1
|
Kafai NM, Janova H, Cain MD, Alippe Y, Muraro S, Sariol A, Elam-Noll M, Klein RS, Diamond MS. Entry receptor LDLRAD3 is required for Venezuelan equine encephalitis virus peripheral infection and neurotropism leading to pathogenesis in mice. Cell Rep 2023; 42:112946. [PMID: 37556325 PMCID: PMC10529316 DOI: 10.1016/j.celrep.2023.112946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is an encephalitic alphavirus responsible for epidemics of neurological disease across the Americas. Low-density lipoprotein receptor class A domain-containing 3 (LDLRAD3) is a recently reported entry receptor for VEEV. Here, using wild-type and Ldlrad3-deficient mice, we define a critical role for LDLRAD3 in controlling steps in VEEV infection, pathogenesis, and neurotropism. Our analysis shows that LDLRAD3 is required for efficient VEEV infection and pathogenesis prior to and after central nervous system invasion. Ldlrad3-deficient mice survive intranasal and intracranial VEEV inoculation and show reduced infection of neurons in different brain regions. As LDLRAD3 is a determinant of pathogenesis and an entry receptor required for VEEV infection of neurons of the brain, receptor-targeted therapies may hold promise as countermeasures.
Collapse
Affiliation(s)
- Natasha M Kafai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hana Janova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew D Cain
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yael Alippe
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stefanie Muraro
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alan Sariol
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michelle Elam-Noll
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Phelps AL, Salguero FJ, Hunter L, Stoll AL, Jenner DC, O’Brien LM, Williamson ED, Lever MS, Laws TR. Tumour Necrosis Factor-α, Chemokines, and Leukocyte Infiltrate Are Biomarkers for Pathology in the Brains of Venezuelan Equine Encephalitis (VEEV)-Infected Mice. Viruses 2023; 15:1307. [PMID: 37376607 PMCID: PMC10302690 DOI: 10.3390/v15061307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a disease typically confined to South and Central America, whereby human disease is characterised by a transient systemic infection and occasionally severe encephalitis, which is associated with lethality. Using an established mouse model of VEEV infection, the encephalitic aspects of the disease were analysed to identify biomarkers associated with inflammation. Sequential sampling of lethally challenged mice (infected subcutaneously) confirmed a rapid onset systemic infection with subsequent spread to the brain within 24 h of the challenge. Changes in inflammatory biomarkers (TNF-α, CCL-2, and CCL-5) and CD45+ cell counts were found to correlate strongly to pathology (R>0.9) and present previously unproven biomarkers for disease severity in the model, more so than viral titre. The greatest level of pathology was observed within the olfactory bulb and midbrain/thalamus. The virus was distributed throughout the brain/encephalon, often in areas not associated with pathology. The principal component analysis identified five principal factors across two independent experiments, with the first two describing almost half of the data: (1) confirmation of a systemic Th1-biased inflammatory response to VEEV infection, and (2) a clear correlation between specific inflammation of the brain and clinical signs of disease. Targeting strongly associated biomarkers of deleterious inflammation may ameliorate or even eliminate the encephalitic syndrome of this disease.
Collapse
Affiliation(s)
- Amanda L. Phelps
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | | | - Laura Hunter
- UK Health Security Agency, Salisbury SP4 0JG, UK
| | | | | | - Lyn M. O’Brien
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | | | - M. Stephen Lever
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| | - Thomas R. Laws
- Defence Science and Technology Laboratory, Salisbury SP4 0JQ, UK
| |
Collapse
|
3
|
Kafai NM, Williamson LE, Binshtein E, Sukupolvi-Petty S, Gardner CL, Liu J, Mackin S, Kim AS, Kose N, Carnahan RH, Jung A, Droit L, Reed DS, Handley SA, Klimstra WB, Crowe JE, Diamond MS. Neutralizing antibodies protect mice against Venezuelan equine encephalitis virus aerosol challenge. J Exp Med 2022; 219:e20212532. [PMID: 35297953 PMCID: PMC9195047 DOI: 10.1084/jem.20212532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) remains a risk for epidemic emergence or use as an aerosolized bioweapon. To develop possible countermeasures, we isolated VEEV-specific neutralizing monoclonal antibodies (mAbs) from mice and a human immunized with attenuated VEEV strains. Functional assays and epitope mapping established that potently inhibitory anti-VEEV mAbs bind distinct antigenic sites in the A or B domains of the E2 glycoprotein and block multiple steps in the viral replication cycle including attachment, fusion, and egress. A 3.2-Å cryo-electron microscopy reconstruction of VEEV virus-like particles bound by a human Fab suggests that antibody engagement of the B domain may result in cross-linking of neighboring spikes to prevent conformational requirements for viral fusion. Prophylaxis or postexposure therapy with these mAbs protected mice against lethal aerosol challenge with VEEV. Our study defines functional and structural mechanisms of mAb protection and suggests that multiple antigenic determinants on VEEV can be targeted for vaccine or antibody-based therapeutic development.
Collapse
Affiliation(s)
- Natasha M. Kafai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Lauren E. Williamson
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | | | - Christina L. Gardner
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
- United States Army Research Institute for Infectious Diseases, Fort Detrick, MD
| | - Jaclyn Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Samantha Mackin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Arthur S. Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Ana Jung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Douglas S. Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - William B. Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
4
|
Bivalent single domain antibody constructs for effective neutralization of Venezuelan equine encephalitis. Sci Rep 2022; 12:700. [PMID: 35027600 PMCID: PMC8758676 DOI: 10.1038/s41598-021-04434-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito borne alphavirus which leads to high viremia in equines followed by lethal encephalitis and lateral spread to humans. In addition to naturally occurring outbreaks, VEEV is a potential biothreat agent with no approved human vaccine or therapeutic currently available. Single domain antibodies (sdAb), also known as nanobodies, have the potential to be effective therapeutic agents. Using an immune phage display library derived from a llama immunized with an equine vaccine that included inactivated VEEV, five sdAb sequence families were identified that showed varying ability to neutralize VEEV. One of the sequence families had been identified previously in selections against chikungunya virus, a related alphavirus of public health concern. A key advantage of sdAb is the ability to optimize properties such as neutralization capacity through protein engineering. Neutralization of VEEV was improved by two orders of magnitude by genetically linking sdAb. One of the bivalent constructs showed effective neutralization of both VEEV and chikungunya virus. Several of the bivalent constructs neutralized VEEV in cell-based assays with reductions in the number of plaques by 50% at protein concentrations of 1 ng/mL or lower, making future evaluation of their therapeutic potential compelling.
Collapse
|
5
|
Calvert AE, Bennett SL, Hunt AR, Fong RH, Doranz BJ, Roehrig JT, Blair CD. Exposing cryptic epitopes on the Venezuelan equine encephalitis virus E1 glycoprotein prior to treatment with alphavirus cross-reactive monoclonal antibody allows blockage of replication early in infection. Virology 2021; 565:13-21. [PMID: 34626907 PMCID: PMC8765347 DOI: 10.1016/j.virol.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 01/17/2023]
Abstract
Eastern equine encephalitis virus (EEEV), western equine encephalitis virus (WEEV) and Venezuelan equine encephalitis virus (VEEV) can cause fatal encephalitis in humans and equids. Some MAbs to the E1 glycoprotein are known to be cross-reactive, weakly neutralizing in vitro but can protect from disease in animal models. We investigated the mechanism of neutralization of VEEV infection by the broadly cross-reactive E1-specific MAb 1A4B-6. 1A4B-6 protected 3-week-old Swiss Webster mice prophylactically from lethal VEEV challenge. Likewise, 1A4B-6 inhibited virus growth in vitro at a pre-attachment step after virions were incubated at 37 °C and inhibited virus-mediated cell fusion. Amino acid residue N100 in the fusion loop of E1 protein was identified as critical for binding. The potential to elicit broadly cross-reactive MAbs with limited virus neutralizing activity in vitro but that can inhibit virus entry and protect animals from infection merits further exploration for vaccine and therapeutic developmental research.
Collapse
Affiliation(s)
- Amanda E Calvert
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA.
| | - Susan L Bennett
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ann R Hunt
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | - John T Roehrig
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Carol D Blair
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Stromberg ZR, Fischer W, Bradfute SB, Kubicek-Sutherland JZ, Hraber P. Vaccine Advances against Venezuelan, Eastern, and Western Equine Encephalitis Viruses. Vaccines (Basel) 2020; 8:vaccines8020273. [PMID: 32503232 PMCID: PMC7350001 DOI: 10.3390/vaccines8020273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/21/2023] Open
Abstract
Vaccinations are a crucial intervention in combating infectious diseases. The three neurotropic Alphaviruses, Eastern (EEEV), Venezuelan (VEEV), and Western (WEEV) equine encephalitis viruses, are pathogens of interest for animal health, public health, and biological defense. In both equines and humans, these viruses can cause febrile illness that may progress to encephalitis. Currently, there are no licensed treatments or vaccines available for these viruses in humans. Experimental vaccines have shown variable efficacy and may cause severe adverse effects. Here, we outline recent strategies used to generate vaccines against EEEV, VEEV, and WEEV with an emphasis on virus-vectored and plasmid DNA delivery. Despite candidate vaccines protecting against one of the three viruses, few studies have demonstrated an effective trivalent vaccine. We evaluated the potential of published vaccines to generate cross-reactive protective responses by comparing DNA vaccine sequences to a set of EEEV, VEEV, and WEEV genomes and determining the vaccine coverages of potential epitopes. Finally, we discuss future directions in the development of vaccines to combat EEEV, VEEV, and WEEV.
Collapse
Affiliation(s)
- Zachary R. Stromberg
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 505, USA; (Z.R.S.); (J.Z.K.-S.)
| | - Will Fischer
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 505, USA;
| | - Steven B. Bradfute
- Center for Global Health, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 505, USA;
| | - Jessica Z. Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 505, USA; (Z.R.S.); (J.Z.K.-S.)
| | - Peter Hraber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 505, USA;
- Correspondence:
| |
Collapse
|
7
|
Burke CW, Froude JW, Rossi F, White CE, Moyer CL, Ennis J, Pitt ML, Streatfield S, Jones RM, Musiychuk K, Kervinen J, Zeitlin L, Yusibov V, Glass PJ. Therapeutic monoclonal antibody treatment protects nonhuman primates from severe Venezuelan equine encephalitis virus disease after aerosol exposure. PLoS Pathog 2019; 15:e1008157. [PMID: 31790515 PMCID: PMC6907853 DOI: 10.1371/journal.ppat.1008157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/12/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
There are no FDA licensed vaccines or therapeutics for Venezuelan equine encephalitis virus (VEEV) which causes a debilitating acute febrile illness in humans that can progress to encephalitis. Previous studies demonstrated that murine and macaque monoclonal antibodies (mAbs) provide prophylactic and therapeutic efficacy against VEEV peripheral and aerosol challenge in mice. Additionally, humanized versions of two neutralizing mAbs specific for the E2 glycoprotein, 1A3B-7 and 1A4A-1, administered singly protected mice against aerosolized VEEV. However, no studies have demonstrated protection in nonhuman primate (NHP) models of VEEV infection. Here, we evaluated a chimeric antibody 1A3B-7 (c1A3B-7) containing mouse variable regions on a human IgG framework and a humanized antibody 1A4A-1 containing a serum half-life extension modification (Hu-1A4A-1-YTE) for their post-exposure efficacy in NHPs exposed to aerosolized VEEV. Approximately 24 hours after exposure, NHPs were administered a single bolus intravenous mAb. Control NHPs had typical biomarkers of VEEV infection including measurable viremia, fever, and lymphopenia. In contrast, c1A3B-7 treated NHPs had significant reductions in viremia and lymphopenia and on average approximately 50% reduction in fever. Although not statistically significant, Hu-1A4A-1-YTE administration did result in reductions in viremia and fever duration. Delay of treatment with c1A3B-7 to 48 hours post-exposure still provided NHPs protection from severe VEE disease through reductions in viremia and fever. These results demonstrate that post-exposure administration of c1A3B-7 protected macaques from development of severe VEE disease even when administered 48 hours following aerosol exposure and describe the first evaluations of VEEV-specific mAbs for post-exposure prophylactic use in NHPs. Viral mutations were identified in one NHP after c1A3B-7 treatment administered 24 hrs after virus exposure. This suggests that a cocktail-based therapy, or an alternative mAb against an epitope that cannot mutate without resulting in loss of viral fitness may be necessary for a highly effective therapeutic.
Collapse
Affiliation(s)
- Crystal W. Burke
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Jeffery W. Froude
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Franco Rossi
- Center of Aerobiological Sciences, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Charles E. White
- Biostatisics Branch, US Army Medical Research Institute of Infectious Disease, Fort Detrick Maryland, United States of America
| | - Crystal L. Moyer
- Mapp Biopharmaceutical, Inc., San Diego, California, United States of America
| | - Jane Ennis
- Mapp Biopharmaceutical, Inc., San Diego, California, United States of America
| | - M. Louise Pitt
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| | - Stephen Streatfield
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Konstantin Musiychuk
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Jukka Kervinen
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, California, United States of America
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Pamela J. Glass
- Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
| |
Collapse
|
8
|
Sharma A, Knollmann-Ritschel B. Current Understanding of the Molecular Basis of Venezuelan Equine Encephalitis Virus Pathogenesis and Vaccine Development. Viruses 2019; 11:v11020164. [PMID: 30781656 PMCID: PMC6410161 DOI: 10.3390/v11020164] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/30/2022] Open
Abstract
Dedication This review is dedicated in the memory of Dr Radha K. Maheshwari, a great mentor and colleague, whose passion for research and student training has left a lasting effect on this manuscript and many other works. Abstract Venezuelan equine encephalitis virus (VEEV) is an alphavirus in the family Togaviridae. VEEV is highly infectious in aerosol form and a known bio-warfare agent that can cause severe encephalitis in humans. Periodic outbreaks of VEEV occur predominantly in Central and South America. Increased interest in VEEV has resulted in a more thorough understanding of the pathogenesis of this disease. Inflammation plays a paradoxical role of antiviral response as well as development of lethal encephalitis through an interplay between the host and viral factors that dictate virus replication. VEEV has efficient replication machinery that adapts to overcome deleterious mutations in the viral genome or improve interactions with host factors. In the last few decades there has been ongoing development of various VEEV vaccine candidates addressing the shortcomings of the current investigational new drugs or approved vaccines. We review the current understanding of the molecular basis of VEEV pathogenesis and discuss various types of vaccine candidates.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | |
Collapse
|
9
|
Liu JL, Shriver-Lake LC, Zabetakis D, Goldman ER, Anderson GP. Selection of Single-Domain Antibodies towards Western Equine Encephalitis Virus. Antibodies (Basel) 2018; 7:E44. [PMID: 31544894 PMCID: PMC6698954 DOI: 10.3390/antib7040044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
Abstract
In this work, we describe the selection and characterization of single-domain antibodies (sdAb) towards the E2/E3E2 envelope protein of the Western equine encephalitis virus (WEEV). Our purpose was to identify novel recognition elements which could be used for the detection, diagnosis, and perhaps treatment of western equine encephalitis (WEE). To achieve this goal, we prepared an immune phage display library derived from the peripheral blood lymphocytes of a llama that had been immunized with an equine vaccine that includes killed WEEV (West Nile Innovator + VEWT). This library was panned against recombinant envelope (E2/E3E2) protein from WEEV, and seven representative sdAb from the five identified sequence families were characterized. The specificity, affinity, and melting point of each sdAb was determined, and their ability to detect the recombinant protein in a MagPlex sandwich immunoassay was confirmed. Thus, these new binders represent novel recognition elements for the E2/E3E2 proteins of WEEV that are available to the research community for further investigation into their applicability for use in the diagnosis or treatment of WEE.
Collapse
Affiliation(s)
- Jinny L Liu
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Lisa C Shriver-Lake
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Dan Zabetakis
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - Ellen R Goldman
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| | - George P Anderson
- Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, DC 20375, USA.
| |
Collapse
|
10
|
Antibody Preparations from Human Transchromosomic Cows Exhibit Prophylactic and Therapeutic Efficacy against Venezuelan Equine Encephalitis Virus. J Virol 2017; 91:JVI.00226-17. [PMID: 28468884 DOI: 10.1128/jvi.00226-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne RNA virus that causes low mortality but high morbidity rates in humans. In addition to natural outbreaks, there is the potential for exposure to VEEV via aerosolized virus particles. There are currently no FDA-licensed vaccines or antiviral therapies for VEEV. Passive immunotherapy is an approved method used to protect individuals against several pathogens and toxins. Human polyclonal antibodies (PAbs) are ideal, but this is dependent upon serum from convalescent human donors, which is in limited supply. Non-human-derived PAbs can have serious immunoreactivity complications, and when "humanized," these antibodies may exhibit reduced neutralization efficiency. To address these issues, transchromosomic (Tc) bovines have been created, which can produce potent neutralizing human antibodies in response to hyperimmunization. In these studies, we have immunized these bovines with different VEEV immunogens and evaluated the protective efficacy of purified preparations of the resultant human polyclonal antisera against low- and high-dose VEEV challenges. These studies demonstrate that prophylactic or therapeutic administration of the polyclonal antibody preparations (TcPAbs) can protect mice against lethal subcutaneous or aerosol challenge with VEEV. Furthermore, significant protection against unrelated coinfecting viral pathogens can be conferred by combining individual virus-specific TcPAb preparations.IMPORTANCE With the globalization and spread or potential aerosol release of emerging infectious diseases, it will be critical to develop platforms that are able to produce therapeutics in a short time frame. By using a transchromosomic (Tc) bovine platform, it is theoretically possible to produce antigen-specific highly neutralizing therapeutic polyclonal human antibody (TcPAb) preparations in 6 months or less. In this study, we demonstrate that Tc bovine-derived Venezuelan equine encephalitis virus (VEEV)-specific TcPAbs are highly effective against VEEV infection that mimics not only the natural route of infection but also infection via aerosol exposure. Additionally, we show that combinatorial TcPAb preparations can be used to treat coinfections with divergent pathogens, demonstrating that the Tc bovine platform could be beneficial in areas where multiple infectious diseases occur contemporaneously or in the case of multipathogen release.
Collapse
|
11
|
Chikungunya viruses that escape monoclonal antibody therapy are clinically attenuated, stable, and not purified in mosquitoes. J Virol 2014; 88:8213-26. [PMID: 24829346 DOI: 10.1128/jvi.01032-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Chikungunya virus (CHIKV) is a reemerging mosquito-transmitted alphavirus that causes epidemics of debilitating polyarthritis in humans. A prior study identified two anti-CHIKV monoclonal antibodies ([MAbs] CHK-152 and CHK-166) against the E2 and E1 structural proteins, which had therapeutic efficacy in immunocompetent and immunocompromised mice. Combination MAb therapy was required as administration of a single MAb resulted in the rapid selection of neutralization escape variants and treatment failure in mice. Here, we initially evaluated the efficacy of combination MAb therapy in a nonhuman primate model of CHIKV infection. Treatment of rhesus macaques with CHK-152 and CHK-166 reduced viral spread and infection in distant tissue sites and also neutralized reservoirs of infectious virus. Escape viruses were not detected in the residual viral RNA present in tissues and organs of rhesus macaques. To evaluate the possible significance of MAb resistance, we engineered neutralization escape variant viruses (E1-K61T, E2-D59N, and the double mutant E1-K61T E2-D59N) that conferred resistance to CHK-152 and CHK-166 and tested them for fitness in mosquito cells, mammalian cells, mice, and Aedes albopictus mosquitoes. In both cell culture and mosquitoes, the mutant viruses grew equivalently and did not revert to wild-type (WT) sequence. All escape variants showed evidence of mild clinical attenuation, with decreased musculoskeletal disease at early times after infection in WT mice and a prolonged survival time in immunocompromised Ifnar1(-/-) mice. Unexpectedly, this was not associated with decreased infectivity, and consensus sequencing from tissues revealed no evidence of reversion or compensatory mutations. Competition studies with CHIKV WT also revealed no fitness compromise of the double mutant (E1-K61T E2-D59N) neutralization escape variant in WT mice. Collectively, our study suggests that neutralization escape viruses selected during combination MAb therapy with CHK-152 plus CHK-166 retain fitness, cause less severe clinical disease, and likely would not be purified during the enzootic cycle. IMPORTANCE Chikungunya virus (CHIKV) causes explosive epidemics of acute and chronic arthritis in humans in Africa, the Indian subcontinent, and Southeast Asia and recently has spread to the New World. As there are no approved vaccines or therapies for human use, the possibility of CHIKV-induced debilitating disease is high in many parts of the world. To this end, our laboratory recently generated a combination monoclonal antibody therapy that aborted lethal and arthritogenic disease in wild-type and immunocompromised mice when administered as a single dose several days after infection. In this study, we show the efficacy of the antibody combination in nonhuman primates and also evaluate the significance of possible neutralization escape mutations in mosquito and mammalian cells, mice, and Aedes albopictus vector mosquitoes. Our experiments show that escape viruses from combination antibody therapy cause less severe CHIKV clinical disease, retain fitness, and likely would not be purified by mosquito vectors.
Collapse
|
12
|
Hülseweh B, Rülker T, Pelat T, Langermann C, Frenzel A, Schirrmann T, Dübel S, Thullier P, Hust M. Human-like antibodies neutralizing Western equine encephalitis virus. MAbs 2014; 6:718-27. [PMID: 24518197 PMCID: PMC4011916 DOI: 10.4161/mabs.28170] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study describes the development of the first neutralizing antibodies against Western equine encephalitis virus (WEEV), a member of the genus Alphavirus. WEEV is transmitted by mosquitoes and can spread to the human central nervous system, causing symptoms ranging from mild febrile reactions to life-threatening encephalitis. WEEV has been classified as a biological warfare agent by the US Centers for Disease Control and Prevention. No anti-WEEV drugs are currently commercially available. Neutralizing antibodies are useful for the pre- and post-exposure treatment of WEEV infections. In this study, two immune antibody gene libraries were constructed from two macaques immunized with inactivated WEEV. Four antibodies were selected from these libraries and recloned as scFv-Fc, with a human Fc part. These antibodies bound WEEV specifically in ELISA with little or no cross-reaction with other alphaviruses. They were further analyzed by immunohistochemistry. All binders were suitable for the intracellular detection of WEEV particles. Neutralizing activity was determined in vitro. Three of the four antibodies were found to be neutralizing; about 1 ng/mL of the best antibody (ToR69–3A2) neutralized 50% of 5x104 TCID50/mL. Due to its human-like nature with a germinality index of 89% (VH) and 91% (VL), the ToR69–3A2 antibody is a promising candidate for future passive vaccine development.
Collapse
Affiliation(s)
- Birgit Hülseweh
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS); ABC-Schutz; Munster, Germany
| | - Torsten Rülker
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie und Bioinformatik; Braunschweig, Germany
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines; La Tronche, France
| | - Claudia Langermann
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS); ABC-Schutz; Munster, Germany
| | - Andrè Frenzel
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie und Bioinformatik; Braunschweig, Germany
| | - Thomas Schirrmann
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie und Bioinformatik; Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie und Bioinformatik; Braunschweig, Germany
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines; La Tronche, France
| | - Michael Hust
- Technische Universität Braunschweig; Institut für Biochemie, Biotechnologie und Bioinformatik; Braunschweig, Germany
| |
Collapse
|
13
|
Williamson ED, Duchars MG, Kohberger R. Predictive models and correlates of protection for testing biodefence vaccines. Expert Rev Vaccines 2014; 9:527-37. [DOI: 10.1586/erv.10.22] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Possible future monoclonal antibody (mAb)-based therapy against arbovirus infections. BIOMED RESEARCH INTERNATIONAL 2013; 2013:838491. [PMID: 24058915 PMCID: PMC3766601 DOI: 10.1155/2013/838491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 11/17/2022]
Abstract
More than 150 arboviruses belonging to different families are known to infect humans, causing endemic infections as well as epidemic outbreaks. Effective vaccines to limit the occurrence of some of these infections have been licensed, while for the others several new immunogens are under development mostly for their improvements concerning safety and effectiveness profiles. On the other hand, specific and effective antiviral drugs are not yet available, posing an urgent medical need in particular for emergency cases. Neutralizing monoclonal antibodies (mAbs) have been demonstrated to be effective in the treatment of several infectious diseases as well as in preliminary in vitro and in vivo models of arbovirus-related infections. Given their specific antiviral activity as well-tolerated molecules with limited side effects, mAbs could represent a new therapeutic approach for the development of an effective treatment, as well as useful tools in the study of the host-virus interplay and in the development of more effective immunogens. However, before their use as candidate therapeutics, possible hurdles (e.g., Ab-dependent enhancement of infection, occurrence of viral escape variants) must be carefully evaluated. In this review are described the main arboviruses infecting humans and candidate mAbs to be possibly used in a future passive immunotherapy.
Collapse
|
15
|
Comprehensive mapping of common immunodominant epitopes in the eastern equine encephalitis virus E2 protein recognized by avian antibody responses. PLoS One 2013; 8:e69349. [PMID: 23922704 PMCID: PMC3724843 DOI: 10.1371/journal.pone.0069349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/08/2013] [Indexed: 01/06/2023] Open
Abstract
Eastern equine encephalitis virus (EEEV) is a mosquito-borne virus that can cause both human and equine encephalitis with high case fatality rates. EEEV can also be widespread among birds, including pheasants, ostriches, emu, turkeys, whooping cranes and chickens. The E2 protein of EEEV and other Alphaviruses is an important immunogenic protein that elicits antibodies of diagnostic value. While many therapeutic and diagnostic applications of E2 protein-specific antibodies have been reported, the specific epitopes on E2 protein recognized by the antibody responses of different susceptible hosts, including avian species, remain poorly defined. In the present study, the avian E2-reactive polyclonal antibody (PAb) response was mapped to linear peptide epitopes using PAbs elicited in chickens and ducks following immunization with recombinant EEEV E2 protein and a series of 42 partially overlapping peptides covering the entire EEEV E2 protein. We identified 12 and 13 peptides recognized by the chicken and duck PAb response, respectively. Six of these linear peptides were commonly recognized by PAbs elicited in both avian species. Among them five epitopes recognized by both avian, the epitopes located at amino acids 211–226 and 331–352 were conserved among the EEEV antigenic complex, but not other associated alphaviruses, whereas the epitopes at amino acids 11–26, 30–45 and 151–166 were specific to EEEV subtype I. The five common peptide epitopes were not recognized by avian PAbs against Avian Influenza Virus (AIV) and Duck Plague Virus (DPV). The identification and characterization of EEEV E2 antibody epitopes may be aid the development of diagnostic tools and facilitate the design of epitope-based vaccines for EEEV. These results also offer information with which to study the structure of EEEV E2 protein.
Collapse
|
16
|
Taylor KG, Paessler S. Pathogenesis of Venezuelan equine encephalitis. Vet Microbiol 2013; 167:145-50. [PMID: 23968890 DOI: 10.1016/j.vetmic.2013.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/03/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
Equine encephalids have high mortality rates and represent a significant zoonotic public health threat. Of these the most pathogenic viruses to equids are the alphaviruses in the family Togaviridae. The focus of this review Venezualen equine encephalitis virus (VEEV) has caused the most widespread and recent epidemic outbreaks of disease. Circulation in naturally occuring rodent-mosquito cycles, results in viral spread to both human and equine populations. However, equines develop a high titer viremia and can transmit the virus back to mosquito populations. As such, the early recognition and control of viral infection in equine populations is strongly associated with prevention of epidemic spread of the virus and limiting of disease incidence in human populations. This review will address identification and pathogenesis of VEEV in equids vaccination and treatment options, and current research for drug and vaccine development.
Collapse
Affiliation(s)
- Katherine G Taylor
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, United States.
| | | |
Collapse
|
17
|
Nagata LP, Wong JP, Hu WG, Wu JQ. Vaccines and therapeutics for the encephalitic alphaviruses. Future Virol 2013. [DOI: 10.2217/fvl.13.42] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This article is a review of vaccines and therapeutics in development for the encephalitic alphaviruses, which includes eastern equine encephalitis virus, western equine encephalitis virus and Venezuelan equine encephalitis virus. The encephalitic alphaviruses are endemic within regions in North and South America. Hosts are normally exposed after being bitten by infectious mosquitoes, and infection can develop into encephalitis in equines and humans with severe rates of morbidity and mortality. These viruses are also potential biological threat agents, being highly infectious via an aerosol route of exposure. In humans, equine encephalitis virus and western equine encephalitis virus are neurotropic viruses targeting the CNS and causing encephalitis. Mortality rates are 50 and 10%, respectively, for these viruses. On the other hand, Venezuelan equine encephalitis virus produces a systemic influenza-like illness with pathogenesis in the lungs and lymphoid tissue in adults and older children. The incidence of encephalitis is less than 5% in younger children with a case–mortality rate of 1%. The host response to virus infectivity is briefly discussed, along with a number of promising therapeutic and prophylactic approaches. These approaches can be broadly classified as: virus-specific, including vaccines, antibody therapy and gene-silencing oligonucleotides; or broad-spectrum, including interferon and activation of the host‘s innate immunity.
Collapse
Affiliation(s)
- Les P Nagata
- BioThreat Defence Section, Defence Research & Development Canada, PO Box 4000, Medicine Hat, AB T1A 8K6, Canada
| | - Jonathan P Wong
- BioThreat Defence Section, Defence Research & Development Canada, PO Box 4000, Medicine Hat, AB T1A 8K6, Canada
| | - Wei-gang Hu
- BioThreat Defence Section, Defence Research & Development Canada, PO Box 4000, Medicine Hat, AB T1A 8K6, Canada
| | - Josh Q Wu
- BioThreat Defence Section, Defence Research & Development Canada, PO Box 4000, Medicine Hat, AB T1A 8K6, Canada
| |
Collapse
|
18
|
EnCheng S, Jing Z, Tao Y, QingYuan X, Yongli Q, WenShi W, Peng W, Liang S, Jing S, DongLai W. Analysis of murine B-cell epitopes on Eastern equine encephalitis virus glycoprotein E2. Appl Microbiol Biotechnol 2013; 97:6359-72. [PMID: 23512478 DOI: 10.1007/s00253-013-4819-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 11/26/2022]
Abstract
The Eastern equine encephalitis virus (EEEV) E2 protein is one of the main targets of the protective immune response against EEEV. Although some efforts have done to elaborate the structure and immune molecular basis of Alphaviruses E2 protein, the published data of EEEV E2 are limited. Preparation of EEEV E2 protein-specific antibodies and define MAbs-binding epitopes on E2 protein will be conductive to the antibody-based prophylactic and therapeutic and to the study on structure and function of EEEV E2 protein. In this study, 51 EEEV E2 protein-reactive monoclonal antibodies (MAbs) and antisera (polyclonal antibodies, PAbs) were prepared and characterized. By pepscan with MAbs and PAbs using enzyme-linked immunosorbent assay, we defined 18 murine linear B-cell epitopes. Seven peptide epitopes were recognized by both MAbs and PAbs, nine epitopes were only recognized by PAbs, and two epitopes were only recognized by MAbs. Among the epitopes recognized by MAbs, seven epitopes were found only in EEEV and two epitopes were found both in EEEV and Venezuelan equine encephalitis virus (VEEV). Four of the EEEV antigenic complex-specific epitopes were commonly held by EEEV subtypes I/II/III/IV (1-16aa, 248-259aa, 271-286aa, 321-336aa probably located in E2 domain A, domain B, domain C, domain C, respectively). The remaining three epitopes were EEEV type-specific epitopes: a subtype I-specific epitope at amino acids 108-119 (domain A), a subtype I/IV-specific epitope at amino acids 211-226 (domain B) and a subtype I/II/III-specific epitope at amino acids 231-246 (domain B). The two common epitopes of EEEV and VEEV were located at amino acids 131-146 and 241-256 (domain B). The generation of EEEV E2-specific MAbs with defined specificities and binding epitopes will inform the development of differential diagnostic approaches and structure study for EEEV and associated alphaviruses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/immunology
- Encephalitis Virus, Eastern Equine/chemistry
- Encephalitis Virus, Eastern Equine/classification
- Encephalitis Virus, Eastern Equine/genetics
- Encephalitis Virus, Eastern Equine/immunology
- Encephalitis Virus, Venezuelan Equine/chemistry
- Encephalitis Virus, Venezuelan Equine/classification
- Encephalitis Virus, Venezuelan Equine/genetics
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalomyelitis, Equine/immunology
- Encephalomyelitis, Equine/virology
- Epitope Mapping
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Humans
- Mice
- Species Specificity
- Spodoptera
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Sun EnCheng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhao J, Sun E, Liu N, Yang T, Xu Q, Qin Y, Yang Y, Wu D. Phage display identifies an Eastern equine encephalitis virus glycoprotein E2-specific B cell epitope. Vet Immunol Immunopathol 2012; 148:364-8. [DOI: 10.1016/j.vetimm.2012.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/08/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
|
20
|
Rülker T, Voß L, Thullier P, O' Brien LM, Pelat T, Perkins SD, Langermann C, Schirrmann T, Dübel S, Marschall HJ, Hust M, Hülseweh B. Isolation and characterisation of a human-like antibody fragment (scFv) that inactivates VEEV in vitro and in vivo. PLoS One 2012; 7:e37242. [PMID: 22666347 PMCID: PMC3364240 DOI: 10.1371/journal.pone.0037242] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/18/2012] [Indexed: 11/18/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) belongs to the Alphavirus genus and several species of this family are pathogenic to humans. The viruses are classified as potential agents of biological warfare and terrorism and sensitive detection as well as effective prophylaxis and antiviral therapies are required.In this work, we describe the isolation of the anti-VEEV single chain Fragment variable (scFv), ToR67-3B4, from a non-human primate (NHP) antibody gene library. We report its recloning into the bivalent scFv-Fc format and further immunological and biochemical characterisation.The scFv-Fc ToR67-3B4 recognised viable as well as formalin and ß-propionolactone (ß-Pl) inactivated virus particles and could be applied for immunoblot analysis of VEEV proteins and immuno-histochemistry of VEEV infected cells. It detected specifically the viral E1 envelope protein of VEEV but did not react with reduced viral glycoprotein preparations suggesting that recognition depends upon conformational epitopes. The recombinant antibody was able to detect multiple VEEV subtypes and displayed only marginal cross-reactivity to other Alphavirus species except for EEEV. In addition, the scFv-Fc fusion described here might be of therapeutic use since it successfully inactivated VEEV in a murine disease model. When the recombinant antibody was administered 6 hours post challenge, 80% to 100% of mice survived lethal VEEV IA/B or IE infection. Forty to sixty percent of mice survived when scFv-Fc ToR67-3B4 was applied 6 hours post challenge with VEEV subtypes II and former IIIA. In combination with E2-neutralising antibodies the NHP antibody isolated here could significantly improve passive protection as well as generic therapy of VEE.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/isolation & purification
- Cloning, Molecular
- Encephalitis Virus, Venezuelan Equine/immunology
- Gene Library
- Genetic Vectors/genetics
- Humans
- Immunization, Passive
- Macaca fascicularis
- Male
- Mice
- Mice, Inbred BALB C
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/isolation & purification
- Sequence Analysis
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/isolation & purification
Collapse
Affiliation(s)
- Torsten Rülker
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Braunschweig, Germany
| | - Luzie Voß
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS) – ABC-Schutz, Munster, Germany
| | - Philippe Thullier
- Centre de Recherche du Service de Santé des Armées (CRSSA-IRBA), La Tronche, France
| | - Lyn M. O' Brien
- Defence Science and Technology Laboratory, Biomedical Sciences Department, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Thibaut Pelat
- Centre de Recherche du Service de Santé des Armées (CRSSA-IRBA), La Tronche, France
| | - Stuart D. Perkins
- Defence Science and Technology Laboratory, Biomedical Sciences Department, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Claudia Langermann
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS) – ABC-Schutz, Munster, Germany
| | - Thomas Schirrmann
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Braunschweig, Germany
| | - Hans-Jürgen Marschall
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS) – ABC-Schutz, Munster, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Braunschweig, Germany
| | - Birgit Hülseweh
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS) – ABC-Schutz, Munster, Germany
| |
Collapse
|
21
|
O'Brien LM, Goodchild SA, Phillpotts RJ, Perkins SD. A humanised murine monoclonal antibody protects mice from Venezuelan equine encephalitis virus, Everglades virus and Mucambo virus when administered up to 48 h after airborne challenge. Virology 2012; 426:100-5. [PMID: 22341308 DOI: 10.1016/j.virol.2012.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/03/2012] [Accepted: 01/30/2012] [Indexed: 11/18/2022]
Abstract
Currently there are no licensed antiviral treatments for the Alphaviruses Venezuelan equine encephalitis virus (VEEV), Everglades virus and Mucambo virus. We previously developed a humanised version of the mouse monoclonal antibody 1A3B-7 (Hu1A3B-7) which exhibited a wide range of reactivity in vitro and was able to protect mice from infection with VEEV. Continued work with the humanised antibody has now demonstrated that it has the potential to be a new human therapeutic. Hu1A3B-7 successfully protected mice from infection with multiple Alphaviruses. The effectiveness of the humanisation process was determined by assessing proliferation responses in human T-cells to peptides derived from the murine and humanised versions of the V(H) and V(L) domains. This analysis showed that the number of human T-cell epitopes within the humanised antibody had been substantially reduced, indicating that Hu1A3B-7 may have reduced immunogenicity in vivo.
Collapse
Affiliation(s)
- Lyn M O'Brien
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.
| | | | | | | |
Collapse
|
22
|
Hunt AR, Bowen RA, Frederickson S, Maruyama T, Roehrig JT, Blair CD. Treatment of mice with human monoclonal antibody 24h after lethal aerosol challenge with virulent Venezuelan equine encephalitis virus prevents disease but not infection. Virology 2011; 414:146-52. [PMID: 21489591 DOI: 10.1016/j.virol.2011.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/23/2011] [Accepted: 03/18/2011] [Indexed: 02/05/2023]
Abstract
We recently described a Venezuelan equine encephalitis virus (VEEV)-specific human monoclonal antibody (MAb), F5 nIgG, that recognizes a new neutralization epitope on the VEEV E2 envelope glycoprotein. In this study, we investigated the ability of F5 nIgG given prophylactically or therapeutically to protect mice from subcutaneous or aerosolized VEEV infection. F5 nIgG had potent ability to protect mice from infection by either route when administered 24h before exposure; however, mice treated 24h after aerosol exposure developed central nervous system infections but exhibited no clinical signs of disease. Infectious virus, viral antigen and RNA were detected in brains of both treated and untreated mice 2-6 days after aerosol exposure but were cleared from the brains of treated animals by 14-28 days after infection. This fully human MAb could be useful for prophylaxis or immediate therapy for individuals exposed to VEEV accidentally in the laboratory or during a deliberate release.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Cell Line
- Disease Models, Animal
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalitis Virus, Venezuelan Equine/pathogenicity
- Encephalitis Virus, Venezuelan Equine/physiology
- Encephalomyelitis, Venezuelan Equine/drug therapy
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Encephalomyelitis, Venezuelan Equine/virology
- Female
- Humans
- Male
- Mice
- Mice, Inbred ICR
- Neutralization Tests
- Post-Exposure Prophylaxis
- Viral Envelope Proteins/immunology
- Virulence
Collapse
Affiliation(s)
- Ann R Hunt
- Department of Microbiology, Immunology & Pathology 1692, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Goodchild SA, O'Brien LM, Steven J, Muller MR, Lanning OJ, Logue CH, D'Elia RV, Phillpotts RJ, Perkins SD. A humanised murine monoclonal antibody with broad serogroup specificity protects mice from challenge with Venezuelan equine encephalitis virus. Antiviral Res 2011; 90:1-8. [PMID: 21310183 DOI: 10.1016/j.antiviral.2011.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 01/31/2011] [Accepted: 01/31/2011] [Indexed: 12/21/2022]
Abstract
In murine models of Venezuelan equine encephalitis virus (VEEV) infection, the neutralising monoclonal antibody 1A3B-7 has been shown to be effective in passive protection from challenge by the aerosol route with serogroups I, II and Mucambo virus (formally VEE complex subtype IIIA). This antibody is able to bind to all serogroups of the VEEV complex when used in ELISA and therefore is an excellent candidate for protein engineering in order to derive a humanised molecule suitable for therapeutic use in humans. A Complementarity Determining Region (CDR) grafting approach using human germline IgG frameworks was used to produce a panel of humanised variants of 1A3B-7, from which a single candidate molecule with retained binding specificity was identified. Evaluation of humanised 1A3B-7 (Hu1A3B-7) in in vitro studies indicated that Hu1A3B-7 retained both broad specificity and neutralising activity. Furthermore, in vivo experiments showed that Hu1A3B-7 successfully protected mice against lethal subcutaneous and aerosol challenges with VEEV strain TrD (serogroup I). Hu1A3B-7 is therefore a promising candidate for the future development of a broad-spectrum antiviral therapy to treat VEEV disease in humans.
Collapse
Affiliation(s)
- Sarah A Goodchild
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
The first human epitope map of the alphaviral E1 and E2 proteins reveals a new E2 epitope with significant virus neutralizing activity. PLoS Negl Trop Dis 2010; 4:e739. [PMID: 20644615 PMCID: PMC2903468 DOI: 10.1371/journal.pntd.0000739] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/25/2010] [Indexed: 01/02/2023] Open
Abstract
Background Venezuelan equine encephalitis virus (VEEV) is responsible for VEE epidemics that occur in South and Central America and the U.S. The VEEV envelope contains two glycoproteins E1 (mediates cell membrane fusion) and E2 (binds receptor and elicits virus neutralizing antibodies). Previously we constructed E1 and E2 epitope maps using murine monoclonal antibodies (mMAbs). Six E2 epitopes (E2c,d,e,f,g,h) bound VEEV-neutralizing antibody and mapped to amino acids (aa) 182–207. Nothing is known about the human antibody repertoire to VEEV or epitopes that engage human virus-neutralizing antibodies. There is no specific treatment for VEE; however virus-neutralizing mMAbs are potent protective and therapeutic agents for mice challenged with VEEV by either peripheral or aerosol routes. Therefore, fully human MAbs (hMAbs) with virus-neutralizing activity should be useful for prevention or clinical treatment of human VEE. Methods We used phage-display to isolate VEEV-specific hFabs from human bone marrow donors. These hFabs were characterized by sequencing, specificity testing, VEEV subtype cross-reactivity using indirect ELISA, and in vitro virus neutralization capacity. One E2-specific neutralizing hFAb, F5n, was converted into IgG, and its binding site was identified using competitive ELISA with mMAbs and by preparing and sequencing antibody neutralization-escape variants. Findings Using 11 VEEV-reactive hFabs we constructed the first human epitope map for the alphaviral surface proteins E1 and E2. We identified an important neutralization-associated epitope unique to the human immune response, E2 aa115–119. Using a 9 Å resolution cryo-electron microscopy map of the Sindbis virus E2 protein, we showed the probable surface location of this human VEEV epitope. Conclusions The VEEV-neutralizing capacity of the hMAb F5 nIgG is similar to that exhibited by the humanized mMAb Hy4 IgG. The Hy4 IgG has been shown to limit VEEV infection in mice both prophylactically and therapeutically. Administration of a cocktail of F5n and Hy4 IgGs, which bind to different E2 epitopes, could provide enhanced prophylaxis or immunotherapy for VEEV, while reducing the possibility of generating possibly harmful virus neutralization-escape variants in vivo. Although the murine immune response to Venezuelan equine encephalitis virus (VEEV) is well-characterized, little is known about the human antibody response to VEEV. In this study we used phage display technology to isolate a panel of 11 VEEV-specfic Fabs from two human donors. Seven E2-specific and four E1-specific Fabs were identified and mapped to five E2 epitopes and three E1 epitopes. Two neutralizing Fabs were isolated, E2-specific F5 and E1-specific L1A7, although the neutralizing capacity of L1A7 was 300-fold lower than F5. F5 Fab was expressed as a complete IgG1 molecule, F5 native (n) IgG. Neutralization-escape VEEV variants for F5 nIgG were isolated and their structural genes were sequenced to determine the theoretical binding site of F5. Based on this sequence analysis as well as the ability of F5 to neutralize four neutralization-escape variants of anti-VEEV murine monoclonal antibodies (mapped to E2 amino acids 182–207), a unique neutralization domain on E2 was identified and mapped to E2 amino acids 115–119.
Collapse
|
25
|
A recombinant humanized monoclonal antibody completely protects mice against lethal challenge with Venezuelan equine encephalitis virus. Vaccine 2010; 28:5558-64. [PMID: 20600509 DOI: 10.1016/j.vaccine.2010.06.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/20/2010] [Accepted: 06/10/2010] [Indexed: 11/22/2022]
Abstract
A recombinant humanized antibody to Venezuelan equine encephalitis virus (VEEV) was constructed in a monocistronic adenoviral expression vector with a foot-and-mouth-disease virus-derived 2A self-cleavage oligopeptide inserted between the antibody heavy and light chains. After expression in mammalian cells, the heavy and light chains of the humanized antibody (hu1A4A1IgG1-2A) were completely cleaved and properly dimerized. The purified hu1A4A1IgG1-2A retained VEEV binding affinity and neutralizing activity similar to its parental murine antibody. The half-life of hu1A4A1IgG1-2A in mice was approximately 2 days. Passive immunization of hu1A4A1IgG1-2A in mice (50 microg/mouse) 24 h before or after virulent VEEV challenge provided complete protection, indicating that hu1A4A1IgG1-2A has potent prophylactic and therapeutic effects against VEEV infection.
Collapse
|
26
|
O'Brien LM, Underwood-Fowler CD, Goodchild SA, Phelps AL, Phillpotts RJ. Development of a novel monoclonal antibody with reactivity to a wide range of Venezuelan equine encephalitis virus strains. Virol J 2009; 6:206. [PMID: 19925641 PMCID: PMC2783036 DOI: 10.1186/1743-422x-6-206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 11/19/2009] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND There is currently a requirement for antiviral therapies capable of protecting against infection with Venezuelan equine encephalitis virus (VEEV), as a licensed vaccine is not available for general human use. Monoclonal antibodies are increasingly being developed as therapeutics and are potential treatments for VEEV as they have been shown to be protective in the mouse model of disease. However, to be truly effective, the antibody should recognise multiple strains of VEEV and broadly reactive monoclonal antibodies are rarely and only coincidentally isolated using classical hybridoma technology. RESULTS In this work, methods were developed to reliably derive broadly reactive murine antibodies. A phage library was created that expressed single chain variable fragments (scFv) isolated from mice immunised with multiple strains of VEEV. A broadly reactive scFv was identified and incorporated into a murine IgG2a framework. This novel antibody retained the broad reactivity exhibited by the scFv but did not possess virus neutralising activity. However, the antibody was still able to protect mice against VEEV disease induced by strain TrD when administered 24 h prior to challenge. CONCLUSION A monoclonal antibody possessing reactivity to a wide range of VEEV strains may be of benefit as a generic antiviral therapy. However, humanisation of the murine antibody will be required before it can be tested in humans.
Collapse
Affiliation(s)
- Lyn M O'Brien
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.
| | | | | | | | | |
Collapse
|
27
|
Improved efficacy of a gene optimised adenovirus-based vaccine for venezuelan equine encephalitis virus. Virol J 2009; 6:118. [PMID: 19646224 PMCID: PMC2732613 DOI: 10.1186/1743-422x-6-118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 07/31/2009] [Indexed: 01/03/2023] Open
Abstract
Background Optimisation of genes has been shown to be beneficial for expression of proteins in a range of applications. Optimisation has increased protein expression levels through improved codon usage of the genes and an increase in levels of messenger RNA. We have applied this to an adenovirus (ad)-based vaccine encoding structural proteins (E3-E2-6K) of Venezuelan equine encephalitis virus (VEEV). Results Following administration of this vaccine to Balb/c mice, an approximately ten-fold increase in antibody response was elicited and increased protective efficacy compared to an ad-based vaccine containing non-optimised genes was observed after challenge. Conclusion This study, in which the utility of optimising genes encoding the structural proteins of VEEV is demonstrated for the first time, informs us that including optimised genes in gene-based vaccines for VEEV is essential to obtain maximum immunogenicity and protective efficacy.
Collapse
|
28
|
O'Brien L, Perkins S, Williams A, Eastaugh L, Phelps A, Wu J, Phillpotts R. Alpha interferon as an adenovirus-vectored vaccine adjuvant and antiviral in Venezuelan equine encephalitis virus infection. J Gen Virol 2009; 90:874-882. [PMID: 19264673 DOI: 10.1099/vir.0.006833-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are no widely available vaccines or antiviral drugs capable of protecting against infection with Venezuelan equine encephalitis virus (VEEV), although an adenovirus vector expressing VEEV structural proteins protects mice from challenge with VEEV and is potentially a vaccine suitable for human use. This work examines whether alpha interferon (IFN-α) could act as an adjuvant for the adenovirus-based vaccine. IFN-α was either expressed by a plasmid linked to the adenovirus vaccine or encoded by a separate adenovirus vector administered as a mixture with the vaccine. In contrast to previous reports with other vaccines, the presence of IFN-α reduced the antibody response to VEEV. When IFN-α was encoded by adenovirus, the lack of a VEEV-specific response was accompanied by an increase in the immune response to the adenovirus vector. IFN-α also plays a direct role in defence against virus infection, inducing the expression of a large number of antiviral proteins. Adenovirus-delivered IFN-α protected mice from VEEV disease when administered 24 h prior to challenge, but not when administered 6 h post-challenge, suggesting that up to 24 h is required for the development of the IFN-mediated antiviral response.
Collapse
Affiliation(s)
- Lyn O'Brien
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Stuart Perkins
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Amanda Williams
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Lin Eastaugh
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Amanda Phelps
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Josh Wu
- Biotechnology Section, Defence Research and Development Canada – Suffield, Box 4000, Station Main, Medicine Hat, Alberta T1A 8K6, Canada
| | - Robert Phillpotts
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
29
|
Holbrook MR, Gowen BB. Animal models of highly pathogenic RNA viral infections: encephalitis viruses. Antiviral Res 2007; 78:69-78. [PMID: 18031836 DOI: 10.1016/j.antiviral.2007.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 10/09/2007] [Accepted: 10/11/2007] [Indexed: 12/11/2022]
Abstract
The highly pathogenic RNA viruses that cause encephalitis include a significant number of emerging or re-emerging viruses that are also considered potential bioweapons. Many of these viruses, including members of the family Flaviviridae, the genus Alphavirus in the family Togaviridae, and the genus Henipavirus in the family Paramyxoviridae, circulate widely in their endemic areas, where they are transmitted by mosquitoes or ticks. They use a variety of vertebrate hosts, ranging from birds to bats, in their natural life cycle. As was discovered in the United States, the introduction of a mosquito-borne encephalitis virus such as West Nile virus can cause significant health and societal concerns. There are no effective therapeutics for treating diseases caused by any of these viruses and there is limited, if any, vaccine availability for most. In this review we provide a brief summary of the current status of animal models used to study highly pathogenic encephalitic RNA viruses for the development of antiviral therapeutics and vaccines.
Collapse
Affiliation(s)
- Michael R Holbrook
- Department of Pathology, 301 University Boulevard, University of Texas Medical Branch, Galveston, TX 77555-0609, United States.
| | | |
Collapse
|
30
|
Sharma A, Raviv Y, Puri A, Viard M, Blumenthal R, Maheshwari RK. Complete inactivation of Venezuelan equine encephalitis virus by 1,5-iodonaphthylazide. Biochem Biophys Res Commun 2007; 358:392-8. [PMID: 17493582 DOI: 10.1016/j.bbrc.2007.04.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 04/16/2007] [Indexed: 11/16/2022]
Abstract
Hydrophobic alkylating compounds like 1,5-iodonaphthylazide (INA) partitions into biological membranes and accumulates selectively into the hydrophobic domain of the lipid bilayer. Upon irradiation with far UV light, INA binds selectively to transmembrane proteins in the viral envelope and renders them inactive. Such inactivation does not alter the ectodomains of the membrane proteins thus preserving the structural and conformational integrity of immunogens on the surface of the virus. In this study, we have used INA to inactivate Venezuelan equine encephalitis virus (VEEV). Treatment of VEEV with INA followed by irradiation with UV light resulted in complete inactivation of the virus. Immuno-fluorescence for VEEV and virus titration showed no virus replication in-vitro. Complete loss of infectivity was also achieved in mice infected with INA treated plus irradiated preparations of VEEV. No change in the structural integrity of VEEV particles were observed after treatment with INA plus irradiation as assessed by electron microscopy. This data suggest that such inactivation strategies can be used for developing vaccine candidates for VEEV and other enveloped viruses.
Collapse
Affiliation(s)
- Anuj Sharma
- Centre for Combat Casualty and Life Sustainment Research, Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | |
Collapse
|