1
|
Kalinin V, Padnya P, Stoikov I. Romanowsky staining: history, recent advances and future prospects from a chemistry perspective. Biotech Histochem 2024; 99:1-20. [PMID: 37929609 DOI: 10.1080/10520295.2023.2273860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Romanowsky staining was an important methodological breakthrough in diagnostic hematology and cytopathology during the late 19th and early 20th centuries; it has facilitated for decades the work of biologists, hematologists and pathologists working with blood cells. Despite more than a century of studying Romanowsky staining, no systematic review has been published that explains the chemical processes that produce the "Romanowsky effect" or "Romanowsky-Giemsa effect" (RGE), i.e., a purple coloration arising from the interaction of an azure dye with eosin and not due merely to their simultaneous presence. Our review is an attempt to build a bridge between chemists and biomedical scientists and to summarize the available data on methylene blue (MB) demethylation as well as the related reduction and decomposition of MB to simpler compounds by both light and enzyme systems and microorganisms. To do this, we analyze modern data on the mechanisms of MB demethylation both in the presence of acids and bases and by disproportionation due to the action of light. We also offer an explanation for why the RGE occurs only when azure B, or to a lesser extent, azure A is present by applying experimental and calculated physicochemical parameters including dye-DNA binding constants and electron density distributions in the molecules of these ligands. Finally, we discuss modern techniques for obtaining new varieties of Romanowsky dyes by modifying previously known ones. We hope that our critical literature study will help scientists understand better the chemical and physicochemical processes and mechanisms of cell staining with such dyes.
Collapse
Affiliation(s)
- Valeriy Kalinin
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Pavel Padnya
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Ivan Stoikov
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| |
Collapse
|
2
|
Sekoai PT, Roets-Dlamini Y, O’Brien F, Ramchuran S, Chunilall V. Valorization of Food Waste into Single-Cell Protein: An Innovative Technological Strategy for Sustainable Protein Production. Microorganisms 2024; 12:166. [PMID: 38257991 PMCID: PMC10819637 DOI: 10.3390/microorganisms12010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
The rapidly increasing population and climate change pose a great threat to our current food systems. Moreover, the high usage of animal-based and plant-based protein has its drawbacks, as these nutritional sources require many hectares of land and water, are affected by seasonal variations, are costly, and contribute to environmental pollution. Single-cell proteins (SCPs) are gaining a lot of research interest due to their remarkable properties, such as their high protein content that is comparable with other protein sources; low requirements for land and water; low carbon footprint; and short production period. This review explores the use of food waste as a sustainable feedstock for the advancement of SCP processes. It discusses SCP studies that exploit food waste as a substrate, alongside the biocatalysts (bacteria, fungi, yeast, and microalgae) that are used. The operational setpoint conditions governing SCP yields and SCP fermentation routes are elucidated as well. This review also demonstrates how the biorefinery concept is implemented in the literature to improve the economic potential of "waste-to-protein" innovations, as this leads to the establishment of multiproduct value chains. A short section that discusses the South African SCP scenario is also included. The technical and economic hurdles facing second-generation SCP processes are also discussed, together with future perspectives. Therefore, SCP technologies could play a crucial role in the acceleration of a "sustainable protein market", and in tackling the global hunger crisis.
Collapse
Affiliation(s)
- Patrick T. Sekoai
- Biorefinery Industry Development Facility, Council for Scientific and Industrial Research, Durban 4041, South Africa;
| | - Yrielle Roets-Dlamini
- Bioprocessing Group, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (Y.R.-D.); (F.O.); (S.R.)
| | - Frances O’Brien
- Bioprocessing Group, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (Y.R.-D.); (F.O.); (S.R.)
| | - Santosh Ramchuran
- Bioprocessing Group, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (Y.R.-D.); (F.O.); (S.R.)
- School of Life Science, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Viren Chunilall
- Biorefinery Industry Development Facility, Council for Scientific and Industrial Research, Durban 4041, South Africa;
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
3
|
Almeida Lessa O, Neves Silva F, Tavares IMDC, Carvalho Fontes Sampaio I, Bispo Pimentel A, Ferreira Leite SG, Gutarra MLE, Galhardo Pimenta Tienne L, Irfan M, Bilal M, Marques Dos Anjos PN, Salay LC, Franco M. Structural alteration of cocoa bean shell fibers through biological treatment using Penicillium roqueforti. Prep Biochem Biotechnol 2023; 53:1154-1163. [PMID: 36794850 DOI: 10.1080/10826068.2023.2177866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Lignocellulosic residues, such as cocoa bean shell (FI), are generated in large quantities during agro-industrial activities. Proper management of residual biomass through solid state fermentation (SSF) can be effective in obtaining value-added products. The hypothesis of the present work is that the bioprocess promoted by P. roqueforti can lead to structural changes in the fibers of the fermented cocoa bean shell (FF) that confer characteristics of industrial interest. To unveil such changes, the techniques of FTIR, SEM, XRD, TGA/TG were used. After SSF, an increase of 36.6% in the crystallinity index was observed, reflecting the reduction of amorphous components such as lignin in the FI residue. Furthermore, an increase in porosity was observed through the reduction of the 2θ angle, which gives the FF a potential candidate for applications of porous products. The FTIR results confirm the reduction in hemicellulose content after SSF. The thermal and thermogravimetric tests showed an increase in the hydrophilicity and thermal stability of FF (15% decomposition) in relation to the by-product FI (40% decomposition). These data provided important information regarding changes in the crystallinity of the residue, existing functional groups and changes in degradation temperatures.
Collapse
Affiliation(s)
- Ozana Almeida Lessa
- Pos-Graduation Program in Chemical and Biochemical Process Technology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiane Neves Silva
- Post-Graduation Program in Food Engineering and Science, State University of Southwest Bahia (UESB), Itapetinga, Brazil
| | | | | | - Adriana Bispo Pimentel
- Departamento de Ciências Biológicas, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Selma Gomes Ferreira Leite
- Department of Chemical and Biochemical Process Technology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | | | - Muhammad Irfan
- Department of Biotechnology, Faculty of Science, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo, Poznan, Poland
| | | | - Luiz Carlos Salay
- Department of Exact Sciences, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Marcelo Franco
- Department of Exact Sciences, State University of Santa Cruz (UESC), Ilhéus, Brazil
| |
Collapse
|
4
|
Verma P, Tripathi S, Yadav S, Chandra R. Degradation and decolourization potential of ligninolytic enzyme producing Bacillus paramycoides BL2 and Micrococcus luteus BL3 for pulp paper industrial effluent and its toxicity evaluation. Arch Microbiol 2022; 204:642. [PMID: 36161364 DOI: 10.1007/s00203-022-03236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/26/2022]
Abstract
Aim of this study was to optimize the production of Ligninolytic enzyme for the degradation of complex pollutants present in pulp paper industrial effluent (PPIE). Two ligninolytic enzyme-producing bacterial strains were isolated from PPIE and identified as Bacillus paramycoides strain BL2 (MZ676667) and Micrococcus luteus strains BL3 (MZ676668). The identified bacterial strain Bacillus paramycoides strain BL2 showed optimum production of LiP (4.30 U/ml), MnP (3.38 U/ml) at 72 h of incubation, while laccase (4.43 U/ml) at 96 h of incubation. While, Micrococcus luteus strains BL3 produced maximum LiP (3.98) and MnP (3.85 U/ml) at 96 h of incubation and maximum laccase (3.85 U/ml) at 72 h of incubation, pH 7-8, and temperatures of 30-35 °C. Furthermore, in the presence of glucose (1.0%) and peptone (0.5%) as nutrient sources, the enzyme activity of consortium leads to reduction of lignin (70%), colour (63%) along with COD (71%) and BOD (58%). The pollutants detected in control i.e. 3.6-Dioxa-2,7-disilaoctane, 2-Heptnoic acid,trimethylsilyl ester, 7-Methyldinaphtho [2,1-b,1',2'-d] silole, Hexadeconoic acid, trimethylysilyl ester, Methyl1(Z)-3,3-dipheny.1-4-hexenoale, 2,6,10,14,18,22-Tetracosahexane,2,2-dimethylpropyl(2Z,6E)-10,11epoxy5,6 Dihyrostigmasterol, acetate were completely diminished. The toxicity of PPIE was reduced up to 75%. Hence, knowledge of this study will be very useful for industrial sector for treatment of complex wastewater.
Collapse
Affiliation(s)
- Prerna Verma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India
| | - Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India
| | - Sangeeta Yadav
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, 226025, India.
| |
Collapse
|
5
|
Li T, Fan J, Sun T. Effective removal of methylene blue dye from water with nanocomposite ceramsites in a fixed-bed column. ENVIRONMENTAL TECHNOLOGY 2021; 42:3807-3819. [PMID: 32167410 DOI: 10.1080/09593330.2020.1743368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The study aims to remove methylene blue dye from water with a fixed-bed column packed with Cu2O nanocomposite ceramsites. The column showed the advantages of fixed-bed column adsorption and photocatalytic oxidation. The Cu2O nanocomposite ceramsites with strong photocatalytic oxidation activity and well-developed porous structure were successfully prepared with the chemical vapour deposition process, which also met with the China's industrial standard of CJ/T 299-2008 and China's national standard of GB 5085.3-2007. In the column experiments under the experimental conditions (initial pH was 3, reaction temperature was 25°C and flow rate was 33 mL/min), the breakthrough curve was much more smooth. The breakthrough time and saturation time under ultraviolet radiation were 36.0% and 26.83% longer than those under the conditions without ultraviolet radiation, because the micro-pore structure of ceramsite was closely related to optical excitation properties of nano-Cu2O. The Yoon-Nelson and Adams-Bohart models were applied to describe the obtained breakthrough curves using non-linear regression, in which the Yoon-Nelson model gave the better prediction results for breakthrough curves, with R2>0.98. Besides, amines were the dominant intermediates at saturation point and final products were inorganic anions. This study confirmed that the fixed-bed column packed with Cu2O nanocomposite ceramsites could efficiently treat methylene blue dye wastewater, due to the structure-function relationship between ceramsite and nano-Cu2O.
Collapse
Affiliation(s)
- Tianpeng Li
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
- College of City and Architecture Engineering, Zaozhuang University, Zaozhuang, People's Republic of China
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, People's Republic of China
| | - Jing Fan
- School of Environment, Henan Normal University, Xinxiang, People's Republic of China
| | - Tingting Sun
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, People's Republic of China
| |
Collapse
|
6
|
Zhao T, Hu K, Li J, Zhu Y, Liu A, Yao K, Liu S. Current insights into the microbial degradation for pyrethroids: strain safety, biochemical pathway, and genetic engineering. CHEMOSPHERE 2021; 279:130542. [PMID: 33866100 DOI: 10.1016/j.chemosphere.2021.130542] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/09/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
As a biologically inspired insecticide, pyrethroids (PYRs) exert evident toxic side effects on non-target organisms. PYRs and their general toxic intermediate 3-phenoxybenzoic acid (3-PBA) have shown high detection rates/levels in human beings recently, for which diet was identified as the major exposure route. Microbial mineralization has emerged as a versatile strategy in addressing such escalating concern. Herein, PYRs and 3-PBA biodegradation with regards to strain safety, application and surfactant were summarized. Numerous PYRs-degrading microbes have been reported yet with a minority focused on 3-PBA. Most isolates were from contaminated sites while several microbial food cultures (MFCs) have been investigated. MFCs such as Bacillus spp. and Aspergillus spp. that dominate in PYRs-degrading microbial pools are applicable candidates for agricultural by-products detoxification during the postharvest process. Subsequently, we discussed committed degradation steps, wherein hydrolase responsible for PYRs ester linkage cleavage and oxygenase for 3-PBA diphenyl ether bond rupture play vital roles. Finally, comprehensive information of the key enzyme genes is outlined along with methodologies concerning gene cloning. Cytochrome P450 monooxygenases (CYP) is competent for diphenyl ether scission. Newly-developed omics has become a feasible gene and enzyme mining technology. To achieve PYRs mineralization in feed and food commodities, the screening of MFCs rich in related enzymes and the construction of MFCs-derived genetically modified microbes (GMMs) exhibit great potential considering the safety issues.
Collapse
Affiliation(s)
- Tianye Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yuanting Zhu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Kai Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
7
|
Sosa-Martínez J, Balagurusamy N, Benavente-Valdés JR, Montañez J, Morales-Oyervides L. Process performance improvement for the simultaneous production of ligninolytic enzymes in solid culture using agricultural wastes through the Taguchi method. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112966. [PMID: 34098354 DOI: 10.1016/j.jenvman.2021.112966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Despite a large amount of published research on the production of ligninolytic enzymes, the latter are not yet being applied to combat environmental pollution. No cost-effective process has been developed to date. This study describes an improvement of the solid-state fermentation procedure for the production of ligninolytic enzymes via Phanerochaete chrysosporium ATX by applying the Taguchi method and using an agro-industrial waste as substrate. The production of lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac) were simultaneously increased within a packed-bed column. The factors and levels studied were humidity (A: 60, 70, 80%), inoculum concentration (B: 7.5, 10.0, 12.5 × 105 spores/mL), packed density (C: 0.14, 0.16, 0.18 g/mL), and time (D: 6, 8, 10 days). The results showed that humidity was the factor with a higher effect upon LiP and Lac's production, while time was for MnP. Humidity exerted the greatest influence on the global desirability of the process. Improved conditions (A, 60%; B, 1.0 × 106 spores/mL; C, 0.17 g/mL; D, 8 days) were further validated: the results revealed an overall desirability increase of 237% over the unoptimized process. Process performance was likewise maintained at a higher scale (1:10). The results contribute to establishing a cost-effective bioprocess to produce ligninolytic enzymes by reducing the cost associated with raw materials and purification steps.
Collapse
Affiliation(s)
- Jazel Sosa-Martínez
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | - Nagamani Balagurusamy
- Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, Libramiento Torreón-Matamoros, Torreón, Coahuila, 27000, Mexico
| | - Juan Roberto Benavente-Valdés
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | - Julio Montañez
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | - Lourdes Morales-Oyervides
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico.
| |
Collapse
|
8
|
Zhuo R, Fan F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146132. [PMID: 33714829 DOI: 10.1016/j.scitotenv.2021.146132] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 05/14/2023]
Abstract
Environmental problems resultant from organic pollutants are a major current challenge for modern societies. White rot fungi (WRF) are well known for their extensive organic compound degradation abilities. The unique oxidative and extracellular ligninolytic systems of WRF that exhibit low substrate specificity, enable them to display a considerable ability to transform or degrade different environmental contaminants. In recent decades, WRF and their ligninolytic enzymes have been widely applied in the removal of polycyclic aromatic hydrocarbons (PAHs), pharmaceutically active compounds (PhACs), endocrine disruptor compounds (EDCs), pesticides, synthetic dyes, and other environmental pollutants, wherein promising results have been achieved. This review focuses on advances in WRF-based bioremediation of organic pollutants over the last 10 years. We comprehensively document the application of WRF and their lignocellulolytic enzymes for removing organic pollutants. Moreover, potential problems and intriguing observations that are worthy of additional research attention are highlighted. Lastly, we discuss trends in WRF-remediation system development and avenues that should be considered to advance research in the field.
Collapse
Affiliation(s)
- Rui Zhuo
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.
| | - Fangfang Fan
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Biocatalytic potential of basidiomycetes: Relevance, challenges and research interventions in industrial processes. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Sosa-Martínez JD, Balagurusamy N, Montañez J, Peralta RA, Moreira RDFPM, Bracht A, Peralta RM, Morales-Oyervides L. Synthetic dyes biodegradation by fungal ligninolytic enzymes: Process optimization, metabolites evaluation and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123254. [PMID: 32947692 DOI: 10.1016/j.jhazmat.2020.123254] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/03/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
This work aimed to provide information that contributes to establishing environmental-friendly methods for synthetic dyes' degradation. The potential decolorization capacity of the crude enzymatic extract produced by Phanerochaete chrysosporium CDBB 686 using corncob as a substrate was evaluated on seven different dyes. Critical variables affecting the in-vitro decolorization process were further evaluated and results were compared with an in-vivo decolorization system. Decolorization with enzymatic extracts presented advantages over the in-vivo system (higher or similar decolorization within a shorter period). Under improved in-vitro process conditions, the dyes with higher decolorization were: Congo red (41.84 %), Poly R-478 (56.86 %), Methyl green (69.79 %). Attempts were made to confirm the transformation of the dyes after the in-vitro process as well as to establish a molecular basis for interpreting changes in toxicity along with the degradation process. In-vitro degradation products of Methyl green presented a toxicity reduction compared with the original dye; however, increased toxicity was found for Congo red degradation products when compared with the original dyes. Thus, for future applications, it is crucial to evaluate the mechanisms of biodegradation of each target synthetic dye as well as the toxicity of the products obtained after enzymatic oxidation.
Collapse
Affiliation(s)
- Jazel Doménica Sosa-Martínez
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | - Nagamani Balagurusamy
- Bioremediation Laboratory, Faculty of Biological Sciences, Autonomous University of Coahuila, LibramientoTorreón-Matamoros, Torreón, Coahuila, 27000, Mexico
| | - Julio Montañez
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico
| | | | | | - Adelar Bracht
- Department of Biochemistry, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná, 87020, Brazil
| | - Rosane Marina Peralta
- Department of Biochemistry, State University of Maringá, Avenue Colombo 5790, Maringá, Paraná, 87020, Brazil
| | - Lourdes Morales-Oyervides
- Department of Chemical Engineering, Faculty of Chemical Sciences, Autonomous University of Coahuila, Boulevard Venustiano Carranza SN, Saltillo, Coahuila, 25280, Mexico.
| |
Collapse
|
11
|
Ortiz-Monsalve S, Gutterres M, Valente P, Plácido J, Bustamante-López S, Kelly D, Kelly SL. Degradation of a leather-dye by the combination of depolymerised wood-chip biochar adsorption and solid-state fermentation with Trametes villosa SCS-10. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00349-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AbstractAdsorption into biochar-derived materials and mycoremediation are promising technologies for removing dyes from solid and liquid matrices. This study presents a combined treatment with adsorption into wood-chip biochar and mycodegradation under solid-state fermentation by Trametes villosa for removing the leather-dye Acid Blue 161. In the first stage, untreated wood-chip biochar, NaOH–depolymerised biochar and KMnO4–depolymerised biochar were assessed for their dye removal efficiency by adsorption. KMnO4–depolymerised biochar exhibited the highest adsorption (85.1 ± 1.9%) after 24 h of contact. KMnO4–depolymerisation modified some physical and chemical properties on the untreated wood-chip biochar, increasing the surface area (50.4 m2 g–1), pore size (1.9 nm), and presence of surface functional groups. Response surface methodology coupled with a Box–Behnken design was used to optimise the AB161 adsorption into the KMnO4–depolymerised biochar. The optimised conditions, pH 3.0, dye concentration 100 mg L–1 and sorbent dosage 2 g L–1, led to a higher dye removal efficiency by adsorption (91.9 ± 1.0%). In a second stage, the wood-chip biochar supplemented with nutrients (1% malt extract and 0.5% peptone) was employed as a solid matrix for growing T. villosa and regenerating the dye-saturated material. After 15 days, T. villosa was able to grow (86.8 ± 0.8%), exhibit laccase activity (621.9 ± 62.3 U L–1), and biodegrade (91.4 ± 1.3%) the dye adsorbed into the KMnO4–depolymerised biochar. Finally, the mycoregenerated biochar was reutilised in a new cycle of adsorption reaching 79.5 ± 2.0% of dye removal efficiency by adsorption. This study revealed the potential of the combined treatment and is an initial assessment for developing commercial alternatives for treating leather industry wastewaters.
Collapse
|
12
|
Mohammed YMM, Mabrouk MEM. Optimization of methylene blue degradation by Aspergillus terreus YESM 3 using response surface methodology. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2007-2018. [PMID: 33263579 DOI: 10.2166/wst.2020.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthetic dyes released from many industries cause pollution problems in aquatic environments affecting public health. The present study aimed to explore the potentiality of Aspergillus terreus YESM 3 (accession number LM653117) for colour removal of three different dyes: methylene blue (MB), malachite green (MG) and safranin (S). Results showed that the tolerance index of the studied fungus against tested dyes decreased in the order: methylene blue, safranin and malachite green. Removal of methylene blue colour was improved by using Box-Behnken design. Optimum condition for methylene blue biodegradation in Czapek Dox broth was achieved at pH 6, of 31.41 mg/L dye concentration and an inoculum of 5.7778 × 104 (conidia/mL) with biodegradation of 89.41%. Thus, a novel and eco-friendly system for the biodegradation of dyes using Box-Behnken design has been efficiently developed. Accordingly, A. terreus YESM 3 can be professionally used for bioremediation of methylene blue dye in wastewater and removal of environmental pollution.
Collapse
Affiliation(s)
- Youssef M M Mohammed
- Department of Botany and Microbiology, Faculty of Science, Damanhour University, 22516, Damanhour, Egypt E-mail:
| | - Mona E M Mabrouk
- Department of Botany and Microbiology, Faculty of Science, Damanhour University, 22516, Damanhour, Egypt E-mail:
| |
Collapse
|
13
|
Bacterial and Fungal Community Dynamics and Shaping Factors During Agricultural Waste Composting with Zeolite and Biochar Addition. SUSTAINABILITY 2020. [DOI: 10.3390/su12177082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bacterial and fungal communities play significant roles in waste biodegradation and nutrient reservation during composting. Biochar and zeolite were widely reported to directly or indirectly promote microbial growth. Therefore, the effects of zeolite and biochar on the abundance and structure of bacterial and fungal communities and their shaping factors during the composting of agricultural waste were studied. Four treatments were carried out as follows: Run A as the control without any addition, Run B with zeolite (5%), Run C with biochar (5%), and Run D with zeolite (5%) and biochar (5%), respectively. The bacterial and fungal community structures were detected by high-throughput sequencing. Redundancy analysis was used for determining the relationship between community structure and physico-chemical parameters. The results indicated that the addition of biochar and zeolite changed the physico-chemical parameters (e.g., pile temperature, pH, total organic matter, ammonium, nitrate, and water-soluble carbon) during the composting process. Zeolite and biochar significantly changed the structure and diversity of bacterial and fungal populations. Moreover, the bacterial community rather than the fungal community was sensitive to the biochar and zeolite addition during the composting process. Community phylogenetic characteristics showed that Nocardiopsaceae, Bacillaceae, Leuconostocaceae, Phyllobacteriaceae, and Xanthomonadaceae were the predominant bacterial species at the family-level. Chaetomiaceae and Trichocomaceae were the two most dominant fungal species. The pH, total organic matter, and nitrate were the most important factors affecting the bacterial and fungal population changes during the composting process.
Collapse
|
14
|
Effects of Zeolite and Biochar Addition on Ammonia-Oxidizing Bacteria and Ammonia-Oxidizing Archaea Communities during Agricultural Waste Composting. SUSTAINABILITY 2020. [DOI: 10.3390/su12166336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of zeolite and biochar addition on ammonia-oxidizing bacteria (AOB) and archaea (AOA) communities during agricultural waste composting were determined in this study. Four treatments were conducted as follows: Treatment A as the control with no additive, Treatment B with 5% of zeolite, Treatment C with 5% of biochar, and Treatment D with 5% of zeolite and 5% biochar, respectively. The AOB and AOA amoA gene abundance as well as the ammonia monooxygenase (AMO) activity were estimated by quantitative PCR and enzyme-linked immunosorbent assay, respectively. The relationship between gene abundance and AMO enzyme activity was determined by regression analysis. Results indicated that the AOB was more abundant than that of AOA throughout the composting process. Addition of biochar and its integrated application with zeolite promoted the AOB community abundance and AMO enzyme activity. Significant positive relationships were obtained between AMO enzyme activity and AOB community abundance (r2 = 0.792; P < 0.01) and AOA community abundance (r2 = 0.772; P < 0.01), indicating that both bacteria and archaea played significant roles in microbial ammonia oxidation during composting. Using biochar and zeolite might promote the nitrification activity by altering the sample properties during agricultural waste composting.
Collapse
|
15
|
Design and Preparation of Chitosan-Crosslinked Bismuth Ferrite/Biochar Coupled Magnetic Material for Methylene Blue Removal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010006. [PMID: 31861304 PMCID: PMC6981408 DOI: 10.3390/ijerph17010006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 01/31/2023]
Abstract
Biochar obtained by pyrolysis of the fiber plant kenaf was mixed with bismuth ferrite (BiFeO3) in a chitosan-containing acetic acid solution, magnetized, and modified to prepare a chitosan-crosslinked BiFeO3/biochar coupled magnetic material. The adsorption properties of the composite were investigated using methylene blue dissolved in water, and the effects of external conditions, such as pH, methylene blue concentration, reaction time, and temperature, on the adsorption performance were studied. The adsorption data were fitted and analyzed with kinetic and isotherm models, and the results showed that the BiFeO3/biochar coupled magnetic material effectively adsorbed methylene blue. The amounts adsorbed onto this magnetic material increased with increasing initial methylene blue concentration, reaction time, and temperature, and the adsorption performance improved under neutral and alkaline conditions. The pseudo-first-order kinetic and Langmuir isotherm models satisfactorily fitted the adsorption data, showing that the adsorption of methylene blue involved both chemical and physical adsorption. The maximum adsorption capacity of methylene blue onto the BiFeO3/biochar coupled magnetic material reached 18.942 mg·g−1 at 25 °C, confirming the excellent dye binding activity of this material.
Collapse
|
16
|
Multistage fluidized bed bioreactor for dye decolorization using immobilized polyurethane foam: A novel approach. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Removing of Congo red from aqueous solution by 2-hydroxyethyl methacrylate-g-poly(ethylene terephthalate) fibers. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02721-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Noormohamadi HR, Fat'hi MR, Ghaedi M, Ghezelbash GR. Potentiality of white-rot fungi in biosorption of nickel and cadmium: Modeling optimization and kinetics study. CHEMOSPHERE 2019; 216:124-130. [PMID: 30366266 DOI: 10.1016/j.chemosphere.2018.10.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/06/2018] [Accepted: 10/16/2018] [Indexed: 05/13/2023]
Abstract
The present study aimed to analyze simultaneous biosorption of Cd+2 and Ni+2 by living Phanerochaete chrysosporium as low-cost and eco-friendly biosorbent following optimization by applying a central composite design. The effect of operating parameters such as solution pH (4.0-8.0), temperature (20-40 °C), contact time (3-15 h), initial Cd+2 and Ni+2 concentrations (15-35, 5-25 mg L-1, respectively) was evaluated by response surface methodology (RSM) for optimizing biosorption process. The Cd+2 and Ni+2 ions at 25 and 16 mg L-1 were accumulated in P. chrysosporium with the efficiency of 96.23% and 89.48%, respectively, at pH of 6 and 36 °C after around 9 h under well mixing. The equilibrium data were fitted well with Langmuir isotherm model with maximum biosorption capacity of 71.43 and 46.50 mg g-1 for Cd+2 and Ni+2, respectively. In addition, the pseudo-second order kinetic model could describe the kinetic data adequately. Further, possible interaction pathway among metals and P. chrysosporium functional groups were studied by Fourier transform infrared (FT-IR) spectroscopy. Furthermore, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) techniques were applied for morphology investigation and semi elemental analysis.
Collapse
Affiliation(s)
- Hamid Reza Noormohamadi
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Fat'hi
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Gholam Reza Ghezelbash
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
19
|
He K, Chen G, Zeng G, Chen A, Huang Z, Shi J, Peng M, Huang T, Hu L. Enhanced removal performance for methylene blue by kaolin with graphene oxide modification. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.04.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Selvasembian R, P B. Utilization of unconventional lignocellulosic waste biomass for the biosorption of toxic triphenylmethane dye malachite green from aqueous solution. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:624-633. [PMID: 29688057 DOI: 10.1080/15226514.2017.1413329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biosorption potential of novel lignocellulosic biosorbents Musa sp. peel (MSP) and Aegle marmelos shell (AMS) was investigated for the removal of toxic triphenylmethane dye malachite green (MG), from aqueous solution. Batch experiments were performed to study the biosorption characteristics of malachite green onto lignocellulosic biosorbents as a function of initial solution pH, initial malachite green concentration, biosorbents dosage, and temperature. Biosorption equilibrium data were fitted to two and three parameters isotherm models. Three-parameter isotherm models better described the equilibrium data. The maximum monolayer biosorption capacities obtained using the Langmuir model for MG removal using MSP and AMS was 47.61 and 18.86 mg/g, respectively. The biosorption kinetic data were analyzed using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The pseudo-second-order kinetic model best fitted the experimental data, indicated the MG biosorption using MSP and AMS as chemisorption process. The removal of MG using AMS was found as highly dependent on the process temperature. The removal efficiency of MG showed declined effect at the higher concentrations of NaCl and CaCl2. The regeneration test of the biosorbents toward MG removal was successful up to three cycles.
Collapse
Affiliation(s)
- Rangabhashiyam Selvasembian
- a Department of Biotechnology and Medical Engineering , National Institute of Technology , Rourkela , Odisha , India
| | - Balasubramanian P
- a Department of Biotechnology and Medical Engineering , National Institute of Technology , Rourkela , Odisha , India
| |
Collapse
|
21
|
Cheng M, Zeng G, Huang D, Lai C, Liu Y, Zhang C, Wang R, Qin L, Xue W, Song B, Ye S, Yi H. High adsorption of methylene blue by salicylic acid-methanol modified steel converter slag and evaluation of its mechanism. J Colloid Interface Sci 2018; 515:232-239. [PMID: 29353196 DOI: 10.1016/j.jcis.2018.01.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/23/2017] [Accepted: 01/03/2018] [Indexed: 11/30/2022]
Abstract
A novel adsorbent based on steel converter slag (SCS), useful for adsorbing cationic pollutants from water was prepared by a simple method. The characterization showed that salicylic acid-methanol (SAM) modification selectively removed calcium silicate minerals from the surface of SCS and lead to a prominent increase in the specific surface areas. The maximum adsorption capacity of SAM-modified SCS for methylene blue (MB) at initial pH of 7.0 and temperature of 293 K was 41.62 mg/g, which is 35.2-times higher than that of SCS (1.15 mg/g). Adsorption kinetics and isotherms of MB on the SAM-modified SCS can be satisfactorily fitted by pseudo-second order kinetic and Langmuir model, respectively, which suggest that single-layer chemical adsorption was mainly responsible for MB removal. Further studies showed that pH value and ionic strength of wastewater have minimal effects on the adsorption capacity of SAM-modified SCS. A small decrease (<10%) was found in the adsorption capacity of SAM-modified SCS after five cycles. These findings indicate that SAM-modified SCS is a promising adsorbent for the efficient removal of MB from aqueous solution due to its low cost, good thermal stability, excellent adsorption performance and simple separation.
Collapse
Affiliation(s)
- Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Rongzhong Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
22
|
Huang C, Zeng G, Huang D, Lai C, Xu P, Zhang C, Cheng M, Wan J, Hu L, Zhang Y. Effect of Phanerochaete chrysosporium inoculation on bacterial community and metal stabilization in lead-contaminated agricultural waste composting. BIORESOURCE TECHNOLOGY 2017; 243:294-303. [PMID: 28683381 DOI: 10.1016/j.biortech.2017.06.124] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
The effects of Phanerochaete chrysosporium inoculation on bacterial community and lead (Pb) stabilization in composting of Pb-contaminated agricultural waste were studied. It was found that the bioavailable Pb was transformed to stable Pb after composting with inoculum of P. chrysosporium. Pearson correlation analysis revealed that total organic carbon (TOC) and carbon/nitrogen (C/N) ratio significantly (P<0.05) influenced the distribution of Pb fractions. The richness and diversity of bacterial community were reduced under Pb stress and increased after inoculation with P. chrysosporium. Redundancy analysis indicated that C/N ratio, total organic matter, temperature and soluble-exchangeable Pb were the significant parameters to affect the bacterial community structure, solely explained 14.7%, 11.1%, 10.4% and 8.3% of the variation in bacterial community composition, respectively. In addition, the main bacterial species, being related to organic matter degradation and Pb stabilization, were found. These findings will provide useful information for composting of heavy metal-contaminated organic wastes.
Collapse
Affiliation(s)
- Chao Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Jia Wan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Liang Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
23
|
Ansari Z, Karimi A, Ebadi Fard Azar F, Latifi NA. Effect of glucose oxidase on decolorization efficiency of crystal violet by Phanerochaete chrysosporium cultures. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1360869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zahra Ansari
- Department of Chemical Engineering, Biotechnology Research Center, Sahand University of Technology, Tabriz, Iran
| | - Afzal Karimi
- Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farbod Ebadi Fard Azar
- Department of Health Services and Health Education, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Nour-Ahmad Latifi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Song B, Zeng G, Gong J, Liang J, Xu P, Liu Z, Zhang Y, Zhang C, Cheng M, Liu Y, Ye S, Yi H, Ren X. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. ENVIRONMENT INTERNATIONAL 2017; 105:43-55. [PMID: 28500873 DOI: 10.1016/j.envint.2017.05.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 05/24/2023]
Abstract
Soil and sediment contamination has become a critical issue worldwide due to its great harm to the ecological environment and public health. In recent years, many remediation technologies including physical, chemical, biological, and combined methods have been proposed and adopted for the purpose of solving the problems of soil and sediment contamination. However, current research on evaluation methods for assessing these remediation technologies is scattered and lacks valid and integrated evaluation methods for assessing the remediation effectiveness. This paper provides a comprehensive review with an environmental perspective on the evaluation methods for assessing the effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. The review systematically summarizes recent exploration and attempts of the remediation effectiveness assessment based on the content of pollutants, soil and sediment characteristics, and ecological risks. Moreover, limitations and future research needs of the practical assessment are discussed. These limitations are not conducive to the implementation of the abatement and control programs for soil and sediment contamination. Therefore, more attention should be paid to the evaluation methods for assessing the remediation effectiveness while developing new in situ remediation technologies in future research.
Collapse
Affiliation(s)
- Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xiaoya Ren
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
25
|
Liu N, Zhou J, Han L, Huang G. Characterization of lignocellulosic compositions' degradation during chicken manure composting with added biochar by phospholipid fatty acid (PLFA) and correlation analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:1003-1011. [PMID: 28238371 DOI: 10.1016/j.scitotenv.2017.02.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
Biorefractory high polymer lignocellulosic compositions may limit rapid composting and stable decomposition. Because their degradation during composting is not well understood, the correlation with microbial community profiles was assessed to reveal degradation mechanism of lignocellulosic compositions. Testing of chicken manure aerobic composting with added biochar was performed using phospholipid fatty acid (PLFA) and correlation analysis. Results demonstrated a good composting effect with good dynamic correlation between microbial characteristic (PLFA) and lignocellulosic compositions' degradation ratio. The prediction model for hemicellulose degradation ratio (R2=0.97, SEP=3.24) and the prediction model for cellulose degradation ratio (R3=0.94, SEP=3.09), built using PLFA 16:0-18:2ω6c and PLFA 18:2ω6c-18:3ω3 as the arguments had good predictive ability. Based on microbial analysis and quantitative characterization of the degradation ratio, the prediction models provided methodological support for delineating the mechanism of lignocellulosic compositions' degradation during chicken manure aerobic composting with added biochar.
Collapse
Affiliation(s)
- Ning Liu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jialiang Zhou
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
26
|
Cheng M, Zeng G, Huang D, Yang C, Lai C, Zhang C, Liu Y. Tween 80 surfactant-enhanced bioremediation: toward a solution to the soil contamination by hydrophobic organic compounds. Crit Rev Biotechnol 2017; 38:17-30. [PMID: 28423946 DOI: 10.1080/07388551.2017.1311296] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The occurrence of hydrophobic organic compounds (HOCs) in the soil has become a highly significant environmental issue. This problem has been exacerbated by the strong sorption of HOCs to the soils, which makes them unavailable for most remediation processes. More and more works show that surfactant-enhanced biological technologies offer a great potential to clear up HOCs-contaminated soils. This article is a critical review of HOCs removal from soils using Tween 80 (one of the mostly used nonionic surfactants) aided biological remediation technologies. The review begins with a discussion of the fundamentals of Tween 80-enhanced desorption of HOCs from contaminated soils, with special emphasis on the biotoxicity of Tween 80. Successful results obtained by Tween 80-enhanced microbial degradation and phytoremediation are documented and discussed in section 3 and section 4, respectively. Results show Tween 80-enhanced biotechnologies are promising for treating HOCs-contaminated soils. However, considering the fact that most of these scientific studies have only been conducted at the laboratory-scale, many improvements are required before these technologies can be scaled up to the full-scale level. Moreover, further research on mechanisms related to the interaction of Tween 80 with degrading microorganisms and the plants is in high demand.
Collapse
Affiliation(s)
- Min Cheng
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Guangming Zeng
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Danlian Huang
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Chunping Yang
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Cui Lai
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Chen Zhang
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| | - Yang Liu
- a Department of Environmental Engineering, College of Environmental Science and Engineering , Hunan University , Changsha , Hunan , China.,b Department of Environmental Engineering , Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education , Changsha , Hunan , China
| |
Collapse
|
27
|
Rizqi HD, Purnomo AS. The ability of brown-rot fungus Daedalea dickinsii to decolorize and transform methylene blue dye. World J Microbiol Biotechnol 2017; 33:92. [PMID: 28391562 DOI: 10.1007/s11274-017-2256-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/31/2017] [Indexed: 11/30/2022]
Abstract
The ability of Daedalea dickinsii to decolorize and transform methylene blue (MB) dye was investigated. MB was decolorized in potato dextrose agar medium after adding MB at concentrations of 50, 75, and 100 mg L-1. D. dickinsii decolorized MB with decolorization index values of 0.92, 0.90, and 0.88 at MB concentrations of 50, 75, and 100 mg L-1, respectively. The 100 mg L1 MB concentration was selected for biotransformation in liquid potato dextrose broth medium. D. dickinsii transformed approximately 54% of the MB after a 14-day incubation. 3-(Dimethylamino)-7-(methylamino) phenothiazine (C15H16N3S), 3,7-bis(dimethylamino)-4aH-phenothiazin-5-one (C16H19N3SO), and 4-(dimethylamino)-2-[m(dimethylamino) phenylsulfinyl] benzenamine (C16H21N3SO) were detected as MB metabolic products. This is the first report of MB transformation by the brown-rot fungi D. dickinsii. These results indicate that D. dickinsii can be used to decolorize and biotransform MB dye.
Collapse
Affiliation(s)
- Hamdan Dwi Rizqi
- Department of Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Adi Setyo Purnomo
- Department of Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya, 60111, Indonesia.
| |
Collapse
|
28
|
Mishra V, Jana AK. Fungal Pretreatment of Sweet Sorghum Bagasse with Combined CuSO4-Gallic Acid Supplement for Improvement in Lignin Degradation, Selectivity, and Enzymatic Saccharification. Appl Biochem Biotechnol 2017; 183:200-217. [DOI: 10.1007/s12010-017-2439-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/13/2017] [Indexed: 11/29/2022]
|
29
|
Bohacz J. Lignocellulose-degrading enzymes, free-radical transformations during composting of lignocellulosic waste and biothermal phases in small-scale reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:744-754. [PMID: 27986311 DOI: 10.1016/j.scitotenv.2016.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/16/2016] [Accepted: 12/03/2016] [Indexed: 05/23/2023]
Abstract
Environmentally friendly strategies of waste management are both part of legal solutions currently in place and a focus of interest worldwide. Large-scale composting plants are set up across various regions while home composting is becoming increasingly popular. A variety of microbial groups are successively at work during composting and enzymatic activities detected in the composting mass fluctuate accordingly. Changes in the activities of oxidoreductases and hydrolases, i.e. glucose oxidase, horseradish peroxidase, lignin peroxidase, laccase, xylanase, superoxide dismutase and keratinase, low-molecular weight compounds, i.e. methoxyphenolic and hydroxyphenolic compounds, and the relative level of superoxide radicals and glucose were determined periodically in water extracts of composts to investigate the process of biochemical transformations of ligninocellulose in relation to biothermal phases and to identify a potential priming effect in two composts containing different ratios of lignocellulosic waste and chicken feathers. Composting was conducted for 30weeks. An important aim of the study was to demonstrate that a positive priming effect was induced during composting of a variety of lignocellulosic waste types using native keratin (chicken feathers) as a source of N. The effect was more evident in compost containing grass, which was related to a more rapid depletion of easily available sources of C and energy (glucose) during composting. Ligninolytic enzymes known to biodegrade recalcitrant organic matter were induced in subsequent biothermal phases of composting. Compost I enriched with grass (pine bark, grass, sawdust and chicken feathers) exhibited a higher enzymatic activity than compost II which did not contain any grass but which had a greater number of hardly-degradable components (pine bark, wheat straw, sawdust, chicken feathers). Similar observations were made for the concentrations of low-molecular weight compounds. The enzymes activities and concentration of low-molecular weight compounds listed above can be used to estimate the biodegradation of lignocellulose during composting.
Collapse
Affiliation(s)
- Justyna Bohacz
- University of Life Sciences, Faculty of Agrobioengineering, Department of Environmental Microbiology, Laboratory of Mycology, 7 Leszczyńskiego Street, 20-069 Lublin, Poland.
| |
Collapse
|
30
|
Borges GA, Silva LP, Penido JA, de Lemos LR, Mageste AB, Rodrigues GD. A method for dye extraction using an aqueous two-phase system: Effect of co-occurrence of contaminants in textile industry wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 183:196-203. [PMID: 27591846 DOI: 10.1016/j.jenvman.2016.08.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/15/2016] [Accepted: 08/21/2016] [Indexed: 06/06/2023]
Abstract
This paper reports a green and efficient procedure for extraction of the dyes Malachite Green (MG), Methylene Blue (MB), and Reactive Red 195 (RR) using an aqueous two-phase system (ATPS). An ATPS consists mainly of water, together with polymer and salt, and does not employ any organic solvent. The extraction efficiency was evaluated by means of the partition coefficients (K) and residual percentages (%R) of the dyes, under different experimental conditions, varying the tie-line length (TLL) of the system, the pH, the type of ATPS-forming electrolyte, and the type of ATPS-forming polymer. For MG, the best removal (K = 4.10 × 10(4), %R = 0.0069%) was obtained with the ATPS: PEO 1500 + Na2C4H4O6 (TLL = 50.21% (w/w), pH = 6.00). For MB, the maximum extraction (K = 559.9, %R = 0.258%) was achieved with the ATPS: PEO 400 + Na2SO4 (TLL = 50.31% (w/w), pH = 1.00). Finally for RR, the method that presented the best results (K = 3.75 × 10(4), %R = 0.237%) was the ATPS: PEO 400 + Na2SO4 (TLL = 50.31% (w/w), pH = 6.00). The method was applied to the recovery of these dyes from a textile effluent sample, resulting in values of K of 1.17 × 10(4), 724.1, and 3.98 × 10(4) for MG, MB, and RR, respectively, while the corresponding %R values were 0.0038, 0.154, and 0.023%, respectively. In addition, the ATPS methodology provided a high degree of color removal (96.5-97.95%) from the textile effluent.
Collapse
Affiliation(s)
- Gabriella Alexandre Borges
- Green Analytical Solutions Laboratory, Department of Chemistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Luciana Pereira Silva
- Green Analytical Solutions Laboratory, Department of Chemistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Jussara Alves Penido
- Department of Chemistry, Universidade Federal de Ouro Preto, Morro do Cruzeiro, 35400-00, Ouro Preto, MG, Brazil
| | - Leandro Rodrigues de Lemos
- Department of Chemistry, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583, nº 5000 Campus JK, 39100-000, Diamantina, MG, Brazil
| | - Aparecida Barbosa Mageste
- Department of Chemistry, Universidade Federal de Ouro Preto, Morro do Cruzeiro, 35400-00, Ouro Preto, MG, Brazil
| | - Guilherme Dias Rodrigues
- Green Analytical Solutions Laboratory, Department of Chemistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
31
|
Huang D, Qin X, Xu P, Zeng G, Peng Z, Wang R, Wan J, Gong X, Xue W. Composting of 4-nonylphenol-contaminated river sediment with inocula of Phanerochaete chrysosporium. BIORESOURCE TECHNOLOGY 2016; 221:47-54. [PMID: 27639223 DOI: 10.1016/j.biortech.2016.08.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
A composting study was performed to investigate the degradation of 4-nonylphenol (4-NP) in river sediment by inoculating Phanerochaete chrysosporium (Pc). Pc was inoculated into composting Reactor A, C and D, while Reactor B without inocula was used as control. The results showed that composting with Pc accelerated the degradation of 4-NP, increased the catalase and polyphenol oxidase enzyme activities in contaminated sediment. The dissipation half-life (t1/2) of 4-NP in Reactor A, C and D with inocula of Pc were 2.079, 2.558, 2.424days, while in Reactor B without inocula of Pc it was 3.239days, respectively. Correlation analysis showed that the contents of 4-NP in sediment in Reactor A and D were negatively correlated with the actives of laccase, whereas no obvious correlation was observed in Reactor B and C. All these findings also indicated that Pc enhanced the maturity of compost, and the best composting C/N ratio was 25.46:1.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China.
| | - Xingmeng Qin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Zhiwei Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Rongzhong Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Jia Wan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Xiaomin Gong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, PR China
| |
Collapse
|
32
|
Characterization of a novel manganese peroxidase from white-rot fungus Echinodontium taxodii 2538, and its use for the degradation of lignin-related compounds. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Synthesis and characterization of PET fibers grafted with binary mixture of 2-methylpropenoic acid and acrylonitrile by free radical: its application in removal of cationic dye. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1773-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Zhao M, Zhang C, Zeng G, Cheng M, Liu Y. A combined biological removal of Cd(2+) from aqueous solutions using Phanerochaete chrysosporium and rice straw. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 130:87-92. [PMID: 27088621 DOI: 10.1016/j.ecoenv.2016.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/03/2016] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
The removal of Cd(2+) from aqueous solutions by agricultural residues rice straw combined with white rot fungus Phanerochaete chrysosporium (P. chrysosporium) was investigated. The results showed that over 99% of the total Cd(2+) (initial concentration of 150mgL(-1)) was removed at the optimal operating conditions (pH 5.0 at 35°C). We also found that P. chrysosporium could survive under Cd(2+) stress even with an initial Cd(2+) concentration of 250mgL(-1). But when Cd(2+) concentration increased to 250mgL(-1), fungus growth and reproduction were remarkably restrained, and as a result, Cd(2+) removal dropped to 59.2%. It was observed that the fungus biomass and activities of ligninolytic enzymes decreased at some degree under high concentration of Cd(2+) (above 100mgL(-1)). Also, we found that a moderate Cd(2+) stress (below 150mgL(-1)) could stimulate P. chrysosporium's production of the heavy metals chelator - oxalate. This study will provide useful information for the application of biological removal of heavy metal irons from wastewater.
Collapse
Affiliation(s)
- Meihua Zhao
- College of Civil Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Chaosheng Zhang
- College of Civil Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|