1
|
Chambers MJ, Scobell SB, Sadhu MJ. Systematic genetic characterization of the human PKR kinase domain highlights its functional malleability to escape a poxvirus substrate mimic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596416. [PMID: 38903081 PMCID: PMC11188142 DOI: 10.1101/2024.05.29.596416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued. However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface's critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.
Collapse
Affiliation(s)
- Michael J Chambers
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Microbiology & Immunology, Georgetown University, Washington DC, USA
| | - Sophia B Scobell
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Meru J Sadhu
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Wu Z, Chu L, Gong Z, Han GZ. The making of a nucleic acid sensor at the dawn of jawed vertebrate evolution. SCIENCE ADVANCES 2024; 10:eado7464. [PMID: 39110805 PMCID: PMC11305385 DOI: 10.1126/sciadv.ado7464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Self and nonself discrimination is fundamental to immunity. However, it remains largely enigmatic how the mechanisms of distinguishing nonself from self originated. As an intracellular nucleic acid sensor, protein kinase R (PKR) recognizes double-stranded RNA (dsRNA) and represents a crucial component of antiviral innate immunity. Here, we combine phylogenomic and functional analyses to show that PKR proteins probably originated from a preexisting kinase protein through acquiring dsRNA binding domains at least before the last common ancestor of jawed vertebrates during or before the Silurian period. The function of PKR appears to be conserved across jawed vertebrates. Moreover, we repurpose a protein closely related to PKR proteins into a putative dsRNA sensor, recapturing the making of PKR. Our study illustrates how a nucleic acid sensor might have originated via molecular tinkering with preexisting proteins and provides insights into the origins of innate immunity.
Collapse
Affiliation(s)
- Zhiwei Wu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Lingyu Chu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Zhen Gong
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Guan-Zhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
3
|
Jin H, Chen Y, Zhang D, Lin J, Huang S, Wu X, Deng W, Huang J, Yao Y. YTHDF2 favors protumoral macrophage polarization and implies poor survival outcomes in triple negative breast cancer. iScience 2024; 27:109902. [PMID: 38812540 PMCID: PMC11134561 DOI: 10.1016/j.isci.2024.109902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/11/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Patients with triple-negative breast cancer (TNBC) frequently experience resistance to chemotherapy, leading to recurrence. The approach of optimizing anti-tumoral immunological effect is promising in overcoming such resistance, given the heterogeneity and lack of biomarkers in TNBC. In this study, we focused on YTHDF2, an N6-methyladenosine (m6A) RNA-reader protein, in macrophages, one of the most abundant intra-tumoral immune cells. Using single-cell sequencing and ex vivo experiments, we discovered that YTHDF2 significantly promotes pro-tumoral phenotype polarization of macrophages and is closely associated with down-regulated antigen-presentation signaling to other immune cells in TNBC. The in vitro deprivation of YTHDF2 favors anti-tumoral effect. Expressions of multiple transcription factors, especially SPI1, were consistently observed in YTHDF2-high macrophages, providing potential therapeutic targets for new strategies. In conclusion, YTHDF2 in macrophages appears to promote pro-tumoral effects while suppressing immune activity, indicating the treatment targeting YTHDF2 or its transcription factors could be a promising strategy for chemoresistant TNBC.
Collapse
Affiliation(s)
- Hao Jin
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Yue Chen
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Dongbo Zhang
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Junfan Lin
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Songyin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Xiaohua Wu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Wen Deng
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province 518055, China
- Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Yandan Yao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province 510120, China
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong Province 516621, China
- Guangdong Provincial Key Laboratory of Cancer Pathogenesis and Precision Diagnosis and Treatment, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong Province 516621, China
| |
Collapse
|
4
|
Cottrell KA, Andrews RJ, Bass BL. The competitive landscape of the dsRNA world. Mol Cell 2024; 84:107-119. [PMID: 38118451 PMCID: PMC10843539 DOI: 10.1016/j.molcel.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023]
Abstract
The ability to sense and respond to infection is essential for life. Viral infection produces double-stranded RNAs (dsRNAs) that are sensed by proteins that recognize the structure of dsRNA. This structure-based recognition of viral dsRNA allows dsRNA sensors to recognize infection by many viruses, but it comes at a cost-the dsRNA sensors cannot always distinguish between "self" and "nonself" dsRNAs. "Self" RNAs often contain dsRNA regions, and not surprisingly, mechanisms have evolved to prevent aberrant activation of dsRNA sensors by "self" RNA. Here, we review current knowledge about the life of endogenous dsRNAs in mammals-the biosynthesis and processing of dsRNAs, the proteins they encounter, and their ultimate degradation. We highlight mechanisms that evolved to prevent aberrant dsRNA sensor activation and the importance of competition in the regulation of dsRNA sensors and other dsRNA-binding proteins.
Collapse
Affiliation(s)
- Kyle A Cottrell
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
| | - Ryan J Andrews
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
Ly CY, Pfannenstiel J, Pant A, Yang Z, Fehr AR, Rodzkin MS, Davido DJ. Inhibitors of One or More Cellular Aurora Kinases Impair the Replication of Herpes Simplex Virus 1 and Other DNA and RNA Viruses with Diverse Genomes and Life Cycles. Microbiol Spectr 2023; 11:e0194322. [PMID: 36537798 PMCID: PMC9927324 DOI: 10.1128/spectrum.01943-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/11/2022] [Indexed: 02/16/2023] Open
Abstract
We utilized a high-throughput cell-based assay to screen several chemical libraries for inhibitors of herpes simplex virus 1 (HSV-1) gene expression. From this screen, four aurora kinase inhibitors were identified that potently reduced gene expression during HSV-1 lytic infection. HSV-1 is known to interact with cellular kinases to regulate gene expression by modulating the phosphorylation and/or activities of viral and cellular proteins. To date, the role of aurora kinases in HSV-1 lytic infection has not been reported. We demonstrated that three aurora kinase inhibitors strongly reduced the transcript levels of immediate-early (IE) genes ICP0, ICP4, and ICP27 and impaired HSV-1 protein expression from all classes of HSV-1, including ICP0, ICP4, ICP8, and gC. These restrictions caused by the aurora kinase inhibitors led to potent reductions in HSV-1 viral replication. The compounds TAK 901, JNJ 7706621, and PF 03814735 decreased HSV-1 titers by 4,500-, 13,200-, and 8,400-fold, respectively, when present in a low micromolar range. The antiviral activity of these compounds correlated with an apparent decrease in histone H3 phosphorylation at serine 10 (H3S10ph) during viral infection, suggesting that the phosphorylation status of H3 influences HSV-1 gene expression. Furthermore, we demonstrated that the aurora kinase inhibitors also impaired the replication of other RNA and DNA viruses. These inhibitors significantly reduced yields of vaccinia virus (a poxvirus, double-stranded DNA, cytoplasmic replication) and mouse hepatitis virus (a coronavirus, positive-sense single-strand RNA [ssRNA]), whereas vesicular stomatitis virus (rhabdovirus, negative-sense ssRNA) yields were unaffected. These results indicated that the activities of aurora kinases play pivotal roles in the life cycles of diverse viruses. IMPORTANCE We have demonstrated that aurora kinases play a role during HSV-1 lytic infection. Three aurora kinase inhibitors significantly impaired HSV-1 immediate-early gene expression. This led to a potent reduction in HSV-1 protein expression and viral replication. Together, our results illustrate a novel role for aurora kinases in the HSV-1 lytic cycle and demonstrate that aurora kinase inhibitors can restrict HSV-1 replication. Furthermore, these aurora kinase inhibitors also reduced the replication of murine coronavirus and vaccinia virus, suggesting that multiple viral families utilize the aurora kinases for their own replication.
Collapse
Affiliation(s)
- Cindy Y. Ly
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Jessica Pfannenstiel
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Anil Pant
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Zhilong Yang
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M, College Station, Texas, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Maxim S. Rodzkin
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - David J. Davido
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
6
|
Analysis of Antioxidant and Antiviral Effects of Olive ( Olea europaea L.) Leaf Extracts and Pure Compound Using Cancer Cell Model. Biomolecules 2023; 13:biom13020238. [PMID: 36830607 PMCID: PMC9953111 DOI: 10.3390/biom13020238] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
The present study aims to assess the antioxidant and antiviral effectiveness of leaf extracts obtained from Olea europaea L. var. sativa and Olea europaea L. var. sylvestris. The total antioxidant activity was determined via both an ammonium phosphomolybdate assay and a nitric oxide radical inhibition assay. Both extracts showed reducing abilities in an in vitro system and in human HeLa cells. Indeed, after oxidative stress induction, we found that exposition to olive leaf extracts protects human HeLa cells from lipid peroxidation and increases the concentration of enzyme antioxidants such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase. Additionally, OESA treatment affects viral DNA accumulation more than OESY, probably due to the exclusive oleuropein content. In fact, subtoxic concentrations of oleuropein inhibit HSV-1 replication, stimulating the phosphorylation of PKR, c-FOS, and c-JUN proteins. These results provide new knowledge about the potential health benefits and mechanisms of action of oleuropein and oleuropein-rich extracts.
Collapse
|
7
|
Rahman MJ, Haller SL, Stoian AMM, Li J, Brennan G, Rothenburg S. LINE-1 retrotransposons facilitate horizontal gene transfer into poxviruses. eLife 2022; 11:63327. [PMID: 36069678 PMCID: PMC9578709 DOI: 10.7554/elife.63327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
There is ample phylogenetic evidence that many critical virus functions, like immune evasion, evolved by the acquisition of genes from their hosts through horizontal gene transfer (HGT). However, the lack of an experimental system has prevented a mechanistic understanding of this process. We developed a model to elucidate the mechanisms of HGT into vaccinia virus, the prototypic poxvirus. All identified gene capture events showed signatures of long interspersed nuclear element-1 (LINE-1)-mediated retrotransposition, including spliced-out introns, polyadenylated tails, and target site duplications. In one case, the acquired gene integrated together with a polyadenylated host U2 small nuclear RNA. Integrations occurred across the genome, in some cases knocking out essential viral genes. These essential gene knockouts were rescued through a process of complementation by the parent virus followed by nonhomologous recombination during serial passaging to generate a single, replication-competent virus. This work links multiple evolutionary mechanisms into one adaptive cascade and identifies host retrotransposons as major drivers for virus evolution.
Collapse
Affiliation(s)
- M Julhasur Rahman
- Department of Medial Microbiology and Immunology, University of California, Davis, Davis, United States
| | - Sherry L Haller
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, United States
| | - Ana M M Stoian
- Department of Medial Microbiology and Immunology, University of California, Davis, Davis, United States
| | - Jie Li
- Genome Center, University of California, Davis, Davis, United States
| | - Greg Brennan
- Department of Medial Microbiology and Immunology, University of California, Davis, Davis, United States
| | - Stefan Rothenburg
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, United States
| |
Collapse
|
8
|
Crocodilepox Virus Protein 157 Is an Independently Evolved Inhibitor of Protein Kinase R. Viruses 2022; 14:v14071564. [PMID: 35891544 PMCID: PMC9318007 DOI: 10.3390/v14071564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
Crocodilepox virus (CRV) belongs to the Poxviridae family and mainly infects hatchling and juvenile Nile crocodiles. Most poxviruses encode inhibitors of the host antiviral protein kinase R (PKR), which is activated by viral double-stranded (ds) RNA formed during virus replication, resulting in the phosphorylation of eIF2α and the subsequent shutdown of general mRNA translation. Because CRV lacks orthologs of known poxviral PKR inhibitors, we experimentally characterized one candidate (CRV157), which contains a predicted dsRNA-binding domain. Bioinformatic analyses indicated that CRV157 evolved independently from other poxvirus PKR inhibitors. CRV157 bound to dsRNA, co-localized with PKR in the cytosol, and inhibited PKR from various species. To analyze whether CRV157 could inhibit PKR in the context of a poxvirus infection, we constructed recombinant vaccinia virus strains that contain either CRV157, or a mutant CRV157 deficient in dsRNA binding in a strain that lacks PKR inhibitors. The presence of wild-type CRV157 rescued vaccinia virus replication, while the CRV157 mutant did not. The ability of CRV157 to inhibit PKR correlated with virus replication and eIF2α phosphorylation. The independent evolution of CRV157 demonstrates that poxvirus PKR inhibitors evolved from a diverse set of ancestral genes in an example of convergent evolution.
Collapse
|
9
|
Abstract
Protein kinase R (PKR) is a critical host restriction factor against invading viral pathogens. However, this molecule is inactivated in the cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), an economically devastating pathogen to the world swine industry. Here, we report that this event is to suppress cellular inflammation and is mediated by the viral replicase protein nsp1β. We show that nsp1β is a stress-responsive protein, enters virus-induced stress granules (SGs) during infection, and repurposes SGs into a proviral platform, where it co-opts the SG core component G3BP1 to interact with PKR in a regulated manner. RNA interference silencing of G3BP1 or mutation of specific nsp1β residues (VS19GG) can abolish the antagonization of PKR activation. The viral mutant carrying the corresponding mutations induces elevated level of PKR phosphorylation and pronounced production of inflammatory cytokines (e.g., tumor necrosis factor-α, interleukin [IL]-6, and IL-8), whereas small-interfering RNA knockdown of PKR or treatment with C16, a PKR inhibitor, blocks this effect. Thus, PRRSV has evolved a unique strategy to evade PKR restriction to suppress host inflammatory responses.
Collapse
|
10
|
Price AM, Steinbock RT, Di C, Hayer K, Li Y, Herrmann C, Parenti N, Whelan J, Weiss S, Weitzman M. Adenovirus prevents dsRNA formation by promoting efficient splicing of viral RNA. Nucleic Acids Res 2022; 50:1201-1220. [PMID: 34671803 PMCID: PMC8860579 DOI: 10.1093/nar/gkab896] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/10/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells recognize intracellular pathogens through pattern recognition receptors, including sensors of aberrant nucleic acid structures. Sensors of double-stranded RNA (dsRNA) are known to detect replication intermediates of RNA viruses. It has long been suggested that annealing of mRNA from symmetrical transcription of both top and bottom strands of DNA virus genomes can produce dsRNA during infection. Supporting this hypothesis, nearly all DNA viruses encode inhibitors of dsRNA-recognition pathways. However, direct evidence that DNA viruses produce dsRNA is lacking. Contrary to dogma, we show that the nuclear-replicating DNA virus adenovirus (AdV) does not produce detectable levels of dsRNA during infection. In contrast, abundant dsRNA is detected within the nucleus of cells infected with AdV mutants defective for viral RNA processing. In the presence of nuclear dsRNA, the cytoplasmic dsRNA sensor PKR is relocalized and activated within the nucleus. Accumulation of viral dsRNA occurs in the late phase of infection, when unspliced viral transcripts form intron/exon base pairs between top and bottom strand transcripts. We propose that DNA viruses actively limit dsRNA formation by promoting efficient splicing and mRNA processing, thus avoiding detection and restriction by host innate immune sensors of pathogenic nucleic acids.
Collapse
Affiliation(s)
- Alexander M Price
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert T Steinbock
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell & Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Chao Di
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katharina E Hayer
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yize Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christin Herrmann
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell & Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas A Parenti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jillian N Whelan
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew D Weitzman
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Wang Z, Ren S, Li Q, Royster AD, lin L, Liu S, Ganaie SS, Qiu J, Mir S, Mir MA. Hantaviruses use the endogenous host factor P58IPK to combat the PKR antiviral response. PLoS Pathog 2021; 17:e1010007. [PMID: 34653226 PMCID: PMC8550428 DOI: 10.1371/journal.ppat.1010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/27/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
Hantavirus nucleocapsid protein (NP) inhibits protein kinase R (PKR) dimerization by an unknown mechanism to counteract its antiviral responses during virus infection. Here we demonstrate that NP exploits an endogenous PKR inhibitor P58IPK to inhibit PKR. The activity of P58IPK is normally restricted in cells by the formation of an inactive complex with its negative regulator Hsp40. On the other hand, PKR remains associated with the 40S ribosomal subunit, a unique strategic location that facilitates its free access to the downstream target eIF2α. Although both NP and Hsp40 bind to P58IPK, the binding affinity of NP is much stronger compared to Hsp40. P58IPK harbors an NP binding site, spanning to N-terminal TPR subdomains I and II. The Hsp40 binding site on P58IPK was mapped to the TPR subdomain II. The high affinity binding of NP to P58IPK and the overlap between NP and Hsp40 binding sites releases the P58IPK from its negative regulator by competitive inhibition. The NP-P58IPK complex is selectively recruited to the 40S ribosomal subunit by direct interaction between NP and the ribosomal protein S19 (RPS19), a structural component of the 40S ribosomal subunit. NP has distinct binding sites for P58IPK and RPS19, enabling it to serve as bridge between P58IPK and the 40S ribosomal subunit. NP mutants deficient in binding to either P58IPK or RPS19 fail to inhibit PKR, demonstrating that selective engagement of P58IPK to the 40S ribosomal subunit is required for PKR inhibition. Cells deficient in P58IPK mount a rapid PKR antiviral response and establish an antiviral state, observed by global translational shutdown and rapid decline in viral load. These studies reveal a novel viral strategy in which NP releases P58IPK from its negative regulator and selectively engages it on the 40S ribosomal subunit to promptly combat the PKR antiviral responses.
Collapse
Affiliation(s)
- Zekun Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Songyang Ren
- Western University of Health Sciences, Pomona, California, United States of America
| | - Qiming Li
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Austin D. Royster
- Western University of Health Sciences, Pomona, California, United States of America
| | - Lei lin
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Sichen Liu
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Safder S. Ganaie
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Sheema Mir
- Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (SM); (MM)
| | - Mohammad A. Mir
- Western University of Health Sciences, Pomona, California, United States of America
- * E-mail: (SM); (MM)
| |
Collapse
|
12
|
Farina A, Rosato E, York M, Gewurz BE, Trojanowska M, Farina GA. Innate Immune Modulation Induced by EBV Lytic Infection Promotes Endothelial Cell Inflammation and Vascular Injury in Scleroderma. Front Immunol 2021; 12:651013. [PMID: 33953718 PMCID: PMC8089375 DOI: 10.3389/fimmu.2021.651013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Microvascular injury is considered an initial event in the pathogenesis of scleroderma and endothelial cells are suspected of being the target of the autoimmune process seen in the disease. EBV has long been proposed as a trigger for autoimmune diseases, including scleroderma. Nevertheless, its contribution to the pathogenic process remains poorly understood. In this study, we report that EBV lytic antigens are detected in scleroderma dermal vessels, suggesting that endothelial cells might represent a target for EBV infection in scleroderma skin. We show that EBV DNA load is remarkably increased in peripheral blood, plasma and circulating monocytes from scleroderma patients compared to healthy EBV carriers, and that monocytes represent the prominent subsets of EBV-infected cells in scleroderma. Given that monocytes have the capacity to adhere to the endothelium, we then investigated whether monocyte-associated EBV could infect primary human endothelial cells. We demonstrated that endothelial cells are infectable by EBV, using human monocytes bound to recombinant EBV as a shuttle, even though cell-free virus failed to infect them. We show that EBV induces activation of TLR9 innate immune response and markers of vascular injury in infected endothelial cells and that up-regulation is associated with the expression of EBV lytic genes in infected cells. EBV innate immune modulation suggests a novel mechanism mediating inflammation, by which EBV triggers endothelial cell and vascular injury in scleroderma. In addition, our data point to up-regulation of EBV DNA loads as potential biomarker in developing vasculopathy in scleroderma. These findings provide the framework for the development of novel therapeutic interventions to shift the scleroderma treatment paradigm towards antiviral therapies.
Collapse
Affiliation(s)
- Antonella Farina
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Edoardo Rosato
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - Michael York
- Division of Rheumatology, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Program in Virology, Harvard Medical School, Boston, MA, United States.,Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Maria Trojanowska
- Division of Rheumatology, Boston University School of Medicine, Boston, MA, United States
| | | |
Collapse
|
13
|
Park C, Peng C, Rahman MJ, Haller SL, Tazi L, Brennan G, Rothenburg S. Orthopoxvirus K3 orthologs show virus- and host-specific inhibition of the antiviral protein kinase PKR. PLoS Pathog 2021; 17:e1009183. [PMID: 33444388 PMCID: PMC7840043 DOI: 10.1371/journal.ppat.1009183] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/27/2021] [Accepted: 11/25/2020] [Indexed: 01/06/2023] Open
Abstract
The antiviral protein kinase R (PKR) is an important host restriction factor, which poxviruses must overcome to productively infect host cells. To inhibit PKR, many poxviruses encode a pseudosubstrate mimic of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2), designated K3 in vaccinia virus. Although the interaction between PKR and eIF2α is highly conserved, some K3 orthologs from host-restricted poxviruses were previously shown to inhibit PKR in a species-specific manner. To better define this host range function, we compared the sensitivity of PKR from 17 mammals to inhibition by K3 orthologs from closely related orthopoxviruses, a genus with a generally broader host range. The K3 orthologs showed species-specific inhibition of PKR and exhibited three distinct inhibition profiles. In some cases, PKR from closely related species showed dramatic differences in their sensitivity to K3 orthologs. Vaccinia virus expressing the camelpox virus K3 ortholog replicated more than three orders of magnitude better in human and sheep cells than a virus expressing vaccinia virus K3, but both viruses replicated comparably well in cow cells. Strikingly, in site-directed mutagenesis experiments between the variola virus and camelpox virus K3 orthologs, we found that different amino acid combinations were necessary to mediate improved or diminished inhibition of PKR derived from different host species. Because there is likely a limited number of possible variations in PKR that affect K3-interactions but still maintain PKR/eIF2α interactions, it is possible that by chance PKR from some potential new hosts may be susceptible to K3-mediated inhibition from a virus it has never previously encountered. We conclude that neither the sensitivity of host proteins to virus inhibition nor the effectiveness of viral immune antagonists can be inferred from their phylogenetic relatedness but must be experimentally determined. Most virus families are composed of large numbers of virus species. However, in general, only a few prototypic viruses are experimentally studied in-depth, and it is often assumed that the obtained results are representative of other viruses in the same family. In order to test this assumption, we compared the sensitivity of the antiviral protein kinase PKR from various mammals to inhibition by multiple orthologs of K3, a PKR inhibitor expressed by several closely related orthopoxviruses. We found strong differences in PKR inhibition by the K3 orthologs, demonstrating that sensitivity to a specific inhibitor was not indicative of broad sensitivity to orthologs of these inhibitors from closely related viruses. We also show that PKR from even closely related species displayed markedly different sensitivities to these poxvirus inhibitors. Furthermore, we identified amino acid residues in these K3 orthologs that are critical for enhanced or decreased PKR inhibition and found that distinct amino acid combinations affected PKRs from various species differently. Our study shows that even closely related inhibitors of an antiviral protein can vary dramatically in their inhibitory potential, and cautions that results from host-virus interaction studies of a prototypic virus genus member cannot necessarily be extrapolated to other viruses in the same genus without experimental verification.
Collapse
Affiliation(s)
- Chorong Park
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
| | - Chen Peng
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Laboratory of Viral Diseases, Bethesda, Maryland, United States of America
| | - M. Julhasur Rahman
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
| | - Sherry L. Haller
- University of Texas Medical Branch at Galveston, Department of Microbiology and Immunology, Galveston, Texas, United States of America
| | - Loubna Tazi
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
| | - Greg Brennan
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
| | - Stefan Rothenburg
- School of Medicine, University of California Davis, Department of Medial Microbiology and Immunology, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Riad S, Xiang Y, AlDaif B, Mercer AA, Fleming SB. Rescue of a Vaccinia Virus Mutant Lacking IFN Resistance Genes K1L and C7L by the Parapoxvirus Orf Virus. Front Microbiol 2020; 11:1797. [PMID: 32903701 PMCID: PMC7438785 DOI: 10.3389/fmicb.2020.01797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Type 1 interferons induce the upregulation of hundreds of interferon-stimulated genes (ISGs) that combat viral replication. The parapoxvirus orf virus (ORFV) induces acute pustular skin lesions in sheep and goats and can reinfect its host, however, little is known of its ability to resist IFN. Vaccinia virus (VACV) encodes a number of factors that modulate the IFN response including the host-range genes C7L and K1L. A recombinant VACV-Western Reserve (WR) strain in which the K1L and C7L genes have been deleted does not replicate in cells treated with IFN-β nor in HeLa cells in which the IFN response is constitutive and is inhibited at the level of intermediate gene expression. Furthermore C7L is conserved in almost all poxviruses. We provide evidence that shows that although ORFV is more sensitive to IFN-β compared with VACV, and lacks homologues of KIL and C7L, it nevertheless has the ability to rescue a VACV KIL- C7L- gfp+ mutant in which gfp is expressed from a late promoter. Co-infection of HeLa cells with the mutant and ORFV demonstrated that ORFV was able to overcome the block in translation of intermediate transcripts in the mutant virus, allowing it to progress to late gene expression and new viral particles. Our findings strongly suggest that ORFV encodes a factor(s) that, although different in structure to C7L or KIL, targets an anti-viral cellular mechanism that is a highly potent at killing poxviruses.
Collapse
Affiliation(s)
- Sherief Riad
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Basheer AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A. Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses 2020; 12:v12090984. [PMID: 32899736 PMCID: PMC7552005 DOI: 10.3390/v12090984] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cells have evolved highly specialized sentinels that detect viral infection and elicit an antiviral response. Among these, the stress-sensing protein kinase R, which is activated by double-stranded RNA, mediates suppression of the host translation machinery as a strategy to limit viral replication. Non-translating mRNAs rapidly condensate by phase separation into cytosolic stress granules, together with numerous RNA-binding proteins and components of signal transduction pathways. Growing evidence suggests that the integrated stress response, and stress granules in particular, contribute to antiviral defense. This review summarizes the current understanding of how stress and innate immune signaling act in concert to mount an effective response against virus infection, with a particular focus on the potential role of stress granules in the coordination of antiviral signaling cascades.
Collapse
Affiliation(s)
- Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Katharina Haneke
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Zhaozhi Sun
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
- Correspondence:
| |
Collapse
|
16
|
Myxoma Virus-Encoded Host Range Protein M029: A Multifunctional Antagonist Targeting Multiple Host Antiviral and Innate Immune Pathways. Vaccines (Basel) 2020; 8:vaccines8020244. [PMID: 32456120 PMCID: PMC7349962 DOI: 10.3390/vaccines8020244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Myxoma virus (MYXV) is the prototypic member of the Leporipoxvirus genus of the Poxviridae family of viruses. In nature, MYXV is highly restricted to leporids and causes a lethal disease called myxomatosis only in European rabbits (Oryctologous cuniculus). However, MYXV has been shown to also productively infect various types of nonrabbit transformed and cancer cells in vitro and in vivo, whereas their normal somatic cell counterparts undergo abortive infections. This selective tropism of MYXV for cancer cells outside the rabbit host has facilitated its development as an oncolytic virus for the treatment of different types of cancers. Like other poxviruses, MYXV possesses a large dsDNA genome which encodes an array of dozens of immunomodulatory proteins that are important for host and cellular tropism and modulation of host antiviral innate immune responses, some of which are rabbit-specific and others can function in nonrabbit cells as well. This review summarizes the functions of one such MYXV host range protein, M029, an ortholog of the larger superfamily of poxvirus encoded E3-like dsRNA binding proteins. M029 has been identified as a multifunctional protein involved in MYXV cellular and host tropism, antiviral responses, and pathogenicity in rabbits.
Collapse
|
17
|
VHS, US3 and UL13 viral tegument proteins are required for Herpes Simplex Virus-Induced modification of protein kinase R. Sci Rep 2020; 10:5580. [PMID: 32221365 PMCID: PMC7101438 DOI: 10.1038/s41598-020-62619-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
To replicate, spread and persist in the host environment, viruses have evolved several immunological escape mechanisms via the action of specific viral proteins. The model "host shut off" adopted by virion host shut off (VHS) protein of Herpes simplex type 1 (HSV-1) represents an immune evasion mechanism which affects the best-characterized component of the innate immunological response, protein kinase R (PKR). However, up to now, the real mechanism employed by VHS to control PKR is still unknown. In this paper, we implement and extend our previous findings reporting that wild-type HSV-1 is able to control PKR, whereas a VHS mutant virus (R2621) clearly induces an accumulation of phosphorylated PKR in several cell types in a VHS-RNase activity-dependent manner. Furthermore, we demonstrate for the first time a new PKR-regulatory mechanism based on the involvement of Us3 and UL13 tegument viral proteins. The combined approach of transfection and infection assay was useful to discover the new role of both viral proteins in the immunological escape and demonstrate that Us3 and UL13 control the accumulation of the phosphorylated form (ph-PKR). Lastly, since protein kinases are tightly regulated by phosphorylation events and, at the same time, phosphorylate other proteins by inducing post-translational modifications, the interplay between Us3 and VHS during HSV-1 infection has been investigated. Interestingly, we found that VHS protein accumulates at higher molecular weight following Us3 transfection, suggesting an Us3-mediated phosphorylation of VHS. These findings reveal a new intriguing interplay between viral proteins during HSV-1 infection involved in the regulation of the PKR-mediated immune response.
Collapse
|
18
|
Abstract
Protein kinase R (PKR) is a key antiviral component of the innate immune pathway and is activated by viral double-stranded RNAs (dsRNAs). Adenovirus-associated RNA 1 (VAI) is an abundant, noncoding viral RNA that functions as a decoy by binding PKR but not inducing activation, thereby inhibiting the antiviral response. In VAI, coaxial stacking produces an extended helix that mediates high-affinity PKR binding but is too short to result in activation. Like adenovirus, Epstein-Barr virus produces high concentrations of a noncoding RNA, EBER1. Here, we compare interactions of PKR with VAI and EBER1 and present a structural model of EBER1. Both RNAs function as inhibitors of dsRNA-mediated PKR activation. However, EBER1 weakly activates PKR whereas VAI does not. PKR binds EBER1 more weakly than VAI. Assays at physiological ion concentrations indicate that both RNAs can accommodate two PKR monomers and induce PKR dimerization. A structural model of EBER1 was obtained using constraints derived from chemical structure probing and small-angle X-ray scattering experiments. The central stem of EBER1 coaxially stacks with stem loop 4 and stem loop 1 to form an extended RNA duplex of ∼32 bp that binds PKR and promotes activation. Our observations that EBER1 binds PKR much more weakly than VAI and exhibits weak PKR activation suggest that EBER1 is less well suited to function as an RNA decoy.
Collapse
|
19
|
Sebastian R, Sravanthi M, Umapathi V, Krishnaswamy N, Priyanka M, Dechamma HJ, Ganesh K, Basagoudanavar SH, Sanyal A, Reddy GR. Foot and mouth disease virus undergoes non-progressive replication in mice peritoneal macrophages and induces M1 polarization. Virus Res 2020; 281:197906. [PMID: 32109526 PMCID: PMC7114663 DOI: 10.1016/j.virusres.2020.197906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 11/16/2022]
Abstract
Non-progressive replication of foot and mouth disease virus was observed in mice peritoneal macrophages. Macrophages turns to M1 type polarization in response to FMDV infection. Upregulation of pro-inflammatory cytokines was peak by 8 h FMDV infection. Type I IFN and viperin showed marked upregulation following FMDV infection in the macrophages.
Despite the fact that macrophages link the innate and adaptive arms of immunity, it’s role in the early infection of foot and mouth disease virus (FMDV) is largely unknown. Recently, depletion of macrophages in vivo after vaccination has shown to drastically diminish the protection against FMDV challenge in mouse model. Even the ability of macrophages to reduce or resist FMDV infection is not known hitherto. Therefore, we examined the replication ability of FMDV in mice peritoneal macrophages and the responsiveness in terms of macrophage polarization and cytokine production. Negative strand specific RT-PCR indicated replication of FMDV RNA in macrophages. Absolute quantitation of FMDV transcripts, immunofluorescence studies and titre of the infectious progeny virus revealed that replication peaked at 12 hpi and significantly declined by 18 hpi indicating non-progressive replication in the infected macrophages. Further, significant up regulation of inducible nitric oxide synthase by 8 –12 hpi and increase of M1 specific CD11c + cells by 42.6 % after infection showed that FMDV induce M1 polarization. A significant up regulation of TNFα and IL12 transcripts at 8 hpi supported that M1 macrophages were functional. Further, we studied the expression of Type I to III interferons (IFN) and other antiviral molecules. The results indicate a marked up regulation of Type I IFNα and β by 9.2 and 11.2 fold, respectively at 8 hpi. Of the four IFN stimulated genes (ISG), viperin showed a significant up regulation by 286-fold at 12 hpi in the mice macrophages. In conclusion, the results suggest that replication of FMDV in mice peritoneal macrophages is non-progressive with up regulation of Type I IFN and ISGs. Further, FMDV induces M1 polarization in murine peritoneal macrophages.
Collapse
Affiliation(s)
- Renjith Sebastian
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - M Sravanthi
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - V Umapathi
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - N Krishnaswamy
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - M Priyanka
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - H J Dechamma
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - K Ganesh
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | | | - A Sanyal
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - G R Reddy
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India.
| |
Collapse
|
20
|
Flavivirus infection—A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Res 2019; 274:197770. [DOI: 10.1016/j.virusres.2019.197770] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
|
21
|
Species-Specific Host-Virus Interactions: Implications for Viral Host Range and Virulence. Trends Microbiol 2019; 28:46-56. [PMID: 31597598 DOI: 10.1016/j.tim.2019.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 01/09/2023]
Abstract
A growing number of studies indicate that host species-specific and virus strain-specific interactions of viral molecules with the host innate immune system play a pivotal role in determining virus host range and virulence. Because interacting proteins are likely constrained in their evolution, mutations that are selected to improve virus replication in one species may, by chance, alter the ability of a viral antagonist to inhibit immune responses in hosts the virus has not yet encountered. Based on recent findings of host-species interactions of poxvirus, herpesvirus, and influenza virus proteins, we propose a model for viral fitness and host range which considers the full interactome between a specific host species and a virus, resulting from the combination of all interactions, positive and negative, that influence whether a virus can productively infect a cell and cause disease in different hosts.
Collapse
|
22
|
Mayo CB, Erlandsen H, Mouser DJ, Feinstein AG, Robinson VL, May ER, Cole JL. Structural Basis of Protein Kinase R Autophosphorylation. Biochemistry 2019; 58:2967-2977. [PMID: 31246429 DOI: 10.1021/acs.biochem.9b00161] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The RNA-activated protein kinase, PKR, is a key mediator of the innate immunity response to viral infection. Viral double-stranded RNAs induce PKR dimerization and autophosphorylation. The PKR kinase domain forms a back-to-back dimer. However, intermolecular ( trans) autophosphorylation is not feasible in this arrangement. We have obtained PKR kinase structures that resolves this dilemma. The kinase protomers interact via the known back-to-back interface as well as a front-to-front interface that is formed by exchange of activation segments. Mutational analysis of the front-to-front interface support a functional role in PKR activation. Molecular dynamics simulations reveal that the activation segment is highly dynamic in the front-to-front dimer and can adopt conformations conducive to phosphoryl transfer. We propose a mechanism where back-to-back dimerization induces a conformational change that activates PKR to phosphorylate a "substrate" kinase docked in a front-to-front geometry. This mechanism may be relevant to related kinases that phosphorylate the eukaryotic initiation factor eIF2α.
Collapse
|
23
|
Expression of the Vaccinia Virus Antiapoptotic F1 Protein Is Blocked by Protein Kinase R in the Absence of the Viral E3 Protein. J Virol 2018; 92:JVI.01167-18. [PMID: 29997208 DOI: 10.1128/jvi.01167-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 01/21/2023] Open
Abstract
Poxviruses encode many proteins with the ability to regulate cellular signaling pathways. One such protein is the vaccinia virus innate immunity modulator E3. Multiple functions have been ascribed to E3, including modulating the cellular response to double-stranded RNA, inhibiting the NF-κB and IRF3 pathways, and dampening apoptosis. Apoptosis serves as a powerful defense against damaged and unwanted cells and is an effective defense against viral infection; many viruses therefore encode proteins that prevent or delay apoptosis. Here, we present data indicating that E3 does not directly inhibit the intrinsic apoptotic pathway; instead, it suppresses apoptosis indirectly by stimulating expression of the viral F1 apoptotic inhibitor. Our data demonstrate that E3 promotes F1 expression by blocking activation of the double-stranded RNA-activated protein kinase R (PKR). F1 mRNA is present in cells infected with E3-null virus, but the protein product does not detectably accumulate, suggesting a block at the translational level. We also show that two 3' coterminal transcripts span the F1 open reading frame (ORF), a situation previously described for the vaccinia virus mRNAs encoding the J3 and J4 proteins. One of these is a conventional monocistronic transcript of the F1L gene, while the other arises by read-through transcription from the upstream F2L gene and does not give rise to appreciable levels of F1 protein.IMPORTANCE Previous studies have shown that E3-deficient vaccinia virus triggers apoptosis of infected cells. Our study demonstrates that this proapoptotic phenotype stems, at least in part, from the failure of the mutant virus to produce adequate quantities of the viral F1 protein, which acts at the mitochondria to directly block apoptosis. Our data establish a regulatory link between the vaccinia virus proteins that suppress the innate response to double-stranded RNA and those that block the intrinsic apoptotic pathway.
Collapse
|
24
|
Calderon BM, Conn GL. A human cellular noncoding RNA activates the antiviral protein 2'-5'-oligoadenylate synthetase 1. J Biol Chem 2018; 293:16115-16124. [PMID: 30126839 DOI: 10.1074/jbc.ra118.004747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/10/2018] [Indexed: 12/16/2022] Open
Abstract
The 2'-5'-oligoadenylate synthetase (OAS) family of enzymes sense cytosolic dsRNA, a potent signal of viral infection. In response to dsRNA binding, OAS proteins synthesize the second messenger 2'-5'-linked oligoadenylate that activates the latent ribonuclease L (RNase L). RNase L-mediated degradation of viral and cellular RNAs effectively halts viral replication and further stimulates innate immune responses by inducing type I interferon. The OAS/RNase L pathway is therefore central in innate immune recognition and promotion of antiviral host responses. However, the potential for specific RNA sequences or structures to drive OAS1 activation and the molecular mechanisms by which they act are not currently fully understood. Moreover, the cellular regulators of OAS activity are not well defined. Here, we demonstrate that the human cellular noncoding RNA 886 (nc886) activates OAS1 both in vitro and in human A549 cells. We show that a unique structure present only in one of the two structural conformers adopted by nc886 drives potent OAS1 activation. In contrast, the conformer lacking this unique structure activated OAS1 only very weakly. We also found that formation of this OAS1-activating structural motif depends on the nucleotides in the apical-most loop of nc886 and the adjacent helix. These findings identify a cellular RNA capable of activating the OAS/RNase L pathway in human cells and illustrate the importance of structural elements, and their context, in potentiating OAS1 activity.
Collapse
Affiliation(s)
- Brenda M Calderon
- From the Department of Biochemistry and.,Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|
25
|
Adaptation by copy number variation in monopartite viruses. Curr Opin Virol 2018; 33:7-12. [PMID: 30015083 PMCID: PMC6289852 DOI: 10.1016/j.coviro.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 11/22/2022]
Abstract
Viral gene amplification allows rapid adaptation, especially for large DNA viruses. Amplifications often incur fitness costs for viral replication. Adaptive mutations can arise in the expanded locus or elsewhere enabling collapse. Genome amplifications provide genetic substrate for the evolution of modified or new functions.
Viruses evolve rapidly in response to host defenses and to exploit new niches. Gene amplification, a common adaptive mechanism in prokaryotes, archaea, and eukaryotes, has also contributed to viral evolution, especially of large DNA viruses. In experimental systems, gene amplification is one mechanism for rapidly overcoming selective pressures. Because the amplification generally incurs a fitness cost, emergence of adaptive point mutations within the amplified locus or elsewhere in the genome can enable collapse of the locus back to a single copy. Evidence of gene amplification followed by subfunctionalization or neofunctionalization of the copies is apparent by the presence of families of paralogous genes in many DNA viruses. These observations suggest that copy number variation has contributed broadly to virus evolution.
Collapse
|
26
|
Ye C, Yu Z, Xiong Y, Wang Y, Ruan Y, Guo Y, Chen M, Luan S, Zhang E, Liu H. STAU1 binds to IBDV genomic double-stranded RNA and promotes viral replication via attenuation of MDA5-dependent β interferon induction. FASEB J 2018; 33:286-300. [PMID: 29979632 DOI: 10.1096/fj.201800062rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infectious bursal disease virus (IBDV) infection triggers the induction of type I IFN, which is mediated by melanoma differentiation-associated protein 5 recognition of the viral genomic double-stranded RNA (dsRNA). However, the mechanism of IBDV overcoming the type I IFN antiviral response remains poorly characterized. Here, we show that IBDV genomic dsRNA selectively binds to the host cellular RNA binding protein Staufen1 (STAU1) in vitro and in vivo. The viral dsRNA binding region was mapped to the N-terminal moiety of STAU1 (residues 1-468). Down-regulation of STAU1 impaired IBDV replication and enhanced IFN-β transcription in response to IBDV infection, while having little effect on the viral attachment to the host cells and cellular entry. Conversely, overexpression of STAU1 but not the IBDV dsRNA-binding deficient STAU1 mutant (469-702) led to a suppression of IBDV dsRNA-induced IFN-β promoter activity. Moreover, we found that the binding of STAU1 to IBDV dsRNA decreased the association of melanoma differentiation-associated protein 5 but not VP3 with the IBDV dsRNA in vitro. Finally, we showed that STAU1 and VP3 suppressed IFN-β gene transcription in response to IBDV infection in an additive manner. Collectively, these findings provide a novel insight into the evasive strategies used by IBDV to escape the host IFN antiviral response.-Ye, C., Yu, Z., Xiong, Y., Wang, Y., Ruan, Y., Guo, Y., Chen, M., Luan, S., Zhang, E., Liu, H. STAU1 binds to IBDV genomic double-stranded RNA and promotes viral replication via attenuation of MDA5-dependent β interferon induction.
Collapse
Affiliation(s)
- Chengjin Ye
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Zhaoli Yu
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Yiwei Xiong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yu Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Yina Ruan
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Yueping Guo
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Mianmian Chen
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Shilu Luan
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Enli Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and
| | - Hebin Liu
- Department of Veterinary Medicine, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou, China; and.,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
27
|
Gjessing MC, Christensen DH, Manji F, Mohammad S, Petersen PE, Saure B, Skjengen C, Weli SC, Dale OB. Salmon gill poxvirus disease in Atlantic salmon fry as recognized by improved immunohistochemistry also demonstrates infected cells in non-respiratory epithelial cells. JOURNAL OF FISH DISEASES 2018; 41:1103-1110. [PMID: 29745427 DOI: 10.1111/jfd.12802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Gill diseases cause serious losses in farming of Atlantic salmon and the number of agents involved increases. Salmon gill poxvirus (SGPV) and the gill disease in causes where SGPV apparently was the only disease-causing agent were initially characterized. Recently, it was further shown that SGPV can be a common denominator in widely different multifactorial gill diseases. Here, we present the challenge of diagnosing gill disease with SGPV in salmon fry of 0,3-5 grams. Apoptosis of gill lamellar epithelial cells and hemophagocytosis was also observed in fry similar to findings in smolts and grow-out fish. Using our newly developed immunohistochemistry method, we further demonstrate that some of the apoptotic epithelial cells covering the oral cavity were positive for SGPV. Thus, SGPV is not restricted to respiratory epithelium alone and may infect the fish at very early life stages. Furthermore, as the cases examined here are from Norway, Faroe Island and Scotland, we show that SGPV is more widespread than previously reported.
Collapse
Affiliation(s)
| | - D H Christensen
- National Reference Laboratory for Fish Diseases, Food and Veterinary Authority, Torshavn, Faroe Islands
| | - F Manji
- Marine Harvest ASA, Bergen, Norway
| | - S Mohammad
- Norwegian Veterinary Institute, Oslo, Norway
| | - P E Petersen
- National Reference Laboratory for Fish Diseases, Food and Veterinary Authority, Torshavn, Faroe Islands
| | - B Saure
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - S C Weli
- Norwegian Veterinary Institute, Oslo, Norway
| | - O B Dale
- Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
28
|
Abstract
Viruses infecting vertebrate hosts must overcome the interferon (IFN)-mediated antiviral response to replicate and propagate to new hosts. The complex regulation of the IFN response allows viruses to antagonize IFN at multiple levels. However, no single strategy appears to be the golden ticket, and viruses have adopted multiple means to dampen this host defense. This Review does not exhaustively cover all mechanisms of viral IFN antagonism. Rather it examines the ten most common strategies that viruses use to subvert the IFN response with examples from publications appearing in the last 10 years of Cell Host & Microbe. The virus-host interactions involved in induction and evasion of IFN represent a fertile area of research due to the significant large number of host and viral products that regulate this response, resulting in an intricate dance between hosts and their pathogens to achieve an optimal balance between virus replication, host disease, and survival.
Collapse
Affiliation(s)
- Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
29
|
Ectromelia virus lacking the E3L ortholog is replication-defective and nonpathogenic but does induce protective immunity in a mouse strain susceptible to lethal mousepox. Virology 2018; 518:335-348. [PMID: 29602068 DOI: 10.1016/j.virol.2018.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 01/16/2023]
Abstract
All known orthopoxviruses, including ectromelia virus (ECTV), contain a gene in the E3L family. The protein product of this gene, E3, is a double-stranded RNA-binding protein. It can impact host range and is used by orthopoxviruses to combat cellular defense pathways, such as PKR and RNase L. In this work, we constructed an ECTV mutant with a targeted disruption of the E3L open reading frame (ECTVΔE3L). Infection with this virus resulted in an abortive replication cycle in all cell lines tested. We detected limited transcription of late genes but no significant translation of these mRNAs. Notably, the replication defects of ECTVΔE3L were rescued in human and mouse cells lacking PKR. ECTVΔE3L was nonpathogenic in BALB/c mice, a strain susceptible to lethal mousepox disease. However, infection with ECTVΔE3L induced protective immunity upon subsequent challenge with wild-type virus. In summary, E3L is an essential gene for ECTV.
Collapse
|
30
|
Antagonism of the Protein Kinase R Pathway in Human Cells by Rhesus Cytomegalovirus. J Virol 2018; 92:JVI.01793-17. [PMID: 29263260 DOI: 10.1128/jvi.01793-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/12/2017] [Indexed: 01/19/2023] Open
Abstract
While cytomegalovirus (CMV) infections are often limited in host range by lengthy coevolution with a single host species, a few CMVs are known to deviate from this rule. For example, rhesus macaque CMV (RhCMV), a model for human CMV (HCMV) pathogenesis and vaccine development, can replicate in human cells, as well as in rhesus cells. Both HCMV and RhCMV encode species-specific antagonists of the broadly acting host cell restriction factor protein kinase R (PKR). Although the RhCMV antagonist of PKR, rTRS1, has very limited activity against human PKR, here, we show it is essential for RhCMV replication in human cells because it prevents human PKR from phosphorylating the translation initiation factor eIF2α, thereby allowing continued translation and viral replication. Although rTRS1 is necessary for RhCMV replication, it is not sufficient to rescue replication of HCMV lacking its own PKR antagonists in human fibroblasts. However, overexpression of rTRS1 in human fibroblasts enabled HCMV expressing rTRS1 to replicate, indicating that elevated levels or early expression of a weak antagonist can counteract a resistant restriction factor like human PKR. Exploring potential mechanisms that might allow RhCMV to replicate in human cells revealed that RhCMV makes no less double-stranded RNA than HCMV. Rather, in human cells, RhCMV expresses rTRS1 at levels 2 to 3 times higher than those of the HCMV-encoded PKR antagonists during HCMV infection. These data suggest that even a modest increase in expression of this weak PKR antagonist is sufficient to enable RhCMV replication in human cells.IMPORTANCE Rhesus macaque cytomegalovirus (RhCMV) offers a valuable model for studying congenital human cytomegalovirus (HCMV) pathogenesis and vaccine development. Therefore, it is critical to understand variations in how each virus infects and affects its host species to be able to apply insights gained from the RhCMV model to HCMV. While HCMV is capable only of infecting cells from humans and very closely related species, RhCMV displays a wider host range, including human as well as rhesus cells. RhCMV expresses an antagonist of a broadly acting antiviral factor present in all mammalian cells, and its ability to counter both the rhesus and human versions of this host factor is a key component of RhCMV's ability to cross species barriers. Here, we examine the molecular mechanisms that allow this RhCMV antagonist to function against a human restriction factor.
Collapse
|
31
|
Huynh TP, Jancovich JK, Tripuraneni L, Heck MC, Langland JO, Jacobs BL. Characterization of a PKR inhibitor from the pathogenic ranavirus, Ambystoma tigrinum virus, using a heterologous vaccinia virus system. Virology 2017; 511:290-299. [PMID: 28919326 PMCID: PMC6192022 DOI: 10.1016/j.virol.2017.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
Abstract
Ambystoma tigrinum virus (ATV) (family Iridoviridae, genus Ranavirus) was isolated from diseased tiger salamanders (Ambystoma tigrinum stebbinsi) from the San Rafael Valley in southern Arizona, USA in 1996. Genomic sequencing of ATV, as well as other members of the genus, identified an open reading frame that has homology to the eukaryotic translation initiation factor, eIF2α (ATV eIF2α homologue, vIF2αH). Therefore, we asked if the ATV vIF2αH could also inhibit PKR. To test this hypothesis, the ATV vIF2αH was cloned into vaccinia virus (VACV) in place of the well-characterized VACV PKR inhibitor, E3L. Recombinant VACV expressing ATV vIF2αH partially rescued deletion of the VACV E3L gene. Rescue coincided with rapid degradation of PKR in infected cells. These data suggest that the salamander virus, ATV, contains a novel gene that may counteract host defenses, and this gene product may be involved in the presentation of disease caused by this environmentally important pathogen.
Collapse
Affiliation(s)
- Trung P Huynh
- School of Life Sciences, and The Biodesign Institute, Center for Infectious Diseases and Vaccinology Arizona State University, Tempe, AZ 85287-5001, USA
| | - James K Jancovich
- School of Life Sciences, and The Biodesign Institute, Center for Infectious Diseases and Vaccinology Arizona State University, Tempe, AZ 85287-5001, USA
| | - Latha Tripuraneni
- School of Life Sciences, and The Biodesign Institute, Center for Infectious Diseases and Vaccinology Arizona State University, Tempe, AZ 85287-5001, USA
| | - Michael C Heck
- School of Life Sciences, and The Biodesign Institute, Center for Infectious Diseases and Vaccinology Arizona State University, Tempe, AZ 85287-5001, USA
| | - Jeffrey O Langland
- School of Life Sciences, and The Biodesign Institute, Center for Infectious Diseases and Vaccinology Arizona State University, Tempe, AZ 85287-5001, USA; Southwest College of Naturopathic Medicine, Tempe, AZ 85282, USA
| | - Bertram L Jacobs
- School of Life Sciences, and The Biodesign Institute, Center for Infectious Diseases and Vaccinology Arizona State University, Tempe, AZ 85287-5001, USA.
| |
Collapse
|
32
|
Chinchar V, Waltzek TB, Subramaniam K. Ranaviruses and other members of the family Iridoviridae: Their place in the virosphere. Virology 2017. [DOI: 10.1016/j.virol.2017.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Meyer B, Groseth A. Apoptosis during arenavirus infection: mechanisms and evasion strategies. Microbes Infect 2017; 20:65-80. [PMID: 29081359 DOI: 10.1016/j.micinf.2017.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 11/17/2022]
Abstract
In recent years there has been a greatly increased interest in the interactions of arenaviruses with the apoptotic machinery, and particularly the extent to which these interactions may be an important contributor to pathogenesis. Here we summarize the current state of our knowledge on this subject and address the potential for interplay with other immunological mechanisms known to be regulated by these viruses. We also compare and contrast what is known for arenavirus-induced apoptosis with observations from other segmented hemorrhagic fever viruses.
Collapse
Affiliation(s)
- Bjoern Meyer
- Viral Populations and Pathogenesis Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Allison Groseth
- Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
34
|
Li C, Zhu Z, Du X, Cao W, Yang F, Zhang X, Feng H, Li D, Zhang K, Liu X, Zheng H. Foot-and-mouth disease virus induces lysosomal degradation of host protein kinase PKR by 3C proteinase to facilitate virus replication. Virology 2017; 509:222-231. [PMID: 28662438 PMCID: PMC7126777 DOI: 10.1016/j.virol.2017.06.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 12/16/2022]
Abstract
The interferon-induced double-strand RNA activated protein kinase (PKR) plays important roles in host defense against viral infection. Here we demonstrate the significant antiviral role of PKR against foot-and-mouth disease virus (FMDV) and report that FMDV infection inhibits PKR expression and activation in porcine kidney (PK-15) cells. The viral nonstructural protein 3C proteinase (3Cpro) is identified to be responsible for this inhibition. However, it is independent of the well-known proteinase activity of 3Cpro or 3Cpro-induced shutoff of host protein synthesis. We show that 3Cpro induces PKR degradation by lysosomal pathway and no interaction is determined between 3Cpro and PKR. Together, our results indicate that PKR acts an important antiviral factor during FMDV infection, and FMDV has evolved a strategy to overcome PKR-mediated antiviral role by downregulation of PKR protein.
Collapse
Affiliation(s)
- Chuntian Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China.
| | - Xiaoli Du
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Xiangle Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Huanhuan Feng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, PR China.
| |
Collapse
|
35
|
Allen AG, Morgans S, Smith E, Aron MM, Jancovich JK. The Ambystoma tigrinum virus (ATV) RNase III gene can modulate host PKR activation and interferon production. Virology 2017; 511:300-308. [PMID: 28844332 DOI: 10.1016/j.virol.2017.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
Abstract
The iridovirus RNase III gene is one of 26 conserved core genes among the family Iridoviridae. Initial studies suggest this viral protein functions to suppress RNA interference pathways that may attack viral RNA during infection. Therefore, to determine if the Ambystoma tigrinum virus (ATV) RNase III-like gene (ORF 25R) can modulate the host innate immune response fish and human cells ectopically expressing 25R were treated with polyI:C and monitored for interferon synthesis and phosphorylation of eIF2α and PKR. We found a decrease in cellular IFN production and modulation of the PKR pathway. In addition, ATV deleted of the RNase III gene (ATVΔ25R) shows reduced pathogenicity in tiger salamanders. Collectively our data suggest that the ATV 25R protein is a pathogenesis factor that may function to help evade the host's immune response by masking activators of the IFN pathway.
Collapse
Affiliation(s)
- Alexander G Allen
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Scott Morgans
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Eric Smith
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Mariah M Aron
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - James K Jancovich
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA.
| |
Collapse
|
36
|
Abstract
Most orthopoxviruses, including vaccinia virus (VACV), contain genes in the E3L and K3L families. The protein products of these genes have been shown to combat PKR, a host defense pathway. Interestingly, ectromelia virus (ECTV) contains an E3L ortholog but does not possess an intact K3L gene. Here, we gained insight into how ECTV can still efficiently evade PKR despite lacking K3L. Relative to VACV, we found that ECTV-infected BS-C-1 cells accumulated considerably less double-stranded (ds) RNA, which was due to lower mRNA levels and less transcriptional read-through of some genes by ECTV. The abundance of dsRNA in VACV-infected cells, detected using a monoclonal antibody, was able to activate the RNase L pathway at late time points post-infection. Historically, the study of transcription by orthopoxviruses has largely focused on VACV as a model. Our data suggest that there could be more to learn by studying other members of this genus.
Collapse
|
37
|
Chang YH, Lau KS, Kuo RL, Horng JT. dsRNA Binding Domain of PKR Is Proteolytically Released by Enterovirus A71 to Facilitate Viral Replication. Front Cell Infect Microbiol 2017; 7:284. [PMID: 28702377 PMCID: PMC5487429 DOI: 10.3389/fcimb.2017.00284] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/12/2017] [Indexed: 01/18/2023] Open
Abstract
Enterovirus 71 (EV-A71) causes hand, foot and mouth disease in young children and infants, but can also cause severe neurological complications or even death. The double-stranded RNA (dsRNA)-dependent protein kinase R (PKR), an interferon-induced antiviral protein, phosphorylates the regulatory α-subunit of the eukaryotic translation initiation factor 2 in response to viral infection, thereby blocking the translation of cellular and viral mRNA and promoting apoptosis. The cleavage of PKR after infection with poliovirus, a prototype enterovirus, has been reported by others, but the underlying mechanism of this cleavage and its role in viral replication remain unclear. In the present study, we show that viral 3C protease cleaves PKR at a site, Q188, which differs from the site cleaved during apoptosis, D251. In contrast to the conventional phosphorylation of PKR by dsRNA, EV-A71 3C physically interacts with PKR to mediate the phosphorylation of PKR; this effect is dependent on 3C protease activity. Overexpression of a catalytically inactive PKR mutant (K296H) accelerates viral protein accumulation and increases virus titer, whereas a K64E substitution in the dsRNA binding site abolishes this advantage. We also demonstrate that PKR cleavage mediated by EV-A71 3C protease produces a short N-terminal PKR fragment that can enhance EV-A71 replication, in terms of viral RNA, viral protein, and viral titers. We conclude that PKR is co-opted by EV-A71 via viral protease 3C-mediated proteolytic activation to facilitate viral replication.
Collapse
Affiliation(s)
- Yu-Hsiu Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan.,National Defense Medical Center, Institute of Preventive MedicineTaipei, Taiwan
| | - Kean Seng Lau
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Rei-Lin Kuo
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Jim-Tong Horng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan.,Research Center for Emerging Viral Infections, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial HospitalTaoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and TechnologyTaoyuan, Taiwan
| |
Collapse
|
38
|
Calderon BM, Conn GL. Human noncoding RNA 886 (nc886) adopts two structurally distinct conformers that are functionally opposing regulators of PKR. RNA (NEW YORK, N.Y.) 2017; 23:557-566. [PMID: 28069888 PMCID: PMC5340918 DOI: 10.1261/rna.060269.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/03/2017] [Indexed: 05/22/2023]
Abstract
The double-stranded RNA (dsRNA)-activated protein kinase (PKR) senses dsRNA produced during viral infection and halts cellular protein synthesis to block viral replication. How basal PKR activity is controlled in the absence of infection was unclear until the recent identification of a potential endogenous regulator, the cellular noncoding RNA 886 (nc886). However, nc886 adopts two distinct conformations for which the structural details and potential functional differences remain unclear. Here, we isolated and separately dissected the function of each form of nc886 to more clearly define the molecular mechanism of nc886-mediated PKR inhibition. We show that nc886 adopts two stable, noninterconverting RNA conformers that are functionally nonequivalent using complementary RNA structure probing and mutational analyses combined with PKR binding and activity assays. One conformer acts as a potent inhibitor, while the other is a pseudoinhibitor capable of weakly activating the kinase. We mapped the nc886 region necessary for high affinity binding and potent inhibition of PKR to an apical stem-loop structure present in only one conformer of the RNA. This structural feature is not only critical for inhibiting PKR autophosphorylation, but also the phosphorylation of its cellular substrate, the eukaryotic translation initiation factor 2α subunit. The identification of different activities of the nc886 conformers suggests a potential mechanism for producing a gradient of PKR regulation within the cell and reveals a way by which a cellular noncoding RNA can mask or present a structural feature to PKR for inhibition.
Collapse
Affiliation(s)
- Brenda M Calderon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Emory University, Atlanta, Georgia 30322 USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
39
|
Sun Y, Ke H, Han M, Chen N, Fang W, Yoo D. Nonstructural Protein 11 of Porcine Reproductive and Respiratory Syndrome Virus Suppresses Both MAVS and RIG-I Expression as One of the Mechanisms to Antagonize Type I Interferon Production. PLoS One 2016; 11:e0168314. [PMID: 27997564 PMCID: PMC5172586 DOI: 10.1371/journal.pone.0168314] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Type I interferons (IFN-α/β) play a key role in antiviral defense, and porcine reproductive and respiratory syndrome virus (PRRSV) is known to down-regulate the IFN response in virus-infected cells and pigs. In this study, we showed that the overexpression of nsp11 of PRRSV induced a strong suppression of IFN production. Nsp11 suppressed both IRF3 and NF-κB activities when stimulated with a dsRNA analogue and TNF-α, respectively. This suppression was RLR dependent, since the transcripts and proteins of MAVS and RIG-I, two critical factors in RLR-mediated pathway, were both found to be reduced in the presence of overexpressed nsp11. Since nsp11 is an endoribonuclease (EndoU), the structure function relationship was examined using a series of nsp11 EndoU mutant plasmids. The mutants that impaired the EndoU activity failed to suppress IFN and led to the normal expression of MAVS. Seven single amino acid substitutions (4 in subdomain A and 3 in subdomain B) plus one insertion (frame-shift in nsp11) were then introduced into PRRSV infectious cDNA clones to generate nsp11 mutant viruses. Unfortunately, all EndoU knock-out nsp11 mutant viruses appeared replication-defective and no progenies were produced. Three mutations in EndoU subdomain A expressed the N and nsp2/3 proteins but their infectivity diminished after 2 passages. Taken together, our data show that PRRSV nsp11 endoribonuclease activity is critical for both viral replication and IFN antagonism. More importantly, the endoribonuclease activity of nsp11 demonstrates the substrate specificity towards MAVS and RIG-I (transcripts and proteins) over p65 and IRF3 in the context of gene transfection and overexpression. This is likely a mechanism of nsp11 suppression of type I IFN production.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Hanzhong Ke
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mingyuan Han
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ning Chen
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
40
|
Carpentier KS, Esparo NM, Child SJ, Geballe AP. A Single Amino Acid Dictates Protein Kinase R Susceptibility to Unrelated Viral Antagonists. PLoS Pathog 2016; 12:e1005966. [PMID: 27780231 PMCID: PMC5079575 DOI: 10.1371/journal.ppat.1005966] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/30/2016] [Indexed: 02/07/2023] Open
Abstract
During millions of years of coevolution with their hosts, cytomegaloviruses (CMVs) have succeeded in adapting to overcome host-specific immune defenses, including the protein kinase R (PKR) pathway. Consequently, these adaptations may also contribute to the inability of CMVs to cross species barriers. Here, we provide evidence that the evolutionary arms race between the antiviral factor PKR and its CMV antagonist TRS1 has led to extensive differences in the species-specificity of primate CMV TRS1 proteins. Moreover, we identify a single residue in human PKR that when mutated to the amino acid present in African green monkey (Agm) PKR (F489S) is sufficient to confer resistance to HCMVTRS1. Notably, this precise molecular determinant of PKR resistance has evolved under strong positive selection among primate PKR alleles and is positioned within the αG helix, which mediates the direct interaction of PKR with its substrate eIF2α. Remarkably, this same residue also impacts sensitivity to K3L, a poxvirus-encoded pseudosubstrate that structurally mimics eIF2α. Unlike K3L, TRS1 has no homology to eIF2α, suggesting that unrelated viral genes have convergently evolved to target this critical region of PKR. Despite its functional importance, the αG helix exhibits extraordinary plasticity, enabling adaptations that allow PKR to evade diverse viral antagonists while still maintaining its critical interaction with eIF2α.
Collapse
Affiliation(s)
- Kathryn S. Carpentier
- Departments of Microbiology and Medicine, University of Washington, Seattle Washington, and Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Nicolle M. Esparo
- Departments of Microbiology and Medicine, University of Washington, Seattle Washington, and Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephanie J. Child
- Departments of Microbiology and Medicine, University of Washington, Seattle Washington, and Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Adam P. Geballe
- Departments of Microbiology and Medicine, University of Washington, Seattle Washington, and Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
- * E-mail:
| |
Collapse
|
41
|
Crow MS, Lum KK, Sheng X, Song B, Cristea IM. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses. Crit Rev Biochem Mol Biol 2016; 51:452-481. [PMID: 27650455 PMCID: PMC5285405 DOI: 10.1080/10409238.2016.1226250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent on the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments.
Collapse
Affiliation(s)
- Marni S. Crow
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Krystal K. Lum
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Xinlei Sheng
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Bokai Song
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| |
Collapse
|
42
|
Response of Three Different Viruses to Interferon Priming and Dithiothreitol Treatment of Avian Cells. J Virol 2016; 90:8328-40. [PMID: 27440902 DOI: 10.1128/jvi.01175-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/30/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED We have previously shown that the replication of avian reovirus (ARV) in chicken cells is much more resistant to interferon (IFN) than the replication of vesicular stomatitis virus (VSV) or vaccinia virus (VV). In this study, we have investigated the role that the double-stranded RNA (dsRNA)-activated protein kinase (PKR) plays in the sensitivity of these three viruses toward the antiviral action of chicken interferon. Our data suggest that while interferon priming of avian cells blocks vaccinia virus replication by promoting PKR activation, the replication of vesicular stomatitis virus appears to be blocked at a pretranslational step. Our data further suggest that the replication of avian reovirus in chicken cells is quite resistant to interferon priming because this virus uses strategies to downregulate PKR activation and also because translation of avian reovirus mRNAs is more resistant to phosphorylation of the alpha subunit of initiation factor eIF2 than translation of their cellular counterparts. Our results further reveal that the avian reovirus protein sigmaA is able to prevent PKR activation and that this function is dependent on its double-stranded RNA-binding activity. Finally, this study demonstrates that vaccinia virus and avian reovirus, but not vesicular stomatitis virus, express/induce factors that counteract the ability of dithiothreitol to promote eIF2 phosphorylation. Our data demonstrate that each of the three different viruses used in this study elicits distinct responses to interferon and to dithiothreitol-induced eIF2 phosphorylation when infecting avian cells. IMPORTANCE Type I interferons constitute the first barrier of defense against viral infections, and one of the best characterized antiviral strategies is mediated by the double-stranded RNA-activated protein kinase R (PKR). The results of this study revealed that IFN priming of avian cells has little effect on avian reovirus (ARV) replication but drastically diminishes the replication of vaccinia virus (VV) and vesicular stomatitis virus (VSV) by PKR-dependent and -independent mechanisms, respectively. Our data also demonstrate that the dsRNA-binding ability of ARV protein sigmaA plays a key role in the resistance of ARV toward IFN by preventing PKR activation. Our findings will contribute to improve the current understanding of the interaction of viruses with the host's innate immune system. Finally, it would be of interest to uncover the mechanisms that allow avian reovirus transcripts to be efficiently translated under conditions (moderate eIF2 phosphorylation) that block the synthesis of cellular proteins.
Collapse
|
43
|
Fernandes J. Oncogenes: The Passport for Viral Oncolysis Through PKR Inhibition. BIOMARKERS IN CANCER 2016; 8:101-10. [PMID: 27486347 PMCID: PMC4966488 DOI: 10.4137/bic.s33378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
Abstract
The transforming properties of oncogenes are derived from gain-of-function mutations, shifting cell signaling from highly regulated homeostatic to an uncontrolled oncogenic state, with the contribution of the inactivating mutations in tumor suppressor genes P53 and RB, leading to tumor resistance to conventional and target-directed therapy. On the other hand, this scenario fulfills two requirements for oncolytic virus infection in tumor cells: inactivation of tumor suppressors and presence of oncoproteins, also the requirements to engage malignancy. Several of these oncogenes have a negative impact on the main interferon antiviral defense, the double-stranded RNA-activated protein kinase (PKR), which helps viruses to spontaneously target tumor cells instead of normal cells. This review is focused on the negative impact of overexpression of oncogenes on conventional and targeted therapy and their positive impact on viral oncolysis due to their ability to inhibit PKR-induced translation blockage, allowing virion release and cell death.
Collapse
Affiliation(s)
- Janaina Fernandes
- NUMPEX-BIO, Campus Xerém, Federal University of Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil.; Institute for Translational Research on Health and Environment in the Amazon Region-INPeTAm, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
44
|
Monkeypox virus induces the synthesis of less dsRNA than vaccinia virus, and is more resistant to the anti-poxvirus drug, IBT, than vaccinia virus. Virology 2016; 497:125-135. [PMID: 27467578 PMCID: PMC5026613 DOI: 10.1016/j.virol.2016.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 02/03/2023]
Abstract
Monkeypox virus (MPXV) infection fails to activate the host anti-viral protein, PKR, despite lacking a full-length homologue of the vaccinia virus (VACV) PKR inhibitor, E3. Since PKR can be activated by dsRNA produced during a viral infection, we have analyzed the accumulation of dsRNA in MPXV-infected cells. MPXV infection led to less accumulation of dsRNA than VACV infection. Because in VACV infections accumulation of abnormally low amounts of dsRNA is associated with mutations that lead to resistance to the anti-poxvirus drug isatin beta-thiosemicarbazone (IBT), we investigated the effects of treatment of MPXV-infected cells with IBT. MPXV infection was eight-fold more resistant to IBT than wild-type vaccinia virus (wtVACV). These results demonstrate that MPXV infection leads to the accumulation of less dsRNA than wtVACV, which in turn likely leads to a decreased capacity for activation of the dsRNA-dependent host enzyme, PKR.
Collapse
|
45
|
Humoud MN, Doyle N, Royall E, Willcocks MM, Sorgeloos F, van Kuppeveld F, Roberts LO, Goodfellow IG, Langereis MA, Locker N. Feline Calicivirus Infection Disrupts Assembly of Cytoplasmic Stress Granules and Induces G3BP1 Cleavage. J Virol 2016; 90:6489-6501. [PMID: 27147742 PMCID: PMC4936126 DOI: 10.1128/jvi.00647-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/27/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED In response to stress such as virus infection, cells can stall translation by storing mRNAs away in cellular compartments called stress granules (SGs). This defense mechanism favors cell survival by limiting the use of energy and nutrients until the stress is resolved. In some cases it may also block viral propagation as viruses are dependent on the host cell resources to produce viral proteins. Human norovirus is a member of the Caliciviridae family responsible for gastroenteritis outbreaks worldwide. Previous studies on caliciviruses have identified mechanisms by which they can usurp the host translational machinery, using the viral protein genome-linked VPg, or regulate host protein synthesis through the mitogen-activated protein kinase (MAPK) pathway. Here, we examined the effect of feline calicivirus (FCV) infection on SG accumulation. We show that FCV infection impairs the assembly of SGs despite an increased phosphorylation of eukaryotic initiation factor eIF2α, a hallmark of stress pathway activation. Furthermore, SGs did not accumulate in FCV-infected cells that were stressed with arsenite or hydrogen peroxide. FCV infection resulted in the cleavage of the SG-nucleating protein Ras-GTPase activating SH3 domain-binding protein (G3BP1), which is mediated by the viral 3C-like proteinase NS6(Pro) Using mutational analysis, we identified the FCV-induced cleavage site within G3BP1, which differs from the poliovirus 3C proteinase cleavage site previously identified. Finally, we showed that NS6(Pro)-mediated G3BP1 cleavage impairs SG assembly. In contrast, murine norovirus (MNV) infection did not impact arsenite-induced SG assembly or G3BP1 integrity, suggesting that related caliciviruses have distinct effects on the stress response pathway. IMPORTANCE Human noroviruses are a major cause of viral gastroenteritis, and it is important to understand how they interact with the infected host cell. Feline calicivirus (FCV) and murine norovirus (MNV) are used as models to understand norovirus biology. Recent studies have suggested that the assembly of stress granules is central in orchestrating stress and antiviral responses to restrict viral replication. Overall, our study provides the first insight on how caliciviruses impair stress granule assembly by targeting the nucleating factor G3BP1 via the viral proteinase NS6(Pro) This work provides new insights into host-pathogen interactions that regulate stress pathways during FCV infection.
Collapse
Affiliation(s)
- Majid N Humoud
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford, United Kingdom
| | - Nicole Doyle
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford, United Kingdom
| | - Elizabeth Royall
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford, United Kingdom
| | - Margaret M Willcocks
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford, United Kingdom
| | - Frederic Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, United Kingdom
| | - Frank van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lisa O Roberts
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford, United Kingdom
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, United Kingdom
| | - Martijn A Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicolas Locker
- University of Surrey, Faculty of Health and Medical Sciences, School of Biosciences and Medicine, Guildford, United Kingdom
| |
Collapse
|
46
|
Ly HJ, Ikegami T. Rift Valley fever virus NSs protein functions and the similarity to other bunyavirus NSs proteins. Virol J 2016; 13:118. [PMID: 27368371 PMCID: PMC4930582 DOI: 10.1186/s12985-016-0573-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022] Open
Abstract
Rift Valley fever is a mosquito-borne zoonotic disease that affects both ruminants and humans. The nonstructural (NS) protein, which is a major virulence factor for Rift Valley fever virus (RVFV), is encoded on the S-segment. Through the cullin 1-Skp1-Fbox E3 ligase complex, the NSs protein promotes the degradation of at least two host proteins, the TFIIH p62 and the PKR proteins. NSs protein bridges the Fbox protein with subsequent substrates, and facilitates the transfer of ubiquitin. The SAP30-YY1 complex also bridges the NSs protein with chromatin DNA, affecting cohesion and segregation of chromatin DNA as well as the activation of interferon-β promoter. The presence of NSs filaments in the nucleus induces DNA damage responses and causes cell-cycle arrest, p53 activation, and apoptosis. Despite the fact that NSs proteins have poor amino acid similarity among bunyaviruses, the strategy utilized to hijack host cells are similar. This review will provide and summarize an update of recent findings pertaining to the biological functions of the NSs protein of RVFV as well as the differences from those of other bunyaviruses.
Collapse
Affiliation(s)
- Hoai J Ly
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA. .,The Sealy Center for Vaccine Development, The University of Texas Medical Branch at Galveston, Galveston, TX, USA. .,The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
47
|
Mayo CB, Wong CJ, Lopez PE, Lary JW, Cole JL. Activation of PKR by short stem-loop RNAs containing single-stranded arms. RNA (NEW YORK, N.Y.) 2016; 22:1065-75. [PMID: 27208315 PMCID: PMC4911914 DOI: 10.1261/rna.053348.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/19/2016] [Indexed: 05/22/2023]
Abstract
Protein kinase R (PKR) is a central component of the innate immunity antiviral pathway and is activated by dsRNA. PKR contains a C-terminal kinase domain and two tandem dsRNA binding domains. In the canonical activation model, binding of multiple PKR monomers to dsRNA enhances dimerization of the kinase domain, leading to enzymatic activation. A minimal dsRNA of 30 bp is required for activation. However, short (∼15 bp) stem-loop RNAs containing flanking single-stranded tails (ss-dsRNAs) are capable of activating PKR. Activation was reported to require a 5'-triphosphate. Here, we characterize the structural features of ss-dsRNAs that contribute to activation. We have designed a model ss-dsRNA containing 15-nt single-stranded tails and a 15-bp stem and made systematic truncations of the tail and stem regions. Autophosphorylation assays and analytical ultracentrifugation experiments were used to correlate activation and binding affinity. PKR activation requires both 5'- and 3'-single-stranded tails but the triphosphate is dispensable. Activation potency and binding affinity decrease as the ssRNA tails are truncated and activation is abolished in cases where the binding affinity is strongly reduced. These results indicate that the single-stranded regions bind to PKR and support a model where ss-dsRNA induced dimerization is required but not sufficient to activate the kinase. The length of the duplex regions in several natural RNA activators of PKR is below the minimum of 30 bp required for activation and similar interactions with single-stranded regions may contribute to PKR activation in these cases.
Collapse
Affiliation(s)
- Christopher B Mayo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - C Jason Wong
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Prisma E Lopez
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Jeffrey W Lary
- National Analytical Ultracentrifugation Facility, University of Connecticut, Storrs, Connecticut 06269, USA
| | - James L Cole
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA National Analytical Ultracentrifugation Facility, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
48
|
George CX, Ramaswami G, Li JB, Samuel CE. Editing of Cellular Self-RNAs by Adenosine Deaminase ADAR1 Suppresses Innate Immune Stress Responses. J Biol Chem 2016; 291:6158-68. [PMID: 26817845 PMCID: PMC4813567 DOI: 10.1074/jbc.m115.709014] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/15/2016] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminases acting on double-stranded RNA (ADARs) catalyze the deamination of adenosine (A) to produce inosine (I) in double-stranded (ds) RNA structures, a process known as A-to-I RNA editing. dsRNA is an important trigger of innate immune responses, including interferon (IFN) production and action. We examined the role of A-to-I RNA editing by two ADARs, ADAR1 and ADAR2, in the sensing of self-RNA in the absence of pathogen infection, leading to activation of IFN-induced, RNA-mediated responses in mouse embryo fibroblasts. IFN treatment of Adar1(-/-) cells lacking both the p110 constitutive and p150 IFN-inducible ADAR1 proteins induced formation of stress granules, whereas neither wild-type (WT) nor Adar2(-/-) cells displayed a comparable stress granule response following IFN treatment. Phosphorylation of protein synthesis initiation factor eIF2α at serine 51 was increased in IFN-treated Adar1(-/-) cells but not in either WT or Adar2(-/-) cells following IFN treatment. Analysis by deep sequencing of mouse exonic loci containing A-to-I-editing sites revealed that the majority of editing in mouse embryo fibroblasts was carried out by ADAR1. IFN treatment increased editing in both WT and Adar2(-/-) cells but not in either Adar1(-/-) or Adar1(-/-) (p150) cells or Stat1(-/-) or Stat2(-/-) cells. Hyper-edited sites found in predicted duplex structures showed strand bias of editing for some RNAs. These results implicate ADAR1 p150 as the major A-to-I editor in mouse embryo fibroblasts, acting as a feedback suppressor of innate immune responses otherwise triggered by self-RNAs possessing regions of double-stranded character.
Collapse
Affiliation(s)
- Cyril X George
- From the Department of Molecular, Cellular and Developmental Biology and
| | - Gokul Ramaswami
- the Department of Genetics, Stanford University, Stanford, California 94305
| | - Jin Billy Li
- the Department of Genetics, Stanford University, Stanford, California 94305
| | - Charles E Samuel
- From the Department of Molecular, Cellular and Developmental Biology and the Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, California 93106 and
| |
Collapse
|
49
|
Wang W, Wang WH, Azadzoi KM, Su N, Dai P, Sun J, Wang Q, Liang P, Zhang W, Lei X, Yan Z, Yang JH. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis. Sci Rep 2016; 6:22550. [PMID: 26935990 PMCID: PMC4776105 DOI: 10.1038/srep22550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/16/2016] [Indexed: 12/14/2022] Open
Abstract
Viruses induce double-stranded RNA (dsRNA) in the host cells. The mammalian system has developed dsRNA-dependent recognition receptors such as RLRs that recognize the long stretches of dsRNA as PAMPs to activate interferon-mediated antiviral pathways and apoptosis in severe infection. Here we report an efficient antiviral immune response through dsRNA-dependent RLR receptor-mediated necroptosis against infections from different classes of viruses. We demonstrated that virus-infected A549 cells were efficiently killed in the presence of a chimeric RLR receptor, dsCARE. It measurably suppressed the interferon antiviral pathway but promoted IL-1β production. Canonical cell death analysis by morphologic assessment, phosphatidylserine exposure, caspase cleavage and chemical inhibition excluded the involvement of apoptosis and consistently suggested RLR receptor-mediated necroptosis as the underlying mechanism of infected cell death. The necroptotic pathway was augmented by the formation of RIP1-RIP3 necrosome, recruitment of MLKL protein and the activation of cathepsin D. Contributing roles of RIP1 and RIP3 were confirmed by gene knockdown. Furthermore, the necroptosis inhibitor necrostatin-1 but not the pan-caspase inhibitor zVAD impeded dsCARE-dependent infected cell death. Our data provides compelling evidence that the chimeric RLR receptor shifts the common interferon antiviral responses of infected cells to necroptosis and leads to rapid death of the virus-infected cells. This mechanism could be targeted as an efficient antiviral strategy.
Collapse
Affiliation(s)
- Wei Wang
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wei-Hua Wang
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kazem M Azadzoi
- Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA, USA
| | - Ning Su
- Departments of Neurosurgery and Oncology, Xijing and Tangdu Hospital, Xi'an, China.,Cancer Research Center, Shandong University School of Medicine, Jinan, 250012, China
| | - Peng Dai
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jianbin Sun
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qin Wang
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ping Liang
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wentao Zhang
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoying Lei
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen Yan
- The State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jing-Hua Yang
- Departments of Surgery and Urology, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA, USA.,Cancer Research Center, Shandong University School of Medicine, Jinan, 250012, China
| |
Collapse
|
50
|
Sampey GC, Saifuddin M, Schwab A, Barclay R, Punya S, Chung MC, Hakami RM, Zadeh MA, Lepene B, Klase ZA, El-Hage N, Young M, Iordanskiy S, Kashanchi F. Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA. J Biol Chem 2015; 291:1251-66. [PMID: 26553869 DOI: 10.1074/jbc.m115.662171] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 12/22/2022] Open
Abstract
HIV-1 infection results in a chronic illness because long-term highly active antiretroviral therapy can lower viral titers to an undetectable level. However, discontinuation of therapy rapidly increases virus burden. Moreover, patients under highly active antiretroviral therapy frequently develop various metabolic disorders, neurocognitive abnormalities, and cardiovascular diseases. We have previously shown that exosomes containing trans-activating response (TAR) element RNA enhance susceptibility of undifferentiated naive cells to HIV-1 infection. This study indicates that exosomes from HIV-1-infected primary cells are highly abundant with TAR RNA as detected by RT-real time PCR. Interestingly, up to a million copies of TAR RNA/μl were also detected in the serum from HIV-1-infected humanized mice suggesting that TAR RNA may be stable in vivo. Incubation of exosomes from HIV-1-infected cells with primary macrophages resulted in a dramatic increase of proinflammatory cytokines, IL-6 and TNF-β, indicating that exosomes containing TAR RNA could play a direct role in control of cytokine gene expression. The intact TAR molecule was able to bind to PKR and TLR3 effectively, whereas the 5' and 3' stems (TAR microRNAs) bound best to TLR7 and -8 and none to PKR. Binding of TAR to PKR did not result in its phosphorylation, and therefore, TAR may be a dominant negative decoy molecule in cells. The TLR binding through either TAR RNA or TAR microRNA potentially can activate the NF-κB pathway and regulate cytokine expression. Collectively, these results imply that exosomes containing TAR RNA could directly affect the proinflammatory cytokine gene expression and may explain a possible mechanism of inflammation observed in HIV-1-infected patients under cART.
Collapse
Affiliation(s)
- Gavin C Sampey
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Mohammed Saifuddin
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Angela Schwab
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Robert Barclay
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Shreya Punya
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Myung-Chul Chung
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Ramin M Hakami
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | - Mohammad Asad Zadeh
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110
| | | | - Zachary A Klase
- the Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Nazira El-Hage
- the Department of Immunology, Herbert Wertheim College of Medicine, Miami, Florida 33199, and
| | - Mary Young
- the Department of Medicine, Women's Intra-Agency HIV Study, Georgetown University, Washington, D. C. 20007
| | - Sergey Iordanskiy
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110,
| | - Fatah Kashanchi
- From the Laboratory of Molecular Virology, George Mason University, Manassas, Virginia 20110,
| |
Collapse
|