1
|
Byford O, Shaw AB, Tse HN, Moon-Walker A, Saphire EO, Whelan SPJ, Stacey M, Hewson R, Fontana J, Barr JN. Lymphocytic choriomeningitis arenavirus utilises intercellular connections for cell to cell spread. Sci Rep 2024; 14:28961. [PMID: 39578605 PMCID: PMC11584850 DOI: 10.1038/s41598-024-79397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
The Arenaviridae family of segmented RNA viruses contains nearly 70 species with several associated with fatal haemorrhagic fevers, including Lassa, Lujo and Junin viruses. Lymphocytic choriomeningitis arenavirus (LCMV) is associated with fatal neurologic disease in humans and additionally represents a tractable model for studying arenavirus biology. Within cultured cells, a high proportion of LCMV spread is between directly neighbouring cells, suggesting infectivity may pass through intercellular connections, bypassing the canonical extracellular route involving egress from the plasma membrane. Consistent with this, we visualized abundant actin- and tubulin-rich connections conjoining LCMV-infected and uninfected cells within cultures, resembling tunnelling nanotubes (TNTs). Within these TNT-like connections, confocal and STED microscopy identified puncta containing the major structural components of LCMV virions alongside genomic RNA, consistent with intercellular transit of assembled virions or ribonucleoprotein genome segments. Blocking the extracellular route of infection by adding potent LCMV neutralising antibody M28 to supernatants during infection revealed around 50% of LCMV transmission was via intercellular connections. These results show arenaviruses transmission is more complex than previously thought involving both extracellular and intercellular routes.
Collapse
Affiliation(s)
- Owen Byford
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Amelia B Shaw
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Hiu Nam Tse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Alex Moon-Walker
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
- Merck Research Laboratories, Merck & Co, Cambridge, MA, 02141, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Martin Stacey
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Roger Hewson
- Virology and Pathogenesis Group, National Infection Service, Public Health England, Porton Down, SP4 0JG, UK
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - John N Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
2
|
Carey BD, Yu S, Geiger J, Ye C, Huzella LM, Reeder RJ, Mehta M, Hirsch S, Bernbaum R, Cubitt B, Pahar B, Anthony SM, Marketon A, Bernbaum JG, Tran JP, Crozier I, Martínez-Sobrido L, Worwa G, de la Torre JC, Kuhn JH. A Lassa virus live attenuated vaccine candidate that is safe and efficacious in guinea pigs. NPJ Vaccines 2024; 9:220. [PMID: 39551823 PMCID: PMC11570604 DOI: 10.1038/s41541-024-01012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Lassa virus (LASV) is a rodent-borne mammarenavirus that causes tens to hundreds of thousands of human infections annually in Western Africa. Approximately 20% of these infections progress to Lassa fever (LF), an acute disease with case-fatality rates from ≈20-70%. Currently, there are no approved vaccines or specific therapeutics to prevent or treat LF. The LASV genome consists of a small (S) segment that has two genes, GP and NP, and a large (L) segment that has two genes, L and Z. In both segments, the two genes are separated by non-coding intergenic regions (IGRs). Recombinant LASVs (rLASVs), in which the L segment IGR was replaced with the S segment IGR or in which the GP gene was codon-deoptimized, lost fitness in vitro, were highly attenuated in vivo, and, when used as vaccines, protected domesticated guinea pigs from otherwise lethal LASV exposure. Here, we report the generation of rLASV/IGR-CD, which includes both determinants of attenuation and further enhances the safety of the vaccine compared with its predecessors. rLASV/IGR-CD grew to high titers in Vero cells, which are approved for human vaccine production, but did not cause signs of disease or pathology in guinea pigs. Importantly, guinea pigs vaccinated with rLASV/IGR-CD were completely protected from disease and death after a typically lethal exposure to wild-type LASV. Our data support the development of rLASV/IGR-CD as a live-attenuated LF vaccine with stringent safety features.
Collapse
Affiliation(s)
- Brian D Carey
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Shuiqing Yu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Jillian Geiger
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Chengjin Ye
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Louis M Huzella
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Rebecca J Reeder
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Monika Mehta
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Shawn Hirsch
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Rebecca Bernbaum
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Beatrice Cubitt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Bapi Pahar
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Scott M Anthony
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Anthony Marketon
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - John G Bernbaum
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Julie P Tran
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Luis Martínez-Sobrido
- Department of Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA.
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA.
| |
Collapse
|
3
|
See SA, Bhassu S, Tang SS, Yusoff K. Newly developed mRNA vaccines induce immune responses in Litopenaeus vannamei shrimps during primary vaccination. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 162:105264. [PMID: 39299363 DOI: 10.1016/j.dci.2024.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
White spot syndrome virus (WSSV) causes highly destructive infection in crustacean aquaculture, often resulting in 100% mortality within a week. However, there is lack of studies addressing the safety issues of WSSV vaccines in shrimps. In this study, WSSV VP28 mRNA vaccines were developed using codon deoptimization approach. These vaccines were administered to Litopenaeus vannamei shrimps at various dosages to access their safety and the shrimps' immune responses using quantification PCR (qPCR). The findings of this study indicate that the expression level of codon deoptimized VP28 mRNA vaccines are lower compared to the wild type VP28 vaccines, as observed through a comparison of bioinformatic predictions and experimental results. Additionally, the total haemocyte count (THC) in shrimps injected with codon deoptimized VP28 vaccine was higher than those injected with wild type VP28 vaccines. Furthermore, the expression of immune-related genes differed between codon deoptimized and wild type VP28 vaccines. In summary, the results suggest that 0.01 μg codon deoptimized VP28-D1 mRNA vaccine is the most promising WSSV mRNA vaccine, displaying low pathogenicity and expression in shrimps. To the best of our knowledge, this research represents the first attempt to attenuate WSSV using codon deoptimization method and development of a potential mRNA vaccine for shrimp purpose. The study addresses an important gap in shrimp vaccine research, offering potential solutions for WSSV control in shrimps.
Collapse
Affiliation(s)
- SiouNing Aileen See
- Animal Genetics and Genome Evolutionary Biology Laboratory, Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Animal Genetics and Genome Evolutionary Biology Laboratory, Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| | - Swee Seong Tang
- Microbial Biochemistry Laboratory, Division of Microbiology and Molecular Genetic, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Khatijah Yusoff
- Malaysia Genome Vaccine Institute, National Institute of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
4
|
Byford O, Shaw AB, Tse HN, Todd EJAA, Álvarez-Rodríguez B, Hewson R, Fontana J, Barr JN. Lymphocytic choriomeningitis arenavirus requires cellular COPI and AP-4 complexes for efficient virion production. J Virol 2024; 98:e0200623. [PMID: 38334330 PMCID: PMC10949467 DOI: 10.1128/jvi.02006-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) is a bisegmented negative-sense RNA virus classified within the Arenaviridae family of the Bunyavirales order. LCMV is associated with fatal disease in immunocompromized populations, and as the prototypical arenavirus, acts as a model for the many serious human pathogens within this group. Here, we examined the dependence of LCMV multiplication on cellular trafficking components using a recombinant LCMV expressing enhanced green fluorescent protein in conjunction with a curated siRNA library. The screen revealed a requirement for subunits of both the coat protein 1 (COPI) coatomer and adapter protein 4 (AP-4) complexes. By rescuing a recombinant LCMV harboring a FLAG-tagged glycoprotein (GP-1) envelope spike (rLCMV-GP1-FLAG), we showed infection resulted in marked co-localization of individual COPI and AP-4 components with both LCMV nucleoprotein (NP) and GP-1, consistent with their involvement in viral processes. To further investigate the role of both COPI and AP-4 complexes during LCMV infection, we utilized the ARF-I inhibitor brefeldin A (BFA) that prevents complex formation. Within a single 12-h cycle of virus multiplication, BFA pre-treatment caused no significant change in LCMV-specific RNA synthesis, alongside no significant change in LCMV NP expression, as measured by BFA time-of-addition experiments. In contrast, BFA addition resulted in a significant drop in released virus titers, approaching 50-fold over the same 12-h period, rising to over 600-fold over 24 h. Taken together, these findings suggest COPI and AP-4 complexes are important host cell factors required for the formation and release of infectious LCMV. IMPORTANCE Arenaviruses are rodent-borne, segmented, negative-sense RNA viruses, with several members responsible for fatal human disease, with the prototypic member lymphocytic choriomeningitis virus (LCMV) being under-recognised as a pathogen capable of inflicting neurological infections with fatal outcome. A detailed understanding of how arenaviruses subvert host cell processes to complete their multiplication cycle is incomplete. Here, using a combination of gene ablation and pharmacological inhibition techniques, we showed that host cellular COPI and AP-4 complexes, with native roles in cellular vesicular transport, were required for efficient LCMV growth. We further showed these complexes acted on late stages of the multiplication cycle, post-gene expression, with a significant impact on infectious virus egress. Collectively, our findings improve the understanding of arenaviruses host-pathogen interactions and reveal critical cellular trafficking pathways required during infection.
Collapse
Affiliation(s)
- Owen Byford
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Amelia B. Shaw
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Hiu Nam Tse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Eleanor J. A. A. Todd
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Beatriz Álvarez-Rodríguez
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Roger Hewson
- Virology and Pathogenesis Group, National Infection Service, Public Health England, Porton Down, United Kingdom
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - John N. Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Molteni C, Forni D, Cagliani R, Bravo IG, Sironi M. Evolution and diversity of nucleotide and dinucleotide composition in poxviruses. J Gen Virol 2023; 104. [PMID: 37792576 DOI: 10.1099/jgv.0.001897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Poxviruses (family Poxviridae) have long dsDNA genomes and infect a wide range of hosts, including insects, birds, reptiles and mammals. These viruses have substantial incidence, prevalence and disease burden in humans and in other animals. Nucleotide and dinucleotide composition, mostly CpG and TpA, have been largely studied in viral genomes because of their evolutionary and functional implications. We analysed here the nucleotide and dinucleotide composition, as well as codon usage bias, of a set of representative poxvirus genomes, with a very diverse host spectrum. After correcting for overall nucleotide composition, entomopoxviruses displayed low overall GC content, no enrichment in TpA and large variation in CpG enrichment, while chordopoxviruses showed large variation in nucleotide composition, no obvious depletion in CpG and a weak trend for TpA depletion in GC-rich genomes. Overall, intergenome variation in dinucleotide composition in poxviruses is largely accounted for by variation in overall genomic GC levels. Nonetheless, using vaccinia virus as a model, we found that genes expressed at the earliest times in infection are more CpG-depleted than genes expressed at later stages. This observation has parallels in betahepesviruses (also large dsDNA viruses) and suggests an antiviral role for the innate immune system (e.g. via the zinc-finger antiviral protein ZAP) in the early phases of poxvirus infection. We also analysed codon usage bias in poxviruses and we observed that it is mostly determined by genomic GC content, and that stratification after host taxonomy does not contribute to explaining codon usage bias diversity. By analysis of within-species diversity, we show that genomic GC content is the result of mutational biases. Poxvirus genomes that encode a DNA ligase are significantly AT-richer than those that do not, suggesting that DNA repair systems shape mutation biases. Our data shed light on the evolution of poxviruses and inform strategies for their genetic manipulation for therapeutic purposes.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Ignacio G Bravo
- Laboratoire MIVEGEC (Univ Montpellier CNRS, IRD), Centre National de la Recherche Scientifique, Montpellier, France
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
6
|
Gurjar P, Karuvantevida N, Rzhepakovsky IV, Khan AA, Khandia R. A Synthetic Biology Approach for Vaccine Candidate Design against Delta Strain of SARS-CoV-2 Revealed Disruption of Favored Codon Pair as a Better Strategy over Using Rare Codons. Vaccines (Basel) 2023; 11:487. [PMID: 36851364 PMCID: PMC9967482 DOI: 10.3390/vaccines11020487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The SARS-CoV-2 delta variant (B.1.617.2) appeared for the first time in December 2020 and later spread worldwide. Currently available vaccines are not so efficacious in curbing the viral pathogenesis of the delta strain of COVID; therefore, the development of a safe and effective vaccine is required. In the present study, we envisaged molecular patterns in the structural genes' spike, nucleoprotein, membrane, and envelope of the SARS-CoV-2 delta variant. The study was based on determining compositional features, dinucleotide odds ratio, synonymous codon usage, positive and negative codon contexts, rare codons, and insight into relatedness between the human host isoacceptor tRNA and preferred codons from the structural genes. We found specific patterns, including a significant abundance of T nucleotide over all other three nucleotides. The underrepresentation of GpA, GpG, CpC, and CpG dinucleotides and the overrepresentation of TpT, ApA, CpT, and TpG were observed. A preference towards ACT- (Thr), AAT- (Asn), TTT- (Phe), and TTG- (Leu) initiated codons and aversion towards CGG (Arg), CCG (Pro), and CAC (His) was present in the structural genes of the delta strain. The interaction between the host tRNA pool and preferred codons of the envisaged structural genes revealed that the virus preferred the codons for those suboptimal numbers of isoacceptor tRNA were present. We see this as a strategy adapted by the virus to keep the translation rate low to facilitate the correct folding of viral proteins. The information generated in the study helps design the attenuated vaccine candidate against the SARS-CoV-2 delta variant using a synthetic biology approach. Three strategies were tested: changing TpT to TpA, introducing rare codons, and disrupting favored codons. It found that disrupting favored codons is a better approach to reducing virus fitness and attenuating SARS-CoV-2 delta strain using structural genes.
Collapse
Affiliation(s)
- Pankaj Gurjar
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | | | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah Universty, Bhopal 462026, India
| |
Collapse
|
7
|
Implementing computational methods in tandem with synonymous gene recoding for therapeutic development. Trends Pharmacol Sci 2023; 44:73-84. [PMID: 36307252 DOI: 10.1016/j.tips.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022]
Abstract
Synonymous gene recoding, the substitution of synonymous variants into the genetic sequence, has been used to overcome many production limitations in therapeutic development. However, the safety and efficacy of recoded therapeutics can be difficult to evaluate because synonymous codon substitutions can result in subtle, yet impactful changes in protein features and require sensitive methods for detection. Given that computational approaches have made significant leaps in recent years, we propose that machine-learning (ML) tools may be leveraged to assess gene-recoded therapeutics and foresee an opportunity to adapt codon contexts to enhance some powerful existing tools. Here, we examine how synonymous gene recoding has been used to address challenges in therapeutic development, explain the biological mechanisms underlying its effects, and explore the application of computational platforms to improve the surveillance of functional variants in therapeutic design.
Collapse
|
8
|
Molecular Engineering of a Mammarenavirus with Unbreachable Attenuation. J Virol 2023; 97:e0138522. [PMID: 36533953 PMCID: PMC9888291 DOI: 10.1128/jvi.01385-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several mammarenaviruses cause severe hemorrhagic fever (HF) disease in humans and pose important public health problems in their regions of endemicity. There are no United States (US) Food and Drug Administration (FDA)-approved mammarenavirus vaccines, and current anti-mammarenavirus therapy is limited to an off-label use of ribavirin that has limited efficacy. Mammarenaviruses are enveloped viruses with a bi-segmented negative-strand RNA genome. Each genome segment contains two open reading frames (ORF) separated by a noncoding intergenic region (IGR). The large (L) segment encodes the RNA dependent RNA polymerase, L protein, and the Z matrix protein, whereas the small (S) segment encodes the surface glycoprotein precursor (GPC) and nucleoprotein (NP). In the present study, we document the generation of a recombinant form of the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) expressing a codon deoptimized (CD) GPC and containing the IGR of the S segment in both the S and L segments (rLCMV/IGR-CD). We show that rLCMV/IGR-CD is fully attenuated in C57BL/6 (B6) mice but able to provide complete protection upon a single administration against a lethal challenge with LCMV. Importantly, rLCMV/IGR-CD exhibited an unbreachable attenuation for its safe implementation as a live-attenuated vaccine (LAV). IMPORTANCE Several mammarenaviruses cause severe disease in humans and pose important public health problems in their regions of endemicity. Currently, no FDA-licensed mammarenavirus vaccines are available, and anti-mammarenaviral therapy is limited to an off-label use of ribavirin whose efficacy is controversial. Here, we describe the generation of recombinant version of the prototypic mammarenavirus lymphocytic choriomeningitis virus (rLCMV) combining the features of a codon deoptimized (CD) GPC and the noncoding intergenic region (IGR) of the S segment in both S and L genome segments, called rLCMV/IGR-CD. We present evidence that rLCMV/IGR-CD has excellent safety and protective efficacy features as live-attenuated vaccine (LAV). Importantly, rLCMV/IGR-CD prevents, in coinfected mice, the generation of LCMV reassortants with increased virulence. Our findings document a well-defined molecular strategy for the generation of mammarenavirus LAV candidates able to trigger long-term protective immunity, upon a single immunization, while exhibiting unique enhanced safety features, including unbreachable attenuation.
Collapse
|
9
|
Sharma D, Baas T, Nogales A, Martinez-Sobrido L, Gromiha MM. CoDe: a web-based tool for codon deoptimization. BIOINFORMATICS ADVANCES 2023; 3:vbac102. [PMID: 36698765 PMCID: PMC9832946 DOI: 10.1093/bioadv/vbac102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/27/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Summary We have developed a web-based tool, CoDe (Codon Deoptimization) that deoptimizes genetic sequences based on different codon usage bias, ultimately reducing expression of the corresponding protein. The tool could also deoptimize the sequence for a specific region and/or selected amino acid(s). Moreover, CoDe can highlight sites targeted by restriction enzymes in the wild-type and codon-deoptimized sequences. Importantly, our web-based tool has a user-friendly interface with flexible options to download results. Availability and implementation The web-based tool CoDe is freely available at https://web.iitm.ac.in/bioinfo2/codeop/landing_page.html. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Divya Sharma
- Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Tracey Baas
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, Madrid 28130, Spain
| | | | - M Michael Gromiha
- Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
10
|
Isaac AB, Karolina W, Temitope AA, Anuska R, Joanne E, Deborah A, Bianca OC, Filip T, Zofia P, Oluwasegun OI, Oluwaferanmi O, Grace BT. PROSPECTS OF LASSA FEVER CANDIDATE VACCINES. Afr J Infect Dis 2022; 16:46-58. [PMID: 36124324 PMCID: PMC9480887 DOI: 10.21010/ajid.v16i2s.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
Background Lassa fever is an acute viral haemorrhagic disease caused by the Lassa virus (LASV). It is endemic in West Africa and infects about 300,000 people each year, leading to approximately 5000 deaths annually. The development of the LASV vaccine has been listed as a priority by the World Health Organization since 2018. Considering the accelerated development and availability of vaccines against COVID-19, we set out to assess the prospects of LASV vaccines and the progress made so far. Materials and Methods We reviewed the progress made on twenty-six vaccine candidates listed by Salami et al. (2019) and searched for new vaccine candidates through Google Scholar, PubMed, and DOAJ from June to July 2021. We searched the articles published in English using keywords that included "vaccine" AND "Lassa fever" OR "Lassa virus" in the title/abstract. Results Thirty-four candidate vaccines were identified - 26 already listed in the review by Salami et al. and an additional 8, which were developed over the last seven years. 30 vaccines are still in the pre-clinical stage while 4 of them are currently undergoing clinical trials. The most promising candidates in 2019 were vesicular stomatitis virus-vectored vaccine and live-attenuated MV/LASV vaccine; both had progressed to clinical trials. Conclusions Despite the focus on COVID-19 vaccines since 2020, LASV vaccine is under development and continues to make impressive progress, hence more emphasis should be put into exploring further clinical studies related to the most promising types of vaccines identified.
Collapse
Affiliation(s)
- Ademusire Babatunde Isaac
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Wieczorek Karolina
- Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria,Queen Mary University of London Barts and The London School of Medicine and Dentistry, United Kingdom,Corresponding author’s E-Mail:
| | - Alonge Aishat Temitope
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Rajen Anuska
- Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria,Queen Mary University of London Barts and The London School of Medicine and Dentistry, United Kingdom
| | - Egbe Joanne
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Adebambo Deborah
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Offorbuike Chiamaka Bianca
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Trojan Filip
- University College London, Medical School, London, United Kingdom
| | - Przypaśniak Zofia
- Queen Mary University of London Barts and The London School of Medicine and Dentistry, United Kingdom
| | - Oduguwa Ifeoluwa Oluwasegun
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Omitoyin Oluwaferanmi
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| | - Balogun Toluwalogo Grace
- College of Medicine, University of Ibadan, Ibadan, Nigeria,Polygeia (Global Health Student Think Tank), Ibadan Branch, Nigeria
| |
Collapse
|
11
|
Lorenzo MM, Nogales A, Chiem K, Blasco R, Martínez-Sobrido L. Vaccinia Virus Attenuation by Codon Deoptimization of the A24R Gene for Vaccine Development. Microbiol Spectr 2022; 10:e0027222. [PMID: 35583360 PMCID: PMC9241885 DOI: 10.1128/spectrum.00272-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Poxviruses have large DNA genomes, and they are able to infect multiple vertebrate and invertebrate animals, including humans. Despite the eradication of smallpox, poxvirus infections still remain a significant public health concern. Vaccinia virus (VV) is the prototypic member in the poxviridae family and it has been used extensively for different prophylactic applications, including the generation of vaccines against multiple infectious diseases and/or for oncolytic treatment. Many attempts have been pursued to develop novel attenuated forms of VV with improved safety profiles for their implementation as vaccines and/or vaccines vectors. We and others have previously demonstrated how RNA viruses encoding codon-deoptimized viral genes are attenuated, immunogenic and able to protect, upon a single administration, against challenge with parental viruses. In this study, we employed the same experimental approach based on the use of misrepresented codons for the generation of a recombinant (r)VV encoding a codon-deoptimized A24R gene, which is a key component of the viral RNA polymerase. Similar to our previous studies with RNA viruses, the A24R codon-deoptimized rVV (v-A24cd) was highly attenuated in vivo but able to protect, after a single intranasal dose administration, against an otherwise lethal challenge with parental VV. These results indicate that poxviruses can be effectively attenuated by synonymous codon deoptimization and open the possibility of using this methodology alone or in combination with other experimental approaches for the development of attenuated vaccines for the treatment of poxvirus infection, or to generate improved VV-based vectors. Moreover, this approach could be applied to other DNA viruses. IMPORTANCE The family poxviridae includes multiple viruses of medical and veterinary relevance, being vaccinia virus (VV) the prototypic member in the family. VV was used during the smallpox vaccination campaign to eradicate variola virus (VARV), which is considered a credible bioterrorism threat. Because of novel innovations in genetic engineering and vaccine technology, VV has gained popularity as a viral vector for the development of vaccines against several infectious diseases. Several approaches have been used to generate attenuated VV for its implementation as vaccine and/or vaccine vector. Here, we generated a rVV containing a codon-deoptimized A24R gene (v-A24cd), which encodes a key component of the viral RNA polymerase. v-A24cd was stable in culture cells and highly attenuated in vivo but able to protect against a subsequent lethal challenge with parental VV. Our findings support the use of this approach for the development of safe, stable, and protective live-attenuated VV and/or vaccine vectors.
Collapse
Affiliation(s)
- María M. Lorenzo
- Departamento de Biotecnología, Centro Nacional INIA, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Animal Health Research Centre (CISA), National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Kevin Chiem
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Rafael Blasco
- Departamento de Biotecnología, Centro Nacional INIA, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
12
|
Pereira-Gómez M, Carrau L, Fajardo Á, Moreno P, Moratorio G. Altering Compositional Properties of Viral Genomes to Design Live-Attenuated Vaccines. Front Microbiol 2021; 12:676582. [PMID: 34276608 PMCID: PMC8278477 DOI: 10.3389/fmicb.2021.676582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
Live-attenuated vaccines have been historically used to successfully prevent numerous diseases caused by a broad variety of RNA viruses due to their ability to elicit strong and perdurable immune-protective responses. In recent years, various strategies have been explored to achieve viral attenuation by rational genetic design rather than using classic and empirical approaches, based on successive passages in cell culture. A deeper understanding of evolutionary implications of distinct viral genomic compositional aspects, as well as substantial advances in synthetic biology technologies, have provided a framework to achieve new viral attenuation strategies. Herein, we will discuss different approaches that are currently applied to modify compositional features of viruses in order to develop novel live-attenuated vaccines.
Collapse
Affiliation(s)
- Marianoel Pereira-Gómez
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Lucía Carrau
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Álvaro Fajardo
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
13
|
Tournier JN, Kononchik J. Virus Eradication and Synthetic Biology: Changes with SARS-CoV-2? Viruses 2021; 13:569. [PMID: 33800626 PMCID: PMC8066276 DOI: 10.3390/v13040569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
The eradication of infectious diseases has been achieved only once in history, in 1980, with smallpox. Since 1988, significant effort has been made to eliminate poliomyelitis viruses, but eradication is still just out of reach. As the goal of viral disease eradication approaches, the ability to recreate historically eradicated viruses using synthetic biology has the potential to jeopardize the long-term sustainability of eradication. However, the emergence of the severe acute respiratory syndrome-coronavirus (SARS-CoV)-2 pandemic has highlighted our ability to swiftly and resolutely respond to a potential outbreak. This virus has been synthetized faster than any other in the past and is resulting in vaccines before most attenuated candidates reach clinical trials. Here, synthetic biology has the opportunity to demonstrate its truest potential to the public and solidify a footing in the world of vaccines.
Collapse
Affiliation(s)
- Jean-Nicolas Tournier
- Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France;
- CNRS UMR-3569, Innovative Vaccine Laboratory, Virology Department, Institut Pasteur, 75015 Paris, France
- Ecole du Val-de-Grâce, 75005 Paris, France
| | - Joseph Kononchik
- Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France;
- US Army Medical Research Institute of Chemical Defense (USAMRICD), 8350 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
- Toxicology and Chemical Risk Department, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
14
|
Saha J, Bhattacharjee S, Pal Sarkar M, Saha BK, Basak HK, Adhikary S, Roy V, Mandal P, Chatterjee A, Pal A. A comparative genomics-based study of positive strand RNA viruses emphasizing on SARS-CoV-2 utilizing dinucleotide signature, codon usage and codon context analyses. GENE REPORTS 2021; 23:101055. [PMID: 33615042 PMCID: PMC7887452 DOI: 10.1016/j.genrep.2021.101055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
The novel corona virus disease or COVID-19 caused by a positive strand RNA virus (PRV) called SARS-CoV-2 is plaguing the entire planet as we conduct this study. In this study a multifaceted analysis was carried out employing dinucleotide signature, codon usage and codon context to compare and unravel the genomic as well as genic characteristics of the SARS-CoV-2 isolates and how they compare to other PRVs which represents some of the most pathogenic human viruses. The main emphasis of this study was to comprehend the codon biology of the SARS-CoV-2 in the backdrop of the other PRVs like Poliovirus, Japanese encephalitis virus, Hepatitis C virus, Norovirus, Rubella virus, Semliki Forest virus, Zika virus, Dengue virus, Human rhinoviruses and the Betacoronaviruses since codon usage pattern along with the nucleotide composition prevalent within the viral genome helps to understand the biology and evolution of viruses. Our results suggest discrete genomic dinucleotide signature within the PRVs. Some of the genes from the different SARS-CoV-2 isolates were also found to demonstrate heterogeneity in terms of their dinucleotide signature. The SARS-CoV-2 isolates also demonstrated a codon context trend characteristically dissimilar to the other PRVs. The findings of this study are expected to contribute to the developing global knowledge base in countering COVID-19.
Collapse
Key Words
- CAI, Codon Adaptation Index
- CNS, Central Nervous System
- COVID-19
- CRS, Congenital Rubella Syndrome
- CUB, Codon Usage Bias
- Codon context
- Codon usage bias
- Coronaviruses
- Fop, Frequency of optimal codons
- GC1, Guanine and Cytosine content on the first position of the codon
- GC2, Guanine and Cytosine content on the second position of the codon
- GC3, Guanine and Cytosine content on the third position of the codon
- HCV, Hepatitis C Virus
- MERS, Middle East Respiratory Syndrome
- MFE, Minimum Free Energy
- Nc, Effective Number of Codons
- PCA, Principal Component Analysis
- PRV, Positive strand RNA Virus
- Positive strand RNA virus
- RCDI, Relative Codon De-Optimization Index
- RSCU, Relative Synonymous Codon Usage
- SARS, Severe Acute Respiratory Syndrome
- SARS-CoV-2
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- SCUO, Synonymous Codon Usage Order
- SiD, Similarity Index
Collapse
Affiliation(s)
- Jayanti Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Sukanya Bhattacharjee
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Monalisha Pal Sarkar
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Barnan Kumar Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Hriday Kumar Basak
- Department of Chemistry, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Samarpita Adhikary
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Vivek Roy
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Parimal Mandal
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Abhik Chatterjee
- Department of Chemistry, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| | - Ayon Pal
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj PIN-733 134, Uttar Dinajpur, West Bengal, India
| |
Collapse
|
15
|
Abstract
The development of safe and effective vaccines against viruses is central to disease control. With advancements in DNA synthesis technology, the production of synthetic viral genomes has fueled many research efforts that aim to generate attenuated viruses by introducing synonymous mutations. Elucidation of the mechanisms underlying virus attenuation through synonymous mutagenesis is revealing interesting new biology that can be exploited for vaccine development. Here, we review recent advancements in this field of synthetic virology and focus on the molecular mechanisms of attenuation by genetic recoding of viruses. We highlight the action of the zinc finger antiviral protein (ZAP) and RNase L, two proteins involved in the inhibition of viruses enriched for CpG and UpA dinucleotides, that are often the products of virus recoding algorithms. Additionally, we discuss current challenges in the field as well as studies that may illuminate how other host functions, such as translation, are potentially involved in the attenuation of recoded viruses.
Collapse
|
16
|
Van Leuven JT, Ederer MM, Burleigh K, Scott L, Hughes RA, Codrea V, Ellington AD, Wichman HA, Miller CR. ΦX174 Attenuation by Whole-Genome Codon Deoptimization. Genome Biol Evol 2020; 13:5921183. [PMID: 33045052 PMCID: PMC7881332 DOI: 10.1093/gbe/evaa214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Natural selection acting on synonymous mutations in protein-coding genes influences genome composition and evolution. In viruses, introducing synonymous mutations in genes encoding structural proteins can drastically reduce viral growth, providing a means to generate potent, live-attenuated vaccine candidates. However, an improved understanding of what compositional features are under selection and how combinations of synonymous mutations affect viral growth is needed to predictably attenuate viruses and make them resistant to reversion. We systematically recoded all nonoverlapping genes of the bacteriophage ΦX174 with codons rarely used in its Escherichia coli host. The fitness of recombinant viruses decreases as additional deoptimizing mutations are made to the genome, although not always linearly, and not consistently across genes. Combining deoptimizing mutations may reduce viral fitness more or less than expected from the effect size of the constituent mutations and we point out difficulties in untangling correlated compositional features. We test our model by optimizing the same genes and find that the relationship between codon usage and fitness does not hold for optimization, suggesting that wild-type ΦX174 is at a fitness optimum. This work highlights the need to better understand how selection acts on patterns of synonymous codon usage across the genome and provides a convenient system to investigate the genetic determinants of virulence.
Collapse
Affiliation(s)
- James T Van Leuven
- Department of Biological Science, University of Idaho.,Institute for Modeling Collaboration and Innovation, University of Idaho
| | | | - Katelyn Burleigh
- Department of Biological Science, University of Idaho.,Present address: Seattle Children's Research Institute, Seattle, WA
| | - LuAnn Scott
- Department of Biological Science, University of Idaho
| | - Randall A Hughes
- Applied Research Laboratories, University of Texas, Austin.,Present address: Biotechnology Branch, CCDC US Army Research Laboratory, Adelphi, MD
| | - Vlad Codrea
- Institute for Cellular and Molecular Biology, University of Texas, Austin
| | - Andrew D Ellington
- Applied Research Laboratories, University of Texas, Austin.,Institute for Cellular and Molecular Biology, University of Texas, Austin
| | - Holly A Wichman
- Department of Biological Science, University of Idaho.,Institute for Modeling Collaboration and Innovation, University of Idaho
| | - Craig R Miller
- Department of Biological Science, University of Idaho.,Institute for Modeling Collaboration and Innovation, University of Idaho
| |
Collapse
|
17
|
Abstract
The current COVID-19 pandemic has substantially accelerated the demands for efficient vaccines. A wide spectrum of approaches includes live attenuated and inactivated viruses, protein subunits and peptides, viral vector-based delivery, DNA plasmids, and synthetic mRNA. Preclinical studies have demonstrated robust immune responses, reduced viral loads and protection against challenges with SARS-CoV-2 in rodents and primates. Vaccine candidates based on all delivery systems mentioned above have been subjected to clinical trials in healthy volunteers. Phase I clinical trials have demonstrated in preliminary findings good safety and tolerability. Evaluation of immune responses in a small number of individuals has demonstrated similar or superior levels of neutralizing antibodies in comparison to immunogenicity detected in COVID-19 patients. Both adenovirus- and mRNA-based vaccines have entered phase II and study protocols for phase III trials with 30,000 participants have been finalized.
Collapse
|
18
|
Ye C, de la Torre JC, Martinez-Sobrido L. Reverse genetics approaches for the development of mammarenavirus live-attenuated vaccines. Curr Opin Virol 2020; 44:66-72. [PMID: 32721864 PMCID: PMC7755828 DOI: 10.1016/j.coviro.2020.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
Several mammarenaviruses can cause severe hemorrhagic fever disease with a very high case fatality rate, representing important threats to human health within the viruses' endemic regions. To date, there are no United States (US) Food and Drug Administration (FDA)-licensed vaccines available to combat mammarenavirus infections in humans, and current anti-mammarenavirus therapy is limited to off-label use of the guanosine analog ribavirin, which has limited efficacy and has been associated with significant side effects. Vaccination is one of the most effective ways to prevent viral diseases, and live-attenuated vaccines (LAVs) have been shown to often provide long-term protection against a subsequent natural infection by the corresponding virulent form of the virus. The development of mammarenavirus reverse genetics systems has provided investigators with a powerful approach for the investigation of the molecular and cell biology of mammarenaviruses and also for the generation of recombinant viruses containing predetermined mutations in their genome for their implementation as LAVs for the treatment of mammarenavirus infections. In this review, we summarize the current knowledge on the mammarenavirus molecular and cell biology, and the use of reverse genetic approaches for the generation of recombinant mammarenaviruses. Moreover, we briefly discus some novel LAV approaches for the treatment of mammarenavirus infections based on the use of reverse genetics approaches.
Collapse
Affiliation(s)
- Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Juan C de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
19
|
Development of Reverse Genetics for the Prototype New World Mammarenavirus Tacaribe Virus. J Virol 2020; 94:JVI.01014-20. [PMID: 32669332 DOI: 10.1128/jvi.01014-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022] Open
Abstract
The New World mammarenavirus Tacaribe virus (TCRV) has been isolated from fruit bats, mosquitoes, and ticks, whereas all other known New World mammarenaviruses are maintained in rodents. TCRV has not been linked to human disease, but it has been shown to protect against Argentine hemorrhagic fever-like disease in marmosets infected with the New World mammarenavirus Junín virus (JUNV), indicating the potential of TCRV as a live-attenuated vaccine for the treatment of Argentine hemorrhagic fever. Implementation of TCRV as a live-attenuated vaccine or a vaccine vector would be facilitated by the establishment of reverse genetics systems for the genetic manipulation of the TCRV genome. In this study, we developed, for the first time, reverse genetics approaches for the generation of recombinant TCRV (rTCRV). We successfully rescued a wild-type (WT) rTCRV (a trisegmented form of TCRV expressing two reporter genes [r3TCRV]) and a bisegmented TCRV expressing a single reporter gene from a bicistronic viral mRNA (rTCRV/GFP). These reverse genetics approaches represent an excellent tool to investigate the biology of TCRV and to explore its potential use as a live-attenuated vaccine or a vaccine vector for the treatment of other viral infections. Notably, we identified a 39-nucleotide (nt) deletion (Δ39) in the noncoding intergenic region (IGR) of the viral large (L) segment that is required for optimal virus multiplication. Accordingly, an rTCRV containing this 39-nt deletion in the L-IGR (rTCRV/Δ39) exhibited decreased viral fitness in cultured cells, suggesting the feasibility of using this deletion in the L-IGR as an approach to attenuate TCRV, and potentially other mammarenaviruses, for their implementation as live-attenuated vaccines or vaccine vectors.IMPORTANCE To date, no Food and Drug Administration (FDA)-approved vaccines are available to combat hemorrhagic fever caused by mammarenavirus infections in humans. Treatment of mammarenavirus infections is limited to the off-label use of ribavirin, which is partially effective and associated with significant side effects. Tacaribe virus (TCRV), the prototype member of the New World mammarenaviruses, is nonpathogenic in humans but able to provide protection against Junín virus (JUNV), the causative agent of Argentine hemorrhagic fever, demonstrating the feasibility of using TCRV as a live-attenuated vaccine vector for the treatment of JUNV and potentially other viral infections. Here, we describe for the first time the feasibility of generating recombinant TCRV (rTCRV) using reverse genetics approaches, which paves the way to study the biology of TCRV and also its potential use as a live-attenuated vaccine or a vaccine vector for the treatment of mammarenavirus and/or other viral infections in humans.
Collapse
|
20
|
Reverse genetics approaches for the development of bunyavirus vaccines. Curr Opin Virol 2020; 44:16-25. [PMID: 32619950 DOI: 10.1016/j.coviro.2020.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022]
Abstract
The Bunyavirales order is the largest group of RNA viruses, which includes important human and animal pathogens, that cause serious diseases. Licensed vaccines are often not available for many of these pathogens. The establishment of bunyavirus reverse genetics systems has facilitated the generation of recombinant infectious viruses, which have been employed as powerful tools for understanding bunyavirus biology and identifying important virulence factors. Technological advances in this area have enabled the development of novel strategies, including codon-deoptimization, viral genome rearrangement and single-cycle replicable viruses, for the generation of live-attenuated vaccine candidates. In this review, we have summarized the current knowledge of the bunyavirus reverse genetics approaches for the generation of live-attenuated vaccine candidates and their evaluation in animal models.
Collapse
|
21
|
Meeting report: WHO consultation on accelerating Lassa fever vaccine development in endemic countries, Dakar, 10–11 September 2019. Vaccine 2020; 38:4135-4141. [DOI: 10.1016/j.vaccine.2020.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023]
|
22
|
Cai Y, Iwasaki M, Motooka D, Liu DX, Yu S, Cooper K, Hart R, Adams R, Burdette T, Postnikova EN, Kurtz J, St Claire M, Ye C, Kuhn JH, Martínez-Sobrido L, de la Torre JC. A Lassa Virus Live-Attenuated Vaccine Candidate Based on Rearrangement of the Intergenic Region. mBio 2020; 11:e00186-20. [PMID: 32209677 PMCID: PMC7157513 DOI: 10.1128/mbio.00186-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 02/21/2020] [Indexed: 01/31/2023] Open
Abstract
Lassa virus (LASV) poses a significant public health problem within the regions of Lassa fever endemicity in Western Africa. LASV infects several hundred thousand individuals yearly, and a considerable number of Lassa fever cases are associated with high morbidity and lethality. No approved LASV vaccine is available, and current therapy is limited to an off-label usage of ribavirin that is only partially effective and associated with significant side effects. The impact of Lassa fever on human health, together with the limited existing countermeasures, highlights the importance of developing effective vaccines against LASV. Here, we present the development and characterization of a recombinant LASV (rLASV) vaccine candidate [rLASV(IGR/S-S)], which is based on the presence of the noncoding intergenic region (IGR) of the small (S) genome segment (S-IGR) in both large (L) and S LASV segments. In cultured cells, rLASV(IGR/S-S) was modestly less fit than wild-type rLASV (rLASV-WT). rLASV(IGR/S-S) was highly attenuated in guinea pigs, and a single subcutaneous low dose of the virus completely protected against otherwise lethal infection with LASV-WT. Moreover, rLASV(IGR/S-S) was genetically stable during serial passages in cultured cells. These findings indicate that rLASV(IGR/S-S) can be developed into a LASV live-attenuated vaccine (LAV) that has the same antigenic composition as LASV-WT and a well-defined mechanism of attenuation that overcomes concerns about increased virulence that could be caused by genetic changes in the LAV during multiple rounds of multiplication.IMPORTANCE Lassa virus (LASV), the causative agent of Lassa fever, infects several hundred thousand people in Western Africa, resulting in many lethal Lassa fever cases. No U.S. Food and Drug Administration-licensed countermeasures are available to prevent or treat LASV infection. We describe the generation of a novel LASV live-attenuated vaccine candidate rLASV(IGR/S-S), which is based on the replacement of the large genomic segment noncoding intergenic region (IGR) with that of the small genome segment. rLASV(IGR/S-S) is less fit in cell culture than wild-type virus and does not cause clinical signs in inoculated guinea pigs. Importantly, rLASV(IGR/S-S) protects immunized guinea pigs against an otherwise lethal exposure to LASV.
Collapse
Affiliation(s)
- Yingyun Cai
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Masaharu Iwasaki
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Laboratory of Pathogen Detection and Identification, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - David X Liu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Shuiqing Yu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Kurt Cooper
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Randy Hart
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Ricky Adams
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Tracey Burdette
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Elena N Postnikova
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Jonathan Kurtz
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Marisa St Claire
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Chengjin Ye
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
23
|
Development of a new oral poliovirus vaccine for the eradication end game using codon deoptimization. NPJ Vaccines 2020; 5:26. [PMID: 32218998 PMCID: PMC7083942 DOI: 10.1038/s41541-020-0176-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/14/2020] [Indexed: 11/30/2022] Open
Abstract
Enormous progress has been made in global efforts to eradicate poliovirus, using live-attenuated Sabin oral poliovirus vaccine (OPV). However, as the incidence of disease due to wild poliovirus has declined, vaccine-derived poliovirus (VDPV) has emerged in areas of low-vaccine coverage. Coordinated global cessation of routine, type 2 Sabin OPV (OPV2) use has not resulted in fewer VDPV outbreaks, and continued OPV use in outbreak-response campaigns has seeded new emergences in low-coverage areas. The limitations of existing vaccines and current eradication challenges warranted development of more genetically stable OPV strains, most urgently for OPV2. Here, we report using codon deoptimization to further attenuate Sabin OPV2 by changing preferred codons across the capsid to non-preferred, synonymous codons. Additional modifications to the 5′ untranslated region stabilized known virulence determinants. Testing of this codon-deoptimized new OPV2 candidate (nOPV2-CD) in cell and animal models demonstrated that nOPV2-CD is highly attenuated, grows sufficiently for vaccine manufacture, is antigenically indistinguishable from Sabin OPV2, induces neutralizing antibodies as effectively as Sabin OPV2, and unlike Sabin OPV2 is genetically stable and maintains an attenuation phenotype. In-human clinical trials of nOPV2-CD are ongoing, with potential for nOPV strains to serve as critical vaccine tools for achieving and maintaining polio eradication.
Collapse
|
24
|
Cai Y, Ye C, Cheng B, Nogales A, Iwasaki M, Yu S, Cooper K, Liu DX, Hart R, Adams R, Brady T, Postnikova EN, Kurtz J, St Claire M, Kuhn JH, de la Torre JC, Martínez-Sobrido L. A Lassa Fever Live-Attenuated Vaccine Based on Codon Deoptimization of the Viral Glycoprotein Gene. mBio 2020; 11:e00039-20. [PMID: 32098811 PMCID: PMC7042690 DOI: 10.1128/mbio.00039-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Lassa virus (LASV) is endemic in Western Africa and is estimated to infect hundreds of thousands of individuals annually. A considerable number of these infections result in Lassa fever (LF), which is associated with significant morbidity and a case-fatality rate as high as 69% among hospitalized confirmed patients. U.S. Food and Drug Administration-approved LF vaccines are not available. Current antiviral treatment is limited to off-label use of a nucleoside analogue, ribavirin, that is only partially effective and associated with significant side effects. We generated and characterized a recombinant LASV expressing a codon-deoptimized (CD) glycoprotein precursor gene (GPC), rLASV-GPC/CD. Comparison of growth kinetics and peak titers showed that rLASV-GPC/CD is slightly attenuated in cell culture compared to wild-type (WT) recombinant LASV (rLASV-WT). However, rLASV-GPC/CD is highly attenuated in strain 13 and Hartley guinea pigs, as reflected by the absence of detectable clinical signs in animals inoculated with rLASV-GPC/CD. Importantly, a single subcutaneous dose of rLASV-GPC/CD provides complete protection against an otherwise lethal exposure to LASV. Our results demonstrate the feasibility of implementing a CD approach for developing a safe and effective LASV live-attenuated vaccine candidate. Moreover, rLASV-GPC/CD might provide investigators with a tool to safely study LASV outside maximum (biosafety level 4) containment, which could accelerate the elucidation of basic aspects of the molecular and cell biology of LASV and the development of novel LASV medical countermeasures.IMPORTANCE Lassa virus (LASV) infects several hundred thousand people in Western Africa, resulting in many lethal Lassa fever (LF) cases. Licensed LF vaccines are not available, and anti-LF therapy is limited to off-label use of the nucleoside analog ribavirin with uncertain efficacy. We describe the generation of a novel live-attenuated LASV vaccine candidate. This vaccine candidate is based on mutating wild-type (WT) LASV in a key region of the viral genome, the glycoprotein precursor (GPC) gene. These mutations do not change the encoded GPC but interfere with its production in host cells. This mutated LASV (rLASV-GPC/CD) behaves like WT LASV (rLASV-WT) in cell culture, but in contrast to rLASV-WT, does not cause disease in inoculated guinea pigs. Guinea pigs immunized with rLASV-GPC/CD were protected against an otherwise lethal exposure to WT LASV. Our results support the testing of this candidate vaccine in nonhuman primate models ofLF.
Collapse
Affiliation(s)
- Yingyun Cai
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Chengjin Ye
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Benson Cheng
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| | - Masaharu Iwasaki
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Shuiqing Yu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Kurt Cooper
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - David X Liu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Randy Hart
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Ricky Adams
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Tyler Brady
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Elena N Postnikova
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Jonathan Kurtz
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Marisa St Claire
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
25
|
Afrough B, Dowall S, Hewson R. Emerging viruses and current strategies for vaccine intervention. Clin Exp Immunol 2020; 196:157-166. [PMID: 30993690 PMCID: PMC6468171 DOI: 10.1111/cei.13295] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
During the past decade several notable viruses have suddenly emerged from obscurity or anonymity to become serious global health threats, provoking concern regarding their sustained epidemic transmission in immunologically naive human populations. With each new threat comes the call for rapid vaccine development. Indeed, vaccines are considered a critical component of disease prevention for emerging viral infections because, in many cases, other medical options are limited or non‐existent, or that infections result in such a rapid clinical deterioration that the effectiveness of therapeutics is limited. While classic approaches to vaccine development are still amenable to emerging viruses, the application of molecular techniques in virology has profoundly influenced our understanding of virus biology, and vaccination methods based on replicating, attenuated and non‐replicating virus vector approaches have become useful vaccine platforms. Together with a growing understanding of viral disease emergence, a range of vaccine strategies and international commitment to underpin development, vaccine intervention for new and emerging viruses may become a possibility.
Collapse
Affiliation(s)
- B Afrough
- Virology and Pathogenesis Laboratory, National Infection Service, Public Health England, Salisbury, UK
| | - S Dowall
- Virology and Pathogenesis Laboratory, National Infection Service, Public Health England, Salisbury, UK
| | - R Hewson
- Virology and Pathogenesis Laboratory, National Infection Service, Public Health England, Salisbury, UK
| |
Collapse
|
26
|
Biological Characterization of Conserved Residues within the Cytoplasmic Tail of the Pichinde Arenaviral Glycoprotein Subunit 2 (GP2). J Virol 2019; 93:JVI.01277-19. [PMID: 31462569 DOI: 10.1128/jvi.01277-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Several mammarenaviruses can cause deadly hemorrhagic fever infections in humans, with limited preventative and therapeutic measures available. Arenavirus cell entry is mediated by the viral glycoprotein (GP) complex, which consists of the stable signal peptide (SSP), the receptor-binding subunit GP1, and the transmembrane subunit GP2. The GP2 cytoplasmic tail (CT) is relatively conserved among arenaviruses and is known to interact with the SSP to regulate GP processing and membrane fusion, but its biological role in the context of an infectious virus has not been fully characterized. Using a Pichinde virus (PICV) GP expression vector and a PICV reverse genetics system, we systematically characterized the functional roles of 12 conserved residues within the GP2 CT in GP processing, trafficking, assembly, and fusion, as well as in viral replication. Except for P478A and K505A R508A, alanine substitutions at conserved residues abolished GP processing and membrane fusion in plasmid-transfected cells. Six invariant H and C residues and W503 are essential for viral replication, as evidenced by the fact that their mutant viruses could not be rescued. Both P480A and R482A mutant viruses were rescued, grew similarly to wild-type (WT) virus, and produced evidently processed GP1 and GP2 subunits in virus-infected cells, despite the fact that the same mutations abolished GP processing and membrane fusion in a plasmid-based protein expression system, illustrating the importance of using an infectious-virus system for analyzing viral glycoprotein function. In summary, our results demonstrate an essential biological role of the GP2 CT in arenavirus replication and suggest it as a potential novel target for developing antivirals and/or attenuated viral vaccine candidates.IMPORTANCE Several arenaviruses, such as Lassa virus (LASV), can cause severe and lethal hemorrhagic fever diseases with high mortality and morbidity, for which no FDA-approved vaccines or therapeutics are available. Viral entry is mediated by the arenavirus GP complex, which consists of the stable signal peptide (SSP), the receptor-binding subunit GP1, and the transmembrane subunit GP2. The cytoplasmic tail (CT) of GP2 is highly conserved among arenaviruses, but its functional role in viral replication is not completely understood. Using a reverse genetics system of a prototypic arenavirus, Pichinde virus (PICV), we show that the GP2 CT contains certain conserved residues that are essential for virus replication, implicating it as a potentially good target for developing antivirals and live-attenuated viral vaccines against deadly arenavirus pathogens.
Collapse
|
27
|
Kainulainen MH, Spengler JR, Welch SR, Coleman-McCray JD, Harmon JR, Klena JD, Nichol ST, Albariño CG, Spiropoulou CF. Use of a Scalable Replicon-Particle Vaccine to Protect Against Lethal Lassa Virus Infection in the Guinea Pig Model. J Infect Dis 2019; 217:1957-1966. [PMID: 29800368 DOI: 10.1093/infdis/jiy123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/01/2018] [Indexed: 11/14/2022] Open
Abstract
Lassa fever is a viral zoonosis that can be transmitted from person to person, especially in the hospital setting. The disease is endemic to several countries in West Africa and can be a major contributor to morbidity and mortality in affected areas. There are no approved vaccines to prevent Lassa virus infection. In this work, we present a vaccine candidate that combines the scalability and efficacy benefits of a live vaccine with the safety benefits of single-cycle replication. The system consists of Lassa virus replicon particles devoid of the virus essential glycoprotein gene, and a cell line that expresses the glycoprotein products, enabling efficient vaccine propagation. Guinea pigs vaccinated with these particles showed no clinical reaction to the inoculum and were protected against fever, weight loss, and lethality after infection with Lassa virus.
Collapse
Affiliation(s)
- Markus H Kainulainen
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica R Harmon
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - John D Klena
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - César G Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
28
|
Salami K, Gouglas D, Schmaljohn C, Saville M, Tornieporth N. A review of Lassa fever vaccine candidates. Curr Opin Virol 2019; 37:105-111. [PMID: 31472333 DOI: 10.1016/j.coviro.2019.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 11/25/2022]
Abstract
Lassa fever is a zoonotic disease caused by the Lassa virus, a rodent-borne arenavirus endemic to West Africa. Recent steady increase in reported cases of the disease in Nigeria, where 123 deaths occurred in 546 confirmed cases in 2019 has further underlined the need to accelerate the development of vaccines for preventing the disease. Intensified research and development of Lassa fever medical countermeasures have yielded some vaccine candidates with preclinical scientific plausibility using predominantly novel technology. The more advanced candidates are based on recombinant measles, Vesicular Stomatitis Virus or Mopiea and Lassa virus reassortants expressing Lassa virus antigens, and the deoxyribonucleic acid platform. However, the Lassa fever portfolio still lags behind other neglected tropical diseases', and further investments are needed for continued development and additional research, such as the safety and efficacy of these vaccine candidates in special populations.
Collapse
Affiliation(s)
- Kolawole Salami
- R & D Blueprint for the Prevention of Epidemics, Room 3170, World Health Organization Headquarters, 20, Avenue Appia, Geneva 1211, Switzerland
| | - Dimitrios Gouglas
- Coalition for Epidemic Preparedness Innovations, Marcus Thranes Gate 2, 0473 Oslo, Norway
| | - Connie Schmaljohn
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter St, Frederick, MD 21702, USA
| | - Melanie Saville
- Coalition for Epidemic Preparedness Innovations, Gibbs Building, 215 Euston Rd, Bloomsbury, London NW1 2BE, UK.
| | - Nadia Tornieporth
- Coalition for Epidemic Preparedness Innovations, Gibbs Building, 215 Euston Rd, Bloomsbury, London NW1 2BE, UK
| |
Collapse
|
29
|
Beitzel B, Hulseberg CE, Palacios G. Reverse genetics systems as tools to overcome the genetic diversity of Lassa virus. Curr Opin Virol 2019; 37:91-96. [PMID: 31357141 DOI: 10.1016/j.coviro.2019.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 11/17/2022]
Abstract
Lassa virus is endemic in a large area of sub-Saharan Africa, and exhibits a large amount of genetic diversity. Of the four currently recognized lineages, lineages I-III circulate in Nigeria, and lineage IV circulates in Sierra Leone, Guinea, and Liberia. However, several newly detected lineages have been proposed. LASV genetic diversity may result in differences in pathogenicity or response to medical countermeasures, necessitating the testing of multiple lineages during the development of countermeasures and diagnostics. Logistical and biosafety concerns can make it difficult to obtain representative collections of divergent LASV clades for comparison studies. For example, lack of a cold chain in remote areas, or shipping restrictions on live viruses can prevent the dissemination of natural virus isolates to researchers. Reverse genetics systems that have been developed for LASV can facilitate acquisition of hard-to-obtain LASV strains and enable comprehensive development of medical countermeasures.
Collapse
Affiliation(s)
- Brett Beitzel
- Center for Genome Sciences, The United States Army Medical Research Institute for Infectious Disease, 1425 Porter St., Ft. Detrick, MD 21702, United States
| | - Christine E Hulseberg
- Center for Genome Sciences, The United States Army Medical Research Institute for Infectious Disease, 1425 Porter St., Ft. Detrick, MD 21702, United States
| | - Gustavo Palacios
- Center for Genome Sciences, The United States Army Medical Research Institute for Infectious Disease, 1425 Porter St., Ft. Detrick, MD 21702, United States.
| |
Collapse
|
30
|
Enterovirus A71 Containing Codon-Deoptimized VP1 and High-Fidelity Polymerase as Next-Generation Vaccine Candidate. J Virol 2019; 93:JVI.02308-18. [PMID: 30996087 DOI: 10.1128/jvi.02308-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/31/2019] [Indexed: 12/18/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a major pathogen that causes hand-foot-and-mouth disease (HFMD), which occasionally results in severe neurological complications. In this study, we developed four EV-A71 (rgEV-A71) strains by reverse genetics procedures as possible vaccine candidates. The four rgEV-A71 viruses contained various codon-deoptimized VP1 capsid proteins (VP1-CD) and showed replication rates and antigenicity similar to that of the wild-type virus, while a fifth virus, rg4643C4VP-CD, was unable to form plaques but was still able to be examined by median tissue culture infectious dose (TCID50) titers, which were similar to those of the others, indicating the effect of CD on plaque formation. However, the genome stability showed that there were some mutations which appeared during just one passage of the VP1-CD viruses. Thus, we further constructed VP1-CD rgEV-A71 containing high-fidelity determinants in 3D polymerase (CD-HF), and the number of mutations in CD-HF rgEV-A71 was shown to have decreased. The CD-HF viruses showed less virulence than the parental strain in a mouse infection model. After 14 days postimmunization, antibody titers had increased in mice infected with CD-HF viruses. The mouse antisera showed similar neutralizing antibody titers against various CD-HF viruses and different genotypes of EV-A71. The study demonstrates the proof of concept that VP1 codon deoptimization combined with high-fidelity 3D polymerase decreased EV-A71 mutations and virulence in mice but retained their antigenicity, indicating it is a good candidate for next-generation EV-A71 vaccine development.IMPORTANCE EV-A71 can cause severe neurological diseases with fatality in infants and young children, but there are still no effective drugs to date. Here, we developed a novel vaccine strategy with the combination of CD and HF substitutions to generate the genetically stable reverse genetics virus. We found that CD combined with HF polymerase decreased the virulence but maintained the antigenicity of the virus. This work demonstrated the simultaneous introduction of CD genome sequences and HF substitutions as a potential new strategy to develop attenuated vaccine seed virus. Our work provides insight into the development of a low-virulence candidate vaccine virus through a series of genetic editing of virus sequences while maintaining its antigenicity and genome stability, which will provide an additional strategy for next-generation vaccine development of EV-A71.
Collapse
|
31
|
Khandia R, Singhal S, Kumar U, Ansari A, Tiwari R, Dhama K, Das J, Munjal A, Singh RK. Analysis of Nipah Virus Codon Usage and Adaptation to Hosts. Front Microbiol 2019; 10:886. [PMID: 31156564 PMCID: PMC6530375 DOI: 10.3389/fmicb.2019.00886] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/05/2019] [Indexed: 12/19/2022] Open
Abstract
A recent outbreak of Nipah virus (NiV) in India has caused 17 deaths in people living in districts of Kerala state. Its zoonotic nature, as well as high rate of human-to-human transmission, has led researchers worldwide to work toward understanding the different aspects of the NiV. We performed a codon usage analysis, based on publicly available nucleotide sequences of NiV and its host adaptation, along with other members of the Henipavirus genus in ten hosts. NiV genome encodes nine open reading frames; and overall, no significant bias in codon usage was observed. Aromaticity of proteins had no impact on codon usage. An analysis of preferred codons used by NiV and the tRNA pool in human cells indicated that NiV prefers codons from a suboptimal anticodon tRNA pool. We observed that codon usage by NiV is mainly constrained by compositional and selection pressures, not by mutational forces. Parameters that define NiV and host relatedness in terms of codon usage were analyzed, with a codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index calculations; which indicated that, of all hosts analyzed, NiV was best adapted to African green monkeys. A comparative analysis based on the relative codon deoptimization index (RCDI) for host adaptation of NiV, Hendra virus (HeV), Cedar virus (CedV), and Hendra like Mojiang virus (MojV) revealed that except for dogs and ferrets, all evaluated hosts were more susceptible to HeV than NiV.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Shailja Singhal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Utsang Kumar
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Afzal Ansari
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Jayashankar Das
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | | |
Collapse
|
32
|
Manokaran G, Sujatmoko, McPherson KG, Simmons CP. Attenuation of a dengue virus replicon by codon deoptimization of nonstructural genes. Vaccine 2019; 37:2857-2863. [PMID: 31000413 DOI: 10.1016/j.vaccine.2019.03.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 11/15/2022]
Abstract
The overwhelming increase of dengue virus (DENV) infections in recent years shows that current strategies to combat dengue do not work. The lack of a highly effective dengue vaccine and the limited effectivity of vector controls exacerbate this situation. To point the way to a novel method of creating DENV vaccine candidates, here we disrupted the codon usage in a DENV-2 reporter replicon to generate variants with different replication characteristics. Six different mutated constructs containing stretches of altered codon usage in the non-structural genes were generated. The mutated sequences were deoptimized to the least favorable codons for human cells. We studied the replication efficiency of these constructs by measuring luciferase reporter activity, relative RNA fold change, and NS1 secretion. Our findings showed that the level of virus attenuation is closely associated with the amount of codon deoptimization. Indeed, replication was completely abolished in extensively-deoptimized constructs D2Rep-6 and D2Rep-5, intermediate with constructs D2Rep-4 (771 bp silent mutations) and D2Rep-3 (756 bp silent mutations) and restored almost to wildtype levels with constructs D2Rep-2 (394 silent mutations) and D2Rep-1 (48 silent mutations). We also determined that the position of codon deoptimization within the genome is crucial to the degree of attenuation observed. Based on our analysis, we propose that the design for an ideal DENV vaccine candidate could include 700-1500 silent mutations within the NS2A and NS3 genes. Our results suggest that codon deoptimization is an ideal strategy that can readily be used to develop a DENV vaccine candidate with "fine-tuned" attenuation.
Collapse
Affiliation(s)
- Gayathri Manokaran
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia; Institute of Vector Borne Disease, Monash University, Clayton, Victoria, Australia
| | - Sujatmoko
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Kirsty Grace McPherson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Cameron Paul Simmons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia; Institute of Vector Borne Disease, Monash University, Clayton, Victoria, Australia; Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, District 5, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
33
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
34
|
Wang W, Cheng X, Buske PJ, Suzich JA, Jin H. Attenuate Newcastle disease virus by codon modification of the glycoproteins and phosphoprotein genes. Virology 2019; 528:144-151. [PMID: 30616204 DOI: 10.1016/j.virol.2018.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022]
Abstract
A codon modification strategy was used to attenuate the avian pathogenicity of an oncolytic mesogenic Newcastle disease virus (NDV) by targeting the three major virulence factors: the fusion (F) protein, hemagglutinin neuraminidase (HN) and phosphoprotein (P). Recoding the F and HN genes with rare codons greatly reduced expression of both F and HN proteins and resulted in their low incorporation into virions. The F and HN recoded virus was partially attenuated in chickens even when the F protein cleavage site was modified. Full attenuation was achieved when the 5' portion of the P gene was recoded. The recoded P, F and HN triple gene mutant exhibited delayed cell death in human cancer cells with prolonged expression of a GFP transgene. While this engineered attenuated NDV strain has lower oncolytic potency, its capacity for prolonged transgene expression may allow its use as a vaccine or gene delivery vector.
Collapse
Affiliation(s)
- Weijia Wang
- MedImmune LLC, 121 Oyster Point Boulevard, South San Francisco, CA, USA
| | - Xing Cheng
- MedImmune LLC, 121 Oyster Point Boulevard, South San Francisco, CA, USA
| | - Paul J Buske
- MedImmune LLC, 121 Oyster Point Boulevard, South San Francisco, CA, USA
| | | | - Hong Jin
- MedImmune LLC, 121 Oyster Point Boulevard, South San Francisco, CA, USA.
| |
Collapse
|
35
|
Carnec X, Mateo M, Page A, Reynard S, Hortion J, Picard C, Yekwa E, Barrot L, Barron S, Vallve A, Raoul H, Carbonnelle C, Ferron F, Baize S. A Vaccine Platform against Arenaviruses Based on a Recombinant Hyperattenuated Mopeia Virus Expressing Heterologous Glycoproteins. J Virol 2018; 92:e02230-17. [PMID: 29593043 PMCID: PMC5974477 DOI: 10.1128/jvi.02230-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/22/2018] [Indexed: 11/20/2022] Open
Abstract
Several Old World and New World arenaviruses are responsible for severe endemic and epidemic hemorrhagic fevers, whereas other members of the Arenaviridae family are nonpathogenic. To date, no approved vaccines, antivirals, or specific treatments are available, except for Junín virus. However, protection of nonhuman primates against Lassa fever virus (LASV) is possible through the inoculation of the closely related but nonpathogenic Mopeia virus (MOPV) before challenge with LASV. We reasoned that this virus, modified by using reverse genetics, would represent the basis for the generation of a vaccine platform against LASV and other pathogenic arenaviruses. After showing evidence of exoribonuclease (ExoN) activity in NP of MOPV, we found that this activity was essential for multiplication in antigen-presenting cells. The introduction of multiple mutations in the ExoN site of MOPV NP generated a hyperattenuated strain (MOPVExoN6b) that is (i) genetically stable over passages, (ii) has increased immunogenic properties compared to those of MOPV, and (iii) still promotes a strong type I interferon (IFN) response. MOPVExoN6b was further modified to harbor the envelope glycoproteins of heterologous pathogenic arenaviruses, such as LASV or Lujo, Machupo, Guanarito, Chapare, or Sabia virus in order to broaden specific antigenicity while preserving the hyperattenuated characteristics of the parental strain. Our MOPV-based vaccine candidate for LASV, MOPEVACLASV, was used in a one-shot immunization assay in nonhuman primates and fully protected them from a lethal challenge with LASV. Thus, our hyperattenuated strain of MOPV constitutes a promising new live-attenuated vaccine platform to immunize against several, if not all, pathogenic arenaviruses.IMPORTANCE Arenaviruses are emerging pathogens transmitted to humans by rodents and responsible for endemic and epidemic hemorrhagic fevers of global concern. Nonspecific symptoms associated with the onset of infection make these viruses difficult to distinguish from other endemic pathogens. Moreover, the unavailability of rapid diagnosis in the field delays the identification of the virus and early care for treatment and favors spreading. The vaccination of exposed populations would be of great help to decrease morbidity and human-to-human transmission. Using reverse genetics, we generated a vaccine platform for pathogenic arenaviruses based on a modified and hyperattenuated strain of the nonpathogenic Mopeia virus and showed that the Lassa virus candidate fully protected nonhuman primates from a lethal challenge. These results showed that a rationally designed recombinant MOPV-based vaccine is safe, immunogenic, and efficacious in nonhuman primates.
Collapse
Affiliation(s)
- Xavier Carnec
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Centre International de Recherche en Infectiologie (INSERM, CNRS, ENS Lyon, Université Lyon I), Lyon, France
| | - Mathieu Mateo
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Centre International de Recherche en Infectiologie (INSERM, CNRS, ENS Lyon, Université Lyon I), Lyon, France
| | - Audrey Page
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Centre International de Recherche en Infectiologie (INSERM, CNRS, ENS Lyon, Université Lyon I), Lyon, France
| | - Stéphanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Centre International de Recherche en Infectiologie (INSERM, CNRS, ENS Lyon, Université Lyon I), Lyon, France
| | - Jimmy Hortion
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Centre International de Recherche en Infectiologie (INSERM, CNRS, ENS Lyon, Université Lyon I), Lyon, France
| | - Caroline Picard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Centre International de Recherche en Infectiologie (INSERM, CNRS, ENS Lyon, Université Lyon I), Lyon, France
| | - Elsie Yekwa
- CNRS, Architecture et Fonction des Macromolécules Biologiques UMR 7257, Aix-Marseille Université, Marseille, France
| | - Laura Barrot
- Laboratoire P4 Jean Mérieux-INSERM, US003, INSERM, Lyon, France
| | - Stéphane Barron
- Laboratoire P4 Jean Mérieux-INSERM, US003, INSERM, Lyon, France
| | - Audrey Vallve
- Laboratoire P4 Jean Mérieux-INSERM, US003, INSERM, Lyon, France
| | - Hervé Raoul
- Laboratoire P4 Jean Mérieux-INSERM, US003, INSERM, Lyon, France
| | | | - François Ferron
- CNRS, Architecture et Fonction des Macromolécules Biologiques UMR 7257, Aix-Marseille Université, Marseille, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Centre International de Recherche en Infectiologie (INSERM, CNRS, ENS Lyon, Université Lyon I), Lyon, France
| |
Collapse
|
36
|
Takayama-Ito M, Lim CK, Yamaguchi Y, Posadas-Herrera G, Kato H, Iizuka I, Islam MT, Morimoto K, Saijo M. Replication-incompetent rabies virus vector harboring glycoprotein gene of lymphocytic choriomeningitis virus (LCMV) protects mice from LCMV challenge. PLoS Negl Trop Dis 2018; 12:e0006398. [PMID: 29659579 PMCID: PMC5901774 DOI: 10.1371/journal.pntd.0006398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/21/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Lymphocytic choriomeningitis virus (LCMV) causes a variety of diseases, including asymptomatic infections, meningitis, and congenital infections in the fetus of infected mother. The development of a safe and effective vaccine against LCMV is imperative. This study aims to develop a new candidate vaccine against LCMV using a recombinant replication-incompetent rabies virus (RV) vector. METHODOLOGY/PRINCIPAL FINDINGS In this study, we have generated a recombinant deficient RV expressing the LCMV glycoprotein precursor (GPC) (RVΔP-LCMV/GPC) which is lacking the RV-P gene. RVΔP-LCMV/GPC is able to propagate only in cells expressing the RV-P protein. In contrast, the LCMV-GPC can be expressed in general cells, which do not express RV-P protein. The ability of RVΔP-LCMV/GPC to protect mice from LCMV infection and induce cellular immunity was assessed. Mice inoculated intraperitoneally with RVΔP-LCMV/GPC showed higher survival rates (88.2%) than those inoculated with the parental recombinant RV-P gene-deficient RV (RVΔP) (7.7%) following a LCMV challenge. Neutralizing antibody (NAb) against LCMV was not induced, even in the sera of surviving mice. CD8+ T-cell depletion significantly reduced the survival rates of RVΔP-LCMV/GPC-inoculated mice after the LCMV challenge. These results suggest that CD8+ T cells play a major role in the observed protection against LCMV. In contrast, NAbs against RV were strongly induced in sera of mice inoculated with either RVΔP-LCMV/GPC or RVΔP. In safety tests, suckling mice inoculated intracerebrally with RVΔP-LCMV/GPC showed no symptoms. CONCLUSIONS/SIGNIFICANCE These results show RVΔP-LCMV/GPC might be a promising candidate vaccine with dual efficacy, protecting against both RV and LCMV.
Collapse
Affiliation(s)
- Mutsuyo Takayama-Ito
- Department of virology I, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Chang-Kweng Lim
- Department of virology I, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Yukie Yamaguchi
- Department of virology I, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Guillermo Posadas-Herrera
- Department of virology I, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Hirofumi Kato
- Department of virology I, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
- Division of Global Infectious Diseases, Department of Infection and Epidemiology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Itoe Iizuka
- Department of virology I, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Md. Taimur Islam
- Department of virology I, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
- Laboratory of Virology and Viral Infections, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Kyonancho, Musashino-shi, Tokyo, Japan
| | - Kinjiro Morimoto
- Faculty of Pharmacy, Yasuda Women's University, Yasuhigashi, Asaminami, Hiroshima, Japan
| | - Masayuki Saijo
- Department of virology I, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
37
|
Domingo E, Perales C. Quasispecies and virus. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:443-457. [PMID: 29397419 DOI: 10.1007/s00249-018-1282-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/11/2018] [Accepted: 01/27/2018] [Indexed: 12/13/2022]
Abstract
Quasispecies theory has been instrumental in the understanding of RNA virus population dynamics because it considered for the first time mutation as an integral part of the replication process. The key influences of quasispecies theory on experimental virology have been: (1) to disclose the mutant spectrum nature of viral populations and to evaluate its consequences; (2) to unveil collective properties of genome ensembles that can render a mutant spectrum a unit of selection; and (3) to identify new vulnerability points of pathogenic RNA viruses on three fronts: the need to apply multiple selective constraints (in the form of drug combinations) to minimize selection of treatment-escape variants, to translate the error threshold concept into antiviral designs, and to construct attenuated vaccine viruses through alterations of viral polymerase copying fidelity or through displacements of viral genomes towards unfavorable regions of sequence space. These three major influences on the understanding of viral pathogens preceded extensions of quasispecies to non-viral systems such as bacterial and tumor cell collectivities and prions. These developments are summarized here.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Liver Unit, Internal Medicine, Laboratory of Malalties Hepàtiques, Vall d'Hebron Institut de Recerca-Hospital Universitari Vall d'Hebron (VHIR-HUVH), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| |
Collapse
|
38
|
Osterrieder N, Kunec D. Attenuation of Viruses by Large-Scale Recoding of their Genomes: the Selection Is Always Biased. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:66-72. [PMID: 32226716 PMCID: PMC7100164 DOI: 10.1007/s40588-018-0080-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the current understanding of virus attenuation by large-scale recoding of viral genomes and discusses what would ultimately be necessary for construction of better and safer live modified virus vaccines. RECENT FINDINGS It has been shown that codon and codon pair deoptimization are rapid and robust methods that can be used for the development of attenuated vaccine candidates. The viruses attenuated by large-scale recoding have the added value that they are extremely genetically stable. However, the exact mechanisms that lead to viral attenuation by recoding are yet to be determined. SUMMARY While the advantages of large-scale recoding (speed, simplicity, potency, and universal applicability) have been known for more than a decade, this approach has been only inadequately explored and the attention was focused on a limited number of RNA viruses. Attenuation of viruses by large-scale recoding should be explored to combat known and future viral threats.
Collapse
Affiliation(s)
- Nikolaus Osterrieder
- Institut für Virologie, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Dusan Kunec
- Institut für Virologie, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| |
Collapse
|
39
|
Pontremoli C, Forni D, Cagliani R, Pozzoli U, Riva S, Bravo IG, Clerici M, Sironi M. Evolutionary analysis of Old World arenaviruses reveals a major adaptive contribution of the viral polymerase. Mol Ecol 2017; 26:5173-5188. [PMID: 28779541 DOI: 10.1111/mec.14282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
The Old World (OW) arenavirus complex includes several species of rodent-borne viruses, some of which (i.e., Lassa virus, LASV and Lymphocytic choriomeningitis virus, LCMV) cause human diseases. Most LCMV and LASV infections are caused by rodent-to-human transmissions. Thus, viral evolution is largely determined by events that occur in the wildlife reservoirs. We used a set of human- and rodent-derived viral sequences to investigate the evolutionary history underlying OW arenavirus speciation, as well as the more recent selective events that accompanied LASV spread in West Africa. We show that the viral RNA polymerase (L protein) was a major positive selection target in OW arenaviruses and during LASV out-of-Nigeria migration. No evidence of selection was observed for the glycoprotein, whereas positive selection acted on the nucleoprotein (NP) during LCMV speciation. Positively selected sites in L and NP are surrounded by highly conserved residues, and the bulk of the viral genome evolves under purifying selection. Several positively selected sites are likely to modulate viral replication/transcription. In both L and NP, structural features (solvent exposed surface area) are important determinants of site-wise evolutionary rate variation. By incorporating several rodent-derived sequences, we also performed an analysis of OW arenavirus codon adaptation to the human host. Results do not support a previously hypothesized role of codon adaptation in disease severity for non-Nigerian strains. In conclusion, L and NP represent the major selection targets and possible determinants of disease presentation; these results suggest that field surveys and experimental studies should primarily focus on these proteins.
Collapse
Affiliation(s)
- Chiara Pontremoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Stefania Riva
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Ignacio G Bravo
- Laboratory MIVEGEC, UMR CNRS 5290, IRD 224, UM, Centre National de la Recherche Scientifique, Montpellier, France
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| |
Collapse
|
40
|
Golden JW, Beitzel B, Ladner JT, Mucker EM, Kwilas SA, Palacios G, Hooper JW. An attenuated Machupo virus with a disrupted L-segment intergenic region protects guinea pigs against lethal Guanarito virus infection. Sci Rep 2017; 7:4679. [PMID: 28680057 PMCID: PMC5498534 DOI: 10.1038/s41598-017-04889-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023] Open
Abstract
Machupo virus (MACV) is a New World (NW) arenavirus and causative agent of Bolivian hemorrhagic fever (HF). Here, we identified a variant of MACV strain Carvallo termed Car91 that was attenuated in guinea pigs. Infection of guinea pigs with an earlier passage of Carvallo, termed Car68, resulted in a lethal disease with a 63% mortality rate. Sequencing analysis revealed that compared to Car68, Car91 had a 35 nucleotide (nt) deletion and a point mutation within the L-segment intergenic region (IGR), and three silent changes in the polymerase gene that did not impact amino acid coding. No changes were found on the S-segment. Because it was apathogenic, we determined if Car91 could protect guinea pigs against Guanarito virus (GTOV), a distantly related NW arenavirus. While naïve animals succumbed to GTOV infection, 88% of the Car91-exposed guinea pigs were protected. These findings indicate that attenuated MACV vaccines can provide heterologous protection against NW arenaviruses. The disruption in the L-segment IGR, including a single point mutant and 35 nt partial deletion, were the only major variance detected between virulent and avirulent isolates, implicating its role in attenuation. Overall, our data support the development of live-attenuated arenaviruses as broadly protective pan-arenavirus vaccines.
Collapse
Affiliation(s)
- Joseph W Golden
- Department of Molecular Virology, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, United States.
| | - Brett Beitzel
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, United States
| | - Jason T Ladner
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, United States
| | - Eric M Mucker
- Department of Molecular Virology, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, United States
| | - Steven A Kwilas
- Department of Molecular Virology, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, United States
| | - Gustavo Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, United States
| | - Jay W Hooper
- Department of Molecular Virology, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, United States
| |
Collapse
|