1
|
Ebrahimi S, Eini O, Baßler A, Hanke A, Yildirim Z, Wassenegger M, Krczal G, Uslu VV. Beet Curly Top Iran Virus Rep and V2 Suppress Post-Transcriptional Gene Silencing via Distinct Modes of Action. Viruses 2023; 15:1996. [PMID: 37896771 PMCID: PMC10611197 DOI: 10.3390/v15101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Beet curly top Iran virus (BCTIV) is a yield-limiting geminivirus belonging to the becurtovirus genus. The genome organization of BCTIV is unique such that the complementary strand of BCTIV resembles Mastrevirus, whereas the virion strand organization is similar to the Curtovirus genus. Geminiviruses are known to avoid the plant defense system by suppressing the RNA interference mechanisms both at the transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS) levels. Multiple geminivirus genes have been identified as viral suppressors of RNA silencing (VSR) but VSR activity remains mostly elusive in becurtoviruses. We found that BCTIV-V2 and -Rep could suppress specific Sense-PTGS mechanisms with distinct efficiencies depending on the nature of the silencing inducer and the target gene. Local silencing induced by GFP inverted repeat (IR) could not be suppressed by V2 but was partially reduced by Rep. Accordingly, we documented that Rep but not V2 could suppress systemic silencing induced by GFP-IR. In addition, we showed that the VSR activity of Rep was partly regulated by RNA-dependent RNA Polymerase 6 (RDR6), whereas the VSR activity of V2 was independent of RDR6. Domain mapping for Rep showed that an intact Rep protein was required for the suppression of PTGS. In summary, we showed that BCTIV-Rep and -V2 function as silencing suppressors with distinct modes of action.
Collapse
Affiliation(s)
- Saeideh Ebrahimi
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
- Department of Plant Protection, University of Zanjan, Zanjan 313, Iran
| | - Omid Eini
- Department of Plant Protection, University of Zanjan, Zanjan 313, Iran
- Department of Phytopathology, Institute for Sugar Beet Research, 37079 Göttingen, Germany
| | - Alexandra Baßler
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| | - Arvid Hanke
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
- MAPS, COS, Heidelberg University, 69120 Heidelberg, Germany
| | - Zeynep Yildirim
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| | - Michael Wassenegger
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| | - Gabi Krczal
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| | - Veli Vural Uslu
- RLP AgroScience GmbH, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
- MAPS, COS, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Zwolinski AM, Brigden A, Rey MEC. Differences in the 3' intergenic region and the V2 protein of two sequence variants of tomato curly stunt virus play an important role in disease pathology in Nicotiana benthamiana. PLoS One 2023; 18:e0286149. [PMID: 37220127 PMCID: PMC10205009 DOI: 10.1371/journal.pone.0286149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Tomato production in South Africa is threatened by the emergence of tomato curly stunt virus (ToCSV), a monopartite Begomovirus transmitted by the whitefly vector Bemisia tabaci (Genn.). We investigated the role of sequence differences present in the 3' intergenic region (IR) and the V2 coding region on the differing infectivity of ToCSV sequence variant isolates V30 and V22 in the model host Nicotiana benthamiana. Using virus mutant chimeras, we determined that the development of the upward leaf roll symptom phenotype is mediated by sequence differences present in the 3' IR containing the TATA-associated composite element. Sequence differences present in the V2 coding region are responsible for modulating disease severity and symptom recovery in V22-infected plants. Serine substitution of V22 V2 Val27 resulted in a significant increase in disease severity with reduced recovery, the first study to demonstrate the importance of this V2 residue in disease development. Two putative ORFs, C5 and C6, were identified using in silico analysis and detection of an RNA transcript spanning their coding region suggests that these ORFs may be transcribed during infection. Additional virus-derived RNA transcripts spanning multiple ORFs and crossing the boundaries of recognised polycistronic transcripts, as well as the origin of replication within the IR, were detected in ToCSV-infected plants providing evidence of bidirectional readthrough transcription. From our results, we conclude that the diverse responses of the model host to ToCSV infection is influenced by select sequence differences and our findings provide several avenues for further investigation into the mechanisms behind these responses to infection.
Collapse
Affiliation(s)
- Alexander M. Zwolinski
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Alison Brigden
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Marie E. C. Rey
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Sun K, Liang Y, Zhong X, Hu X, Zhang P, Yu X. Nightshade Curly Top Virus: A Possible New Virus of the Genus Topocuvirus Infecting Solanum nigrum in China. PLANT DISEASE 2021; 105:1006-1012. [PMID: 33026306 DOI: 10.1094/pdis-03-20-0572-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Virus-like symptoms, including leaf deformation and curling, were observed on nightshade (Solanum nigrum) in Zhejiang Province, China. To identify possible pathogenic viruses or viroids, a symptomatic sample was subjected to deep sequencing of small interfering RNAs. Assembly of the resulting sequences led to identification of a novel geminivirus, provisionally designated nightshade curly top virus (NCTV). The complete genomic DNA sequence is 2,867 nucleotides and encodes seven open reading frames. NCTV shares 77.1% overall nucleotide sequence identity, 86.3% coat protein amino acid identity, and 78.9% replication-associated protein amino acid sequence identity with Tomato pseudo-curly top virus, a member of the genus Topocuvirus. PCR screening of nightshade field isolates indicated that NCTV is widely distributed in Zhejiang. Agrobacterium-mediated inoculation revealed that NCTV is highly infectious to Nicotiana benthamiana, S. nigrum, S. lycopersicum, and S. tuberosum. Based on pairwise comparisons and phylogenetic analyses, NCTV is proposed as a provisional member of the genus Topocuvirus.
Collapse
Affiliation(s)
- Kai Sun
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang Province, People's Republic of China
| | - Yan Liang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang Province, People's Republic of China
| | - Xueting Zhong
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, People's Republic of China
| | - Xuenan Hu
- Guangzhou Customs Technology Center, Guangzhou 510623, People's Republic of China
| | - Pengjun Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang Province, People's Republic of China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, Zhejiang Province, People's Republic of China
| |
Collapse
|
4
|
Iqbal Z, Sattar MN, Khurshid M. Cotton Leaf Curl Multan Betasatellite as a Tool to Study the Localization of Geminiviruses in Plants. Mol Biol 2021. [DOI: 10.1134/s0026893321010076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Li M, Li C, Jiang K, Li K, Zhang J, Sun M, Wu G, Qing L. Characterization of Pathogenicity-Associated V2 Protein of Tobacco Curly Shoot Virus. Int J Mol Sci 2021; 22:E923. [PMID: 33477652 PMCID: PMC7831499 DOI: 10.3390/ijms22020923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
V2 proteins encoded by some whitefly-transmitted geminiviruses were reported to be functionally important proteins. However, the functions of the V2 protein of tobacco curly shoot virus (TbCSV), a monopartite begomovirus that causes leaf curl disease on tomato and tobacco in China, remains to be characterized. In our report, an Agrobacterium infiltration-mediated transient expression assay indicated that TbCSV V2 can suppress local and systemic RNA silencing and the deletion analyses demonstrated that the amino acid region 1-92 of V2, including the five predicted α-helices, are required for local RNA silencing suppression. Site-directed substitutions showed that the conserved basic and ring-structured amino acids in TbCSV V2 are critical for its suppressor activity. Potato virus X-mediated heteroexpression of TbCSV V2 in Nicotiana benthamiana induced hypersensitive response-like (HR-like) cell death and systemic necrosis in a manner independent of V2's suppressor activity. Furthermore, TbCSV infectious clone mutant with untranslated V2 protein (TbCSV∆V2) could not induce visual symptoms, and coinfection with betasatellite (TbCSB) could obviously elevate the viral accumulation and symptom development. Interestingly, symptom recovery occurred at 15 days postinoculation (dpi) and onward in TbCSV∆V2/TbCSB-inoculated plants. The presented work contributes to understanding the RNA silencing suppression activity of TbCSV V2 and extends our knowledge of the multifunctional role of begomovirus-encoded V2 proteins during viral infections.
Collapse
Affiliation(s)
- Mingjun Li
- Correspondence: (M.L.); (L.Q.); Tel.: +86-023-68250517 (L.Q.)
| | | | | | | | | | | | | | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; (C.L.); (K.J.); (K.L.); (J.Z.); (M.S.); (G.W.)
| |
Collapse
|
6
|
Luna AP, Romero-Rodríguez B, Rosas-Díaz T, Cerero L, Rodríguez-Negrete EA, Castillo AG, Bejarano ER. Characterization of Curtovirus V2 Protein, a Functional Homolog of Begomovirus V2. FRONTIERS IN PLANT SCIENCE 2020; 11:835. [PMID: 32636860 PMCID: PMC7318802 DOI: 10.3389/fpls.2020.00835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/25/2020] [Indexed: 05/30/2023]
Abstract
Geminiviruses are single-stranded DNA plant viruses with circular genomes packaged within geminate particles. Among the Geminiviridae family, Begomovirus and Curtovirus comprise the two best characterized genera. Curtovirus and Old World begomovirus possess similar genome structures with six to seven open-reading frames (ORF). Among them, begomovirus and curtovirus V2 ORFs share the same location in the viral genome, encode proteins of similar size, but show extremely poor sequence homology between the genera. V2 from Beet curly top virus (BCTV), the model species for the Curtovirus genus, as it begomoviral counterpart, suppresses post-transcriptional gene silencing (PTGS) by impairing the RDR6/SGS3 pathway and localizes in the nucleus spanning from the perinuclear region to the cell periphery. By aminoacid sequence comparison we have identified that curtoviral and begomoviral V2 proteins shared two hydrophobic domains and a putative phosphorylation motif. These three domains are essential for BCTV V2 silencing suppression activity, for the proper nuclear localization of the protein and for systemic infection. The lack of suppression activity in the mutated versions of V2 is complemented by the impaired function of RDR6 in Nicotiana benthamiana but the ability of the viral mutants to produce a systemic infection is not recovered in gene silencing mutant backgrounds. We have also demonstrated that, as its begomoviral homolog, V2 from BCTV is able to induce systemic symptoms and necrosis associated with a hypersensitive response-like (HR-like) when expressed from Potato virus X vector in N. benthamiana, and that this pathogenicity activity does not dependent of its ability to supress PTGS.
Collapse
Affiliation(s)
- Ana P Luna
- Departamento de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Beatriz Romero-Rodríguez
- Departamento de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Tábata Rosas-Díaz
- Departamento de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Laura Cerero
- Departamento de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Edgar A Rodríguez-Negrete
- CONACyT, Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Guasave, Mexico
| | - Araceli G Castillo
- Departamento de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| | - Eduardo R Bejarano
- Departamento de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Universidad de Málaga, Málaga, Spain
| |
Collapse
|
7
|
Mubin M, Ijaz S, Nahid N, Hassan M, Younus A, Qazi J, Nawaz-Ul-Rehman MS. Journey of begomovirus betasatellite molecules: from satellites to indispensable partners. Virus Genes 2019; 56:16-26. [PMID: 31773493 DOI: 10.1007/s11262-019-01716-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/17/2019] [Indexed: 12/21/2022]
Abstract
Betasatellites are a group of circular, single-stranded DNA molecules that are frequently found to be associated with monopartite begomoviruses of the family Geminiviridae. Betasatellites require their helper viruses for replication, movement, and encapsidation and they are often essential for induction of typical disease symptoms. The βC1 protein encoded by betasatellites is multifunctional that participates in diverse cellular events. It interferes with several cellular processes like normal development, chloroplasts, and innate immune system of plants. Recent research has indicated βC1 protein interaction with cellular proteins and its involvement in modulation of the host's cell cycle and symptom determination. This article focuses on the functional mechanisms of βC1 and its interactions with other viral and host proteins.
Collapse
Affiliation(s)
- Muhammad Mubin
- Virology Lab, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sehrish Ijaz
- Virology Lab, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, GC University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Hassan
- Virology Lab, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ayesha Younus
- Laser Matter Interaction and Nano-sciences Lab, Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Javaria Qazi
- Department of Biotechnology, Quaid e Azam University, Islamabad, Pakistan
| | | |
Collapse
|
8
|
Kulshreshtha A, Kumar Y, Roshan P, Bhattacharjee B, Mukherjee SK, Hallan V. AC4 protein of tomato leaf curl Palampur virus is an RNA silencing suppressor and a pathogenicity determinant. Microb Pathog 2019; 135:103636. [PMID: 31377236 DOI: 10.1016/j.micpath.2019.103636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023]
Abstract
Plants deploy RNA silencing as a natural defence against invading viruses involving sequence-specific degradation of the viral RNAs. As a counter-defence strategy, viruses encode suppressor proteins that simultaneously target different steps of the silencing machinery. Tomato leaf curl Palampur virus (ToLCPalV) is a bipartite begomovirus in Geminiviridae family. It is responsible for significant reduction in the crop yield and quality. DNA-A of the virus encodes for six proteins whereas DNA-B codes for two proteins. In this study, all viral genes were screened for their role in suppression of green fluorescent protein (GFP) silencing in Nicotiana tabacum cv. Xanthi, employing agrobacterium based co-infiltration assay. The assay identified AC4 as a potential suppressor of RNA silencing. In addition, AC4 expression also suppressed virus-induced gene silencing (VIGS) of the phytoene desaturase (PDS) gene in N. benthamiana. Potato virus X (PVX) mediated transient expression of the AC4 in N. benthamiana showed enhanced symptoms that include downward leaf curling, leaf puckering and tissue necrosis. Further, N. benthamiana lines stably expressing AC4 showed severe developmental abnormalities. Mutational analysis suggested that glycine at 2nd position is essential for AC4 pathogenicity. Collectively, these findings demonstrate the role of ToLCPalV AC4 in viral pathogenesis, disease establishment and suppression of gene silencing.
Collapse
Affiliation(s)
- Aditya Kulshreshtha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India; Plant Virus Lab, Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Yogesh Kumar
- Department of Biotechnology, DAV University, Jalandhar, 144012, Punjab, India
| | - Poonam Roshan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India; Plant Virus Lab, Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Bipasha Bhattacharjee
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India; Plant Virus Lab, Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Sunil Kumar Mukherjee
- Division of Plant Pathology, India Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India; Plant Virus Lab, Biotechnology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India.
| |
Collapse
|
9
|
Rishishwar R, Dasgupta I. Suppressors of RNA silencing encoded by geminiviruses and associated DNA satellites. Virusdisease 2019; 30:58-65. [PMID: 31143832 PMCID: PMC6517462 DOI: 10.1007/s13337-018-0418-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
In plants, RNA silencing provides a major line of defence against viruses. This antiviral immunity involves production of virus-derived small interfering RNAs (vsiRNAs) and results in specific silencing of viruses by vsiRNAs-guided effector complexes. As a counterattack against RNA silencing, many plant viruses encode suppressors of RNA silencing called viral suppressors of RNA silencing (VSRs), which interfere with the silencing pathway by various mechanisms. This review describes various methods that are being used to characterize viral proteins for suppressor function, VSRs found in geminiviruses and associated DNA satellites and their mechanisms of action.
Collapse
Affiliation(s)
- Rashmi Rishishwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
10
|
Yang X, Ren Y, Sun S, Wang D, Zhang F, Li D, Li S, Zhou X. Identification of the Potential Virulence Factors and RNA Silencing Suppressors of Mulberry Mosaic Dwarf-Associated Geminivirus. Viruses 2018; 10:E472. [PMID: 30177616 PMCID: PMC6163789 DOI: 10.3390/v10090472] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 01/31/2023] Open
Abstract
Plant viruses encode virulence factors or RNA silencing suppressors to reprogram plant cellular processes or to fine-tune host RNA silencing-mediated defense responses. In a previous study, Mulberry mosaic dwarf-associated virus (MMDaV), a novel, highly divergent geminivirus, has been identified from a Chinese mulberry tree showing mosaic and dwarfing symptoms, but the functions of its encoded proteins are unknown. In this study, all seven proteins encoded by MMDaV were screened for potential virulence and RNA silencing suppressor activities. We found that V2, RepA, and Rep affect the pathogenicity of a heterologous potato virus X. We showed that V2 could inhibit local RNA silencing and long-distance movement of the RNA silencing signal, but not short-range spread of the green fluorescent protein (GFP) silencing signal in Nicotiana benthamiana 16c plants. In addition, V2 localized to both subnuclear foci and the cytoplasm. Deletion mutagenesis of V2 showed that the basic motif from amino acids 61 to 76 was crucial for V2 to form subnuclear foci and for suppression of RNA silencing. Although the V2 protein encoded by begomoviruses or a curtovirus has been shown to have silencing suppressor activity, this is the first identification of an RNA silencing suppressor from a woody plant-infecting geminivirus.
Collapse
Affiliation(s)
- Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yanxiang Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Shaoshuang Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Dongxue Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fanfan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
11
|
Luna AP, Rodríguez-Negrete EA, Morilla G, Wang L, Lozano-Durán R, Castillo AG, Bejarano ER. V2 from a curtovirus is a suppressor of post-transcriptional gene silencing. J Gen Virol 2017; 98:2607-2614. [PMID: 28933688 DOI: 10.1099/jgv.0.000933] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The suppression of gene silencing is a key mechanism for the success of viral infection in plants. DNA viruses from the Geminiviridae family encode several proteins that suppress transcriptional and post-transcriptional gene silencing (TGS/PTGS). In Begomovirus, the most abundant genus of this family, three out of six genome-encoded proteins, namely C2, C4 and V2, have been shown to suppress PTGS, with V2 being the strongest PTGS suppressor in transient assays. Beet curly top virus (BCTV), the model species for the Curtovirus genus, is able to infect the widest range of plants among geminiviruses. In this genus, only one protein, C2/L2, has been described as inhibiting PTGS. We show here that, despite the lack of sequence homology with its begomoviral counterpart, BCTV V2 acts as a potent PTGS suppressor, possibly by impairing the RDR6 (RNA-dependent RNA polymerase 6)/suppressor of gene silencing 3 (SGS3) pathway.
Collapse
Affiliation(s)
- Ana P Luna
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Edgar A Rodríguez-Negrete
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain.,Present address: Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR-IPN, Unidad Sinaloa, Blvd. Juan de Dios Bátiz Paredes No 250. Guasave, Sinaloa CP 81101, Mexico
| | - Gabriel Morilla
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Liping Wang
- Shanghai Center for Plant Stress Biology (PSC), Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology (PSC), Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, PR China
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| |
Collapse
|
12
|
Kulshreshtha A, Roshan P, Sharma D, Hallan V. Molecular characterization of a new begomovirus infecting Mirabilis jalapa in northern India. Arch Virol 2017; 162:2163-2167. [PMID: 28342034 DOI: 10.1007/s00705-017-3330-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/09/2017] [Indexed: 11/30/2022]
Abstract
Begomoviruses are whitefly-transmitted single-stranded DNA viruses that are responsible for considerable economic losses. A begomovirus, alphasatellite and betasatellite were characterized in a Mirabilis jalapa plant exhibiting severe leaf curling and mottling symptoms. The complete viral genome shared highest sequence identity of 87% with pedilanthus leaf curl virus (AM712436), reported from Pakistan. Additionally, the viral genome was 84% identical to that of chilli leaf curl India virus (KX951415) and 83% identical to that of tobacco curly shoot virus (GU1999584), which were previously reported to infect M. jalapa in India and China, respectively. Based on the ICTV criterion for begomovirus species demarcation (≥91% sequence identity for the complete genome), the virus represents a new species, for which we propose the name Mirabilis leaf curl virus. The alphasatellite and betasatellite sequences were similar to the corresponding sequences of ageratum yellow vein India alphasatellite (KU852743; 99% identity) and tomato leaf curl Patna betasatellite (HQ180394; 86% identity) sequences, respectively. This report describes a new begomovirus-satellite disease complex in M. jalapa.
Collapse
Affiliation(s)
- Aditya Kulshreshtha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Poonam Roshan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.,CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Dolly Sharma
- CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Vipin Hallan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India. .,CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India.
| |
Collapse
|
13
|
Rosario K, Marr C, Varsani A, Kraberger S, Stainton D, Moriones E, Polston JE, Breitbart M. Begomovirus-Associated Satellite DNA Diversity Captured Through Vector-Enabled Metagenomic (VEM) Surveys Using Whiteflies (Aleyrodidae). Viruses 2016; 8:v8020036. [PMID: 26848679 PMCID: PMC4776191 DOI: 10.3390/v8020036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 01/23/2023] Open
Abstract
Monopartite begomoviruses (Geminiviridae), which are whitefly-transmitted single-stranded DNA viruses known for causing devastating crop diseases, are often associated with satellite DNAs. Since begomovirus acquisition or exchange of satellite DNAs may lead to adaptation to new plant hosts and emergence of new disease complexes, it is important to investigate the diversity and distribution of these molecules. This study reports begomovirus-associated satellite DNAs identified during a vector-enabled metagenomic (VEM) survey of begomoviruses using whiteflies collected in various locations (California (USA), Guatemala, Israel, Puerto Rico, and Spain). Protein-encoding satellite DNAs, including alphasatellites and betasatellites, were identified in Israel, Puerto Rico, and Guatemala. Novel alphasatellites were detected in samples from Guatemala and Puerto Rico, resulting in the description of a phylogenetic clade (DNA-3-type alphasatellites) dominated by New World sequences. In addition, a diversity of small (~640-750 nucleotides) satellite DNAs similar to satellites associated with begomoviruses infecting Ipomoea spp. were detected in Puerto Rico and Spain. A third class of satellite molecules, named gammasatellites, is proposed to encompass the increasing number of reported small (<1 kilobase), non-coding begomovirus-associated satellite DNAs. This VEM-based survey indicates that, although recently recovered begomovirus genomes are variations of known genetic themes, satellite DNAs hold unexplored genetic diversity.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| | - Christian Marr
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| | - Simona Kraberger
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
| | - Daisy Stainton
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea ''La Mayora'' (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental ''La Mayora'', Algarrobo-Costa, Málaga 29750, Spain.
| | - Jane E Polston
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| |
Collapse
|
14
|
Csorba T, Kontra L, Burgyán J. viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 2015; 479-480:85-103. [DOI: 10.1016/j.virol.2015.02.028] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/31/2015] [Accepted: 02/16/2015] [Indexed: 12/27/2022]
|
15
|
Hak H, Levy Y, Chandran SA, Belausov E, Loyter A, Lapidot M, Gafni Y. TYLCV-Is movement in planta does not require V2 protein. Virology 2015; 477:56-60. [PMID: 25644513 DOI: 10.1016/j.virol.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/21/2014] [Accepted: 01/05/2015] [Indexed: 11/30/2022]
Abstract
Tomato yellow leaf curl virus (TYLCV), a major tomato pathogen causing extensive crop losses, is a whitefly-transmitted geminivirus. V2 mutants of TYLCV-Is and related viruses tend to induce symptomless infection with attenuated viral DNA levels, while accumulating close to wild-type DNA levels in protoplasts, suggesting V2 as a movement protein. The discovery of plant-silencing mechanisms and viral silencing suppressors, V2 included, led us to reconsider V2׳s involvement in viral movement. We studied two mutant versions of the virus, one impaired in V2 silencing-suppression activity, and another carrying a non-translatable V2. While both mutant viruses spread in the infected plant to newly emerged leaves at the same rate as the wild-type virus, their DNA-accumulation levels were tenfold lower than in the wild-type virus. Thus, we suggest that the setback in virus proliferation, previously ascribed to a movement impediment, is due to lack of silencing-suppression activity.
Collapse
Affiliation(s)
- Hagit Hak
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel; Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Yael Levy
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Sam A Chandran
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Abraham Loyter
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Moshe Lapidot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Yedidya Gafni
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
16
|
Wieczorek P, Obrępalska-Stęplowska A. Suppress to Survive-Implication of Plant Viruses in PTGS. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:335-346. [PMID: 25999662 PMCID: PMC4432016 DOI: 10.1007/s11105-014-0755-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In higher plants, evolutionarily conserved processes playing an essential role during gene expression rely on small noncoding RNA molecules (sRNA). Within a wide range of sRNA-dependent cellular events, there is posttranscriptional gene silencing, the process that is activated in response to the presence of double-stranded RNAs (dsRNAs) in planta. The sequence-specific mechanism of silencing is based on RNase-mediated trimming of dsRNAs into translationally inactive short molecules. Viruses invading and replicating in host are also a source of dsRNAs and are recognized as such by cellular posttranscriptional silencing machinery leading to degradation of the pathogenic RNA. However, viruses are not totally defenseless. In parallel with evolving plant defense strategies, viruses have managed a wide range of multifunctional proteins that efficiently impede the posttranscriptional gene silencing. These viral counteracting factors are known as suppressors of RNA silencing. The aim of this review is to summarize the role and the mode of action of several functionally characterized RNA silencing suppressors encoded by RNA viruses directly involved in plant-pathogen interactions. Additionally, we point out that the widely diverse functions, structures, and modes of action of viral suppressors can be performed by different proteins, even in related viruses. All those adaptations have been evolved to achieve the same goal: to maximize the rate of viral genetic material replication by interrupting the evolutionary conserved plant defense mechanism of posttranscriptional gene silencing.
Collapse
Affiliation(s)
- Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318 Poznań, Poland
| | - Aleksandra Obrępalska-Stęplowska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection-National Research Institute, 20 Władysława Węgorka St, 60-318 Poznań, Poland
| |
Collapse
|
17
|
Tang YF, Du ZG, He ZF, Brown JK, She XM. Identification and molecular characterization of two begomoviruses from Pouzolzia zeylanica (L.) Benn. exhibiting yellow mosaic symptoms in adjacent regions of China and Vietnam. Arch Virol 2014; 159:2799-803. [PMID: 24838912 DOI: 10.1007/s00705-014-2049-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
Two monopartite begomoviruses were isolated from Pouzolzia zeylanica (L.) Benn. plants showing yellow mosaic symptoms in Gaoyao, Guangdong Province, China (GD1) and in Phu Tho, Vietnam (VN), respectively. A comparison of the complete genome sequence of GD1 (2,739 nucleotides [nt]) with VN (2,741 nt) indicated that they shared 86.2 % nt sequence identity. GD1 and VN shared the highest nucleotide sequence identity at 86.7 % and 91.4 % respectively, with isolate TY01 of pouzolzia golden mosaic virus (PGMV-TY01), another begomovirus isolated from P. zeylanica. Phylogenetic analysis revealed that GD1, VN, and PGMV-TY01 were members of a distinct begomovirus clade. Based on the ICTV guidelines for begomoviral species demarcation, GD1 belongs to a new begomovirus species, for which the name Pouzolzia yellow mosaic virus is proposed. Likewise, VN represents a previously unreported strain of PGMV. Recombination analysis predicted that VN was a recombinant between PGMV-TY01 and ageratum yellow vein China virus isolate G13 (AYVCNV-G13), and that PGMV-TY01 and VN were likely the parents of GD1 through recombination with allamanda leaf curl virus isolate G10 (AlLCV-G10), a begomovirus endemic to Guangdong Province of China.
Collapse
Affiliation(s)
- Y F Tang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | | | | | | | | |
Collapse
|
18
|
Li F, Huang C, Li Z, Zhou X. Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog 2014; 10:e1003921. [PMID: 24516387 PMCID: PMC3916407 DOI: 10.1371/journal.ppat.1003921] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/24/2013] [Indexed: 11/19/2022] Open
Abstract
In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different effector molecules in the RNA silencing pathway. Evidence has shown that plants also encode endogenous suppressors of RNA silencing (ESRs) that function in proper regulation of RNA silencing. The possibility that these cellular proteins can be subverted by viruses to thwart host defense is intriguing but has not been fully explored. Here we report that the Nicotiana benthamiana calmodulin-like protein Nbrgs-CaM is required for the functions of the VSR βC1, the sole protein encoded by the DNA satellite associated with the geminivirus Tomato yellow leaf curl China virus (TYLCCNV). Nbrgs-CaM expression is up-regulated by the βC1. Transgenic plants over-expressing Nbrgs-CaM displayed developmental abnormities reminiscent of βC1-associated morphological alterations. Nbrgs-CaM suppressed RNA silencing in an Agrobacterium infiltration assay and, when over-expressed, blocked TYLCCNV-induced gene silencing. Genetic evidence showed that Nbrgs-CaM mediated the βC1 functions in silencing suppression and symptom modulation, and was required for efficient virus infection. Moreover, the tobacco and tomato orthologs of Nbrgs-CaM also possessed ESR activity, and were induced by betasatellite to promote virus infection in these Solanaceae hosts. We further demonstrated that βC1-induced Nbrgs-CaM suppressed the production of secondary siRNAs, likely through repressing RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) expression. RDR6-deficient N. benthamiana plants were defective in antiviral response and were hypersensitive to TYLCCNV infection. More significantly, TYLCCNV could overcome host range restrictions to infect Arabidopsis thaliana when the plants carried a RDR6 mutation. These findings demonstrate a distinct mechanism of VSR for suppressing PTGS through usurpation of a host ESR, and highlight an essential role for RDR6 in RNA silencing defense response against geminivirus infection.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Changjun Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Abstract
Geminiviruses are a family of plant viruses that cause economically important plant diseases worldwide. These viruses have circular single-stranded DNA genomes and four to eight genes that are expressed from both strands of the double-stranded DNA replicative intermediate. The transcription of these genes occurs under the control of two bidirectional promoters and one monodirectional promoter. The viral proteins function to facilitate virus replication, virus movement, the assembly of virus-specific nucleoprotein particles, vector transmission and to counteract plant host defence responses. Recent research findings have provided new insights into the structure and function of these proteins and have identified numerous host interacting partners. Most of the viral proteins have been shown to be multifunctional, participating in multiple events during the infection cycle and have, indeed, evolved coordinated interactions with host proteins to ensure a successful infection. Here, an up-to-date review of viral protein structure and function is presented, and some areas requiring further research are identified.
Collapse
Affiliation(s)
- Vincent N Fondong
- Department of Biological Sciences, Delaware State University, 1200 North DuPont Highway, Dover, DE 19901, USA.
| |
Collapse
|
20
|
Guha D, Poornima Priyadarshini C, Purakayastha A, Thippeswamy R, Lakshmikanth M, Savithri H. Biochemical characterization of C4 protein of Cotton Leaf Curl Kokhran Virus-Dabawali. Biochim Biophys Acta Gen Subj 2013; 1830:3734-44. [DOI: 10.1016/j.bbagen.2013.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/10/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
|
21
|
Jyothsna P, Haq QMI, Singh P, Sumiya KV, Praveen S, Rawat R, Briddon RW, Malathi VG. Infection of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus with betasatellites, results in enhanced level of helper virus components and antagonistic interaction between DNA B and betasatellites. Appl Microbiol Biotechnol 2013; 97:5457-71. [PMID: 23306645 DOI: 10.1007/s00253-012-4685-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/20/2012] [Accepted: 12/22/2012] [Indexed: 11/24/2022]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) (Geminiviridae) is an important pathogen that severely affects tomato production. An extensive survey was carried out during 2003-2010 to study the diversity of begomoviruses found in tomato, potato, and cucurbits that showed symptoms of leaf puckering, distortion, curling, vein clearing, and yellow mosaic in various fields in different regions of India. Ten begomovirus isolates were cloned from infected samples and identified as belonging to the species ToLCNDV. A total of 44 % of the samples showed association of betasatellites, with CLCuMuB and LuLDB being the most frequent. The ToLCNDV cloned component DNA A and DNA B were agroinoculated on Nicotiana benthamiana and tomato (Solanum lycopersicum) plants with or without betasatellites, CLCuMuB or LuLDB. The viral genome levels were then monitored by real-time polymerase chain reaction at different time points of disease development. Plants co-inoculated with betasatellites showed enhanced symptom severity in both N. benthamiana and tomato, as well as increases in helper viral DNA A and DNA B levels. The DNA B and betasatellites acted antagonistically to each other, so that the level of DNA B was 16-fold greater in the presence of betasatellites, while accumulation of betasatellites, CLCuMuB and LuLDB, were reduced by 60 % in the presence of DNA B. DNA B-mediated symptoms predominated in CLCuMuB-inoculated plants, whereas betasatellite-mediated leaf abnormalities were prominent in LuLDB-co-inoculated plants. Inoculation with the cloned components will be a good biotechnological tool in resistance breeding program.
Collapse
Affiliation(s)
- P Jyothsna
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India 110012
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Shukla R, Dalal S, Malathi VG. Suppressors of RNA silencing encoded by tomato leaf curl betasatellites. J Biosci 2013; 38:45-51. [PMID: 23385812 DOI: 10.1007/s12038-012-9291-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Virus encoded RNA-silencing suppressors (RSSs) are the key components evolved by the viruses to counter RNA-silencing defense of plants. Whitefly-transmitted begomoviruses infecting tomato crop code for five different proteins, ORF AC4, ORF AC2 and ORF AV2 in DNA-A component, ORF BV1 in DNA-B and ORF beta C1 in satellite DNA beta which are predicted to function as silencing suppressors. In the present study suppressor function of ORF beta C1 of three betasatellites Tomato leaf curl Bangalore betasatellite ToLCBB-[IN:Hess:08], Cotton leaf curl Multan betasatellite CLCuMB-[IN:Sri:02] and Luffa leaf distortion betasatellite LuLDB-[IN:Lu:04] were examined. Agroinfiltration of GFP-silenced Nicotiana tabaccum cv. Xanthi with the cells expressing betaC1 protein resulted in reversal of silenced GFP expression. GFP-siRNA level was more than 50-fold lower compared to silenced plants in plants infiltrated with betaC1 gene from ToLCBB. However, in the case of 35S-beta C1 CLCuMB and 35S- beta C1 LuLDB construct, although GFP was expressed, siRNA level was not reduced, indicating that the step at which beta C1 interfere in RNA-silencing pathway is different.
Collapse
Affiliation(s)
- Richa Shukla
- Advanced Centre for Plant Virology, Div. of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110 012
| | | | | |
Collapse
|
23
|
Abstract
Begomoviruses are numerous and geographically widespread viruses that cause devastating diseases in many crops. Monopartite begomoviruses are frequently associated with betasatellites or alphasatellites. Both betasatellite and alphasatellite DNA genomes are approximately half the size of begomovirus DNA genomes. Betasatellites are essential for induction of typical disease symptoms. The βC1 genes encoded by the betasatellites have important roles in symptom induction, in suppression of transcriptional and posttranscriptional gene silencing, and they can affect jasmonic acid responsive genes. Host plants of begomoviruses have evolved diverse innate defense mechanisms against the βC1 protein to counter these challenges. Alphasatellites have been identified mainly in monopartite begomoviruses that associate with betasatellites and have no known contributions to pathogenesis of begomovirus-betasatellite disease complexes. Applications of current molecular tools are facilitating viral diagnosis and the discovery of novel species of geminiviruses and satellite DNAs and are also advancing our understanding of the global diversity and evolution of satellite DNAs.
Collapse
Affiliation(s)
- Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Luna AP, Morilla G, Voinnet O, Bejarano ER. Functional analysis of gene-silencing suppressors from tomato yellow leaf curl disease viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1294-306. [PMID: 22712505 DOI: 10.1094/mpmi-04-12-0094-r] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tomato yellow leaf curl disease (TYLCD) is caused by a complex of phylogenetically related Begomovirus spp. that produce similar symptoms when they infect tomato plants but have different host ranges. In this work, we have evaluated the gene-silencing-suppression activity of C2, C4, and V2 viral proteins isolated from the four main TYLCD-causing strains in Spain in Nicotiana benthamiana. We observed varying degrees of local silencing suppression for each viral protein tested, with V2 proteins from all four viruses exhibiting the strongest suppression activity. None of the suppressors were able to avoid the spread of the systemic silencing, although most produced a delay. In order to test the silencing-suppression activity of Tomato yellow leaf curl virus (TYLCV) and Tomato yellow leaf curl Sardinia virus (TYLCSV) proteins in a shared (tomato) and nonshared (bean) host, we established novel patch assays. Using these tools, we found that viral proteins from TYLCV were able to suppress silencing in both hosts, whereas TYLCSV proteins were only effective in tomato. This is the first time that viral suppressors from a complex of disease-causing geminiviruses have been subject to a comprehensive analysis using two economically important crop hosts, as well as the established N. benthamiana plant model.
Collapse
Affiliation(s)
- Ana P Luna
- Departamento de Genetica, Universidad de Malaga, Malaga, Spain
| | | | | | | |
Collapse
|
25
|
Tahir MN, Mansoor S. βC1 of chili leaf curl betasatellite is a pathogenicity determinant. Virol J 2011; 8:509. [PMID: 22067326 PMCID: PMC3224789 DOI: 10.1186/1743-422x-8-509] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/08/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cotton leaf curl disease in the Indian subcontinent is associated with several distinct begomoviruses that interact with a disease-specific DNA satellite named Cotton leaf curl Multan betasatellite (CLCuMB). However, we have recently reported that Chili leaf curl betasatellite (ChLCB) is also occasionally found associated with the disease in Pakistan. The question as to whether ChLCB contributes to the development of disease symptoms such as leaf curling and enations remain to be answered. We have previously shown that the expression of βC1 of CLCuMB develops all symptoms of cotton leaf curl disease in Nicotiana benthamiana when expressed from PVX vector. FINDINGS The role of ChLCB in the induction of typical disease symptoms was studied by its expression from PVX vector in N. benthamiana. The expression of βC1 from PVX vector developed severe leaf curl symptoms and leaf-like enations that resemble the phenotype induced by βC1 of CLCuMB. CONCLUSIONS The results presented here show that the expression of βC1 of ChLCB from PVX vector exhibit phenotype typical of cotton leaf curl and therefore ChLCB may contribute to the disease symptoms.
Collapse
Affiliation(s)
- Muhammad N Tahir
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
26
|
Tomás DM, Cañizares MC, Abad J, Fernández-Muñoz R, Moriones E. Resistance to Tomato yellow leaf curl virus accumulation in the tomato wild relative Solanum habrochaites associated with the C4 viral protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:849-61. [PMID: 21405986 DOI: 10.1094/mpmi-12-10-0291] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tomato yellow leaf curl disease (TYLCD) is a severe threat to tomato crops worldwide and is caused by Tomato yellow leaf curl virus (TYLCV) and several other begomoviruses (genus Begomovirus, family Geminiviridae). Host plant resistance is the best TYLCD control method but limited sources of resistance are available. In this study, two Solanum habrochaites TYLCD-resistance sources, EELM-388 and EELM-889, were found after a wide germplasm screening and were further characterized. A consistent resistance to the widely distributed strain TYLCV-IL was observed when plants were inoculated by Bemisia tabaci or by agroinoculation using an infectious clone, with no symptoms or virus accumulation observed in inoculated plants. Moreover, the resistance was effective under field conditions with high TYLCD pressure. Two independent loci, one dominant and one recessive, were associated with EELM-889 resistance. The study shows these loci to be distinct from that of the resistance gene (Ty-1 gene) commonly deployed in commercial tomato cultivars. Therefore, both kinds of resistance could be combined to provide improved resistance to TYLCD. Four additional TYLCD-associated viruses were challenged, showing that the resistance always prevented symptom expression, although systemic infection could occur in some cases. By using chimeric and mutant expression constructs, the C4 protein was shown to be associated with the ability to result in effective systemic infection.
Collapse
Affiliation(s)
- Diego M Tomás
- Instituto de Hortofruticultura Subtropical y Mediterranea, Malaga, Spain
| | | | | | | | | |
Collapse
|
27
|
Lozano-Durán R, Rosas-Díaz T, Gusmaroli G, Luna AP, Taconnat L, Deng XW, Bejarano ER. Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. THE PLANT CELL 2011; 23:1014-32. [PMID: 21441437 PMCID: PMC3082251 DOI: 10.1105/tpc.110.080267] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/15/2011] [Accepted: 03/04/2011] [Indexed: 05/19/2023]
Abstract
Viruses must create a suitable cell environment and elude defense mechanisms, which likely involves interactions with host proteins and subsequent interference with or usurpation of cellular machinery. Here, we describe a novel strategy used by plant DNA viruses (Geminiviruses) to redirect ubiquitination by interfering with the activity of the CSN (COP9 signalosome) complex. We show that geminiviral C2 protein interacts with CSN5, and its expression in transgenic plants compromises CSN activity on CUL1. Several responses regulated by the CUL1-based SCF ubiquitin E3 ligases (including responses to jasmonates, auxins, gibberellins, ethylene, and abscisic acid) are altered in these plants. Impairment of SCF function is confirmed by stabilization of yellow fluorescent protein-GAI, a substrate of the SCF(SLY1). Transcriptomic analysis of these transgenic plants highlights the response to jasmonates as the main SCF-dependent process affected by C2. Exogenous jasmonate treatment of Arabidopsis thaliana plants disrupts geminivirus infection, suggesting that the suppression of the jasmonate response might be crucial for infection. Our findings suggest that C2 affects the activity of SCFs, most likely through interference with the CSN. As SCFs are key regulators of many cellular processes, the capability of viruses to selectively interfere with or hijack the activity of these complexes might define a novel and powerful strategy in viral infections.
Collapse
Affiliation(s)
- Rosa Lozano-Durán
- Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Celular y Genética, Universidad de Málaga, Campus de Teatinos, E-29071 Malaga, Spain
| | - Tabata Rosas-Díaz
- Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Celular y Genética, Universidad de Málaga, Campus de Teatinos, E-29071 Malaga, Spain
| | - Giuliana Gusmaroli
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Ana P. Luna
- Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Celular y Genética, Universidad de Málaga, Campus de Teatinos, E-29071 Malaga, Spain
| | - Ludivine Taconnat
- Unité Mixte de Recherche, Institut National de la Recherche Agronomique 1165, Centre National de la Recherche Scientifique 8114, UEVE, 91057 Evry, France
| | - Xing Wang Deng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | - Eduardo R. Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Celular y Genética, Universidad de Málaga, Campus de Teatinos, E-29071 Malaga, Spain
- Address correspondence to
| |
Collapse
|
28
|
βC1 encoded by tomato yellow leaf curl China betasatellite forms multimeric complexes in vitro and in vivo. Virology 2010; 409:156-62. [PMID: 21035158 DOI: 10.1016/j.virol.2010.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/14/2010] [Accepted: 10/05/2010] [Indexed: 11/23/2022]
Abstract
The βC1 protein encoded by betasatellites associated with begomoviruses is multi-functional. To investigate its properties, the βC1 protein encoded by tomato yellow leaf curl China betasatellite (TYLCCNB) was expressed in Escherichia coli and analyzed for its ability to self-interaction. The βC1 protein formed large soluble multimeric complexes in vitro and in vivo. Mutations that prevented formation of multimeric complexes in vitro, also prevented formation of granular bodies in vivo, suggesting that granular bodies resulted from βC1 oligomerization. Similarly, βC1 mutants unable to form complexes also did not induce typical symptoms in plants when expressed from a Potato virus X (PVX) vector, suggesting that βC1 self-interaction was required for symptom induction in planta. Deletion analysis revealed that amino acid sequences spanning two predicted α-helices at the C-terminal end of the protein were important in multimerization.
Collapse
|