1
|
Ly H. Highly pathogenic avian influenza H5N1 virus infection of companion animals. Virulence 2024; 15:2289780. [PMID: 38064414 PMCID: PMC10761027 DOI: 10.1080/21505594.2023.2289780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
2
|
Li X, Jia T, Wang K, Wang L, Zhou L, Li M, Zhu W, Shu Y, Chen Y. The PB2 I714S mutation influenced mammalian adaptation of the H3N2 canine influenza virus by interfering with nuclear import efficiency and RNP complex assembly. Emerg Microbes Infect 2024; 13:2387439. [PMID: 39139051 PMCID: PMC11328605 DOI: 10.1080/22221751.2024.2387439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Avian influenza viruses (AIVs) are the origin of multiple mammal influenza viruses. The genetic determinants of AIVs adapted to humans have been widely elucidated, however, the molecular mechanism of cross-species transmission and adaptation of AIVs to canines are still poorly understood. In this study, two H3N2 influenza viruses isolated from a live poultry market (A/environment/Guangxi/13431/2018, GX13431) and a swab sample from a canine (A/canine/Guangdong/0601/2019, GD0601) were used to investigate the possible molecular basis that determined H3N2 AIV adapting to canine. We found that GD0601 exhibited more robust polymerase activity in cells and higher pathogenicity in mice compared with its evolution ancestor H3N2 AIV GX13431. A series of reassortments of the ribonucleoprotein (RNP) complex showed that the PB2 subunit was the crucial factor that conferred high polymerase activity of GD0601, and the substitution of I714S in the PB2 subunit of GD0601 attenuated the replication and pathogenicity in mammal cells and the mouse model. Mechanistically, the reverse mutation of I714S in the PB2 polymerase subunit which was identified in AIV GX13431 reduced the nuclear import efficiency of PB2 protein and interfered with the interactions of PB2-PA/NP that affected the assembly of the viral RNP complex. Our study reveals amino acid mutation at the position of 714 in the nuclear localization signal (NLS) area in PB2 plays an important role in overcoming the barrier from poultry to mammals of the H3N2 canine influenza virus and provides clues for further study of mammalian adaptation mechanism of AIVs.
Collapse
Affiliation(s)
- Xueyun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
- Department of Healthcare-associated Infection Management, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Tingting Jia
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Kele Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, People's Republic of China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Lijuan Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Mao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People's Republic of China
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yongkun Chen
- Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, People's Republic of China
| |
Collapse
|
3
|
He J, Liu J, Yan Z, Chen G, Liu R, Yang Y, Yan Y, Yuan S, Guo J, Li Y, Yu H, Liang Z, Ren T, Huang S, Wen F. Genetic Characterization and Receptor Binding analysis of a Novel H5N1 HPAI Virus with a H6Nx-Derived PA Gene in Guangdong, China. Emerg Microbes Infect 2024:2417857. [PMID: 39435481 DOI: 10.1080/22221751.2024.2417857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Affiliation(s)
- Jieheng He
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Jing Liu
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Zhanfei Yan
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Gaojie Chen
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Runzhi Liu
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Yu Yang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Yulin Yan
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Yong Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| |
Collapse
|
4
|
Palù G, Roggero PF, Calistri A. Could H5N1 bird flu virus be the cause of the next human pandemic? Front Microbiol 2024; 15:1477738. [PMID: 39439938 PMCID: PMC11493729 DOI: 10.3389/fmicb.2024.1477738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Giorgio Palù
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Padua, Italy
| |
Collapse
|
5
|
Kim IH, Nam JH, Kim CK, Choi YJ, Lee H, An BM, Lee NJ, Jeong H, Lee SY, Yeo SG, Lee EK, Lee YJ, Rhee JE, Lee SW, Jee Y, Kim EJ. Pathogenicity of Highly Pathogenic Avian Influenza A(H5N1) Viruses Isolated from Cats in Mice and Ferrets, South Korea, 2023. Emerg Infect Dis 2024; 30:2033-2041. [PMID: 39240548 PMCID: PMC11431923 DOI: 10.3201/eid3010.240583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
The prevalence of highly pathogenic avian influenza (HPAI) A(H5N1) viruses has increased in wild birds and poultry worldwide, and concomitant outbreaks in mammals have occurred. During 2023, outbreaks of HPAI H5N1 virus infections were reported in cats in South Korea. The H5N1 clade 2.3.4.4b viruses isolated from 2 cats harbored mutations in the polymerase basic protein 2 gene encoding single amino acid substitutions E627K or D701N, which are associated with virus adaptation in mammals. Hence, we analyzed the pathogenicity and transmission of the cat-derived H5N1 viruses in other mammals. Both isolates caused fatal infections in mice and ferrets. We observed contact infections between ferrets, confirming the viruses had high pathogenicity and transmission in mammals. Most HPAI H5N1 virus infections in humans have occurred through direct contact with poultry or a contaminated environment. Therefore, One Health surveillance of mammals, wild birds, and poultry is needed to prevent potential zoonotic threats.
Collapse
|
6
|
Guo X, Zhou Y, Yan H, An Q, Liang C, Liu L, Qian J. Molecular Markers and Mechanisms of Influenza A Virus Cross-Species Transmission and New Host Adaptation. Viruses 2024; 16:883. [PMID: 38932174 PMCID: PMC11209369 DOI: 10.3390/v16060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza A viruses continue to be a serious health risk to people and result in a large-scale socio-economic loss. Avian influenza viruses typically do not replicate efficiently in mammals, but through the accumulation of mutations or genetic reassortment, they can overcome interspecies barriers, adapt to new hosts, and spread among them. Zoonotic influenza A viruses sporadically infect humans and exhibit limited human-to-human transmission. However, further adaptation of these viruses to humans may result in airborne transmissible viruses with pandemic potential. Therefore, we are beginning to understand genetic changes and mechanisms that may influence interspecific adaptation, cross-species transmission, and the pandemic potential of influenza A viruses. We also discuss the genetic and phenotypic traits associated with the airborne transmission of influenza A viruses in order to provide theoretical guidance for the surveillance of new strains with pandemic potential and the prevention of pandemics.
Collapse
Affiliation(s)
- Xinyi Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Yang Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
| | - Qing An
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
| | - Linna Liu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Jun Qian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
7
|
Graziosi G, Lupini C, Catelli E, Carnaccini S. Highly Pathogenic Avian Influenza (HPAI) H5 Clade 2.3.4.4b Virus Infection in Birds and Mammals. Animals (Basel) 2024; 14:1372. [PMID: 38731377 PMCID: PMC11083745 DOI: 10.3390/ani14091372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Avian influenza viruses (AIVs) are highly contagious respiratory viruses of birds, leading to significant morbidity and mortality globally and causing substantial economic losses to the poultry industry and agriculture. Since their first isolation in 2013-2014, the Asian-origin H5 highly pathogenic avian influenza viruses (HPAI) of clade 2.3.4.4b have undergone unprecedented evolution and reassortment of internal gene segments. In just a few years, it supplanted other AIV clades, and now it is widespread in the wild migratory waterfowl, spreading to Asia, Europe, Africa, and the Americas. Wild waterfowl, the natural reservoir of LPAIVs and generally more resistant to the disease, also manifested high morbidity and mortality with HPAIV clade 2.3.4.4b. This clade also caused overt clinical signs and mass mortality in a variety of avian and mammalian species never reported before, such as raptors, seabirds, sealions, foxes, and others. Most notably, the recent outbreaks in dairy cattle were associated with the emergence of a few critical mutations related to mammalian adaptation, raising concerns about the possibility of jumping species and acquisition of sustained human-to-human transmission. The main clinical signs and anatomopathological findings associated with clade 2.3.4.4b virus infection in birds and non-human mammals are hereby summarized.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Alkie TN, Cox S, Embury-Hyatt C, Stevens B, Pople N, Pybus MJ, Xu W, Hisanaga T, Suderman M, Koziuk J, Kruczkiewicz P, Nguyen HH, Fisher M, Lung O, Erdelyan CNG, Hochman O, Ojkic D, Yason C, Bravo-Araya M, Bourque L, Bollinger TK, Soos C, Giacinti J, Provencher J, Ogilvie S, Clark A, MacPhee R, Parsons GJ, Eaglesome H, Gilbert S, Saboraki K, Davis R, Jerao A, Ginn M, Jones MEB, Berhane Y. Characterization of neurotropic HPAI H5N1 viruses with novel genome constellations and mammalian adaptive mutations in free-living mesocarnivores in Canada. Emerg Microbes Infect 2023; 12:2186608. [PMID: 36880345 PMCID: PMC10026807 DOI: 10.1080/22221751.2023.2186608] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The GsGd lineage (A/goose/Guangdong/1/1996) H5N1 virus was introduced to Canada in 2021/2022 through the Atlantic and East Asia-Australasia/Pacific flyways by migratory birds. This was followed by unprecedented outbreaks affecting domestic and wild birds, with spillover into other animals. Here, we report sporadic cases of H5N1 in 40 free-living mesocarnivore species such as red foxes, striped skunks, and mink in Canada. The clinical presentations of the disease in mesocarnivores were consistent with central nervous system infection. This was supported by the presence of microscopic lesions and the presence of abundant IAV antigen by immunohistochemistry. Some red foxes that survived clinical infection developed anti-H5N1 antibodies. Phylogenetically, the H5N1 viruses from the mesocarnivore species belonged to clade 2.3.4.4b and had four different genome constellation patterns. The first group of viruses had wholly Eurasian (EA) genome segments. The other three groups were reassortant viruses containing genome segments derived from both North American (NAm) and EA influenza A viruses. Almost 17 percent of the H5N1 viruses had mammalian adaptive mutations (E627 K, E627V and D701N) in the polymerase basic protein 2 (PB2) subunit of the RNA polymerase complex. Other mutations that may favour adaptation to mammalian hosts were also present in other internal gene segments. The detection of these critical mutations in a large number of mammals within short duration after virus introduction inevitably highlights the need for continually monitoring and assessing mammalian-origin H5N1 clade 2.3.4.4b viruses for adaptive mutations, which potentially can facilitate virus replication, horizontal transmission and posing pandemic risks for humans.
Collapse
Affiliation(s)
- Tamiru N Alkie
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Sherri Cox
- College of Biological Science, University of Guelph, Guelph, Canada
| | - Carissa Embury-Hyatt
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Brian Stevens
- Canadian Wildlife Health Cooperative, Guelph, Canada
| | - Neil Pople
- Veterinary Diagnostic Services, Manitoba Agriculture, Winnipeg, Canada
| | - Margo J Pybus
- Fish and Wildlife, Alberta Environment and Parks, Edmonton, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Wanhong Xu
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Tamiko Hisanaga
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Matthew Suderman
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Janice Koziuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Peter Kruczkiewicz
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Hoang Hai Nguyen
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Mathew Fisher
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Cassidy N G Erdelyan
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Orie Hochman
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, Canada
| | - Carmencita Yason
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | | | - Laura Bourque
- Canadian Wildlife Health Cooperative, Atlantic Region, Charlottetown, Canada
| | - Trent K Bollinger
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Catherine Soos
- Environment and Climate Change Canada, Saskatoon, Canada
| | | | | | - Sarah Ogilvie
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - Amanda Clark
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - Robyn MacPhee
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - Glen J Parsons
- Nova Scotia Department of Natural Resources and Renewables, Kentville, Canada
| | | | - Sayrah Gilbert
- Wildlife Haven Rehabilitation Centre, Île-des-Chênes, Canada
| | - Kelsey Saboraki
- Fish and Wildlife Branch, Manitoba Natural Resources and Northern Development, Gimli, Canada
| | - Richard Davis
- Fish and Wildlife Branch, Manitoba Natural Resources and Northern Development, Gimli, Canada
| | - Alexandra Jerao
- Office of the Chief Veterinarian, Manitoba Agriculture, Winnipeg, Canada
| | - Matthew Ginn
- Prince Edward Island Department of Environment, Energy and Climate Action, Charlottetown, Canada
| | - Megan E B Jones
- Canadian Wildlife Health Cooperative, Atlantic Region, Charlottetown, Canada
- Nova Scotia Department of Natural Resources and Renewables, Kentville, Canada
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- Department of Animal Science, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
9
|
Alasiri A, Soltane R, Hegazy A, Khalil AM, Mahmoud SH, Khalil AA, Martinez-Sobrido L, Mostafa A. Vaccination and Antiviral Treatment against Avian Influenza H5Nx Viruses: A Harbinger of Virus Control or Evolution. Vaccines (Basel) 2023; 11:1628. [PMID: 38005960 PMCID: PMC10675773 DOI: 10.3390/vaccines11111628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the panzootic nature of emergent highly pathogenic avian influenza H5Nx viruses in wild migratory birds and domestic poultry, only a limited number of human infections with H5Nx viruses have been identified since its emergence in 1996. Few countries with endemic avian influenza viruses (AIVs) have implemented vaccination as a control strategy, while most of the countries have adopted a culling strategy for the infected flocks. To date, China and Egypt are the two major sites where vaccination has been adopted to control avian influenza H5Nx infections, especially with the widespread circulation of clade 2.3.4.4b H5N1 viruses. This virus is currently circulating among birds and poultry, with occasional spillovers to mammals, including humans. Herein, we will discuss the history of AIVs in Egypt as one of the hotspots for infections and the improper implementation of prophylactic and therapeutic control strategies, leading to continuous flock outbreaks with remarkable virus evolution scenarios. Along with current pre-pandemic preparedness efforts, comprehensive surveillance of H5Nx viruses in wild birds, domestic poultry, and mammals, including humans, in endemic areas is critical to explore the public health risk of the newly emerging immune-evasive or drug-resistant H5Nx variants.
Collapse
Affiliation(s)
- Ahlam Alasiri
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, Giza 12613, Egypt;
| | - Ahmed Magdy Khalil
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| | - Ahmed A. Khalil
- Veterinary Sera and Vaccines Research Institute (VSVRI), Agriculture Research Center (ARC), Cairo 11435, Egypt;
| | | | - Ahmed Mostafa
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| |
Collapse
|
10
|
Herfst S, Begeman L, Spronken MI, Poen MJ, Eggink D, de Meulder D, Lexmond P, Bestebroer TM, Koopmans MPG, Kuiken T, Richard M, Fouchier RAM. A Dutch highly pathogenic H5N6 avian influenza virus showed remarkable tropism for extra-respiratory organs and caused severe disease but was not transmissible via air in the ferret model. mSphere 2023; 8:e0020023. [PMID: 37428085 PMCID: PMC10449504 DOI: 10.1128/msphere.00200-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Continued circulation of A/H5N1 influenza viruses of the A/goose/Guangdong/1/96 lineage in poultry has resulted in the diversification in multiple genetic and antigenic clades. Since 2009, clade 2.3.4.4 hemagglutinin (HA) containing viruses harboring the internal and neuraminidase (NA) genes of other avian influenza A viruses have been detected. As a result, various HA-NA combinations, such as A/H5N1, A/H5N2, A/H5N3, A/H5N5, A/H5N6, and A/H5N8 have been identified. As of January 2023, 83 humans have been infected with A/H5N6 viruses, thereby posing an apparent risk for public health. Here, as part of a risk assessment, the in vitro and in vivo characterization of A/H5N6 A/black-headed gull/Netherlands/29/2017 is described. This A/H5N6 virus was not transmitted between ferrets via the air but was of unexpectedly high pathogenicity compared to other described A/H5N6 viruses. The virus replicated and caused severe lesions not only in respiratory tissues but also in multiple extra-respiratory tissues, including brain, liver, pancreas, spleen, lymph nodes, and adrenal gland. Sequence analyses demonstrated that the well-known mammalian adaptation substitution D701N was positively selected in almost all ferrets. In the in vitro experiments, no other known viral phenotypic properties associated with mammalian adaptation or increased pathogenicity were identified. The lack of transmission via the air and the absence of mammalian adaptation markers suggest that the public health risk of this virus is low. The high pathogenicity of this virus in ferrets could not be explained by the known mammalian pathogenicity factors and should be further studied. IMPORTANCE Avian influenza A/H5 viruses can cross the species barrier and infect humans. These infections can have a fatal outcome, but fortunately these influenza A/H5 viruses do not spread between humans. However, the extensive circulation and reassortment of A/H5N6 viruses in poultry and wild birds warrant risk assessments of circulating strains. Here an in-depth characterization of the properties of an avian A/H5N6 influenza virus isolated from a black-headed gull in the Netherlands was performed in vitro and in vivo, in ferrets. The virus was not transmissible via the air but caused severe disease and spread to extra-respiratory organs. Apart from the detection in ferrets of a mutation that increased virus replication, no other mammalian adaptation phenotypes were identified. Our results suggest that the risk of this avian A/H5N6 virus for public health is low. The underlying reasons for the high pathogenicity of this virus are unexplained and should be further studied.
Collapse
Affiliation(s)
- Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Lineke Begeman
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Monique I. Spronken
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marjolein J. Poen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dirk Eggink
- Academic Medical Center Amsterdam, Laboratory of Experimental Virology, Amsterdam, the Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
11
|
Pardo-Roa C, Nelson MI, Ariyama N, Aguayo C, Almonacid LI, Munoz G, Navarro C, Avila C, Ulloa M, Reyes R, Luppichini EF, Mathieu C, Vergara R, González Á, González CG, Araya H, Fernández J, Fasce R, Johow M, Medina RA, Neira V. Cross-species transmission and PB2 mammalian adaptations of highly pathogenic avian influenza A/H5N1 viruses in Chile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547205. [PMID: 37786724 PMCID: PMC10541606 DOI: 10.1101/2023.06.30.547205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
H5N1 highly pathogenic avian influenza viruses (HPAIV) emerged in wild birds in Chile in December 2022 and spilled over into poultry, marine mammals, and one human. Between December 9, 2022 - March 14, 2023, a coordinated government/academic response detected HPAIV by real-time RT-PCR in 8.5% (412/4735) of samples from 23 avian and 3 mammal orders. Whole-genome sequences obtained from 77 birds and 8 marine mammals revealed that all Chilean H5N1 viruses belong to lineage 2.3.4.4b and cluster monophyletically with viruses from Peru, indicating a single introduction from North America into Peru/Chile. Mammalian adaptations were identified in the PB2 segment: D701N in two sea lions, one human, and one shorebird, and Q591K in the human and one sea lion. Minor variant analysis revealed that D701N was present in 52.9 - 70.9% of sequence reads, indicating the presence of both genotypes within hosts. Further surveillance of spillover events is warranted to assess the emergence and potential onward transmission of mammalian adapted H5N1 HPAIV in South America.
Collapse
Affiliation(s)
- Catalina Pardo-Roa
- Department of Child and Adolescent Health, School of Nursing, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martha I Nelson
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Naomi Ariyama
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile. 11735 Santa Rosa, La Pintana, Santiago, Chile
| | | | - Leonardo I Almonacid
- Molecular Bioinformatics Laboratory, Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Carlos Navarro
- Servicio Nacional de Pesca y Acuicultura, SERNAPESCA, Chile
| | | | - Mauricio Ulloa
- Servicio Nacional de Pesca y Acuicultura, SERNAPESCA, Chile
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety, Veterinary School, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Rodolfo Reyes
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety, Veterinary School, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Eugenia Fuentes Luppichini
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | - Hugo Araya
- Servicio Agrícola y Ganadero, SAG, Chile
| | - Jorge Fernández
- Instituto de Salud Pública, ISP, Ministerio de Salud, Santiago, Chile
| | - Rodrigo Fasce
- Instituto de Salud Pública, ISP, Ministerio de Salud, Santiago, Chile
| | | | - Rafael A Medina
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory Vaccine Center, Emory University, Atlanta, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Victor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile. 11735 Santa Rosa, La Pintana, Santiago, Chile
| |
Collapse
|
12
|
Highly pathogenic avian influenza A (H5N1) virus infections in wild carnivores connected to mass mortalities of pheasants in Finland. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 111:105423. [PMID: 36889484 DOI: 10.1016/j.meegid.2023.105423] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Highly pathogenic avian influenza (HPAI) has caused widespread mortality in both wild and domestic birds in Europe during 2020-2022. Virus types H5N8 and H5N1 have dominated the epidemic. Isolated spill-over infections in mammals started to emerge as the epidemic continued. In autumn 2021, HPAI H5N1 caused a series of mass mortality events in farmed and released pheasants (Phasianus colchicus) in a restricted area in southern Finland. Later, in the same area, an otter (Lutra lutra), two red foxes (Vulpes vulpes) and a lynx (Lynx lynx) were found moribund or dead and infected with H5N1 HPAI virus. Phylogenetically, H5N1 strains from pheasants and mammals clustered together. Molecular analyses of the four mammalian virus strains revealed mutations in the PB2 gene segment (PB2-E627K and PB2-D701N) that are known to facilitate viral replication in mammals. This study revealed that avian influenza cases in mammals were spatially and temporally connected with avian mass mortalities suggesting increased infection pressure from birds to mammals.
Collapse
|
13
|
Wan Z, Gong J, Sang J, Jiang W, Zhao Z, Lian M, Tang T, Li Y, Kan Q, Xie Q, Li T, Shao H, Gao W, Qin A, Ye J. Mouse adaptation of H6 avian influenza viruses and their molecular characteristics. Front Microbiol 2022; 13:1049979. [PMID: 36466692 PMCID: PMC9713515 DOI: 10.3389/fmicb.2022.1049979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/24/2022] [Indexed: 10/27/2023] Open
Abstract
H6 avian influenza viruses (AIVs) not only continue to circulate in both domestic poultry and wild waterfowl, but also have occasionally caused spillovers infections in pigs and humans, posing a potential threat to public health. However, the molecular mechanism of H6 AIV adaptation to mammals remains largely unknown. In this study, two mouse-adapted (MA) H6 AIV strains, named as MA E-Teal/417 and MA GWF-Goose/740, were generated through blind passages in BALB/c mice. The two MA H6 strains replicated more efficiently and showed higher virulence than the corresponding wild type (WT) H6 strains in mice. Genome sequencing revealed that MA E-Teal/417 and MA GWF-Goose/740 carried six amino acid mutations (PB2-T224A/E627K, HA-G124R, NA-F167L/Y356H and M1-M92R), and four amino acid mutations (PB1-K577E, PA-T97I/D514E and HA-T276K), respectively, when compared to the corresponding WT virus. Receptor binding assay showed MA E-Teal/417 had stronger binding activity to α-2,3 SA than WT E-Teal/417. Moreover, the polymerase activity analysis found the RNP polymerase activity of both MA H6 viruses was significantly higher than that of the corresponding WT virus in 293T cells. All these demonstrate that H6 AIV can acquire limit amino acid substitutions to adapt to mammals and increase virulence, highlighting the significance of monitoring such mutations of H6 AIV in the field for alarming the potential of its cross-transmission and pathogenesis in mammals.
Collapse
Affiliation(s)
- Zhimin Wan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianxi Gong
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianjun Sang
- Sinopharm Yangzhou VAC Biological Engineering Co. Ltd, Yangzhou, Jiangsu, China
| | - Wenjie Jiang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhehong Zhao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mingjun Lian
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ting Tang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yafeng Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiuqi Kan
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Gao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Ministry of Education, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
14
|
Molecular Characteristics, Receptor Specificity, and Pathogenicity of Avian Influenza Viruses Isolated from Wild Ducks in Russia. Int J Mol Sci 2022; 23:ijms231810829. [PMID: 36142740 PMCID: PMC9502348 DOI: 10.3390/ijms231810829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Avian influenza viruses (AIV) of wild ducks are known to be able to sporadically infect domestic birds and spread along poultry. Regular surveillance of AIV in the wild is needed to prepare for potential outbreaks. During long-year monitoring, 46 strains of AIV were isolated from gulls and mallards in Moscow ponds and completely sequenced. Amino acid positions that affect the pathogenicity of influenza viruses in different hosts were tested. The binding affinity of the virus for receptors analogs typical for different hosts and the pathogenicity of viruses for mice and chickens were investigated. Moscow isolates did not contain well-known markers of pathogenicity and/or adaptation to mammals, so as a polybasic cleavage site in HA, substitutions of 226Q and 228G amino acids in the receptor-binding region of HA, and substitutions of 627E and 701D amino acids in the PB2. The PDZ-domain ligand in the NS protein of all studied viruses contains the ESEV or ESEI sequence. Although several viruses had the N66S substitution in the PB1-F2 protein, all Moscow isolates were apathogenic for both mice and chickens. This demonstrates that the phenotypic manifestation of pathogenicity factors is not absolute but depends on the genome context.
Collapse
|
15
|
First isolation of influenza A subtype H5N8 in ostrich: Pathological and genetic characterization. Poult Sci 2022; 101:102156. [PMID: 36252504 PMCID: PMC9582791 DOI: 10.1016/j.psj.2022.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
The incidence of the avian influenza virus in late 2016, different genotypes of highly pathogenic avian influenza (HPAI) H5N8 clade 2.3.4.4b have been reported among different domestic and wild bird species. The virus became endemic in the poultry population, causing a considerable economic loss for the poultry industry. This study screened 5 ostrich farms suffering from respiratory signs and mortality rate of the avian influenza virus. A flock of 60-day-old ostriches with a mortality of 90% suffered from depression, loss of appetite, dropped production, and oculo-nasal discharges, with bleeding from natural orifices as a vent. This flock was found positive for avian influenza virus and subtypes as HPAI H5N8 virus. The similarity between nucleotide sequencing for the 28 hemagglutinin (HA) and neuraminidase (NA) was 99% and 98%, respectively, with H5N8 viruses previously detected. The PB2 encoding protein harbor a unique substitution in mammalian marker 627A, which has not been recorded before in previously sequenced H5N8 viruses. Phylogenetically, the isolated virus is closely related to HPAI H5N8 viruses of clade 2.3.4.4b. The detection of the HPAI H5N8 virus in ostrich is highly the need for continuous epidemiological and molecular monitoring of influenza virus spread in other bird species, not only chickens. Ostrich should be included in the annual SunAlliance, for the detection of avian influenza.
Collapse
|
16
|
Al Farroukh M, Kiseleva I, Bazhenova E, Stepanova E, Puchkova L, Rudenko L. Understanding the Variability of Certain Biological Properties of H1N1pdm09 Influenza Viruses. Vaccines (Basel) 2022; 10:395. [PMID: 35335027 PMCID: PMC8954537 DOI: 10.3390/vaccines10030395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/04/2022] [Accepted: 03/01/2022] [Indexed: 01/10/2023] Open
Abstract
The influenza virus continually evolves because of the high mutation rate, resulting in dramatic changes in its pathogenicity and other biological properties. This study aimed to evaluate the evolution of certain essential properties, understand the connections between them, and find the molecular basis for the manifestation of these properties. To that end, 21 A(H1N1)pdm09 influenza viruses were tested for their pathogenicity and toxicity in a mouse model with a ts/non-ts phenotype manifestation and HA thermal stability. The results demonstrated that, for a strain to have high pathogenicity, it must express a toxic effect, have a non-ts phenotype, and have a thermally stable HA. The ancestor A/California/07/2009 (H1N1)pdm influenza virus expressed the non-ts phenotype, after which the cycling trend of the ts/non-ts phenotype was observed in new strains of A(H1N1)pdm09 influenza viruses, indicating that the ratio of the ts phenotype will increase in the coming years. Of the 21 tested viruses, A/South Africa/3626/2013 had the high pathogenicity in the mouse model. Sequence alignment analysis showed that this virus has three unique mutations in the polymerase complex, two of which are in the PB2 gene and one that is in the PB1 gene. Further study of these mutations might explain the distinguishing pathogenicity.
Collapse
Affiliation(s)
- Mohammad Al Farroukh
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St. Petersburg, Russia; (E.B.); (E.S.); (L.P.); (L.R.)
- Peter the Great St. Petersburg Polytechnic University, Institute of Biomedical Systems and Biotechnology, Graduate School of Biomedical Systems and Technologies, 195251 St. Petersburg, Russia
| | - Irina Kiseleva
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St. Petersburg, Russia; (E.B.); (E.S.); (L.P.); (L.R.)
| | - Ekaterina Bazhenova
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St. Petersburg, Russia; (E.B.); (E.S.); (L.P.); (L.R.)
| | - Ekaterina Stepanova
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St. Petersburg, Russia; (E.B.); (E.S.); (L.P.); (L.R.)
| | - Ludmila Puchkova
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St. Petersburg, Russia; (E.B.); (E.S.); (L.P.); (L.R.)
| | - Larisa Rudenko
- Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St. Petersburg, Russia; (E.B.); (E.S.); (L.P.); (L.R.)
| |
Collapse
|
17
|
Huang J, Wu S, Wu W, Liang Y, Zhuang H, Ye Z, Qu X, Liao M, Jiao P. The Biological Characteristics of Novel H5N6 Highly Pathogenic Avian Influenza Virus and Its Pathogenesis in Ducks. Front Microbiol 2021; 12:628545. [PMID: 33584629 PMCID: PMC7874018 DOI: 10.3389/fmicb.2021.628545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/04/2021] [Indexed: 12/03/2022] Open
Abstract
Clade 2.3.4.4 H5Nx highly pathogenic avian influenza viruses (HPAIVs) have caused outbreaks in poultry in the world. Some of these viruses acquired internal genes from other subtype avian influenza viruses (AIVs) such as H9 and H6 for the generation of novel reassortant viruses and continually circulated in poultry. Here, we applied a duck-origin virus DK87 and a chicken-origin virus CK66 to assess the biological characteristics of novel reassortant H5N6 HPAIVs and its pathogenesis in ducks. A genetic analysis indicated that the HA genes of the two H5N6 HPAIVs were closely related to the H5 viruses of clade 2.3.4.4 circulating in Eastern Asia and classified into H5 AIV/Eastern Asia (EA)-like lineage. Their NA genes fell into Eurasian lineage had close relationship with those of H5N6 viruses circulating in China, Laos, Vietnam, Japan, and Korea. All internal genes of DK87 were aggregated closely with H5 AIV/EA-like viruses. The internal genes (PB1, PA, NP, M, and NS) of CK66 were derived from H9N2 AIV/SH98-like viruses and the PB2 were derived from H5 AIV/EA-like viruses. These results indicate that clade 2.3.4.4 H5N6 AIVs have continually evolved and recombined with the H9N2 viruses circulating in Southern China. Pathogenicity test showed that the two viruses displayed a broader tissue distribution in ducks and caused no clinical signs. These results indicated that ducks were permissive for the replication of the chicken-origin reassortant virus CK66 without prior adaptation, but the duck-origin virus DK87-inoculated ducks showed significantly higher viral titers in some organs than the CK66-inoculated ducks at 5 day post-inoculated (DPI). The recovery of viruses from oropharyngea and cloacal swabs of contacted ducks indicated that they transmitted in native ducks by direct contact. Quantitative reverse transcription PCR (qRT-PCR) results revealed that the immune-relative genes (PRRs, IFNs, Mx-1, IL-6, and IL-8) in the lungs of inoculated ducks were expressed regardless of virus origin, but the expression of these genes was significantly higher in response to infection with the DK87 virus compared to the CK66 virus at 3 DPI. Overall, we should provide further insights into how clade 2.3.4.4 H5N6 AIVs undergo genetic and pathogenic variations to prevent outbreaks of this disease.
Collapse
Affiliation(s)
- Jianni Huang
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| | - Siyu Wu
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wenbo Wu
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiwen Liang
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haibin Zhuang
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiyu Ye
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyun Qu
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peirong Jiao
- Department of Animal Infectious Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
18
|
Molecular basis of host-adaptation interactions between influenza virus polymerase PB2 subunit and ANP32A. Nat Commun 2020; 11:3656. [PMID: 32694517 PMCID: PMC7374565 DOI: 10.1038/s41467-020-17407-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Avian influenza polymerase undergoes host adaptation in order to efficiently replicate in human cells. Adaptive mutants are localised on the C-terminal (627-NLS) domains of the PB2 subunit. In particular, mutation of PB2 residue 627 from E to K rescues polymerase activity in mammalian cells. A host transcription regulator ANP32A, comprising a long C-terminal intrinsically disordered domain (IDD), is responsible for this adaptation. Human ANP32A IDD lacks a 33 residue insertion compared to avian ANP32A, and this deletion restricts avian influenza polymerase activity. We used NMR to determine conformational ensembles of E627 and K627 forms of 627-NLS of PB2 in complex with avian and human ANP32A. Human ANP32A IDD transiently binds to the 627 domain, exploiting multivalency to maximise affinity. E627 interrupts the polyvalency of the interaction, an effect compensated by an avian-unique motif in the IDD. The observed binding mode is maintained in the context of heterotrimeric influenza polymerase, placing ANP32A in the immediate vicinity of known host-adaptive PB2 mutants. Avian influenza polymerase undergoes host adaptation in order to efficiently replicate in human cells. Here, the authors use NMR spectroscopy and quantitative ensemble modelling to describe the highly dynamic assemblies formed by the human-adapted or avian-adapted C-terminal domains with the respective ANP32A host proteins.
Collapse
|
19
|
Kiseleva I, Rekstin A, Al Farroukh M, Bazhenova E, Katelnikova A, Puchkova L, Rudenko L. Non-Mouse-Adapted H1N1pdm09 Virus as a Model for Influenza Research. Viruses 2020; 12:v12060590. [PMID: 32485821 PMCID: PMC7354452 DOI: 10.3390/v12060590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022] Open
Abstract
The number of lung-adapted influenza viruses is limited. Most of them are not antigenically related to current circulating viruses. Viruses similar to recent strains are required for screening modern antiviral compounds and studying new vaccine candidates against novel influenza viruses. The process by which an influenza virus adapts to a new host is rather difficult. The aim of this study was to select a non-adapted current virus whose major biological properties correspond to those of classical lab-adapted viruses. Mice were inoculated intranasally with non-lung-adapted influenza viruses of subtype H1N1pdm09. They were monitored closely for body weight loss, mortality outcomes and gross pathology for 14 days following inoculation, as well as viral replication in lung tissue. Lung-adapted PR8 virus was used as a control. The tested viruses multiplied equally well in the lower respiratory tract of mice without prior adaptation but dramatically differed in lethality; the differences in their toxicity and pathogenicity in mice were established. A/South Africa/3626/2013 (H1N1)pdm09 virus was found to be an appropriate candidate to replace PR8 as a model virus for influenza research. No prior adaptation to the animal model is needed to reach the pathogenicity level of the classical mouse-adapted PR8 virus.
Collapse
Affiliation(s)
- Irina Kiseleva
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
- Correspondence:
| | - Andrey Rekstin
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| | - Mohammad Al Farroukh
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| | - Ekaterina Bazhenova
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| | - Anastasia Katelnikova
- Department of Toxicology and Microbiology, Institute of Preclinical Research Ltd., 188663 St Petersburg, Russia;
| | - Ludmila Puchkova
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| | - Larisa Rudenko
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, 197376 St Petersburg, Russia; (A.R.); (M.A.F.); (E.B.); (L.P.); (L.R.)
| |
Collapse
|
20
|
Kandasamy M, Furlong K, Perez JT, Manicassamy S, Manicassamy B. Suppression of Cytotoxic T Cell Functions and Decreased Levels of Tissue-Resident Memory T Cells during H5N1 Infection. J Virol 2020; 94:e00057-20. [PMID: 32075925 PMCID: PMC7163117 DOI: 10.1128/jvi.00057-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Seasonal influenza virus infections cause mild illness in healthy adults, as timely viral clearance is mediated by the functions of cytotoxic T cells. However, avian H5N1 influenza virus infections can result in prolonged and fatal illness across all age groups, which has been attributed to the overt and uncontrolled activation of host immune responses. Here, we investigate how excessive innate immune responses to H5N1 impair subsequent adaptive T cell responses in the lungs. Using recombinant H1N1 and H5N1 strains sharing 6 internal genes, we demonstrate that H5N1 (2:6) infection in mice causes higher stimulation and increased migration of lung dendritic cells to the draining lymph nodes, resulting in greater numbers of virus-specific T cells in the lungs. Despite robust T cell responses in the lungs, H5N1 (2:6)-infected mice showed inefficient and delayed viral clearance compared with H1N1-infected mice. In addition, we observed higher levels of inhibitory signals, including increased PD-1 and interleukin-10 (IL-10) expression by cytotoxic T cells in H5N1 (2:6)-infected mice, suggesting that delayed viral clearance of H5N1 (2:6) was due to the suppression of T cell functions in vivo Importantly, H5N1 (2:6)-infected mice displayed decreased numbers of tissue-resident memory T cells compared with H1N1-infected mice; however, despite the decreased number of tissue-resident memory T cells, H5N1 (2:6) was protected against a heterologous challenge from H3N2 virus (X31). Taken together, our study provides mechanistic insight for the prolonged viral replication and protracted illness observed in H5N1-infected patients.IMPORTANCE Influenza viruses cause upper respiratory tract infections in humans. In healthy adults, seasonal influenza virus infections result in mild disease. Occasionally, influenza viruses endemic in domestic birds can cause severe and fatal disease even in healthy individuals. In avian influenza virus-infected patients, the host immune system is activated in an uncontrolled manner and is unable to control infection in a timely fashion. In this study, we investigated why the immune system fails to effectively control a modified form of avian influenza virus. Our studies show that T cell functions important for clearing virally infected cells are impaired by higher negative regulatory signals during modified avian influenza virus infection. In addition, memory T cell numbers were decreased in modified avian influenza virus-infected mice. Our studies provide a possible mechanism for the severe and prolonged disease associated with avian influenza virus infections in humans.
Collapse
Affiliation(s)
| | - Kevin Furlong
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Jasmine T Perez
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Santhakumar Manicassamy
- Cancer Immunology, Inflammation, and Tolerance Program, GRU Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
21
|
Viral Determinants in H5N1 Influenza A Virus Enable Productive Infection of HeLa Cells. J Virol 2020; 94:JVI.01410-19. [PMID: 31776276 DOI: 10.1128/jvi.01410-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Influenza A virus (IAV) is a human respiratory pathogen that causes yearly global epidemics, as well as sporadic pandemics due to human adaptation of pathogenic strains. Efficient replication of IAV in different species is, in part, dictated by its ability to exploit the genetic environment of the host cell. To investigate IAV tropism in human cells, we evaluated the replication of IAV strains in a diverse subset of epithelial cell lines. HeLa cells were refractory to the growth of human H1N1 and H3N2 viruses and low-pathogenic avian influenza (LPAI) viruses. Interestingly, a human isolate of the highly pathogenic avian influenza (HPAI) H5N1 virus successfully propagated in HeLa cells to levels comparable to those in a human lung cell line. Heterokaryon cells generated by fusion of HeLa and permissive cells supported H1N1 virus growth, suggesting the absence of a host factor(s) required for the replication of H1N1, but not H5N1, viruses in HeLa cells. The absence of this factor(s) was mapped to reduced nuclear import, replication, and translation, as well as deficient viral budding. Using reassortant H1N1:H5N1 viruses, we found that the combined introduction of nucleoprotein (NP) and hemagglutinin (HA) from an H5N1 virus was necessary and sufficient to enable H1N1 virus growth. Overall, this study suggests that the absence of one or more cellular factors in HeLa cells results in abortive replication of H1N1, H3N2, and LPAI viruses, which can be circumvented upon the introduction of H5N1 virus NP and HA. Further understanding of the molecular basis of this restriction will provide important insights into the virus-host interactions that underlie IAV pathogenesis and tropism.IMPORTANCE Many zoonotic avian influenza A viruses have successfully crossed the species barrier and caused mild to life-threatening disease in humans. While human-to-human transmission is limited, there is a risk that these zoonotic viruses may acquire adaptive mutations enabling them to propagate efficiently and cause devastating human pandemics. Therefore, it is important to identify viral determinants that provide these viruses with a replicative advantage in human cells. Here, we tested the growth of influenza A virus in a subset of human cell lines and found that abortive replication of H1N1 viruses in HeLa cells can be circumvented upon the introduction of H5N1 virus HA and NP. Overall, this work leverages the genetic diversity of multiple human cell lines to highlight viral determinants that could contribute to H5N1 virus pathogenesis and tropism.
Collapse
|
22
|
He WT, Wang L, Zhao Y, Wang N, Li G, Veit M, Bi Y, Gao GF, Su S. Adaption and parallel evolution of human-isolated H5 avian influenza viruses. J Infect 2020; 80:630-638. [PMID: 32007525 DOI: 10.1016/j.jinf.2020.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 12/12/2022]
Abstract
Avian-to-human transmission of highly pathogenic avian influenza viruses (HPAIV) and their subsequent adaptation to humans are of great concern to public health. Surveillance and early warning of AIVs with the potential to infect humans and pandemic potential is crucial. In this study, we determined whether adaptive evolution occurred in human-isolated H5 viruses. We evaluated all available genomes of H5N1 and H5N6 avian influenza A virus. Firstly, we systematically identified several new mutations in H5 AIV that might be associated with human adaptation using a combination of novel comparative phylogenetic methods and structural analysis. Some changes are the result of parallel evolution, further demonstrating their importance. In total, we identified 102 adaptive evolution sites in eight genes. Some residues had been previously identified, such as 227 in HA and 627 in PB2, while others have not been reported so far. Ten sites from four genes evolved in parallel but no obvious positive selection was detected. Our study suggests that during infection of humans, H5 viruses evolved to adapt to their new host environment and that the sites of adaptive/parallel evolution might play a role in crossing the species barrier and are the response to new selection pressure. The results provide insight to implement early detection systems for transitional stages in H5 AIV evolution before its potential adaptation for humans. Author summary line The prerequisite of surveillance and early warning of avian influenza viruses with the potential to infect humans depends on the identification of human-adaptation related mutations. In this study, we used a novel approach combining both phylogenetic and structural analysis to identify possible human-adaptation related mutations in H5 AIVs. Previous studies reported human-adaptation related mutations and some novel mutations exhibiting parallel evolution. Our result provides new insights into how AIVs adapt to humans by point mutations.
Collapse
Affiliation(s)
- Wan-Ting He
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuhui Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ningning Wang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gairu Li
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Robert-von-OstertagStraβe 7-13, Berlin, Germany
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuo Su
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
23
|
Suttie A, Deng YM, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019; 55:739-768. [PMID: 31428925 PMCID: PMC6831541 DOI: 10.1007/s11262-019-01700-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
- School of Health and Life Sciences, Federation University, Churchill, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yi-Mo Deng
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew R Greenhill
- School of Health and Life Sciences, Federation University, Churchill, Australia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia.
| |
Collapse
|
24
|
Wu S, Zhang J, Huang J, Li W, Liu Z, He Z, Chen Z, He W, Zhao B, Qin Z, Jiao P, Liao M. Immune-Related Gene Expression in Ducks Infected With Waterfowl-Origin H5N6 Highly Pathogenic Avian Influenza Viruses. Front Microbiol 2019; 10:1782. [PMID: 31428075 PMCID: PMC6687855 DOI: 10.3389/fmicb.2019.01782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023] Open
Abstract
Clade 2.3.4.4 H5 avian influenza viruses (AIVs) are widely prevalent and of significant concern to the poultry industry and public health in China. Nowadays, the clade 2.3.4.4 H5N6 virus has become a dominant AIV subtype among domestic ducks in southern China. We found that waterfowl-origin clade 2.3.4.4 H5N6 viruses (A/goose/Guangdong/16568/2016, GS16568 and A/duck/Guangdong/16873/2016, DK16873) isolated from southern China in 2016 could replicate in multiple organs of inoculated ducks. DK16873 virus caused mild infections and killed 2/5 of inoculated ducks, and GS16568 virus did not kill inoculated ducks. In addition, the two viruses could be transmitted via direct contact between ducks. DK16873 and GS16568 viruses killed 2/5 and 1/5 of contact ducks, respectively. Furthermore, ducks inoculated with the two H5N6 viruses exhibited different expressions of immune-related genes in their lungs. The expression of RIG-I, TLR3 and IL6 was significantly upregulated at 12 h post-inoculation (HPI) and most of the tested immune-related genes were significantly upregulated at 3 days post-inoculation (DPI). Notably, the expression of RIG-I and IL-6 in response to DK16873 virus was significantly higher than for GS16568 virus at 12 HPI and 3 DPI. Our research have provided helpful information about the pathogenicity, transmission and immune-related genes expression in ducks infected with new H5N6 AIVs.
Collapse
Affiliation(s)
- Siyu Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junsheng Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianni Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiqiang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiting Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhuoliang He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zuxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wanting He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bingbing Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhifeng Qin
- Shenzhen Academy of Inspection and Quarantine, Shenzhen, China
| | - Peirong Jiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Imai H, Dinis JM, Zhong G, Moncla LH, Lopes TJS, McBride R, Thompson AJ, Peng W, Le MTQ, Hanson A, Lauck M, Sakai-Tagawa Y, Yamada S, Eggenberger J, O'Connor DH, Suzuki Y, Hatta M, Paulson JC, Neumann G, Friedrich TC, Kawaoka Y. Diversity of Influenza A(H5N1) Viruses in Infected Humans, Northern Vietnam, 2004-2010. Emerg Infect Dis 2019; 24:1128-1238. [PMID: 29912683 PMCID: PMC6038741 DOI: 10.3201/eid2407.171441] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Influenza viruses exist in each host as a collection of genetically diverse variants, which might enhance their adaptive potential. To assess the genetic and functional diversity of highly pathogenic avian influenza A(H5N1) viruses within infected humans, we used deep-sequencing methods to characterize samples obtained from infected patients in northern Vietnam during 2004–2010 on different days after infection, from different anatomic sites, or both. We detected changes in virus genes that affected receptor binding, polymerase activity, or interferon antagonism, suggesting that these factors could play roles in influenza virus adaptation to humans. However, the frequency of most of these mutations remained low in the samples tested, implying that they were not efficiently selected within these hosts. Our data suggest that adaptation of influenza A(H5N1) viruses is probably stepwise and depends on accumulating combinations of mutations that alter function while maintaining fitness.
Collapse
|
26
|
He J, Liu BY, Gong L, Chen Z, Chen XL, Hou S, Yu JL, Wu JB, Xia ZC, Latif A, Gao R, Su B, Liu Y. Genetic characterization of the first detected human case of avian influenza A (H5N6) in Anhui Province, East China. Sci Rep 2018; 8:15282. [PMID: 30327485 PMCID: PMC6191424 DOI: 10.1038/s41598-018-33356-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/26/2018] [Indexed: 11/09/2022] Open
Abstract
We compared complete genome sequences of two strains of an avian influenza A (H5N6) virus isolated from a patient in Anhui Province with those of other strains from GenBank and Global initiative on sharing all influenza data (GISAID). The HA gene of the isolated virus shared homology with that of A/chicken/Zhejiang/727155/2014 (H5N6) at the level of similarity of 98%. The six internal genes of the Anhui strains were close to those of H9N2 viruses from Zhejiang, Shandong, and Guangdong provinces, with a similarity of 99%. In addition, the similarity between the internal antigens (NP and MP) of the isolated H5N6 virus and H7N9 and H10N8 viruses was 99%. Based on the data of phylogenetic analysis, the H5N6 influenza virus isolated in Anhui Province belonged to clade 2.3.4.4. The virus was shown to have molecular characteristics of highly pathogenic avian influenza viruses, including eight glycosylation sites and an amino acid sequence of the HA protein cleavage site, PLRERRRKKR/GLF, containing multiple basic amino acids. Additionally, the stalk domain of the NA protein was found to have a deletion in NA stalk region (11 amino acids in N6, positions 58-68). Our study demonstrated that the H5N6 virus from Anhui Province represented a triple-reassortant virus and could be highly pathogenic to humans. The prevalence of this virus should be closely monitored.
Collapse
Affiliation(s)
- Jun He
- Anhui Center for Disease Control and Prevention, Hefei, China
| | - Bo-Yu Liu
- Department of Microbiology, Anhui Medical University, Hefei, China
| | - Lei Gong
- Anhui Center for Disease Control and Prevention, Hefei, China
| | - Zhen Chen
- Department of Microbiology, Anhui Medical University, Hefei, China
| | - Xiao-Long Chen
- Xuancheng City Center for Disease Control and Prevention, Xuancheng, China
| | - Sai Hou
- Anhui Center for Disease Control and Prevention, Hefei, China
| | - Jun-Ling Yu
- Anhui Center for Disease Control and Prevention, Hefei, China
| | - Jia-Bin Wu
- Anhui Center for Disease Control and Prevention, Hefei, China
| | - Zhi-Cai Xia
- Xuancheng City Center for Disease Control and Prevention, Xuancheng, China
| | - Adams Latif
- Department of Microbiology, Anhui Medical University, Hefei, China
| | - Rongbao Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bin Su
- Anhui Center for Disease Control and Prevention, Hefei, China.
| | - Yan Liu
- Department of Microbiology, Anhui Medical University, Hefei, China.
| |
Collapse
|
27
|
A Single Amino Acid in the Polymerase Acidic Protein Determines the Pathogenicity of Influenza B Viruses. J Virol 2018; 92:JVI.00259-18. [PMID: 29643248 PMCID: PMC6002706 DOI: 10.1128/jvi.00259-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Abstract
Influenza B virus (IBV) is one of the human respiratory viruses and one of the targets of seasonal vaccination. However, the bifurcation of two antigenically distinct lineages of IBVs makes it difficult to arrange proper medical countermeasures. Moreover, compared with pathogenicity-related molecular markers known for influenza A virus, little has been known for IBVs. To understand pathogenicity caused by IBVs, we investigated the molecular determinants of IBV pathogenicity in animal models. After serial lung-to-lung passages of Victoria lineage B/Brisbane/60/2008 (Vc_BR60) and Yamagata lineage B/Wisconsin/01/2010 (Ym_WI01) viruses in BALB/c mice, we identified the mouse-adapted Vc_BR60 (maVc_BR60) and Ym_WI01 (maYm_WI01) viruses, respectively. To find a molecular clue(s) to the increased pathogenicity of maVc_BR60 and maYm_WI01, we determined their genetic sequences. Several amino acid mutations were identified in the PB2, PB1, PA, BM2, and/or NS1 protein-coding regions, and one concurrent lysine (K)-to-arginine (R) mutation in PA residue 338 (PA K338R) was found in both maVc_BR60 and maYm_WI01 viruses. When analyzed using viruses rescued through reverse genetics, it was shown that PA K338R alone could increase the pathogenicity of both IBVs in mice and viral replication in the respiratory tracts of ferrets. In a subsequent minireplicon assay, the effect of PA K338R was highlighted by the enhancement of viral polymerase complex activity of both Vc_BR60 and Ym_WI01 viruses. These results suggest that the PA K338R mutation may be a molecular determinant of IBV pathogenicity via modulating the viral polymerase function of IBVs.IMPORTANCE To investigate molecular pathogenic determinants of IBVs, which are one of the targets of seasonal influenza vaccines, we adapted both Victoria and Yamagata lineage IBVs independently in mice. The recovered mouse-adapted viruses exhibited increased virulence, and of the various mutations identified from both mouse-adapted viruses, a concurrent amino acid mutation was found in the PA protein-coding region. When analyzed using viruses rescued through reverse genetics, the PA mutation alone appeared to contribute to viral pathogenicity in mice within the compatible genetic constellation between the IBV lineages and to the replication of IBVs in ferrets. Regarding the potential mechanism of increased viral pathogenicity, it was shown that the PA mutation could upregulate the viral polymerase complex activity of both IBV lineages. These results indicate that the PA mutation could be a newly defined molecular pathogenic determinant of IBVs that substantiates our understanding of the viral pathogenicity and public health risks of IBVs.
Collapse
|
28
|
de Vries RP, Tzarum N, Peng W, Thompson AJ, Ambepitiya Wickramasinghe IN, de la Pena ATT, van Breemen MJ, Bouwman KM, Zhu X, McBride R, Yu W, Sanders RW, Verheije MH, Wilson IA, Paulson JC. A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors. EMBO Mol Med 2018; 9:1314-1325. [PMID: 28694323 PMCID: PMC5582370 DOI: 10.15252/emmm.201707726] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non‐fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human‐type receptor specificity could enable transmission in the human population. Despite mutations in the receptor‐binding pocket of the human H6N1 isolate, it has retained avian‐type (NeuAcα2‐3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completely switches specificity to human‐type (NeuAcα2‐6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human‐type receptor, stabilizing human receptor binding.
Collapse
Affiliation(s)
- Robert P de Vries
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, The Scripps Research Institute, La Jolla, CA, USA
| | - Wenjie Peng
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew J Thompson
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Alba T Torrents de la Pena
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marielle J van Breemen
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kim M Bouwman
- Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan McBride
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, The Scripps Research Institute, La Jolla, CA, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Microbiology and Immunology, Weil Medical College of Cornell University, New York, NY, USA
| | - Monique H Verheije
- Pathology Division, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, The Scripps Research Institute, La Jolla, CA, USA .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - James C Paulson
- Departments of Molecular Medicine & Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
29
|
Zhou P, Cao Z, Zeng W, Hao X, Zheng Q, Lin X, He Y, Zhang X, Zheng Y, Wang L, Zhang G, Li S. PB2 E627K or D701N substitution does not change the virulence of canine influenza virus H3N2 in mice and dogs. Vet Microbiol 2018; 220:67-72. [PMID: 29885803 DOI: 10.1016/j.vetmic.2018.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 12/09/2022]
Abstract
Recently, canine influenza virus H3N2 (CIV H3N2) has circulated continuously in the dog populations of Asia and the United States (US). As humans have close contact with pet dogs, the circulation of CIV H3N2 is a cause for concern. Previous studies have reported that the E627K and D701N substitutions in the PB2 subunit enhanced viral pathogenicity to mammals in various influenza viruses. However, how the E627K and D701N substitutions in the PB2 subunit might affect the virulence of CIV H3N2 is unclear. Here, we constructed recombinant viruses by introducing E627K or D701N into the PB2 gene in the genetic background of A/Canine/Guangdong/02/2011H3N2 using a reverse-genetic system. The results showed that the E627K or D701N substitutions in the PB2 subunit of CIV H3N2 enhanced polymerase activity, but these substitutions did not impact viral pathogenicity in mice or beagles.
Collapse
Affiliation(s)
- Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Zhenpeng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weijie Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Xiangqi Hao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Qingxu Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Xi Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Yuwei He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Xin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Yun Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Lifang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, China; Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, 510642, China.
| |
Collapse
|
30
|
Human Clade 2.3.4.4 A/H5N6 Influenza Virus Lacks Mammalian Adaptation Markers and Does Not Transmit via the Airborne Route between Ferrets. mSphere 2018; 3:mSphere00405-17. [PMID: 29299528 PMCID: PMC5750386 DOI: 10.1128/msphere.00405-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/04/2017] [Indexed: 11/20/2022] Open
Abstract
Since their emergence in 1997, A/H5N1 influenza viruses of the A/goose/Guangdong/1/96 lineage have diversified in multiple genetic and antigenic clades upon continued circulation in poultry in several countries in Eurasia and Africa. Since 2009, reassortant viruses carrying clade 2.3.4.4 hemagglutinin (HA) and internal and neuraminidase (NA) genes of influenza A viruses of different avian origin have been detected, yielding various HA-NA combinations, such as A/H5N1, A/H5N2, A/H5N3, A/H5N5, A/H5N6, and A/H5N8. Previous studies reported on the low pathogenicity and lack of airborne transmission of A/H5N2 and A/H5N8 viruses in the ferret model. However, although A/H5N6 viruses are the only clade 2.3.4.4 viruses that crossed the species barrier and infected humans, the risk they pose for human health remains poorly characterized. Here, the characterization of A/H5N6 A/Guangzhou/39715/2014 virus in vitro and in ferrets is described. This A/H5N6 virus possessed high polymerase activity, mediated by the E627K substitution in the PB2 protein, which corresponds to only one biological trait out of the three that were previously shown to confer airborne transmissibility to A/H5N1 viruses between ferrets. This might explain its lack of airborne transmission between ferrets. After intranasal inoculation, A/H5N6 virus replicated to high titers in the respiratory tracts of ferrets and was excreted for at least 6 days. Moreover, A/H5N6 virus caused severe pneumonia in ferrets upon intratracheal inoculation. Thus, A/H5N6 virus causes a more severe disease in ferrets than previously investigated clade 2.3.4.4 viruses, but our results demonstrate that the risk from airborne spread is currently low. IMPORTANCE Avian influenza A viruses are a threat to human health, as they cross the species barrier and infect humans occasionally, often with severe outcome. The antigenic and genetic diversity of A/H5 viruses from the A/goose/Guangdong/1/96 lineage is increasing, due to continued circulation and reassortment in poultry, posing a constant risk for public health and requiring regular risk assessments. Here we performed an in-depth characterization of the properties of the newly emerged zoonotic A/H5N6 virus in vitro and in ferrets. The lack of airborne transmission in the ferret model indicates that A/H5N6 virus does not pose a direct public health threat, despite the fact that it can replicate to high titers throughout the respiratory tracts of ferrets and cause more severe disease than other clade 2.3.4.4 viruses.
Collapse
|
31
|
Multiple introductions of reassorted highly pathogenic avian influenza viruses (H5N8) clade 2.3.4.4b causing outbreaks in wild birds and poultry in Egypt. INFECTION GENETICS AND EVOLUTION 2017; 58:56-65. [PMID: 29248796 DOI: 10.1016/j.meegid.2017.12.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/10/2017] [Accepted: 12/13/2017] [Indexed: 01/16/2023]
Abstract
Recently, an increased incidence of outbreaks of highly pathogenic avian influenza (HPAI) H5N8 in poultry linked to infected migratory birds has been reported from different European, Asian and African countries. In Egypt, incursion of HPAI H5N8 virus of clade 2.3.4.4b has been recently registered. Full genomic characterization of 3 virus isolates from wild birds and poultry (backyard and commercial farm sectors) showed high nucleotide similarity among the HA, NA, M, and NS gene segments of the three Egyptian HPAI H5N8 viruses, indicating that they are descendants of a common ancestral virus. However, the analyzed Egyptian H5N8 viruses revealed distinct genotypes involving different origins of the PB2, PB1, PA and/or NP segments. In genotype-1 represented by strain A/common-coot/Egypt/CA285/2016 the PB2 and NP segments showed closest relationship to H5N6 and H6N2 viruses, recently detected in Italy. The second is replacement of PB1 and NP genes A novel reassortant, represented by strain A/duck/Egypt/SS19/2017, showed an exchange of PB1 and NP genes which might have originated from H6N8 or H1N1 and H6N2 viruses. Finally, replacement of PA and NP genes characterized strain A/duck/Egypt/F446/2017. Bayesian phylogeographic analyses revealed that Egyptian H5N8 viruses are highly likely derived from Russian 2016 HPAI H5N8 virus (A/great_crested_grebe/Uvs-Nuur_Lake/341/2016 (H5N8)) and the reassortment likely occurred before incursion to Egypt.
Collapse
|
32
|
Zhang C, Zhao Z, Guo Z, Zhang J, Li J, Yang Y, Lu S, Wang Z, Zhi M, Fu Y, Yang X, Liu L, Zhang Y, Hua Y, Liu L, Chai H, Qian J. Amino Acid Substitutions Associated with Avian H5N6 Influenza A Virus Adaptation to Mice. Front Microbiol 2017; 8:1763. [PMID: 28966609 PMCID: PMC5605651 DOI: 10.3389/fmicb.2017.01763] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/30/2017] [Indexed: 02/02/2023] Open
Abstract
At least 15 cases of human beings infected with H5N6 have been reported since 2014, of which at least nine were fatal. The highly pathogenic avian H5N6 influenza virus may pose a serious threat to both public health and the poultry industry. However, the molecular features promoting the adaptation of avian H5N6 influenza viruses to mammalian hosts is not well understood. Here, we sequentially passaged an avian H5N6 influenza A virus (A/Northern Shoveler/Ningxia/488-53/2015) 10 times in mice to identify the adaptive amino acid substitutions that confer enhanced virulence to H5N6 in mammals. The 1st and 10th passages of the mouse-adapted H5N6 viruses were named P1 and P10, respectively. P1 and P10 displayed higher pathogenicity in mice than their parent strain. P10 showed significantly higher replication capability in vivo and could be detected in the brains of mice, whereas P1 displayed higher replication efficiency in their lungs but was not detectable in the brain. Similar to its parent strain, P10 remained no transmissible between guinea pigs. Using genome sequencing and alignment, multiple amino acid substitutions, including PB2 E627K, PB2 T23I, PA T97I, and HA R239H, were found in the adaptation of H5N6 to mice. In summary, we identified amino acid changes that are associated with H5N6 adaptation to mice.
Collapse
Affiliation(s)
- Chunmao Zhang
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Zongzheng Zhao
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Zhendong Guo
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Jiajie Zhang
- College of Wildlife Resources, Northeast Forestry UniversityHarbin, China
| | - Jiaming Li
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Yifei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical ScienceBeijing, China
| | - Shaoxia Lu
- College of Wildlife Resources, Northeast Forestry UniversityHarbin, China
| | - Zhongyi Wang
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Min Zhi
- College of Wildlife Resources, Northeast Forestry UniversityHarbin, China
| | - Yingying Fu
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Xiaoyu Yang
- College of Wildlife Resources, Northeast Forestry UniversityHarbin, China
| | - Lina Liu
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Yi Zhang
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Yuping Hua
- College of Wildlife Resources, Northeast Forestry UniversityHarbin, China
| | - Linna Liu
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| | - Hongliang Chai
- College of Wildlife Resources, Northeast Forestry UniversityHarbin, China
| | - Jun Qian
- Military Veterinary Research Institute, Academy of Military Medical SciencesChangchun, China
| |
Collapse
|
33
|
Adaptation of influenza A (H7N9) virus in primary human airway epithelial cells. Sci Rep 2017; 7:11300. [PMID: 28900138 PMCID: PMC5595892 DOI: 10.1038/s41598-017-10749-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/14/2017] [Indexed: 01/10/2023] Open
Abstract
Influenza A (H7N9) is an emerging zoonotic pathogen with pandemic potential. To understand its adaptation capability, we examined the genetic changes and cellular responses following serial infections of A (H7N9) in primary human airway epithelial cells (hAECs). After 35 serial passages, six amino acid mutations were found, i.e. HA (R54G, T160A, Q226L, H3 numbering), NA (K289R, or K292R for N2 numbering), NP (V363V/I) and PB2 (L/R332R). The mutations in HA enabled A(H7N9) virus to bind with higher affinity (from 39.2% to 53.4%) to sialic acid α2,6-galactose (SAα2,6-Gal) linked receptors. A greater production of proinflammatory cytokines in hAECs was elicited at later passages together with earlier peaking at 24 hours post infection of IL-6, MIP-1α, and MCP-1 levels. Viral replication capacity in hAECs maintained at similar levels throughout the 35 passages. In conclusion, during the serial infections of hAECs by influenza A(H7N9) virus, enhanced binding of virion to cell receptors with subsequent stronger innate cell response were noted, but no enhancement of viral replication could be observed. This indicates the existence of possible evolutional hurdle for influenza A(H7N9) virus to transmit efficiently from human to human.
Collapse
|
34
|
Richard M, Herfst S, van den Brand JMA, de Meulder D, Lexmond P, Bestebroer TM, Fouchier RAM. Mutations Driving Airborne Transmission of A/H5N1 Virus in Mammals Cause Substantial Attenuation in Chickens only when combined. Sci Rep 2017; 7:7187. [PMID: 28775271 PMCID: PMC5543172 DOI: 10.1038/s41598-017-07000-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022] Open
Abstract
A/H5N1 influenza viruses pose a threat to human and animal health. A fully avian A/H5N1 influenza virus was previously shown to acquire airborne transmissibility between ferrets upon accumulation of five or six substitutions that affected three traits: polymerase activity, hemagglutinin stability and receptor binding. Here, the impact of these traits on A/H5N1 virus replication, tissue tropism, pathogenesis and transmission was investigated in chickens. The virus containing all substitutions associated with transmission in mammals was highly attenuated in chickens. However, single substitutions that affect polymerase activity, hemagglutinin stability and receptor binding generally had a small or negligible impact on virus replication, morbidity and mortality. A virus carrying two substitutions in the receptor-binding site was attenuated, although its tissue tropism in chickens was not affected. This data indicate that an A/H5N1 virus that is airborne-transmissible between mammals is unlikely to emerge in chickens, although individual mammalian adaptive substitutions have limited impact on viral fitness in chickens.
Collapse
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands.
| | - Sander Herfst
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Judith M A van den Brand
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
35
|
Nieto A, Pozo F, Vidal-García M, Omeñaca M, Casas I, Falcón A. Identification of Rare PB2-D701N Mutation from a Patient with Severe Influenza: Contribution of the PB2-D701N Mutation to the Pathogenicity of Human Influenza. Front Microbiol 2017; 8:575. [PMID: 28421062 PMCID: PMC5376584 DOI: 10.3389/fmicb.2017.00575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/20/2017] [Indexed: 11/13/2022] Open
Abstract
Several amino acid changes have been previously implicated in adaptation of avian influenza viruses to human hosts, among them the D701N change in the PB2 polymerase subunit that also is the main determinant of avian virus pathogenesis in animal models. However, previous studies using recombinant viruses did not provide conclusive information of the contribution of this PB2 residue to pathogenicity in human influenza virus strains. We identified this mutation in an A(H1N1)pdm09-like human influenza virus isolated from an infected patient with pneumonia and acute respiratory failure, admitted to the intensive care unit. An exhaustive search has revealed PB2-D701 as a highly conserved position in all available H1N1 human virus sequences in NCBI database, showing a very low prevalence of PB2-D701N change. Presence of PB2-701N amino acid correlates with severe or fatal outcome in those scarce cases with known disease outcome of the infection. In these patients, the residue PB2-701N may contribute to pathogenicity as it was previously reported in humans infected with avian viruses. This study helps to clarify a debate that has arisen regarding the role of PB2-D701N in human influenza virus pathogenicity.
Collapse
Affiliation(s)
- Amelia Nieto
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), MadridSpain
| | - Francisco Pozo
- National Influenza Center, Centro Nacional de Microbiología, Instituto de Salud Carlos IIIMadrid, Spain
| | | | - Manuel Omeñaca
- Servicio de Microbiología, Hospital Universitario Miguel ServetZaragoza, Spain
| | - Inmaculada Casas
- National Influenza Center, Centro Nacional de Microbiología, Instituto de Salud Carlos IIIMadrid, Spain
| | - Ana Falcón
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), MadridSpain
| |
Collapse
|
36
|
Bertram S, Thiele S, Dreier C, Resa-Infante P, Preuß A, van Riel D, Mok CKP, Schwalm F, Peiris JSM, Klenk HD, Gabriel G. H7N9 Influenza A Virus Exhibits Importin-α7-Mediated Replication in the Mammalian Respiratory Tract. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:831-840. [PMID: 28189564 DOI: 10.1016/j.ajpath.2016.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/09/2022]
Abstract
The acute respiratory distress syndrome (ARDS) is the leading cause of death in influenza A virus (IAV)-infected patients. Hereby, the cellular importin-α7 gene plays a major role. It promotes viral replication in the lung, thereby increasing the risk for the development of pneumonia complicated by ARDS. Herein, we analyzed whether the recently emerged H7N9 avian IAV has already adapted to human importin-α7 use, which is associated with high-level virus replication in the mammalian lung. Using a cell-based viral polymerase activity assay, we could detect a decreased H7N9 IAV polymerase activity when importin-α7 was silenced by siRNA. Moreover, virus replication was diminished in the murine cells lacking the importin-α7 gene. Consistently, importin-α7 knockout mice presented reduced pulmonary virus titers and lung lesions as well as enhanced survival rates compared to wild-type mice. In summary, our results show that H7N9 IAV have acquired distinct features of adaptation to human host factors that enable enhanced virulence in mammals. In particular, adaptation to human importin-α7 mediates elevated virus replication in the mammalian lung, which might have contributed to ARDS observed in H7N9-infected patients.
Collapse
Affiliation(s)
- Stephanie Bertram
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck, Germany
| | - Swantje Thiele
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Carola Dreier
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Patricia Resa-Infante
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Annette Preuß
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Debby van Riel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Chris K P Mok
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; The University of Hong Kong-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Folker Schwalm
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Joseph S M Peiris
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; The University of Hong Kong-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hans-Dieter Klenk
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Gülsah Gabriel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
37
|
Thibault PA, Watkinson RE, Moreira-Soto A, Drexler JF, Lee B. Zoonotic Potential of Emerging Paramyxoviruses: Knowns and Unknowns. Adv Virus Res 2017; 98:1-55. [PMID: 28433050 PMCID: PMC5894875 DOI: 10.1016/bs.aivir.2016.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The risk of spillover of enzootic paramyxoviruses and the susceptibility of recipient human and domestic animal populations are defined by a broad collection of ecological and molecular factors that interact in ways that are not yet fully understood. Nipah and Hendra viruses were the first highly lethal zoonotic paramyxoviruses discovered in modern times, but other paramyxoviruses from multiple genera are present in bats and other reservoirs that have unknown potential to spillover into humans. We outline our current understanding of paramyxovirus reservoir hosts and the ecological factors that may drive spillover, and we explore the molecular barriers to spillover that emergent paramyxoviruses may encounter. By outlining what is known about enzootic paramyxovirus receptor usage, mechanisms of innate immune evasion, and other host-specific interactions, we highlight the breadth of unexplored avenues that may be important in understanding paramyxovirus emergence.
Collapse
Affiliation(s)
| | - Ruth E Watkinson
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Jan F Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
38
|
Hussein ITM, Ma EJ, Hill NJ, Meixell BW, Lindberg M, Albrecht RA, Bahl J, Runstadler JA. A point mutation in the polymerase protein PB2 allows a reassortant H9N2 influenza isolate of wild-bird origin to replicate in human cells. INFECTION GENETICS AND EVOLUTION 2016; 41:279-288. [PMID: 27101787 DOI: 10.1016/j.meegid.2016.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 12/09/2022]
Abstract
H9N2 influenza A viruses are on the list of potentially pandemic subtypes. Therefore, it is important to understand how genomic reassortment and genetic polymorphisms affect phenotypes of H9N2 viruses circulating in the wild bird reservoir. A comparative genetic analysis of North American H9N2 isolates of wild bird origin identified a naturally occurring reassortant virus containing gene segments derived from both North American and Eurasian lineage ancestors. The PB2 segment of this virus encodes 10 amino acid changes that distinguish it from other H9 strains circulating in North America. G590S, one of the 10 amino acid substitutions observed, was present in ~12% of H9 viruses worldwide. This mutation combined with R591 has been reported as a marker of pathogenicity for human pandemic 2009 H1N1 viruses. Screening by polymerase reporter assay of all the natural polymorphisms at these two positions identified G590/K591 and S590/K591 as the most active, with the highest polymerase activity recorded for the SK polymorphism. Rescued viruses containing these two polymorphic combinations replicated more efficiently in MDCK cells and they were the only ones tested that were capable of establishing productive infection in NHBE cells. A global analysis of all PB2 sequences identified the K591 signature in six viral HA/NA subtypes isolated from several hosts in seven geographic locations. Interestingly, introducing the K591 mutation into the PB2 of a human-adapted H3N2 virus did not affect its polymerase activity. Our findings demonstrate that a single point mutation in the PB2 of a low pathogenic H9N2 isolate could have a significant effect on viral phenotype and increase its propensity to infect mammals. However, this effect is not universal, warranting caution in interpreting point mutations without considering protein sequence context.
Collapse
Affiliation(s)
- Islam T M Hussein
- Department of Biological Engineering and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric J Ma
- Department of Biological Engineering and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nichola J Hill
- Department of Biological Engineering and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brandt W Meixell
- U.S. Geological Survey, Alaska Science Center, Anchorage, AK 99508, USA
| | - Mark Lindberg
- Institute of Arctic Biology, University of Alaska Fairbanks, AK 99775, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Justin Bahl
- Center for Infectious Diseases, The University of Texas School of Public Health, Houston, TX, USA
| | - Jonathan A Runstadler
- Department of Biological Engineering and Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
39
|
Peng X, Wu H, Peng X, Wu X, Cheng L, Liu F, Ji S, Wu N. Amino acid substitutions occurring during adaptation of an emergent H5N6 avian influenza virus to mammals. Arch Virol 2016; 161:1665-70. [PMID: 26997612 DOI: 10.1007/s00705-016-2826-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/13/2016] [Indexed: 12/15/2022]
Abstract
Avian influenza viruses (AIVs) are known to cross species barriers, and emergent highly pathogenic H5N6 AIVs pose a serious threat to human health and the poultry industry. Here, we serially passaged an H5N6 virus 10 times in BALB/c mice. The pathogenicity of the wild-type 6D2 (WT-6D2) and mammal-adapted 6D2 strain (MA-6D2) were compared. The viral titer in multiple organs and the death rate for MA-6D2 were significantly higher than for WT-6D2. We provide evidence that the mutations HA A150V, NA R143K and G147E, PB2 E627K, and PA A343T may be important for adaptation of H5N6 AIVs to mammals.
Collapse
Affiliation(s)
- Xiuming Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaorong Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shujing Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
40
|
Zhao Y, Yu Z, Liu L, Wang T, Sun W, Wang C, Xia Z, Gao Y, Zhou B, Qian J, Xia X. Adaptive amino acid substitutions enhance the virulence of a novel human H7N9 influenza virus in mice. Vet Microbiol 2016; 187:8-14. [PMID: 27066703 DOI: 10.1016/j.vetmic.2016.02.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 11/28/2022]
Abstract
To identify molecular features that confer enhanced H7N9 virulence in mammals, we independently generated three mouse-adapted variants of A/Shanghai/2/2013 (H7N9) by serial passage in mice. The mouse lethal doses (MLD50) of the mouse-adapted variants were reduced >1000-100000-fold when compared to the parental virus. Adapted variants displayed enhanced replication kinetics in vivo, and were capable of replicating in multiple organs. Analysis of adapted viral genomes revealed a total of 14 amino acid changes among the three variant viruses in the PA (T97I, K328R, P332T, and Q556R), HA (H3 numbering; A107T, R220I, L226Q, and R354K), NP (A284T and M352I), NA (M26I, N142S, and G389D), and M1 (M128R) proteins. Notably, many of these adaptive amino acid changes have been identified in naturally occurring H7 isolates. Our results identify amino acid substitutions that collectively enhance the ability of a human H7N9 virus to replicate and cause severe disease in mice.
Collapse
Affiliation(s)
- Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China
| | - Zhijun Yu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Linna Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China
| | - Chengyu Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China
| | - Zhiping Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China
| | - Bo Zhou
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China
| | - Jun Qian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130122, People's Republic of China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, People's Republic of China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China; Beijing Institute of Biotechnology, Beijing 100071, People's Republic of China.
| |
Collapse
|
41
|
Xu W, Li H, Jiang L. Human infection with a highly pathogenic avian influenza A (H5N6) virus in Yunnan province, China. Infect Dis (Lond) 2016; 48:477-82. [DOI: 10.3109/23744235.2015.1135253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Richard M, Fouchier RAM. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential. FEMS Microbiol Rev 2016; 40:68-85. [PMID: 26385895 PMCID: PMC5006288 DOI: 10.1093/femsre/fuv039] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/13/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022] Open
Abstract
Many respiratory viruses of humans originate from animals. For instance, there are now eight paramyxoviruses, four coronaviruses and four orthomxoviruses that cause recurrent epidemics in humans but were once confined to other hosts. In the last decade, several members of the same virus families have jumped the species barrier from animals to humans. Fortunately, these viruses have not become established in humans, because they lacked the ability of sustained transmission between humans. However, these outbreaks highlighted the lack of understanding of what makes a virus transmissible. In part triggered by the relatively high frequency of occurrence of influenza A virus zoonoses and pandemics, the influenza research community has started to investigate the viral genetic and biological traits that drive virus transmission via aerosols or respiratory droplets between mammals. Here we summarize recent discoveries on the genetic and phenotypic traits required for airborne transmission of zoonotic influenza viruses of subtypes H5, H7 and H9 and pandemic viruses of subtypes H1, H2 and H3. Increased understanding of the determinants and mechanisms of respiratory virus transmission is not only key from a basic scientific perspective, but may also aid in assessing the risks posed by zoonotic viruses to human health, and preparedness for such risks.
Collapse
Affiliation(s)
- Mathilde Richard
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School Molecular Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
43
|
The 1918 Influenza Virus PB2 Protein Enhances Virulence through the Disruption of Inflammatory and Wnt-Mediated Signaling in Mice. J Virol 2015; 90:2240-53. [PMID: 26656717 DOI: 10.1128/jvi.02974-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The 1918-1919 influenza pandemic remains the single greatest infectious disease outbreak in the past century. Mouse and nonhuman primate infection models have shown that the 1918 virus induces overly aggressive innate and proinflammatory responses. To understand the response to viral infection and the role of individual 1918 genes on the host response to the 1918 virus, we examined reassortant avian viruses nearly identical to the pandemic 1918 virus (1918-like avian virus) carrying either the 1918 hemagglutinin (HA) or PB2 gene. In mice, both genes enhanced 1918-like avian virus replication, but only the mammalian host adaptation of the 1918-like avian virus through reassortment of the 1918 PB2 led to increased lethality. Through the combination of viral genetics and host transcriptional profiling, we provide a multidimensional view of the molecular mechanisms by which the 1918 PB2 gene drives viral pathogenicity. We demonstrate that 1918 PB2 enhances immune and inflammatory responses concomitant with increased cellular infiltration in the lung. We also show for the first time, that 1918 PB2 expression results in the repression of both canonical and noncanonical Wnt signaling pathways, which are crucial for inflammation-mediated lung regeneration and repair. Finally, we utilize regulatory enrichment and network analysis to define the molecular regulators of inflammation, epithelial regeneration, and lung immunopathology that are dysregulated during influenza virus infection. Taken together, our data suggest that while both HA and PB2 are important for viral replication, only 1918 PB2 exacerbates lung damage in mice infected with a reassortant 1918-like avian virus. IMPORTANCE As viral pathogenesis is determined in part by the host response, understanding the key host molecular driver(s) of virus-mediated disease, in relation to individual viral genes, is a promising approach to host-oriented drug efforts in preventing disease. Previous studies have demonstrated the importance of host adaptive genes, HA and PB2, in mediating disease although the mechanisms by which they do so are still poorly understood. Here, we combine viral genetics and host transcriptional profiling to show that although both 1918 HA and 1918 PB2 are important mediators of efficient viral replication, only 1918 PB2 impacts the pathogenicity of an avian influenza virus sharing high homology to the 1918 pandemic influenza virus. We demonstrate that 1918 PB2 enhances deleterious inflammatory responses and the inhibition of regeneration and repair functions coordinated by Wnt signaling in the lungs of infected mice, thereby promoting virus-associated disease.
Collapse
|
44
|
Sediri H, Thiele S, Schwalm F, Gabriel G, Klenk HD. PB2 subunit of avian influenza virus subtype H9N2: a pandemic risk factor. J Gen Virol 2015; 97:39-48. [PMID: 26560088 DOI: 10.1099/jgv.0.000333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian influenza viruses of subtype H9N2 that are found worldwide are occasionally transmitted to humans and pigs. Furthermore, by co-circulating with other influenza subtypes, they can generate new viruses with the potential to also cause zoonotic infections, as observed in 1997 with H5N1 or more recently with H7N9 and H10N8 viruses. Comparative analysis of the adaptive mutations in polymerases of different viruses indicates that their impact on the phylogenetically related H9N2 and H7N9 polymerases is higher than on the non-related H7N7 and H1N1pdm09 polymerases. Analysis of polymerase reassortants composed of subunits of different viruses demonstrated that the efficient enhancement of polymerase activity by H9N2-PB2 does not depend on PA and PB1. These observations suggest that the PB2 subunit of the H9N2 polymerase has a high adaptive potential and may therefore be an important pandemic risk factor.
Collapse
Affiliation(s)
- Hanna Sediri
- Institute of Virology, Philipps University, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Swantje Thiele
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany
| | - Folker Schwalm
- Institute of Virology, Philipps University, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| | - Gülsah Gabriel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251 Hamburg, Germany
| | - Hans-Dieter Klenk
- Institute of Virology, Philipps University, Hans-Meerwein-Straße 2, 35043 Marburg, Germany
| |
Collapse
|
45
|
Jirakanwisal K, Srisutthisamphan K, Thepparit C, Suptawiwat O, Auewarakul P, Paemanee A, Roytrakul S, Smith DR. Identification of Hsp90 as a species independent H5N1 avian influenza A virus PB2 interacting protein. Comp Immunol Microbiol Infect Dis 2015; 43:28-35. [PMID: 26616658 DOI: 10.1016/j.cimid.2015.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/26/2015] [Accepted: 10/15/2015] [Indexed: 01/05/2023]
Abstract
The avian influenza polymerase protein PB2 subunit is an important mediator of cross species adaptation and adaptation to mammalian cells is strongly but not exclusively associated with an adaptive mutation of the codon at position 627 of the PB2 protein which alters the glutamate normally found at this position to a lysine. This study sought to identify host cell factors in both mammalian and avian cells that interacted in a species specific or species independent manner. Two PB2 fusion proteins differing only in codon 627 were generated and transfected into mammalian and avian cells and interacting proteins identified through co-immunoprecipitation. A number of proteins including Hsp90 were identified and further investigation showed that Hsp90 interacted with both isoforms of PB2 in both mammalian and avian cells. Hsp90 is thus identified as a species independent interacting protein, further confirming that this protein may be a suitable target for anti-influenza drug development.
Collapse
Affiliation(s)
- Krit Jirakanwisal
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamontol Sai 4, Salaya 73170, Nakorn Pathom, Thailand
| | - Kanjana Srisutthisamphan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamontol Sai 4, Salaya 73170, Nakorn Pathom, Thailand
| | - Chutima Thepparit
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamontol Sai 4, Salaya 73170, Nakorn Pathom, Thailand
| | - Ornpreya Suptawiwat
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Atchara Paemanee
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamontol Sai 4, Salaya 73170, Nakorn Pathom, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang 12120, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang 12120, Pathum Thani, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, 25/25 Phuttamontol Sai 4, Salaya 73170, Nakorn Pathom, Thailand.
| |
Collapse
|
46
|
Abstract
Human and other mammalian influenza viruses emerge from a large gene pool provided by avian influenza viruses. Two recent studies (Watanabe et al., 2014; Linster et al., 2014) show that adaptation to a mammalian host depends on a limited number of mutations that allow airborne transmission, a specific trait of the mammalian viruses.
Collapse
Affiliation(s)
- Hans Dieter Klenk
- Institut für Virologie, Philipps-Universität Marburg, 35043 Marburg, Germany.
| |
Collapse
|
47
|
Identification of Influenza A Virus PB2 Residues Involved in Enhanced Polymerase Activity and Virus Growth in Mammalian Cells at Low Temperatures. J Virol 2015; 89:8042-9. [PMID: 26018156 DOI: 10.1128/jvi.00901-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/18/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Mutations in the polymerase genes are known to play a major role in avian influenza virus adaptation to mammalian hosts. Despite having avian origin PA and PB2, the 2009 pandemic H1N1 virus (pH1N1) can replicate well in mammalian respiratory tracts, suggesting that these proteins have acquired mutations for efficient growth in humans. We have previously shown that PA from the pH1N1 virus A/California/04/09 (Cal) strongly enhances activity of an otherwise avian polymerase complex derived from A/chicken/Nanchang/3-120/01 (Nan) in mammalian cells. However, this enhancement was observed at 37°C but not at the lower temperature of 34°C. An additional introduction of Cal PB2 enhanced activity at 34°C, suggesting the presence of unidentified residues in Cal PB2 that are required for efficient growth at low temperature. Here, we sought to determine the key PB2 residues which confer enhanced polymerase activity and virus growth in human cells at low temperature. Using a reporter gene assay, we identified novel mutations, PB2 V661A and V683T/A684S, which are involved in enhanced Cal polymerase activity at low temperature. The PB2 T271A mutation, which we previously reported, also contributed to enhanced activity. The growth of recombinant Cal containing PB2 with Nan residues 271T/661V/683V/684A was strongly reduced in human cells compared to wild-type virus at low temperature. Among the four residues, 271A and 684S are conserved in human and pH1N1 viruses but not in avian viruses, suggesting an important role in mammalian adaptation of pH1N1 virus. IMPORTANCE The PB2 protein plays a key role in the host adaptation, cold sensitivity, and pathogenesis of influenza A virus. Despite containing an avian origin PB2 lacking the mammalian adaptive mutations 627K or 701N, pH1N1 influenza virus strains can replicate efficiently in the low temperature upper respiratory tract of mammals, suggesting the presence of unknown mutations in the pH1N1 PB2 protein responsible for its low temperature adaptation. Here, in addition to PB2 271A, which has been shown to increase polymerase activity, we identified novel PB2 residues 661A and 683T/684S in pH1N1 which confer enhanced polymerase activity and virus growth in mammalian cells especially at low temperature. Our findings suggest that the presence of these PB2 residues contributes to efficient replication of the pH1N1 virus in the upper respiratory tract, which resulted in efficient human-to-human transmission of this virus.
Collapse
|
48
|
Wei K, Liu X. Phylogenetic Analysis and Functional Characterization of the Influenza A H5N1 PB2 Gene. Transbound Emerg Dis 2015; 64:374-388. [PMID: 25990872 DOI: 10.1111/tbed.12376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 12/23/2022]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 viruses are endemic in poultry and cause continued inter-species transmission to human in Asia, such as China and Vietnam, leading to pandemic concerns and socio-economic challenges. Phylogenetic analysis of H5N1 viruses isolated from China and Vietnam during 2001-2012 showed that several geographically distinct sublineages have become established in these two countries. Subsequently, we reassigned HPAI H5N1 viruses into three distinct groups to reveal the intrasubtype reassortment. Apart from six reassortants detected here, we found that several viral strains showed signals for homologous recombination within PB2 and PB1 genes, suggestive of the fluidity of the H5N1 virus gene pool. Furthermore, sequenced-based analyses revealed that the viral polymerase displayed a higher level of genetic polymorphism but associated with lower substitution rate when compared with those of other gene segments. In addition, the selection pressure analysis indicated that purifying selection was predominant in eight genomic segments especially in the polymerase complex. However, the site-by-site analysis helped to detect 14 positively selected sites in the PB1, PA, HA, NA, MP and NS proteins. Despite the fact that PB2 protein of H5N1 viruses was highly conserved at the amino acid level, eleven adaptive mutations were still observed in the protein. Further comparative structural analysis of the K627E mutation indicated that there were no structural differences between the variants, which possessed either PB2-627E or PB2-627K. Transcriptomic analysis suggested the non-mitochondrial PB2 protein of H5N1 virus that forms a stable complex with the mitochondrial antiviral signalling protein (MAVS, also known as IPS-1, VISA or Cardif) can induce interferon-beta (IFN-β) expression, but the substitution (PB2-K627E) is not the sole determinant of the RIG-I-like receptors (RLR) signalling components induction in Calu-3 cells.
Collapse
Affiliation(s)
- K Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, China
| | - X Liu
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, China
| |
Collapse
|
49
|
Carter DM, Westdorp K, Noon KR, Terhune SS. Proteomic identification of nuclear processes manipulated by cytomegalovirus early during infection. Proteomics 2015; 15:1995-2005. [PMID: 25758553 DOI: 10.1002/pmic.201400599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/20/2015] [Accepted: 03/07/2015] [Indexed: 11/07/2022]
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that is ubiquitously distributed worldwide and causes life-threating disease upon immunosuppression. HCMV expresses numerous proteins that function to establish an intracellular environment that supports viral replication. Like most DNA viruses, HCMV manipulates processes within the nucleus. We have quantified changes in the host cell nuclear proteome at 24 h post infection following infection with a clinical viral isolate. We have combined SILAC with multiple stages of fractionation to define changes. Tryptic peptides were analyzed by RP-HPLC combined with LC-MS/MS on an LTQ Orbitrap Velos mass spectrometer. Data from three biological replicates were processed with MaxQuant. A total of 1281 cellular proteins were quantified and 77 were found to be significantly differentially expressed. In addition, we observed 36 viral proteins associated with the nucleus. Diverse biological processes were significantly altered, including increased aspects of cell cycling, mRNA metabolism, and nucleocytoplasmic transport and decreased immune responses. We validated changes for several proteins including a subset of classical nuclear transport proteins. In addition, we demonstrated that disruption of these import factors is inhibitory to HCMV replication. Overall, we have identified HCMV-induced changes in the nuclear proteome and uncovered several processes that are important for infection. All MS data have been deposited in the ProteomeXchange with identifier PXD001909 (http://proteomecentral.proteomexchange.org/dataset/PXD001909).
Collapse
Affiliation(s)
- Dominique M Carter
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kristen Westdorp
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kathleen R Noon
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Scott S Terhune
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
50
|
Kamal RP, Katz JM, York IA. Molecular determinants of influenza virus pathogenesis in mice. Curr Top Microbiol Immunol 2015; 385:243-74. [PMID: 25038937 DOI: 10.1007/82_2014_388] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mice are widely used for studying influenza virus pathogenesis and immunology because of their low cost, the wide availability of mouse-specific reagents, and the large number of mouse strains available, including knockout and transgenic strains. However, mice do not fully recapitulate the signs of influenza infection of humans: transmission of influenza between mice is much less efficient than in humans, and influenza viruses often require adaptation before they are able to efficiently replicate in mice. In the process of mouse adaptation, influenza viruses acquire mutations that enhance their ability to attach to mouse cells, replicate within the cells, and suppress immunity, among other functions. Many such mouse-adaptive mutations have been identified, covering all 8 genomic segments of the virus. Identification and analysis of these mutations have provided insight into the molecular determinants of influenza virulence and pathogenesis, not only in mice but also in humans and other species. In particular, several mouse-adaptive mutations of avian influenza viruses have proved to be general mammalian-adaptive changes that are potential markers of pre-pandemic viruses. As well as evaluating influenza pathogenesis, mice have also been used as models for evaluation of novel vaccines and anti-viral therapies. Mice can be a useful animal model for studying influenza biology as long as differences between human and mice infections are taken into account.
Collapse
Affiliation(s)
- Ram P Kamal
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA,
| | | | | |
Collapse
|