase Btk. Adoptive transfer experiments further demonstrated a critical role for STAT3-driven TIM-3 upregulation on DCs in increasing cDC2 abundance in chronically infected mice, which ultimately aided disease pathogenesis by augmenting Th2 responses. These findings document a new immunoregulatory mechanism contributing to disease pathology during LD infection and define TIM-3 as a key mediator of this process.
Collapse
Affiliation(s)
- Manish Mishra
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Manisha Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Sandeep Kumar
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raj Kumar
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Pradip Sen
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
9
|
Hogan CH, Owens SM, Reynoso GV, Kirillov V, Meyer TJ, Zelazowska MA, Liu B, Li X, Chikhalya A, Dong Q, Khairallah C, Reich NC, Sheridan B, McBride KM, Hearing P, Hickman HD, Forrest JC, Krug LT. B cell-intrinsic STAT3-mediated support of latency and interferon suppression during murine gammaherpesvirus 68 infection revealed through an in vivo competition model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533727. [PMID: 36993230 PMCID: PMC10055336 DOI: 10.1101/2023.03.22.533727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor STAT3. To better understand the role of STAT3 during gammaherpesvirus latency and immune control, we utilized murine gammaherpesvirus 68 (MHV68) infection. Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak latency approximately 7-fold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to WT littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeras consisting of WT and STAT3-knockout B cells. Using a competitive model of infection, we discovered a dramatic reduction in latency in STAT3-knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that STAT3 promotes proliferation and B cell processes of the germinal center but does not directly regulate viral gene expression. Last, this analysis uncovered a STAT3-dependent role for dampening type I IFN responses in newly infected B cells. Together, our data provide mechanistic insight into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.
Collapse
Affiliation(s)
- Chad H. Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shana M. Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Monika A. Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofan Li
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Aniska Chikhalya
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Qiwen Dong
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Graduate Program of Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Brian Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hearing
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T. Krug
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
10
|
Ferrarini I, Bernardelli A, Lovato E, Schena A, Krampera M, Visco C. An updated portrait of monocyte-macrophages in classical Hodgkin lymphoma. Front Oncol 2023; 13:1149616. [PMID: 36910620 PMCID: PMC10001882 DOI: 10.3389/fonc.2023.1149616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Classical Hodgkin lymphoma (cHL) is a unique neoplastic ecosystem characterized by a heterogeneous immune infiltrate surrounding the rare malignant Hodgkin Reed-Sternberg cells. Though less abundant than T-cells, tumor-infiltrating macrophages play a pivotal role in supporting HRS survival through cell-to-cell and paracrine interactions. Traditional immunohistochemistry based upon the M1-M2 dichotomy yielded controversial results about the composition, functional role and prognostic impact of macrophages in cHL. More recent studies exploiting single-cell technologies and image analyses have highlighted the heterogeneity and the peculiar spatial arrangement of the macrophagic infiltrate, with the most immunosuppressive subpopulations lying in close proximity of HRS cells and the most tumor-hostile subsets kept far away from the neoplastic niches. High-throughput analysis of peripheral blood mononuclear cells in cHL patients have also identified a novel, potentially cytotoxic, subpopulation predicting better response to PD-1 blockade. This review examines the phenotypic profile, spatial localization and clinical impact of tumor-infiltrating macrophages and circulating monocytes in cHL, providing an up-do-date portrait of these innate immune cells with possible translational applications.
Collapse
Affiliation(s)
- Isacco Ferrarini
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Andrea Bernardelli
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Ester Lovato
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Alberto Schena
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Carlo Visco
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
11
|
Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J 2022; 289:7631-7669. [PMID: 34536980 PMCID: PMC9019786 DOI: 10.1111/febs.16206] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4; HHV-4) and Kaposi sarcoma-associated herpesvirus (KSHV; human herpesvirus 8; HHV-8) are human gammaherpesviruses that have oncogenic properties. EBV is a lymphocryptovirus, whereas HHV-8/KSHV is a rhadinovirus. As lymphotropic viruses, EBV and KSHV are associated with several lymphoproliferative diseases or plasmacytic/plasmablastic neoplasms. Interestingly, these viruses can also infect epithelial cells causing carcinomas and, in the case of KSHV, endothelial cells, causing sarcoma. EBV is associated with Burkitt lymphoma, classic Hodgkin lymphoma, nasopharyngeal carcinoma, plasmablastic lymphoma, lymphomatoid granulomatosis, leiomyosarcoma, and subsets of diffuse large B-cell lymphoma, post-transplant lymphoproliferative disorder, and gastric carcinoma. KSHV is implicated in Kaposi sarcoma, primary effusion lymphoma, multicentric Castleman disease, and KSHV-positive diffuse large B-cell lymphoma. Pathogenesis by these two herpesviruses is intrinsically linked to viral proteins expressed during the lytic and latent lifecycles. This comprehensive review intends to provide an overview of the EBV and KSHV viral cycles, viral proteins that contribute to oncogenesis, and the current understanding of the pathogenesis and clinicopathology of their related neoplastic entities.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Linlin Wang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94158
| | - Joshua R. Menke
- Department of Pathology, Stanford University, Palo Alto, CA 94304
| | - Blossom Damania
- Department of Microbiology & Immunology & Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
12
|
Madayag K, Incrocci R, Swanson‐Mungerson M. The impact of Epstein-Barr virus latent membrane protein 2A on the production of B cell activating factor of the tumor necrosis factor family (BAFF), APRIL and their receptors. Immun Inflamm Dis 2022; 10:e729. [PMID: 36301035 PMCID: PMC9597489 DOI: 10.1002/iid3.729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Epstein-Barr virus (EBV) establishes a lifelong infection in human B cells where the virus consistently expresses Latent Membrane Protein 2A (LMP2A) to promote B cell survival. A prior study indicates that LMP2A may increase the production of the pro-survival factor, B cell Activating Factor of the tumor necrosis factor family (BAFF), which could also indirectly increase B cell survival. The current study sought to extend these findings and determine if LMP2A increased BAFF production and/or the responsiveness of LMP2A-expressing cells to this cytokine. METHODS Four independently derived LMP2A-negative and -positive B cell lymphoma cell lines were analyzed for BAFF and APRIL levels by both ELISA and Western Blot analysis. Additionally, flow cytometric analysis measured any LMP2A-dependent changes in the receptors for BAFF and APRIL (BAFF-R, transmembrane activator and calcium-modulator and cyclophilin ligand interactor [TACI], B cell maturation antigen [BCMA]) in both LMP2A-negative and -positive B cell lymphoma cell lines. RESULTS In contrast to previous reports, our data indicate that LMP2A does not increase the expression of BAFF or APRIL by Western blot analysis or ELISA. Additionally, flow cytometric analysis indicates that LMP2A does not influence the expression of the receptors for BAFF and APRIL: TACI, BAFF-R, and BCMA. CONCLUSION Therefore, these data suggest that while EBV utilizes other latency proteins to regulate BAFF production, EBV does not appear to use LMP2A to enhance BAFF-or APRIL-dependent survival to promote EBV latency.
Collapse
Affiliation(s)
- Kevin Madayag
- Department of Biomedical SciencesCollege of Graduate StudiesDowners GroveIllinoisUSA
| | - Ryan Incrocci
- Department of Microbiology and Immunology, College of Graduate StudiesMidwestern UniversityDowners GroveIllinoisUSA
| | - Michelle Swanson‐Mungerson
- Department of Microbiology and Immunology, College of Graduate StudiesMidwestern UniversityDowners GroveIllinoisUSA
| |
Collapse
|
13
|
Downregulation of STAT3 in Epstein-Barr Virus-Positive Hodgkin Lymphoma. Biomedicines 2022; 10:biomedicines10071608. [PMID: 35884913 PMCID: PMC9313380 DOI: 10.3390/biomedicines10071608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
STAT3 is a transcription factor which is activated via various signaling transduction pathways or Epstein-Barr virus (EBV) infection and plays an oncogenic role in lymphoid malignancies including Hodgkin lymphoma (HL). The tumor cells of HL are derived from germinal center B-cells and transformed by chromosomal rearrangements, aberrant signal transduction, deregulation of developmental transcription factors, and EBV activity. HL cell lines represent useful models to investigate molecular principles and deduced treatment options of this malignancy. Using cell line L-540, we have recently shown that constitutively activated STAT3 drives aberrant expression of hematopoietic NKL homeobox gene HLX. Here, we analyzed HL cell line AM-HLH which is EBV-positive but, nevertheless, HLX-negative. Consistently, AM-HLH expressed decreased levels of STAT3 proteins which were additionally inactivated and located in the cytoplasm. Combined genomic and expression profiling data revealed several amplified and overexpressed gene candidates involved in opposed regulation of STAT3 and EBV. Corresponding knockdown studies demonstrated that IRF4 and NFATC2 inhibited STAT3 expression. MIR155 (activated by STAT3) and SPIB (repressed by HLX) showed reduced and elevated expression levels in AM-HLH, respectively. However, treatment with IL6 or IL27 activated STAT3, elevated expression of HLX and MIR155, and inhibited IRF4. Taken together, this cell line deals with two conflicting oncogenic drivers, namely, JAK2-STAT3 signaling and EBV infection, but is sensitive to switch after cytokine stimulation. Thus, AM-HLH represents a unique cell line model to study the pathogenic roles of STAT3 and EBV and their therapeutic implications in HL.
Collapse
|
14
|
Immunosuppressive Tumor Microenvironment and Immunotherapy of Epstein–Barr Virus-Associated Malignancies. Viruses 2022; 14:v14051017. [PMID: 35632758 PMCID: PMC9146158 DOI: 10.3390/v14051017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
The Epstein–Barr virus (EBV) can cause different types of cancer in human beings when the virus infects different cell types with various latent patterns. EBV shapes a distinct and immunosuppressive tumor microenvironment (TME) to its benefit by influencing and interacting with different components in the TME. Different EBV-associated malignancies adopt similar but slightly specific immunosuppressive mechanisms by encoding different EBV products to escape both innate and adaptive immune responses. Strategies reversing the immunosuppressive TME of EBV-associated malignancies have been under evaluation in clinical practice. As the interactions among EBV, tumor cells, and TME are intricate, in this review, we mainly discuss the epidemiology of EBV, the life cycle of EBV, the cellular and molecular composition of TME, and a landscape of different EBV-associated malignancies and immunotherapy by targeting the TME.
Collapse
|
15
|
Meier UC, Cipian RC, Karimi A, Ramasamy R, Middeldorp JM. Cumulative Roles for Epstein-Barr Virus, Human Endogenous Retroviruses, and Human Herpes Virus-6 in Driving an Inflammatory Cascade Underlying MS Pathogenesis. Front Immunol 2021; 12:757302. [PMID: 34790199 PMCID: PMC8592026 DOI: 10.3389/fimmu.2021.757302] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Roles for viral infections and aberrant immune responses in driving localized neuroinflammation and neurodegeneration in multiple sclerosis (MS) are the focus of intense research. Epstein-Barr virus (EBV), as a persistent and frequently reactivating virus with major immunogenic influences and a near 100% epidemiological association with MS, is considered to play a leading role in MS pathogenesis, triggering localized inflammation near or within the central nervous system (CNS). This triggering may occur directly via viral products (RNA and protein) and/or indirectly via antigenic mimicry involving B-cells, T-cells and cytokine-activated astrocytes and microglia cells damaging the myelin sheath of neurons. The genetic MS-risk factor HLA-DR2b (DRB1*1501β, DRA1*0101α) may contribute to aberrant EBV antigen-presentation and anti-EBV reactivity but also to mimicry-induced autoimmune responses characteristic of MS. A central role is proposed for inflammatory EBER1, EBV-miRNA and LMP1 containing exosomes secreted by viable reactivating EBV+ B-cells and repetitive release of EBNA1-DNA complexes from apoptotic EBV+ B-cells, forming reactive immune complexes with EBNA1-IgG and complement. This may be accompanied by cytokine- or EBV-induced expression of human endogenous retrovirus-W/-K (HERV-W/-K) elements and possibly by activation of human herpesvirus-6A (HHV-6A) in early-stage CNS lesions, each contributing to an inflammatory cascade causing the relapsing-remitting neuro-inflammatory and/or progressive features characteristic of MS. Elimination of EBV-carrying B-cells by antibody- and EBV-specific T-cell therapy may hold the promise of reducing EBV activity in the CNS, thereby limiting CNS inflammation, MS symptoms and possibly reversing disease. Other approaches targeting HHV-6 and HERV-W and limiting inflammatory kinase-signaling to treat MS are also being tested with promising results. This article presents an overview of the evidence that EBV, HHV-6, and HERV-W may have a pathogenic role in initiating and promoting MS and possible approaches to mitigate development of the disease.
Collapse
Affiliation(s)
- Ute-Christiane Meier
- Institut für Laboratoriumsmedizin, Klinikum der Universität München, München, Germany.,Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
16
|
Jiang Y, Ding Y, Liu S, Luo B. The role of Epstein–Barr virus-encoded latent membrane proteins in host immune escape. Future Virol 2021. [DOI: 10.2217/fvl-2020-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epstein–Barr virus (EBV) is a type IV herpesvirus that widely infects the vast majority of adults, and establishes a latent infection pattern in host cells to escape the clearance of immune system. The virus is intimately associated with the occurrence and progression of lymphomas and epithelial cell cancers. EBV latent membrane proteins (LMPs) can assist its immune escape by downregulating host immune response. Besides EBV, LMPs have important effects on the functions of exosomes and autophagy, which also help EBV to escape immune surveillance. These escape mechanisms may provide conditions for further development of EBV-associated tumors. In this article, we discussed the potential functions of EBV-encoded LMPs in promoting immune escape.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Medical Affairs of The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
- Department of Pathogenic Biology, Qingdao University Medical College, 308 Ningxia Road, Qingdao, 266021, China
| | - Yuan Ding
- Department of Special Examination, Qingdao Women & Children Hospital, Qingdao, 266035, China
| | - Shuzhen Liu
- Department of Medical Affairs of The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Bing Luo
- Department of Pathogenic Biology, Qingdao University Medical College, 308 Ningxia Road, Qingdao, 266021, China
| |
Collapse
|
17
|
Wang Q, Xin Q, Shang W, Wan W, Xiao G, Zhang LK. Activation of the STAT3 Signaling Pathway by the RNA-Dependent RNA Polymerase Protein of Arenavirus. Viruses 2021; 13:v13060976. [PMID: 34070281 PMCID: PMC8225222 DOI: 10.3390/v13060976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Arenaviruses cause chronic and asymptomatic infections in their natural host, rodents, and several arenaviruses cause severe hemorrhagic fever that has a high mortality in infected humans, seriously threatening public health. There are currently no FDA-licensed drugs available against arenaviruses; therefore, it is important to develop novel antiviral strategies to combat them, which would be facilitated by a detailed understanding of the interactions between the viruses and their hosts. To this end, we performed a transcriptomic analysis on cells infected with arenavirus lymphocytic choriomeningitis virus (LCMV), a neglected human pathogen with clinical significance, and found that the signal transducer and activator of transcription 3 (STAT3) signaling pathway was activated. A further investigation indicated that STAT3 could be activated by the RNA-dependent RNA polymerase L protein (Lp) of LCMV. Our functional analysis found that STAT3 cannot affect LCMV multiplication in A549 cells. We also found that STAT3 was activated by the Lp of Mopeia virus and Junin virus, suggesting that this activation may be conserved across certain arenaviruses. Our study explored the interactions between arenaviruses and STAT3, which may help us to better understand the molecular and cell biology of arenaviruses.
Collapse
Affiliation(s)
- Qingxing Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilin Xin
- UMR754, Viral Infections and Comparative Pathology, 50 Avenue Tony Garnier, CEDEX 07, 69366 Lyon, France;
| | - Weijuan Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
| | - Weiwei Wan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (G.X.); (L.-K.Z.)
| | - Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China; (Q.W.); (W.S.); (W.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (G.X.); (L.-K.Z.)
| |
Collapse
|
18
|
Dzobo K. The Role of Viruses in Carcinogenesis and Molecular Targeting: From Infection to Being a Component of the Tumor Microenvironment. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:358-371. [PMID: 34037476 DOI: 10.1089/omi.2021.0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
About a tenth of all cancers are caused by viruses or associated with viral infection. Recent global events including the coronavirus disease-2019 (COVID-19) pandemic means that human encounter with viruses is increased. Cancer development in individuals with viral infection can take many years after infection, demonstrating that the involvement of viruses in cancer development is a long and complex process. This complexity emanates from individual genetic heterogeneity and the many steps involved in cancer development owing to viruses. The process of tumorigenesis is driven by the complex interaction between several viral factors and host factors leading to the creation of a tumor microenvironment (TME) that is ideal and promotes tumor formation. Viruses associated with human cancers ensure their survival and proliferation through activation of several cellular processes including inflammation, migration, and invasion, resistance to apoptosis and growth suppressors. In addition, most human oncoviruses evade immune detection and can activate signaling cascades including the PI3K-Akt-mTOR, Notch and Wnt pathways associated with enhanced proliferation and angiogenesis. This expert review examines and synthesizes the multiple biological factors related to oncoviruses, and the signaling cascades activated by these viruses contributing to viral oncogenesis. In particular, I examine and review the Epstein-Barr virus, human papillomaviruses, and Kaposi's sarcoma herpes virus in a context of cancer pathogenesis. I conclude with a future outlook on therapeutic targeting of the viruses and their associated oncogenic pathways within the TME. These anticancer strategies can be in the form of, but not limited to, antibodies and inhibitors.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Bayda N, Tilloy V, Chaunavel A, Bahri R, Halabi MA, Feuillard J, Jaccard A, Ranger-Rogez S. Comprehensive Epstein-Barr Virus Transcriptome by RNA-Sequencing in Angioimmunoblastic T Cell Lymphoma (AITL) and Other Lymphomas. Cancers (Basel) 2021; 13:610. [PMID: 33557089 PMCID: PMC7913808 DOI: 10.3390/cancers13040610] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
The Epstein-Barr virus (EBV) is associated with angioimmunoblastic T cell lymphoma (AITL) in more than 80% of cases. Few studies have focused on this association and it is not clear now what role the virus plays in this pathology. We used next-generation sequencing (NGS) to study EBV transcriptome in 14 AITLs compared to 21 other lymphoma samples and 11 cell lines including 4 lymphoblastoid cell lines (LCLs). Viral transcripts were recovered using capture probes and sequencing was performed on Illumina. Bam-HI A rightward transcripts (BARTs) were the most latency transcripts expressed in AITLs, suggesting they may play a role in this pathology. Thus, BARTs, already described as highly expressed in carcinoma cells, are also very present in AITLs and other lymphomas. They were poorly expressed in cell lines other than LCLs. AITLs showed a latency IIc, with BNLF2a gene expression. For most AITLs, BCRF1, which encodes a homologous protein of human interleukin 10, vIL-10, was in addition expressed. This co-expression can contribute to immune escape and survival of infected cells. Considering these results, it can be assumed that EBV plays a pathogenic role in AITLs.
Collapse
Affiliation(s)
- Nader Bayda
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
- Department of Infectious Disease Control, Faculty of Public Health, Jinan University, Tripoli 1300, Lebanon
| | - Valentin Tilloy
- National Reference Center for Herpesviruses, Bioinformatics, Centre de Biologie Recherche et Santé, 87000 Limoges, France;
| | - Alain Chaunavel
- Pathology Department, Centre de Biologie Recherche et Santé, 87000 Limoges, France;
| | - Racha Bahri
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
| | - Mohamad Adnan Halabi
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
| | - Jean Feuillard
- Biological Hematology Department, UMR CNRS 7276, INSERM U1262, Centre de Biologie Recherche et Santé, 87000 Limoges, France;
| | - Arnaud Jaccard
- Clinical Hematology Department, UMR CNRS 7276, INSERM U1262, University Hospital Dupuytren, 87042 Limoges, France;
| | - Sylvie Ranger-Rogez
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
- Virology Department, UMR CNRS 7276, INSERM U1262, Centre de Biologie Recherche et Santé, 87000 Limoges, France
| |
Collapse
|
20
|
Ferrarini I, Rigo A, Visco C, Krampera M, Vinante F. The Evolving Knowledge on T and NK Cells in Classic Hodgkin Lymphoma: Insights into Novel Subsets Populating the Immune Microenvironment. Cancers (Basel) 2020; 12:cancers12123757. [PMID: 33327433 PMCID: PMC7764890 DOI: 10.3390/cancers12123757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary In classic Hodgkin lymphoma, T and NK cells constitute a significant fraction of the reactive microenvironment established by malignant Hodgkin Reed–Sternberg cells. Despite their abundance, T and NK cells remain largely ineffective because of two coordinated levels of immune evasion. The first is based on the acquisition of regulatory properties or exhausted phenotypes that cripple their antitumor activity. The second is represented by their peculiar spatial distribution, with the most immunosuppressive subpopulations lying in close proximity of neoplastic cells. Recent discoveries about the functional role and the spatial orientation of T and NK cells in classic Hodgkin lymphoma are the focus of this review. Abstract Classic Hodgkin lymphoma (cHL) is a unique lymphoid neoplasm characterized by extensive immune infiltrates surrounding rare malignant Hodgkin Reed–Sternberg (HRS) cells. Different subsets of T and NK cells have long been recognized in the cHL microenvironment, yet their distinct contribution to disease pathogenesis has remained enigmatic. Very recently, novel platforms for high dimensional analysis of immune cells, such as single-cell RNA sequencing and mass cytometry, have revealed unanticipated insights into the composition of T- and NK-cell compartments in cHL. Advances in imaging techniques have better defined specific T-helper subpopulations physically interacting with neoplastic cells. In addition, the identification of novel cytotoxic subsets with an exhausted phenotype, typically enriched in cHL milieu, is shedding light on previously unrecognized immune evasion mechanisms. This review examines the immunological features and the functional properties of T and NK subsets recently identified in the cHL microenvironment, highlighting their pathological interplay with HRS cells. We also discuss how this knowledge can be exploited to predict response to immunotherapy and to design novel strategies to improve PD-1 blockade efficacy.
Collapse
Affiliation(s)
- Isacco Ferrarini
- Section of Hematology, Department of Medicine, University of Verona, 37134 Verona, Italy; (A.R.); (C.V.); (M.K.); (F.V.)
- Cancer Research and Cell Biology Laboratory, Department of Medicine, University of Verona, 37134 Verona, Italy
- Correspondence: ; Tel.: +39-045-812-8411
| | - Antonella Rigo
- Section of Hematology, Department of Medicine, University of Verona, 37134 Verona, Italy; (A.R.); (C.V.); (M.K.); (F.V.)
- Cancer Research and Cell Biology Laboratory, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Carlo Visco
- Section of Hematology, Department of Medicine, University of Verona, 37134 Verona, Italy; (A.R.); (C.V.); (M.K.); (F.V.)
| | - Mauro Krampera
- Section of Hematology, Department of Medicine, University of Verona, 37134 Verona, Italy; (A.R.); (C.V.); (M.K.); (F.V.)
| | - Fabrizio Vinante
- Section of Hematology, Department of Medicine, University of Verona, 37134 Verona, Italy; (A.R.); (C.V.); (M.K.); (F.V.)
- Cancer Research and Cell Biology Laboratory, Department of Medicine, University of Verona, 37134 Verona, Italy
| |
Collapse
|
21
|
Abstract
Viruses commonly antagonize the antiviral type I interferon response by targeting signal transducer and activator of transcription 1 (STAT1) and STAT2, key mediators of interferon signaling. Other STAT family members mediate signaling by diverse cytokines important to infection, but their relationship with viruses is more complex. Importantly, virus-STAT interaction can be antagonistic or stimulatory depending on diverse viral and cellular factors. While STAT antagonism can suppress immune pathways, many viruses promote activation of specific STATs to support viral gene expression and/or produce cellular conditions conducive to infection. It is also becoming increasingly clear that viruses can hijack noncanonical STAT functions to benefit infection. For a number of viruses, STAT function is dynamically modulated through infection as requirements for replication change. Given the critical role of STATs in infection by diverse viruses, the virus-STAT interface is an attractive target for the development of antivirals and live-attenuated viral vaccines. Here, we review current understanding of the complex and dynamic virus-STAT interface and discuss how this relationship might be harnessed for medical applications.
Collapse
|
22
|
Epstein-Barr Virus Promotes B Cell Lymphomas by Manipulating the Host Epigenetic Machinery. Cancers (Basel) 2020; 12:cancers12103037. [PMID: 33086505 PMCID: PMC7603164 DOI: 10.3390/cancers12103037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV)-induced lymphomas have a significant global incidence, given the widespread infection to the human population. EBV adopts several mechanisms to replicate and persist in the host, by hijacking its epigenetic machinery. The main topic of this review details the current insights of EBV interactions with the host epigenetic system, and it will be discussed the potential relationship between the EBV-induced chronic inflammation and the dysregulation of epigenetic modifiers that might lead to tumorigenesis. Promising novel therapies against several types of cancer involve the use of epigenetic modifier inhibitors. To design new therapeutical strategies targeting lymphomas, it is crucial to conduct exhaustive reaserch on the regulation of these enzymes. Abstract During the past decade, the rapid development of high-throughput next-generation sequencing technologies has significantly reinforced our understanding of the role of epigenetics in health and disease. Altered functions of epigenetic modifiers lead to the disruption of the host epigenome, ultimately inducing carcinogenesis and disease progression. Epstein–Barr virus (EBV) is an endemic herpesvirus that is associated with several malignant tumours, including B-cell related lymphomas. In EBV-infected cells, the epigenomic landscape is extensively reshaped by viral oncoproteins, which directly interact with epigenetic modifiers and modulate their function. This process is fundamental for the EBV life cycle, particularly for the establishment and maintenance of latency in B cells; however, the alteration of the host epigenetic machinery also contributes to the dysregulated expression of several cellular genes, including tumour suppressor genes, which can drive lymphoma development. This review outlines the molecular mechanisms underlying the epigenetic manipulation induced by EBV that lead to transformed B cells, as well as novel therapeutic interventions to target EBV-associated B-cell lymphomas.
Collapse
|
23
|
Kotaki R, Kawashima M, Yamamoto Y, Higuchi H, Nagashima E, Kurosaki N, Takamatsu M, Kikuti YY, Imadome KI, Nakamura N, Kotani A. Dasatinib exacerbates splenomegaly of mice inoculated with Epstein-Barr virus-infected lymphoblastoid cell lines. Sci Rep 2020; 10:4355. [PMID: 32152351 PMCID: PMC7062761 DOI: 10.1038/s41598-020-61300-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
Latent infection of Epstein-Barr virus (EBV) is associated with a poor prognosis in patients with B cell malignancy. We examined whether dasatinib, a multi kinase inhibitor, which is broadly used for chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia is effective on EBV-positive B cell malignancies, using lymphoblastoid cell lines (LCLs) in vitro and in vivo. As a result, in vitro experiments showed that dasatinib induced cell death of the EBV-LCLs which was not accompanied with a lytic reactivation of EBVs. To evaluate the effectiveness in EBV latency type III represented by immunodeficiency lymphoma, LCL-inoculated immunodeficient NOD/shi-scid/Il2rgnul (NOG) mice were treated with dasatinib. However, in vivo experiments revealed that dasatinib treatment exacerbated tumor cell infiltration into the spleen of LCL-inoculated NOG mice, whereas tumor size at the inoculated site was not affected by the treatment. These results suggest that dasatinib exacerbates the pathogenesis at least in some situations although the drug is effective in vitro. Hence, we should carefully examine a possibility of dasatinib repositioning for EBV+ B cell malignancies.
Collapse
Affiliation(s)
- Ryutaro Kotaki
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Shimokasuya 143, Isehara, Kanagawa, Japan
| | - Masaharu Kawashima
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Shimokasuya 143, Isehara, Kanagawa, Japan.,Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Yuichiro Yamamoto
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Shimokasuya 143, Isehara, Kanagawa, Japan
| | - Hiroshi Higuchi
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Shimokasuya 143, Isehara, Kanagawa, Japan.,Research Institute of Science and Technology, Tokai University, 4-1-1 Kitakinme, Hiratsuka, Kanagawa, Japan
| | - Etsuko Nagashima
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Shimokasuya 143, Isehara, Kanagawa, Japan
| | - Natsumi Kurosaki
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Shimokasuya 143, Isehara, Kanagawa, Japan
| | - Masako Takamatsu
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Shimokasuya 143, Isehara, Kanagawa, Japan
| | - Yara Yukie Kikuti
- Department of Pathology, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa, Japan
| | - Ken-Ichi Imadome
- Department of Infectious Diseases, National Center for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa, Japan
| | - Ai Kotani
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Shimokasuya 143, Isehara, Kanagawa, Japan. .,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan. .,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
24
|
Ye B, Zhou C, Guo H, Zheng M. Effects of BTK signalling in pathogenic microorganism infections. J Cell Mol Med 2019; 23:6522-6529. [PMID: 31397086 PMCID: PMC6787465 DOI: 10.1111/jcmm.14548] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/22/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
As a cytoplasmic protein tyrosine kinase, Bruton's tyrosine kinase (Btk) is widely considered as a vital kinase in many aspects of different physiologic processes. It is engaged in many important signalling pathways related to the immune response, such as the B cell receptor pathway, pattern-recognition receptor pathway, and triggering receptor expressed on myeloid cell pathway. Recent studies have increasingly focused on the important role of Btk in various inflammatory diseases, which are related to Btk expression in myeloid innate immune cells, such as macrophages, dendritic cells and neutrophils. Although some investigations have explored the role of Btk in microbial infections, many aspects remain elusive, and some of the results are opposite and controversial. Considering the complicated and multiple roles of Btk in the immune system, we summarized the engagement of Btk signalling in various pathogenic microorganism infections, the possible mechanisms involved and its therapeutic potential in the control of infectious diseases.
Collapse
Affiliation(s)
- Bingjue Ye
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of MedicineZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Cheng Zhou
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of MedicineZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Huiting Guo
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of MedicineZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of MedicineZhejiang UniversityHangzhouChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouChina
| |
Collapse
|
25
|
Gallo A, Miele M, Badami E, Conaldi PG. Molecular and cellular interplay in virus-induced tumors in solid organ recipients. Cell Immunol 2019. [DOI: 10.1016/j.cellimm.2018.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
IL-10-producing regulatory B cells and plasmocytes: Molecular mechanisms and disease relevance. Semin Immunol 2019; 44:101323. [DOI: 10.1016/j.smim.2019.101323] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
|
27
|
Epstein-Barr Virus and Innate Immunity: Friends or Foes? Microorganisms 2019; 7:microorganisms7060183. [PMID: 31238570 PMCID: PMC6617214 DOI: 10.3390/microorganisms7060183] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 12/16/2022] Open
Abstract
Epstein–Barr virus (EBV) successfully persists in the vast majority of adults but causes lymphoid and epithelial malignancies in a small fraction of latently infected individuals. Innate immunity is the first-line antiviral defense, which EBV has to evade in favor of its own replication and infection. EBV uses multiple strategies to perturb innate immune signaling pathways activated by Toll-like, RIG-I-like, NOD-like, and AIM2-like receptors as well as cyclic GMP-AMP synthase. EBV also counteracts interferon production and signaling, including TBK1-IRF3 and JAK-STAT pathways. However, activation of innate immunity also triggers pro-inflammatory response and proteolytic cleavage of caspases, both of which exhibit proviral activity under some circumstances. Pathogenic inflammation also contributes to EBV oncogenesis. EBV activates NFκB signaling and induces pro-inflammatory cytokines. Through differential modulation of the proviral and antiviral roles of caspases and other host factors at different stages of infection, EBV usurps cellular programs for death and inflammation to its own benefits. The outcome of EBV infection is governed by a delicate interplay between innate immunity and EBV. A better understanding of this interplay will instruct prevention and intervention of EBV-associated cancers.
Collapse
|
28
|
Epstein-Barr virus (EBV) activates NKL homeobox gene HLX in DLBCL. PLoS One 2019; 14:e0216898. [PMID: 31141539 PMCID: PMC6541347 DOI: 10.1371/journal.pone.0216898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
NKL homeobox genes encode developmental transcription factors regulating basic processes in cell differentiation. According to their physiological expression pattern in early hematopoiesis and lymphopoiesis, particular members of this homeobox gene subclass constitute an NKL-code. B-cell specific NKL-code genes generate a regulatory network and their deregulation is implicated in B-cell lymphomagenesis. Epstein-Barr virus (EBV) infects B-cells and influences the activity of signalling pathways including JAK/STAT and several genes encoding developmental regulators. Therefore, EBV-infection impacts the pathogenesis and the outcome of B-cell malignancies including Hodgkin lymphoma and diffuse large B-cell lymphoma (DLBCL). Here, we isolated EBV-positive and EBV-negative subclones from the DLBCL derived cell line DOHH-2. These subclones served as models to investigate the role of EBV in deregulation of the B-cell specific NKL-code members HHEX, HLX, MSX1 and NKX6-3. We showed that the EBV-encoded factors LMP1 and LMP2A activated the expression of HLX via STAT3. HLX in turn repressed NKX6-3, SPIB and IL4R which normally mediate plasma cell differentiation. In addition, HLX repressed the pro-apoptotic factor BCL2L11/BIM and hence supported cell survival. Thus, EBV aberrantly activated HLX in DLBCL, thereby disturbing both B-cell differentiation and apoptosis. The results of our study appreciate the pathogenic role of EBV in NKL homeobox gene deregulation and B-cell malignancies.
Collapse
|
29
|
Incrocci R, McAloon J, Montesano M, Bardahl J, Vagvala S, Stone A, Swanson-Mungerson M. Epstein-Barr virus LMP2A utilizes Syk and PI3K to activate NF-κB in B-cell lymphomas to increase MIP-1α production. J Med Virol 2019; 91:845-855. [PMID: 30609049 DOI: 10.1002/jmv.25381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/02/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022]
Abstract
The incidence of Hodgkin's lymphoma (HL) is growing due to an increase in Epstein-Barr virus (EBV)-associated HL in AIDS patients. The HL tumor microenvironment is vital for the survival of the malignant Hodgkin-Reed Sternberg (HRS) cells of HL, which express the EBV protein latent membrane protein 2A (LMP2A). While previous work shows that LMP2A mimics B-cell receptor (BCR) signaling to promote the survival of HRS cells, the ability of LMP2A to establish and maintain the tumor microenvironment through the production of chemokines remains unknown. Since BCR signaling induces the production of the chemokine macrophage inflammatory protein-1α (MIP-1α), and since LMP2A is a BCR mimic, we hypothesized that LMP2A increases MIP-1α levels. A comparison of multiple LMP2A-negative and -positive cell lines demonstrates that LMP2A increases MIP-1α. Additionally, LMP2A-mutant cell lines and pharmacologic inhibitors indicate that LMP2A activates a Syk/PI3K/NF-κB pathway to enhance MIP-1α. Finally, based on the finding that an NF-κB inhibitor decreased MIP-1α RNA/protein in LMP2A-positive cells, we are the first to demonstrate that LMP2A increases the nuclear localization of the NF-κB p65 subunit using DNA-binding assays and confocal microscopy in human B cells. These findings not only have implications for the treatment of HL, but also other LMP2A-expressing B-cell tumors that overexpress NF-κB.
Collapse
Affiliation(s)
- Ryan Incrocci
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, Illinois
| | - Jason McAloon
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois
| | - Michael Montesano
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois.,Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, Illinois
| | - Jonathan Bardahl
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois.,Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, Illinois
| | - Saivenkat Vagvala
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois
| | - Amanda Stone
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Downers Grove, Illinois.,Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois
| |
Collapse
|
30
|
Yin H, Qu J, Peng Q, Gan R. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med Microbiol Immunol 2018; 208:573-583. [PMID: 30386928 PMCID: PMC6746687 DOI: 10.1007/s00430-018-0570-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/13/2018] [Indexed: 12/11/2022]
Abstract
The early stage of oncogenesis is linked to the disorder of the cell cycle. Abnormal gene expression often leads to cell cycle disorders, resulting in malignant transformation of human cells. Epstein–Barr virus (EBV) is associated with a diverse range of human neoplasms, such as malignant lymphoma, nasopharyngeal carcinoma and gastric cancer. EBV mainly infects human lymphocytes and oropharyngeal epithelial cells. EBV is latent in lymphocytes for a long period of time, is detached from the cytoplasm by circular DNA, and can integrate into the chromosome of cells. EBV expresses a variety of latent genes during latent infection. The interaction between EBV latent genes and oncogenes leads to host cell cycle disturbances, including the promotion of G1/S phase transition and inhibition of cell apoptosis, thereby promoting the development of EBV-associated neoplasms. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis involve diverse genes and signal pathways. Here, we review the molecular mechanisms of EBV-driven cell cycle progression and promoting oncogenesis.
Collapse
Affiliation(s)
- Huali Yin
- Medical School, Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology of Hunan Province, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China.,Department of Pathology, Central Hospital of Shaoyang, Hunan, China
| | - Jiani Qu
- Medical School, Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology of Hunan Province, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China
| | - Qiu Peng
- Medical School, Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology of Hunan Province, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China
| | - Runliang Gan
- Medical School, Cancer Research Institute, Key Laboratory of Tumor Cellular and Molecular Pathology of Hunan Province, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
31
|
Camargo MC, Sivins A, Isajevs S, Folkmanis V, Rudzīte D, Gulley ML, Offerhaus GJ, Leja M, Rabkin CS. Associations of Epstein-Barr Virus-Positive Gastric Adenocarcinoma with Circulating Mediators of Inflammation and Immune Response. Cancers (Basel) 2018; 10:cancers10090284. [PMID: 30142953 PMCID: PMC6162799 DOI: 10.3390/cancers10090284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/30/2022] Open
Abstract
Epstein-Barr virus (EBV)-positive gastric adenocarcinoma exhibits locally intense inflammation but systemic manifestations are uncertain. Our study examined whether circulating mediators of inflammation and immune response differ by tumor EBV status. From a Latvian series of 302 gastric cancer cases, we measured plasma levels of 92 immune-related proteins in the 28 patients with EBV-positive tumors and 34 patients with EBV-negative tumors. Eight markers were statistically significantly higher with tumor EBV positivity: chemokine C-C motif ligand (CCL) 20 (Odds Ratio (OR) = 3.6; p-trend = 0.001), chemokine C-X-C motif ligand 9 (OR = 3.6; p-trend = 0.003), programmed death-ligand 1 (PD-L1; OR = 3.4; p-trend = 0.004), interleukin (IL)-10 (OR = 2.4; p-trend = 0.019), CCL19 (OR = 2.3; p-trend = 0.019), CCL11 (OR = 2.2; p-trend = 0.026), IL-17A (OR = 2.0; p-trend = 0.038) and CCL8 (OR = 1.9; p-trend = 0.049). Systemic responses to EBV-positive gastric cancer are characterized by alterations in chemokines and PD-L1. Profiling of these molecules may enable non-invasive diagnosis of EBV status when tumor tissue is unavailable. Our findings provide theoretical justification for clinical evaluations of immune checkpoint therapy for EBV-positive gastric cancer.
Collapse
Affiliation(s)
- M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr., BG 9609/6E338, Bethesda, MD 20892, USA.
| | - Armands Sivins
- Institute of Clinical and Preventive Medicine and Faculty of Medicine, University of Latvia, LV1586 Riga, Latvia.
| | - Sergejs Isajevs
- Institute of Clinical and Preventive Medicine and Faculty of Medicine, University of Latvia, LV1586 Riga, Latvia.
| | - Valdis Folkmanis
- Institute of Clinical and Preventive Medicine and Faculty of Medicine, University of Latvia, LV1586 Riga, Latvia.
| | - Dace Rudzīte
- Institute of Clinical and Preventive Medicine and Faculty of Medicine, University of Latvia, LV1586 Riga, Latvia.
| | - Margaret L Gulley
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - G Johan Offerhaus
- Department of Pathology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands.
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine and Faculty of Medicine, University of Latvia, LV1586 Riga, Latvia.
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Dr., BG 9609/6E338, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Kearns PKA, Casey HA, Leach JP. Hypothesis: Multiple sclerosis is caused by three-hits, strictly in order, in genetically susceptible persons. Mult Scler Relat Disord 2018; 24:157-174. [PMID: 30015080 DOI: 10.1016/j.msard.2018.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
Abstract
Multiple Sclerosis is a chronic, progressive and debilitating neurological disease which, despite extensive study for over 100 years, remains of enigmatic aetiology. Drawn from the epidemiological evidence, there exists a consensus that there are environmental (possibly infectious) factors that contribute to disease pathogenesis that have not yet been fully elucidated. Here we propose a three-tiered hypothesis: 1) a clinic-epidemiological model of multiple sclerosis as a rare late complication of two sequential infections (with the temporal sequence of infections being important); 2) a proposal that the first event is helminthic infection with Enterobius Vermicularis, and the second is Epstein Barr Virus infection; and 3) a proposal for a testable biological mechanism, involving T-Cell exhaustion for Epstein-Barr Virus protein LMP2A. We believe that this model satisfies some of the as-yet unexplained features of multiple sclerosis epidemiology, is consistent with the clinical and neuropathological features of the disease and is potentially testable by experiment. This model may be generalizable to other autoimmune diseases.
Collapse
|
33
|
Chang Z, Wang Y, Zhou X, Long JE. STAT3 roles in viral infection: antiviral or proviral? Future Virol 2018; 13:557-574. [PMID: 32201498 PMCID: PMC7079998 DOI: 10.2217/fvl-2018-0033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor which can be activated by cytokines, growth factor receptors, and nonreceptor-like tyrosine kinase. An activated STAT3 translocates into the nucleus and combines with DNA to regulate the expression of target genes involved in cell proliferation, differentiation, apoptosis and metastasis. Recent studies have shown that STAT3 plays important roles in viral infection and pathogenesis. STAT3 exhibits a proviral function in several viral infections, including those of HBV, HCV, HSV-1, varicella zoster virus, human CMV and measles virus. However, in some circumstances, STAT3 has an antiviral function in other viral infections, such as enterovirus 71, severe acute respiratory syndrome coronavirus and human metapneumovirus. This review summarizes the roles of STAT3 in viral infection and pathogenesis, and briefly discusses the molecular mechanisms involved in these processes.
Collapse
Affiliation(s)
- Zhangmei Chang
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Kunshan Center For Disease Control & Prevention, 458 Tongfengxi Road, Kunshan, Jiangsu, 215301, PR China.,Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Kunshan Center For Disease Control & Prevention, 458 Tongfengxi Road, Kunshan, Jiangsu, 215301, PR China
| | - Yan Wang
- Department of Medical Microbiology & Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai 200032, PR China.,Department of Medical Microbiology & Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai 200032, PR China
| | - Xin Zhou
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Jian-Er Long
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Department of Medical Microbiology & Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai 200032, PR China.,Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,Department of Medical Microbiology & Parasitology, Laboratory of Medical Microbiology, Shanghai Medical College of Fudan University, 138 Yixueyuan R., Shanghai 200032, PR China
| |
Collapse
|
34
|
The Role of miRNAs in Virus-Mediated Oncogenesis. Int J Mol Sci 2018; 19:ijms19041217. [PMID: 29673190 PMCID: PMC5979478 DOI: 10.3390/ijms19041217] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
To date, viruses are reported to be responsible for more than 15% of all tumors worldwide. The oncogenesis could be influenced directly by the activity of viral oncoproteins or by the chronic infection or inflammation. The group of human oncoviruses includes Epstein–Barr virus (EBV), human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), human herpesvirus 8 (HHV-8) or polyomaviruses, and transregulating retroviruses such as HIV or HTLV-1. Most of these viruses express short noncoding RNAs called miRNAs to regulate their own gene expression or to influence host gene expression and thus contribute to the carcinogenic processes. In this review, we will focus on oncogenic viruses and summarize the role of both types of miRNAs, viral as well as host’s, in the oncogenesis.
Collapse
|
35
|
The Microenvironment in Epstein-Barr Virus-Associated Malignancies. Pathogens 2018; 7:pathogens7020040. [PMID: 29652813 PMCID: PMC6027429 DOI: 10.3390/pathogens7020040] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 12/27/2022] Open
Abstract
The Epstein–Barr virus (EBV) can cause a wide variety of cancers upon infection of different cell types and induces a highly variable composition of the tumor microenvironment (TME). This TME consists of both innate and adaptive immune cells and is not merely an aspecific reaction to the tumor cells. In fact, latent EBV-infected tumor cells utilize several specific mechanisms to form and shape the TME to their own benefit. These mechanisms have been studied largely in the context of EBV+ Hodgkin lymphoma, undifferentiated nasopharyngeal carcinoma, and EBV+ gastric cancer. This review describes the composition, immune escape mechanisms, and tumor cell promoting properties of the TME in these three malignancies. Mechanisms of susceptibility which regularly involve genes related to immune system function are also discussed, as only a small proportion of EBV-infected individuals develops an EBV-associated malignancy.
Collapse
|
36
|
RNAi targeting STMN alleviates the resistance to taxol and collectively contributes to down regulate the malignancy of NSCLC cells in vitro and in vivo. Cell Biol Toxicol 2017; 34:7-21. [DOI: 10.1007/s10565-017-9398-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
|