1
|
Du SW, Newby GA, Salom D, Gao F, Menezes CR, Suh S, Choi EH, Chen PZ, Liu DR, Palczewski K. In vivo photoreceptor base editing ameliorates rhodopsin-E150K autosomal-recessive retinitis pigmentosa in mice. Proc Natl Acad Sci U S A 2024; 121:e2416827121. [PMID: 39556729 PMCID: PMC11621631 DOI: 10.1073/pnas.2416827121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/28/2024] [Indexed: 11/20/2024] Open
Abstract
Rhodopsin, the prototypical class-A G-protein coupled receptor, is a highly sensitive receptor for light that enables phototransduction in rod photoreceptors. Rhodopsin plays not only a sensory role but also a structural role as a major component of the rod outer segment disc, comprising over 90% of the protein content of the disc membrane. Mutations in RHO which lead to structural or functional abnormalities, including the autosomal recessive E150K mutation, result in rod dysfunction and death. Therefore, correction of deleterious rhodopsin mutations could rescue inherited retinal degeneration, as demonstrated for other visual genes such as RPE65 and PDE6B. In this study, we describe a CRISPR/Cas9 adenine base editing strategy to correct the E150K mutation and demonstrate precise in vivo editing in a Rho-E150K mouse model of autosomal recessive retinitis pigmentosa (RP). Using ultraviolet-visible spectroscopy, mass spectrometry, and the G-protein activation assay, we characterized wild-type rhodopsin and rhodopsin variants containing bystander base edits. Subretinal injection of dual-adeno-associated viruses delivering our base editing strategy yielded up to 44% Rho correction in homozygous Rho-E150K mice. Injection at postnatal day 15, but not later time points, restored rhodopsin expression, partially rescued retinal function, and partially preserved retinal structure. These findings demonstrate that in vivo base editing can restore the function of mutated structural and functional proteins in animal models of disease, including rhodopsin-associated RP and suggest that the timing of gene-editing is a crucial determinant of successful treatment outcomes for degenerative genetic diseases.
Collapse
Affiliation(s)
- Samuel W. Du
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
- Department of Physiology and Biophysics, University of California, Irvine, CA92617
| | - Gregory A. Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- HHMI, Harvard University, Cambridge, MA02138
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21205
| | - David Salom
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
| | - Fangyuan Gao
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
| | - Carolline Rodrigues Menezes
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
- Department of Physiology and Biophysics, University of California, Irvine, CA92617
| | - Susie Suh
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
| | - Elliot H. Choi
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
| | - Paul Z. Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- HHMI, Harvard University, Cambridge, MA02138
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - David R. Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- HHMI, Harvard University, Cambridge, MA02138
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute—Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA92617
- Department of Physiology and Biophysics, University of California, Irvine, CA92617
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| |
Collapse
|
2
|
Kiel C, Biasella F, Stöhr H, Rating P, Spital G, Kellner U, Hufendiek K, Huchzermeyer C, Jaegle H, Ruether K, Weber BHF. 18-Years of single-centre DNA testing in over 7000 index cases with inherited retinal dystrophies and optic neuropathies. Sci Rep 2024; 14:25529. [PMID: 39462066 PMCID: PMC11513943 DOI: 10.1038/s41598-024-77014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Inherited retinal dystrophies (IRDs) and inherited optic neuropathies (IONs) are characterized by distinct genetic causes and molecular mechanisms that can lead to varying degrees of visual impairment. The discovery of pathogenic variants in numerous genes associated with these conditions has deepened our understanding of the molecular pathways that influence both vision and disease manifestation and may ultimately lead to novel therapeutic approaches. Over the past 18 years, our DNA diagnostics unit has been performing genetic testing on patients suspected of having IRD or ION, using state-of-the-art mutation detection technologies that are continuously updated. This report presents a retrospective analysis of genetic data from 6237 IRD and 780 ION patients. Out of these, 3054 IRD patients (49.0%) and 211 ION patients (27.1%) received a definitive molecular diagnosis, with disease-causing variants identified in 139 different genes. The genes most implicated in disease pathologies are ABCA4, accounting for 23.8% of all IRD/ION index cases, followed by BEST1 (7.8%), USH2A (6.2%), PRPH2 (5.7%), RPGR (5.6%), RS1 (5.5%), OPA1 (4.3%), and RHO (3.1%). Our study has compiled the most extensive dataset in combined IRD/ION diagnostics to date and offers valuable insights into the frequencies of mutant alleles and the efficiency of mutation detection in various inherited retinal conditions.
Collapse
Affiliation(s)
- Christina Kiel
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Fabiola Biasella
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Philipp Rating
- Department of Ophthalmology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Georg Spital
- Augenzentrum am St. Franziskus-Hospital, Hohenzollernring 74, 48145, Münster, Germany
| | - Ulrich Kellner
- Center for Rare Retinal Diseases, AugenZentrum Siegburg, Europaplatz 3, 53721, Siegburg, Germany
- RetinaScience, Postfach 301212, 53192, Bonn, Germany
| | - Karsten Hufendiek
- Hannover Medical School, University Clinic of Ophthalmology, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Cord Huchzermeyer
- Department of Ophthalmology, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Herbert Jaegle
- Department of Ophthalmology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Klaus Ruether
- Specialist Practice Ophthalmology, Dorotheenstraße 56, 10117, Berlin, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
- Institute of Clinical Human Genetics, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
3
|
An M, Raguram A, Du SW, Banskota S, Davis JR, Newby GA, Chen PZ, Palczewski K, Liu DR. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat Biotechnol 2024; 42:1526-1537. [PMID: 38191664 PMCID: PMC11228131 DOI: 10.1038/s41587-023-02078-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
Prime editing enables precise installation of genomic substitutions, insertions and deletions in living systems. Efficient in vitro and in vivo delivery of prime editing components, however, remains a challenge. Here we report prime editor engineered virus-like particles (PE-eVLPs) that deliver prime editor proteins, prime editing guide RNAs and nicking single guide RNAs as transient ribonucleoprotein complexes. We systematically engineered v3 and v3b PE-eVLPs with 65- to 170-fold higher editing efficiency in human cells compared to a PE-eVLP construct based on our previously reported base editor eVLP architecture. In two mouse models of genetic blindness, single injections of v3 PE-eVLPs resulted in therapeutically relevant levels of prime editing in the retina, protein expression restoration and partial visual function rescue. Optimized PE-eVLPs support transient in vivo delivery of prime editor ribonucleoproteins, enhancing the potential safety of prime editing by reducing off-target editing and obviating the possibility of oncogenic transgene integration.
Collapse
Affiliation(s)
- Meirui An
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Samuel W Du
- Gavin Herbert Eye Institute, Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Samagya Banskota
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Paul Z Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Department of Chemistry, University of California, Irvine, CA, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Igoe JM, Lam BL, Gregori NZ. Update on Clinical Trial Endpoints in Gene Therapy Trials for Inherited Retinal Diseases. J Clin Med 2024; 13:5512. [PMID: 39336999 PMCID: PMC11431936 DOI: 10.3390/jcm13185512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Inherited retinal diseases (IRDs) encompass a wide spectrum of rare conditions characterized by diverse phenotypes associated with hundreds of genetic variations, often leading to progressive visual impairment and profound vision loss. Multiple natural history studies and clinical trials exploring gene therapy for various IRDs are ongoing. Outcomes for ophthalmic trials measure visual changes in three main categories-structural, functional, and patient-focused outcomes. Since IRDs may range from congenital with poor central vision from birth to affecting the peripheral retina initially and progressing insidiously with visual acuity affected late in the disease course, typical outcome measures such as central visual acuity and ocular coherence tomography (OCT) imaging of the macula may not provide adequate representation of therapeutic outcomes including alterations in disease course. Thus, alternative unique outcome measures are necessary to assess loss of peripheral vision, color vision, night vision, and contrast sensitivity in IRDs. These differences have complicated the assessment of clinical outcomes for IRD therapies, and the clinical trials for IRDs have had to design novel specialized endpoints to demonstrate treatment efficacy. As genetic engineering and gene therapy techniques continue to advance with growing investment from industry and accelerated approval tracks for orphan conditions, the clinical trials must continue to improve their assessments to demonstrate safety and efficacy of new gene therapies that aim to come to market. Here, we will provide an overview of the current gene therapy approaches, review various endpoints for measuring visual function, highlight those that are utilized in recent gene therapy trials, and provide an overview of stage 2 and 3 IRD trials through the second quarter of 2024.
Collapse
Affiliation(s)
- Jane M Igoe
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Byron L Lam
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ninel Z Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Miami Veterans Administration Medical Center, Miami, FL 33125, USA
| |
Collapse
|
5
|
Jain R, Daigavane S. Advances and Challenges in Gene Therapy for Inherited Retinal Dystrophies: A Comprehensive Review. Cureus 2024; 16:e69895. [PMID: 39439625 PMCID: PMC11494405 DOI: 10.7759/cureus.69895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024] Open
Abstract
Inherited retinal dystrophies (IRDs) are a diverse group of genetic disorders leading to progressive vision loss due to the degeneration of retinal photoreceptors. Gene therapy has emerged as a promising approach to address the underlying genetic causes of IRDs, offering the potential for restoring vision and halting disease progression. This review provides a comprehensive overview of gene therapy innovations for IRDs, focusing on the mechanisms, recent advancements, and ongoing challenges. We discuss the fundamental principles of gene therapy, including the use of viral and non-viral vectors, and highlight key developments such as the approval of Luxturna for RPE65-mediated retinal dystrophy and the application of gene editing technologies like CRISPR/Cas9. Despite these advancements, significant challenges remain, including vector delivery, long-term safety, and variable patient responses. This review also explores the future directions of gene therapy, emphasizing the need for further research to address these challenges and enhance therapeutic efficacy. By examining the current state of gene therapy for IRDs, this review aims to provide valuable insights into the potential for these treatments to transform the management of retinal diseases and improve the quality of life for affected individuals.
Collapse
Affiliation(s)
- Raina Jain
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sachin Daigavane
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
6
|
Gowda DAA, Birappa G, Rajkumar S, Ajaykumar CB, Srikanth B, Kim SL, Singh V, Jayachandran A, Lee J, Ramakrishna S. Recent progress in CRISPR/Cas9 system for eye disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:21-46. [PMID: 39824582 DOI: 10.1016/bs.pmbts.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Ocular disorders encompass a broad spectrum of phenotypic and clinical symptoms resulting from several genetic variants and environmental factors. The unique anatomy and physiology of the eye facilitate validation of cutting-edge gene editing treatments. Genome editing developments have allowed researchers to treat a variety of diseases, including ocular disorders. The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system holds considerable promise for therapeutic applications in the field of ophthalmology, including repair of aberrant genes and treatment of retinal illnesses related to the genome or epigenome. Application of CRISPR/Cas9 systems to the study of ocular disease and visual sciences have yielded innovations including correction of harmful mutations in patient-derived cells and gene modifications in several mammalian models of eye development and disease. In this study, we discuss the generation of several ocular disease models in mammalian cell lines and in vivo systems using a CRISPR/Cas9 system. We also provide an overview of current uses of CRISPR/Cas9 technologies for the treatment of ocular pathologies, as well as future challenges.
Collapse
Affiliation(s)
- D A Ayush Gowda
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Girish Birappa
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Sripriya Rajkumar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - C Bindu Ajaykumar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | - Sammy L Kim
- Department of Biological Science, College of Sang-Huh Life Science, Department of Biological Science, Konkuk University, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia.
| | - Junwon Lee
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
7
|
Kulbay M, Tuli N, Akdag A, Kahn Ali S, Qian CX. Optogenetics and Targeted Gene Therapy for Retinal Diseases: Unravelling the Fundamentals, Applications, and Future Perspectives. J Clin Med 2024; 13:4224. [PMID: 39064263 PMCID: PMC11277578 DOI: 10.3390/jcm13144224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
With a common aim of restoring physiological function of defective cells, optogenetics and targeted gene therapies have shown great clinical potential and novelty in the branch of personalized medicine and inherited retinal diseases (IRDs). The basis of optogenetics aims to bypass defective photoreceptors by introducing opsins with light-sensing capabilities. In contrast, targeted gene therapies, such as methods based on CRISPR-Cas9 and RNA interference with noncoding RNAs (i.e., microRNA, small interfering RNA, short hairpin RNA), consists of inducing normal gene or protein expression into affected cells. Having partially leveraged the challenges limiting their prompt introduction into the clinical practice (i.e., engineering, cell or tissue delivery capabilities), it is crucial to deepen the fields of knowledge applied to optogenetics and targeted gene therapy. The aim of this in-depth and novel literature review is to explain the fundamentals and applications of optogenetics and targeted gene therapies, while providing decision-making arguments for ophthalmologists. First, we review the biomolecular principles and engineering steps involved in optogenetics and the targeted gene therapies mentioned above by bringing a focus on the specific vectors and molecules for cell signalization. The importance of vector choice and engineering methods are discussed. Second, we summarize the ongoing clinical trials and most recent discoveries for optogenetics and targeted gene therapies for IRDs. Finally, we then discuss the limits and current challenges of each novel therapy. We aim to provide for the first time scientific-based explanations for clinicians to justify the specificity of each therapy for one disease, which can help improve clinical decision-making tasks.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada;
| | - Nicolas Tuli
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada (A.A.)
| | - Arjin Akdag
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada (A.A.)
| | - Shigufa Kahn Ali
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada;
| | - Cynthia X. Qian
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada;
- Department of Ophthalmology, Centre Universitaire d’Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada
| |
Collapse
|
8
|
Blasiak J, Pawlowska E, Ciupińska J, Derwich M, Szczepanska J, Kaarniranta K. A New Generation of Gene Therapies as the Future of Wet AMD Treatment. Int J Mol Sci 2024; 25:2386. [PMID: 38397064 PMCID: PMC10888617 DOI: 10.3390/ijms25042386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease and the most common cause of vision loss in the Western World. In its advanced stage, AMD occurs in two clinically distinguished forms, dry and wet, but only wet AMD is treatable. However, the treatment based on repeated injections with vascular endothelial growth factor A (VEGFA) antagonists may at best stop the disease progression and prevent or delay vision loss but without an improvement of visual dysfunction. Moreover, it is a serious mental and financial burden for patients and may be linked with some complications. The recent first success of intravitreal gene therapy with ADVM-022, which transformed retinal cells to continuous production of aflibercept, a VEGF antagonist, after a single injection, has opened a revolutionary perspective in wet AMD treatment. Promising results obtained so far in other ongoing clinical trials support this perspective. In this narrative/hypothesis review, we present basic information on wet AMD pathogenesis and treatment, the concept of gene therapy in retinal diseases, update evidence on completed and ongoing clinical trials with gene therapy for wet AMD, and perspectives on the progress to the clinic of "one and done" therapy for wet AMD to replace a lifetime of injections. Gene editing targeting the VEGFA gene is also presented as another gene therapy strategy to improve wet AMD management.
Collapse
Affiliation(s)
- Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402 Plock, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Justyna Ciupińska
- Clinical Department of Infectious Diseases and Hepatology, H. Bieganski Hospital, 91-347 Lodz, Poland;
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
9
|
Engfer ZJ, Lewandowski D, Dong Z, Palczewska G, Zhang J, Kordecka K, Płaczkiewicz J, Panas D, Foik AT, Tabaka M, Palczewski K. Distinct mouse models of Stargardt disease display differences in pharmacological targeting of ceramides and inflammatory responses. Proc Natl Acad Sci U S A 2023; 120:e2314698120. [PMID: 38064509 PMCID: PMC10723050 DOI: 10.1073/pnas.2314698120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 12/17/2023] Open
Abstract
Mutations in many visual cycle enzymes in photoreceptors and retinal pigment epithelium (RPE) cells can lead to the chronic accumulation of toxic retinoid byproducts, which poison photoreceptors and the underlying RPE if left unchecked. Without a functional ATP-binding cassette, sub-family A, member 4 (ABCA4), there is an elevation of all-trans-retinal and prolonged buildup of all-trans-retinal adducts, resulting in a retinal degenerative disease known as Stargardt-1 disease. Even in this monogenic disorder, there is significant heterogeneity in the time to onset of symptoms among patients. Using a combination of molecular techniques, we studied Abca4 knockout (simulating human noncoding disease variants) and Abca4 knock-in mice (simulating human misfolded, catalytically inactive protein variants), which serve as models for Stargardt-1 disease. We compared the two strains to ascertain whether they exhibit differential responses to agents that affect cytokine signaling and/or ceramide metabolism, as alterations in either of these pathways can exacerbate retinal degenerative phenotypes. We found different degrees of responsiveness to maraviroc, a known immunomodulatory CCR5 antagonist, and to the ceramide-lowering agent AdipoRon, an agonist of the ADIPOR1 and ADIPOR2 receptors. The two strains also display different degrees of transcriptional deviation from matched WT controls. Our phenotypic comparison of the two distinct Abca4 mutant-mouse models sheds light on potential therapeutic avenues previously unexplored in the treatment of Stargardt disease and provides a surrogate assay for assessing the effectiveness for genome editing.
Collapse
Affiliation(s)
- Zachary J. Engfer
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Zhiqian Dong
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Grazyna Palczewska
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Jianye Zhang
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
| | - Katarzyna Kordecka
- Ophthalmic Biology Group, International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Jagoda Płaczkiewicz
- Ophthalmic Biology Group, International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Damian Panas
- International Centre for Translational Eye Research, Warsaw01-224, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Andrzej T. Foik
- Ophthalmic Biology Group, International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw01-224, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| |
Collapse
|
10
|
Baehr W, Tsang SH. Gene therapy and therapeutic editing with outer or inner retina animal models. Vision Res 2023; 213:108316. [PMID: 37717278 PMCID: PMC10872789 DOI: 10.1016/j.visres.2023.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT 84132, USA.
| | - Stephen H Tsang
- Departments of Ophthalmology, Pathology & Cell Biology, Columbia Stem Cell Initative, New York, NY 10032, USA.
| |
Collapse
|
11
|
Li RTH, Roman AJ, Sumaroka A, Stanton CM, Swider M, Garafalo AV, Heon E, Vincent A, Wright AF, Megaw R, Aleman TS, Browning AC, Dhillon B, Cideciyan AV. Treatment Strategy With Gene Editing for Late-Onset Retinal Degeneration Caused by a Founder Variant in C1QTNF5. Invest Ophthalmol Vis Sci 2023; 64:33. [PMID: 38133503 PMCID: PMC10746929 DOI: 10.1167/iovs.64.15.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Purpose Genome editing is an emerging group of technologies with the potential to ameliorate dominant, monogenic human diseases such as late-onset retinal degeneration (L-ORD). The goal of this study was to identify disease stages and retinal locations optimal for evaluating the efficacy of a future genome editing trial. Methods Twenty five L-ORD patients (age range, 33-77 years; median age, 59 years) harboring the founder variant S163R in C1QTNF5 were enrolled from three centers in the United Kingdom and United States. Patients were examined with widefield optical coherence tomography (OCT) and chromatic perimetry under dark-adapted and light-adapted conditions to derive phenomaps of retinal disease. Results were analyzed with a model of a shared natural history of a single delayed exponential across all subjects and all retinal locations. Results Critical age for the initiation of photoreceptor loss ranged from 48 years at the temporal paramacular retina to 74 years at the inferior midperipheral retina. Subretinal deposits (sRET-Ds) became more prevalent as critical age was approached. Subretinal pigment epithelial deposits (sRPE-Ds) were detectable in the youngest patients showing no other structural or functional abnormalities at the retina. The sRPE-D thickness continuously increased, reaching 25 µm in the extrafoveal retina and 19 µm in the fovea at critical age. Loss of light sensitivity preceded shortening of outer segments and loss of photoreceptors by more than a decade. Conclusions Retinal regions providing an ideal treatment window exist across all severity stages of L-ORD.
Collapse
Affiliation(s)
- Randa T. H. Li
- Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, Scotland, United Kingdom
| | - Alejandro J. Roman
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexander Sumaroka
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Chloe M. Stanton
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Malgorzata Swider
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexandra V. Garafalo
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Alan F. Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Roly Megaw
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, Scotland, United Kingdom
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tomas S. Aleman
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Andrew C. Browning
- Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - Baljean Dhillon
- Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, Scotland, United Kingdom
| | - Artur V. Cideciyan
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
12
|
Mollereau B, Hayflick SJ, Escalante R, Mauthe M, Papandreou A, Iuso A, Celle M, Aniorte S, Issa AR, Lasserre JP, Lesca G, Thobois S, Burger P, Walter L. A burning question from the first international BPAN symposium: is restoration of autophagy a promising therapeutic strategy for BPAN? Autophagy 2023; 19:3234-3239. [PMID: 37565733 PMCID: PMC10621268 DOI: 10.1080/15548627.2023.2247314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Beta-propeller protein-associated neurodegeneration (BPAN) is a rare neurodegenerative disease associated with severe cognitive and motor deficits. BPAN pathophysiology and phenotypic spectrum are still emerging due to the fact that mutations in the WDR45 (WD repeat domain 45) gene, a regulator of macroautophagy/autophagy, were only identified a decade ago. In the first international symposium dedicated to BPAN, which was held in Lyon, France, a panel of international speakers, including several researchers from the autophagy community, presented their work on human patients, cellular and animal models, carrying WDR45 mutations and their homologs. Autophagy researchers found an opportunity to explore the defective function of autophagy mechanisms associated with WDR45 mutations, which underlie neuronal dysfunction and early death. Importantly, BPAN is one of the few human monogenic neurological diseases targeting a regulator of autophagy, which raises the possibility that it is a relevant model to directly assess the roles of autophagy in neurodegeneration and to develop autophagy restorative therapeutic strategies for more common disorders.Abbreviations: ATG: autophagy related; BPAN: beta-propeller protein-associated neurodegeneration; ER: endoplasmic reticulum; KO: knockout; NBIA: neurodegeneration with brain iron accumulation; PtdIns3P: phosphatidylinositol-3-phosphate; ULK1: unc-51 like autophagy activating kinase 1; WDR45: WD repeat domain 45; WIPI: WD repeat domain, phosphoinositide interacting.
Collapse
Affiliation(s)
- Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, ENS of Lyon, University of Lyon, University of Claude Bernard Lyon 1, CNRS UMR 5239, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Susan J Hayflick
- Departments of Molecular and Medical Genetics, Pediatrics, and Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas Alberto Sols. CSIC-UAM, Madrid, Spain
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Apostolos Papandreou
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London Great Ormond Street Institute of Child Health, London, UK
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Arcangela Iuso
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marion Celle
- Laboratory of Biology and Modelling of the Cell, ENS of Lyon, University of Lyon, University of Claude Bernard Lyon 1, CNRS UMR 5239, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Sahra Aniorte
- Laboratory of Biology and Modelling of the Cell, ENS of Lyon, University of Lyon, University of Claude Bernard Lyon 1, CNRS UMR 5239, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Abdul Raouf Issa
- Laboratory of Biology and Modelling of the Cell, ENS of Lyon, University of Lyon, University of Claude Bernard Lyon 1, CNRS UMR 5239, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| | - Jean Paul Lasserre
- Laboratory of NRGEN, Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon, Lyon, France
- Institut Neuromyogene, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, CNRS UMR 5261-INSERM U1315, Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphane Thobois
- Service de Neurologie C, Movement disorders unit, Hopital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, Bron, France
- Faculté de Médecine et de Maieutique Charles Mérieux, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Pauline Burger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, INSERM U1258, CNRS UMR7104, Illkirch, France
| | - Ludivine Walter
- Laboratory of Biology and Modelling of the Cell, ENS of Lyon, University of Lyon, University of Claude Bernard Lyon 1, CNRS UMR 5239, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Lyon, France
| |
Collapse
|
13
|
Asteriti S, Marino V, Avesani A, Biasi A, Dal Cortivo G, Cangiano L, Dell'Orco D. Recombinant protein delivery enables modulation of the phototransduction cascade in mouse retina. Cell Mol Life Sci 2023; 80:371. [PMID: 38001384 PMCID: PMC10673981 DOI: 10.1007/s00018-023-05022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Inherited retinal dystrophies are often associated with mutations in the genes involved in the phototransduction cascade in photoreceptors, a paradigmatic signaling pathway mediated by G protein-coupled receptors. Photoreceptor viability is strictly dependent on the levels of the second messengers cGMP and Ca2+. Here we explored the possibility of modulating the phototransduction cascade in mouse rods using direct or liposome-mediated administration of a recombinant protein crucial for regulating the interplay of the second messengers in photoreceptor outer segments. The effects of administration of the free and liposome-encapsulated human guanylate cyclase-activating protein 1 (GCAP1) were compared in biological systems of increasing complexity (in cyto, ex vivo, and in vivo). The analysis of protein biodistribution and the direct measurement of functional alteration in rod photoresponses show that the exogenous GCAP1 protein is fully incorporated into the mouse retina and photoreceptor outer segments. Furthermore, only in the presence of a point mutation associated with cone-rod dystrophy in humans p.(E111V), protein delivery induces a disease-like electrophysiological phenotype, consistent with constitutive activation of the retinal guanylate cyclase. Our study demonstrates that both direct and liposome-mediated protein delivery are powerful complementary tools for targeting signaling cascades in neuronal cells, which could be particularly important for the treatment of autosomal dominant genetic diseases.
Collapse
Affiliation(s)
- Sabrina Asteriti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
- Department of Translational Research, University of Pisa, 56123, Pisa, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Anna Avesani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Amedeo Biasi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy
| | - Lorenzo Cangiano
- Department of Translational Research, University of Pisa, 56123, Pisa, Italy.
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, 37134, Verona, Italy.
| |
Collapse
|
14
|
Gilmore WB, Hultgren NW, Chadha A, Barocio SB, Zhang J, Kutsyr O, Flores-Bellver M, Canto-Soler MV, Williams DS. Expression of two major isoforms of MYO7A in the retina: Considerations for gene therapy of Usher syndrome type 1B. Vision Res 2023; 212:108311. [PMID: 37586294 PMCID: PMC10984346 DOI: 10.1016/j.visres.2023.108311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Usher syndrome type 1B (USH1B) is a deaf-blindness disorder, caused by mutations in the MYO7A gene, which encodes the heavy chain of an unconventional actin-based motor protein. Here, we examined the two retinal isoforms of MYO7A, IF1 and IF2. We compared 3D models of the two isoforms and noted that the 38-amino acid region that is present in IF1 but absent from IF2 affects the C lobe of the FERM1 domain and the opening of a cleft in this potentially important protein binding domain. Expression of each of the two isoforms of human MYO7A and pig and mouse Myo7a was detected in the RPE and neural retina. Quantification by qPCR showed that the expression of IF2 was typically ∼ 7-fold greater than that of IF1. We discuss the implications of these findings for any USH1B gene therapy strategy. Given the current incomplete knowledge of the functions of each isoform, both isoforms should be considered for targeting both the RPE and the neural retina in gene augmentation therapies.
Collapse
Affiliation(s)
- W Blake Gilmore
- Department of Ophthalmology and Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nan W Hultgren
- Department of Ophthalmology and Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Abhishek Chadha
- Department of Ophthalmology and Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sonia B Barocio
- Department of Ophthalmology and Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joyce Zhang
- Department of Ophthalmology and Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Oksana Kutsyr
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado, School of Medicine, Aurora, CO, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Choi EH, Suh S, Sears AE, Hołubowicz R, Kedhar SR, Browne AW, Palczewski K. Genome editing in the treatment of ocular diseases. Exp Mol Med 2023; 55:1678-1690. [PMID: 37524870 PMCID: PMC10474087 DOI: 10.1038/s12276-023-01057-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023] Open
Abstract
Genome-editing technologies have ushered in a new era in gene therapy, providing novel therapeutic strategies for a wide range of diseases, including both genetic and nongenetic ocular diseases. These technologies offer new hope for patients suffering from previously untreatable conditions. The unique anatomical and physiological features of the eye, including its immune-privileged status, size, and compartmentalized structure, provide an optimal environment for the application of these cutting-edge technologies. Moreover, the development of various delivery methods has facilitated the efficient and targeted administration of genome engineering tools designed to correct specific ocular tissues. Additionally, advancements in noninvasive ocular imaging techniques and electroretinography have enabled real-time monitoring of therapeutic efficacy and safety. Herein, we discuss the discovery and development of genome-editing technologies, their application to ocular diseases from the anterior segment to the posterior segment, current limitations encountered in translating these technologies into clinical practice, and ongoing research endeavors aimed at overcoming these challenges.
Collapse
Affiliation(s)
- Elliot H Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Susie Suh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Avery E Sears
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Rafał Hołubowicz
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Sanjay R Kedhar
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Andrew W Browne
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, CA, USA.
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|