1
|
Zhong T, Wu H, Hu J, Liu Y, Zheng Y, Li N, Sun Z, Yin XF, He QY, Sun X. Two synonymous single-nucleotide polymorphisms promoting fluoroquinolone resistance of Escherichia coli in the environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133849. [PMID: 38432089 DOI: 10.1016/j.jhazmat.2024.133849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Single-nucleotide polymorphism (SNP) is one of the core mechanisms that respond to antibiotic resistance of Escherichia coli (E. coli), which is a major issue in environmental pollution. A specific type of SNPs, synonymous SNPs, have been generally considered as the "silent" SNPs since they do not change the encoded amino acid. However, the impact of synonymous SNPs on mRNA splicing, nucleo-cytoplasmic export, stability, and translation was gradually discovered in the last decades. Figuring out the mechanism of synonymous SNPs in regulating antibiotic resistance is critical to improve antimicrobial therapy strategies in clinics and biological treatment strategies of antibiotic-resistant E. coli-polluted materials. With our newly designed antibiotic resistant SNPs prediction algorithm, Multilocus Sequence Type based Identification for Phenotype-single nucleotide polymorphism Analysis (MIPHA), and in vivo validation, we identified 2 important synonymous SNPs 522 G>A and 972 C>T, located at hisD gene, which was previously predicted as a fluoroquinolone resistance-related gene without a detailed mechanism in the E. coli samples with environmental backgrounds. We first discovered that hisD causes gyrA mutation via the upregulation of sbmC and its downstream gene umuD. Moreover, those 2 synonymous SNPs of hisD cause its own translational slowdown and further reduce the expression levels of sbmC and its downstream gene umuD, making the fluoroquinolone resistance determining region of gyrA remains unmutated, ultimately causing the bacteria to lose their ability to resist drugs. This study provided valuable insight into the role of synonymous SNPs in mediating antibiotic resistance of bacteria and a new perspective for the treatment of environmental pollution caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Tairan Zhong
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Haiming Wu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiehua Hu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yun Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yundan Zheng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhenghua Sun
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xing-Feng Yin
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Plaimart J, Acharya K, Blackburn A, Mrozik W, Davenport RJ, Werner D. Effective removal of iron, nutrients, micropollutants, and faecal bacteria in constructed wetlands cotreating mine water and sewage treatment plant effluent. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:116-131. [PMID: 38214989 PMCID: wst_2024_001 DOI: 10.2166/wst.2024.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Regulators in England and Wales have set new targets under the Environment Act 2021 for freshwater quality by 2038 that include halving the length of rivers polluted by harmful metals from abandoned mines and reducing phosphorus loadings from treated wastewater by 80%. In this context, an intriguing win-win opportunity exists in the removal of iron from abandoned mines and phosphate from small sewage treatment plants by coprecipitation in constructed wetlands (CWs). We investigated such a CW located at Lamesley, Northeast England, which cotreats abandoned coal mine and secondary-treated sewage treatment plant effluents. We assessed the removal of nutrients, heavy metals, organic micropollutants, and faecal coliforms by the CW, and characterized changes in the water bacteriology comprehensively using environmental DNA. The CW effectively removed ammonium-nitrogen, phosphorus, iron, and faecal coliforms by an average of 86, 74, 98, and 75%, respectively, to levels below or insignificantly different from those in the receiving river. The CW also effectively removed micropollutants such as acetaminophen, caffeine, and sulpiride by 70-100%. Molecular microbiology methods showed successful conversion of sewage and mine water microbiomes into a freshwater microbiome. Overall, the CW significantly reduced impacts on the rural water environment with minimal operational requirements.
Collapse
Affiliation(s)
- Jidapa Plaimart
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK E-mail:
| | - Kishor Acharya
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Adrian Blackburn
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Wojciech Mrozik
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Russell J Davenport
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - David Werner
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
3
|
Alegbeleye O, Sant'Ana AS. Microbiological quality of irrigation water for cultivation of fruits and vegetables: An overview of available guidelines, water testing strategies and some factors that influence compliance. ENVIRONMENTAL RESEARCH 2023; 220:114771. [PMID: 36586712 DOI: 10.1016/j.envres.2022.114771] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Contaminated irrigation water is among many potential vehicles of human pathogens to food plants, constituting significant public health risks especially for the fresh produce category. This review discusses some available guidelines or regulations for microbiological safety of irrigation water, and provides a summary of some common methods used for characterizing microbial contamination. The goal of such exploration is to understand some of the considerations that influence formulation of water testing guidelines, describe priority microbial parameters particularly with respect to food safety risks, and attempt to determine what methods are most suitable for their screening. Furthermore, the review discusses factors that influence the potential for microbiologically polluted irrigation water to pose substantial risks of pathogenic contamination to produce items. Some of these factors include type of water source exploited, irrigation methods, other agro ecosystem features/practices, as well as pathogen traits such as die-off rates. Additionally, the review examines factors such as food safety knowledge, other farmer attitudes or inclinations, level of social exposure and financial circumstances that influence adherence to water testing guidelines and other safe water application practices. A thorough understanding of relevant risk metrics for the application and management of irrigation water is necessary for the development of water testing criteria. To determine sampling and analytical approach for water testing, factors such as agricultural practices (which differ among farms and regionally), as well as environmental factors that modulate how water quality may affect the microbiological safety of produce should be considered. Research and technological advancements that can improve testing approach and the determination of target levels for hazard characterization or description for the many different pollution contexts as well as farmer adherence to testing requirements, are desirable.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
4
|
Kim K, Jung JY, Kwon JH. Potential of Bacterial Strains Isolated from Coastal Water for Wastewater Treatment and as Aqua-Feed Additives. Microorganisms 2021; 9:2441. [PMID: 34946043 PMCID: PMC8708354 DOI: 10.3390/microorganisms9122441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteria have various and sustained effects on humans in various fields: molecular biology, biomedical science, environmental/food industry, etc. This study was conducted to evaluate the wastewater treatment capacity and feed-additive fish-growth effect of four strains of bacteria: Pseudoalteromonas mariniglutinosa, Psychrobacter celer, Bacillus albus, and Bacillus safensis. In a wastewater degradation experiment, (i) nitrate-N and nitrite-N were removed within 1 h in all of the 4 bacterial strains; (ii) the removal rates of TAN and TN were higher in all of the strains relative to the B. subtilis. In a feed-additive experiment (5% Kg-1), (i) the growth of fish was higher in all of the 4 bacterial strains with the B. subtilis relative to the commercial feed; (ii) there was no significant growth difference for B. albus and B. safensis relative to the B. subtilis, but growth was higher in P. mariniglutinosa and P. celer. The results indicated that the 4 bacterial strains can be effectively utilized for biological wastewater treatment processes and as aqua-feed.
Collapse
Affiliation(s)
- Kyochan Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| | - Joo-Young Jung
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju 52828, Korea
| | - Jong-Hee Kwon
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju 52828, Korea
- Department of Food Science & Technology, and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 660-701, Korea
| |
Collapse
|
5
|
Mobberley JM, Cooley SK, Widder MW, Phillips SM, Melville AM, Brennan LM, Divito VT, van der Schalie WH, Ozanich RM, Hutchison JR. A multistep enrichment process with custom growth medium improves resuscitation of chlorine-stressed coliforms from secondary sewage effluents. J Microbiol Methods 2021; 192:106364. [PMID: 34774876 DOI: 10.1016/j.mimet.2021.106364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Resuscitation and detection of stressed total coliforms in chlorinated water samples is needed to assess and prevent health effects from adverse exposure. In this study, we report that the addition of a growth enhancer mix consisting of trehalose, sodium pyruvate, magnesium chloride, and 1× trace mineral supplement improved growth of microorganisms from chlorinated secondary effluent in the base medium with Colilert-18. Improving growth of chlorine stressed microorganisms from secondary effluent is crucial to decreased detection time from 18 to 8 h.
Collapse
Affiliation(s)
- Jennifer M Mobberley
- Chemical and Biological Signatures Group, National Security Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Scott K Cooley
- Statistical Modeling and Experiment Design Group, National Security Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Mark W Widder
- Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Fort Detrick, MD 21702-5000, USA
| | - Shelby M Phillips
- Chemical and Biological Signatures Group, National Security Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Angela M Melville
- Chemical and Biological Signatures Group, National Security Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Linda M Brennan
- Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Fort Detrick, MD 21702-5000, USA
| | - Valerie T Divito
- U.S. Army Medical Research and Development Command, Military Operational Medicine Research Program, Fort Detrick, MD 21702-5000, USA
| | - William H van der Schalie
- Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Fort Detrick, MD 21702-5000, USA; General Dynamics Information Technology, Falls Church, VA 22042, USA
| | - Richard M Ozanich
- Chemical and Biological Signatures Group, National Security Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
| | - Janine R Hutchison
- Chemical and Biological Signatures Group, National Security Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA.
| |
Collapse
|
6
|
Comparison of the ColiPlate™ Kit with Two Common E. coli Enumeration Methods for Water. WATER 2021. [DOI: 10.3390/w13131804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quantitatively assessing fecal indicator bacteria in drinking water from limited resource settings (e.g., disasters, remote areas) can inform public health strategies for reducing waterborne illnesses. This study aimed to compare two common approaches for quantifying Escherichia coli (E. coli) density in natural water versus the ColiPlate™ kit approach. For comparing methods, 41 field samples from natural water sources in Kentucky (USA) were collected. E. coli densities were then determined by (1) membrane filtration in conjunction with modified membrane-thermotolerant E. coli (mTEC) agar, (2) Idexx Quanti-Tray® 2000 with the Colilert® substrate, and (3) the Bluewater Biosciences ColiPlate kit. Significant correlations were observed between E. coli density data for all three methods (p < 0.001). Paired t-test results showed no difference in E. coli densities determined by all the methods (p > 0.05). Upon assigning modified mTEC as the reference method for determining the World Health Organization-assigned “very high-risk” levels of fecal contamination (>100 E. coli CFU/100 mL), both ColiPlate and Colilert exhibited excellent discrimination for screening very high-risk levels according to the area under the receiver operating characteristic curve (~89%). These data suggest ColiPlate continues to be an effective monitoring tool for quantifying E. coli density and characterizing fecal contamination risks from water.
Collapse
|
7
|
Burnet JB, Dinh QT, Imbeault S, Servais P, Dorner S, Prévost M. Autonomous online measurement of β-D-glucuronidase activity in surface water: is it suitable for rapid E. coli monitoring? WATER RESEARCH 2019; 152:241-250. [PMID: 30677635 DOI: 10.1016/j.watres.2018.12.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Microbiological water quality is traditionally assessed using culture-based enumeration of faecal indicator bacteria such as Escherichia coli. Despite their relative ease of use, these methods require a minimal 18-24 h-incubation step before the results are obtained. This study aimed to assess the suitability of an autonomous online fluorescence-based technology measuring β-glucuronidase (GLUC) activity for rapid near-real time monitoring of E. coli in water. The analytical precision was determined and compared to an automated microbial detection system, two culture-based assays and quantitative real-time PCR (qPCR). Using replicate measurements of grab samples containing E. coli concentrations between 50 and 2330 CFU.100 mL-1, the autonomous GLUC activity measurement technology displayed an average coefficient of variation (CV) of less than 5% that was 4-8-fold lower than other methods tested. Comparable precision was observed during online in situ monitoring of GLUC activity at a drinking water intake using three independent instruments. GLUC activity measurements were not affected by sewage or sediments at concentrations likely to be encountered during long-term monitoring. Furthermore, significant (p < 0.05) correlations were obtained between GLUC activity and the other assays including defined substrate technology (r = 0.77), membrane filtration (r = 0.73), qPCR (r = 0.55) and the automated microbial detection system (r = 0.50). This study is the first to thoroughly compare the analytical performance of rapid automated detection technologies to established culture and molecular-based methods. Results show that further research is required to correlate GLUC activity to the presence of viable E. coli as measured in terms of CFU.100 mL-1. This would allow the use of autonomous online GLUC activity measurements for rapid E. coli monitoring in water supplies used for drinking water production and recreation.
Collapse
Affiliation(s)
- Jean-Baptiste Burnet
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada; Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada.
| | - Quoc Tuc Dinh
- Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Sandra Imbeault
- Service de l'Environnement, Ville de Laval, QC, H7L 2R3, Canada
| | - Pierre Servais
- Écologie des Systèmes Aquatiques, Université Libre de Bruxelles, Campus de la Plaine, CP 221, Boulevard du Triomphe, B-1050, Bruxelles, Belgium
| | - Sarah Dorner
- Canada Research Chair in Source Water Protection, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Michèle Prévost
- NSERC Industrial Chair on Drinking Water, Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| |
Collapse
|
8
|
Nowicki S, Lapworth DJ, Ward JST, Thomson P, Charles K. Tryptophan-like fluorescence as a measure of microbial contamination risk in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:782-791. [PMID: 30064104 DOI: 10.1016/j.scitotenv.2018.07.274] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Microbial water quality is frequently assessed with a risk indicator approach that relies on Escherichia coli. Relying exclusively on E. coli is limiting, particularly in low-resource settings, and we argue that risk assessments could be improved by a complementary parameter, tryptophan-like fluorescence (TLF). Over two campaigns (June 2016 and March 2017) we sampled 37 water points in rural Kwale County, Kenya for TLF, E. coli and thermotolerant coliforms (total n = 1082). Using three World Health Organization defined classes (very high, high, and low/intermediate), risk indicated by TLF was not significantly different from risk indicated by E. coli (p = 0.85). However, the TLF and E. coli risk classifications did show disagreement, with TLF indicating higher risk for 14% of samples and lower risk for 13% of samples. Comparisons of duplicate/replicate results demonstrated that precision is higher for TLF (average relative percent difference of duplicates = 14%) compared to culture-based methods (average RPD of duplicates ≥ 26%). Additionally, TLF sampling is more practical because it requires less time and resources. Precision and practicality make TLF well-suited to high-frequency sampling in low resource contexts. Interpretation and interference challenges are minimised when TLF is measured in groundwaters, which typically have low dissolved organic carbon, relatively consistent temperature, negligible turbidity and pH between 5 and 8. TLF cannot be used as a proxy for E. coli on an individual sample basis, but it can add value to groundwater risk assessments by improving prioritization of sampling and by increasing understanding of spatiotemporal variability.
Collapse
Affiliation(s)
- Saskia Nowicki
- University of Oxford, School of Geography and the Environment, Oxford OX1 3QY, UK.
| | - Dan J Lapworth
- British Geological Survey, Maclean Building, Wallingford OX10 8BB, UK
| | - Jade S T Ward
- British Geological Survey, Maclean Building, Wallingford OX10 8BB, UK; University of Surrey, Department of Civil and Environmental Engineering, Guildford GU2 7XH, UK
| | - Patrick Thomson
- University of Oxford, School of Geography and the Environment, Oxford OX1 3QY, UK
| | - Katrina Charles
- University of Oxford, School of Geography and the Environment, Oxford OX1 3QY, UK
| |
Collapse
|
9
|
Nedelkova M, Delova A, Petreska Ivanovska T, Zhivikj Z, Petrushevska-Tozi L. Assessment of microbial contamination of drinking water with total coliform bacteria and Escherichia coli in the Bitola region. MAKEDONSKO FARMACEVTSKI BILTEN 2019. [DOI: 10.33320/maced.pharm.bull.2019.65.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of this paper is to analyze the presence of Escherichia coli (E. coli) and total coliform bacteria (CB) in the drinking water of urban and rural areas of the Bitola region, as indicators for water quality and safety. All water in urban area is chlorinated, while at the same time the water in rural areas is non-chlorinated. The samples were analyzed according to the international standard method of membrane filtration MKC EN ISO 9308-1:2015. In all examined samples of drinking water in urban area, presence of E. coli and CB was not detected as a result of the disinfection of the water. On contrary, in all tested samples of the water from the rural water supply, presence of E. coli and CB was confirmed. Significant increase in coliform bacterial counts probably weather-related was found in the period from April to September. In addition, in the third quarter including July, August, and September, in many measurements, E. coli as an indicator of faecal contamination was identified in drinking water. In accordance with these findings and in order to provide safe drinking water, it is necessary to modernize the water supply for the population in rural areas, to disinfect permanently the drinking water and to apply regular laboratory controls which are a basic pre-condition. Otherwise, inappropriate management of the water systems can cause serious decrease in the quality and safety of the drinking water associated with an increased risk of appearance of the infectious diseases in people and hydric epidemic.
Key words: drinking water, Escherichia coli, coliform bacteria, membrane filtration
Collapse
Affiliation(s)
- Marta Nedelkova
- Centre of Public Health, Partizanska no number, 7000 Bitola, North Macedonia
| | - Angela Delova
- Centre of Public Health, Partizanska no number, 7000 Bitola, North Macedonia
| | - Tanja Petreska Ivanovska
- Institute of Applied Biochemistry, Faculty of Pharmacy, Ss. Cyril and Methodius University, Mother Theresa 47, 1000 Skopje, North Macedonia
| | - Zoran Zhivikj
- Institute of Applied Biochemistry, Faculty of Pharmacy, Ss. Cyril and Methodius University, Mother Theresa 47, 1000 Skopje, North Macedonia
| | - Lidija Petrushevska-Tozi
- Institute of Applied Biochemistry, Faculty of Pharmacy, Ss. Cyril and Methodius University, Mother Theresa 47, 1000 Skopje, North Macedonia
| |
Collapse
|
10
|
Sorensen JPR, Baker A, Cumberland SA, Lapworth DJ, MacDonald AM, Pedley S, Taylor RG, Ward JST. Real-time detection of faecally contaminated drinking water with tryptophan-like fluorescence: defining threshold values. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:1250-1257. [PMID: 29890592 DOI: 10.1016/j.scitotenv.2017.11.162] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 06/08/2023]
Abstract
We assess the use of fluorescent dissolved organic matter at excitation-emission wavelengths of 280nm and 360nm, termed tryptophan-like fluorescence (TLF), as an indicator of faecally contaminated drinking water. A significant logistic regression model was developed using TLF as a predictor of thermotolerant coliforms (TTCs) using data from groundwater- and surface water-derived drinking water sources in India, Malawi, South Africa and Zambia. A TLF threshold of 1.3ppb dissolved tryptophan was selected to classify TTC contamination. Validation of the TLF threshold indicated a false-negative error rate of 15% and a false-positive error rate of 18%. The threshold was unsuccessful at classifying contaminated sources containing <10 TTC cfu per 100mL, which we consider the current limit of detection. If only sources above this limit were classified, the false-negative error rate was very low at 4%. TLF intensity was very strongly correlated with TTC concentration (ρs=0.80). A higher threshold of 6.9ppb dissolved tryptophan is proposed to indicate heavily contaminated sources (≥100 TTC cfu per 100mL). Current commercially available fluorimeters are easy-to-use, suitable for use online and in remote environments, require neither reagents nor consumables, and crucially provide an instantaneous reading. TLF measurements are not appreciably impaired by common intereferents, such as pH, turbidity and temperature, within typical natural ranges. The technology is a viable option for the real-time screening of faecally contaminated drinking water globally.
Collapse
Affiliation(s)
| | - Andy Baker
- Connected Waters Initiative Research Centre, UNSW Australia, Sydney, New South Wales 2052, Australia
| | | | - Dan J Lapworth
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK
| | | | - Steve Pedley
- Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Richard G Taylor
- Department of Geography, University College London, London WC1E 6BT, UK
| | - Jade S T Ward
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK; Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
11
|
Martin EC, Gentry TJ. Impact of enumeration method on diversity of Escherichia coli genotypes isolated from surface water. Lett Appl Microbiol 2016; 63:369-375. [PMID: 27513521 DOI: 10.1111/lam.12633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 11/26/2022]
Abstract
There are numerous regulatory-approved Escherichia coli enumeration methods, but it is not known whether differences in media composition and incubation conditions impact the diversity of E. coli populations detected by these methods. A study was conducted to determine if three standard water quality assessments, Colilert® , USEPA Method 1603, (modified mTEC) and USEPA Method 1604 (MI), detect different populations of E. coli. Samples were collected from six watersheds and analysed using the three enumeration approaches followed by E. coli isolation and genotyping. Results indicated that the three methods generally produced similar enumeration data across the sites, although there were some differences on a site-by-site basis. The Colilert® method consistently generated the least diverse collection of E. coli genotypes as compared to modified mTEC and MI, with those two methods being roughly equal to each other. Although the three media assessed in this study were designed to enumerate E. coli, the differences in the media composition, incubation temperature, and growth platform appear to have a strong selective influence on the populations of E. coli isolated. This study suggests that standardized methods of enumeration and isolation may be warranted if researchers intend to obtain individual E. coli isolates for further characterization. SIGNIFICANCE AND IMPACT OF THE STUDY This study characterized the impact of three USEPA-approved Escherichia coli enumeration methods on observed E. coli population diversity in surface water samples. Results indicated that these methods produced similar E. coli enumeration data but were more variable in the diversity of E. coli genotypes observed. Although the three methods enumerate the same species, differences in media composition, growth platform, and incubation temperature likely contribute to the selection of different cultivable populations of E. coli, and thus caution should be used when implementing these methods interchangeably for downstream applications which require cultivated isolates.
Collapse
Affiliation(s)
- E C Martin
- Soil and Crop Sciences Department, Texas A&M University, College Station, TX, USA
| | - T J Gentry
- Soil and Crop Sciences Department, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
12
|
Derry C, Maheshwari B. Wastewater treatment by a modular, domestic-scale reedbed system for safe horticultural irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 537:243-249. [PMID: 26282758 DOI: 10.1016/j.scitotenv.2015.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 06/04/2023]
Abstract
The aim of the study was to assess the sequential treatment performance of a commercial, domestic-scale modular reedbed system intended to provide safe horticultural irrigation water. Previously only mechanical treatment systems involving forced aeration with subsequent disinfection, usually by tablet-chlorination, had been accredited in Australia. The modular design of the hybrid, subsurface-flow reedbed system offered 5 control points where monitoring and management of the treatment train could be carried out. Ten chemical parameters (chemical and biochemical oxygen demand, total organic carbon, total Kjeldahl nitrogen, ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, total nitrogen, dissolved oxygen percentage saturation and suspended solids) and 4 microbial parameters (total coliform, Escherichia coli, enterococci and Clostridium perfringens) reached satisfactory levels as a result of the treatment process. Health requirements for safe horticultural irrigation were met by the outlet of the second reedbed, providing a high level of treatment-backup capacity in terms of the remaining 2 reedbeds. This suggested that chlorination was a redundant backup precaution in treating irrigation water to the acceptable regional guideline level for all horticultural uses, including the spray irrigation of salad crops eaten raw.
Collapse
Affiliation(s)
- Chris Derry
- School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 2751, Australia.
| | - Basant Maheshwari
- School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 2751, Australia
| |
Collapse
|
13
|
Al-Juboori RA, Aravinthan V, Yusaf T. Impact of pulsed ultrasound on bacteria reduction of natural waters. ULTRASONICS SONOCHEMISTRY 2015; 27:137-147. [PMID: 26186830 DOI: 10.1016/j.ultsonch.2015.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 04/29/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
There is a limited work on the use of pulsed ultrasound for water disinfection particularly the case of natural water. Hence, pulsed ultrasound disinfection of natural water was thoroughly investigated in this study along with continuous ultrasound as a standard for comparison. Total coliform measurements were applied to evaluate treatment efficiency. Factorial design of 2(3) for the tested experimental factors such as power, treatment time and operational mode was applied. Two levels of power with 40% and 70% amplitudes, treatment time of 5 and 15 min and operational modes of continuous and pulsed with On to Off ratio (R) of 0.1:0.6 s were investigated. Results showed that increasing power and treatment time or both increases total coliform reduction, whereas switching from continuous to pulsed mode in combination with power and treatment time has negative effect on total coliform reduction. A regression model for predicting total coliform reduction under different operating conditions was developed and validated. Energy and cost analyses applying electrical and calorimetric powers were conducted to serve as selection guidelines for the choosing optimum parameters of ultrasound disinfection. The outcome of these analyses indicated that low power level, short treatment time, and high R ratios are the most effective operating parameters.
Collapse
Affiliation(s)
- Raed A Al-Juboori
- School of Civil Engineering and Surveying, Faculty of Health Engineering and Sciences, University of Southern Queensland, Toowoomba 4350, QLD, Australia.
| | - Vasantha Aravinthan
- School of Civil Engineering and Surveying, Faculty of Health Engineering and Sciences, University of Southern Queensland, Toowoomba 4350, QLD, Australia
| | - Talal Yusaf
- School of Mechanical and Electrical Engineering, Faculty of Health Engineering and Sciences, University of Southern Queensland, Toowoomba 4350, QLD, Australia
| |
Collapse
|
14
|
Bartak R, Page D, Sandhu C, Grischek T, Saini B, Mehrotra I, Jain CK, Ghosh NC. Application of risk-based assessment and management to riverbank filtration sites in India. JOURNAL OF WATER AND HEALTH 2015; 13:174-189. [PMID: 25719477 DOI: 10.2166/wh.2014.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This is the first reported study of a riverbank filtration (RBF) scheme to be assessed following the Australian Guidelines for Managed Aquifer Recharge. A comprehensive staged approach to assess the risks from 12 hazards to human health and the environment has been undertaken. Highest risks from untreated ground and Ganga River water were identified with pathogens, turbidity, iron, manganese, total dissolved solids and total hardness. Recovered water meets the guideline values for inorganic chemicals and salinity but exceeds limits for thermotolerant coliforms frequently. A quantitative microbial risk assessment undertaken on the water recovered from the aquifer indicated that the residual risks of 0.00165 disability-adjusted life years (DALYs) posed by the reference bacteria Escherichia coli O157:H7 were below the national diarrhoeal incidence of 0.027 DALYs and meet the health target in this study of 0.005 DALYs per person per year, which corresponds to the World Health Organization (WHO) regional diarrhoeal incidence in South-East Asia. Monsoon season was a major contributor to the calculated burden of disease and final DALYs were strongly dependent on RBF and disinfection pathogen removal capabilities. Finally, a water safety plan was developed with potential risk management procedures to minimize residual risks related to pathogens.
Collapse
Affiliation(s)
- Rico Bartak
- University of Applied Sciences Dresden, Division of Water Sciences, Friedrich-List-Platz 1, 01069 Dresden, Germany E-mail:
| | - Declan Page
- CSIRO Land and Water, Water for a Healthy Country National Research Flagship, Private Bag No 2, Glen Osmond, SA 5064, Australia
| | - Cornelius Sandhu
- University of Applied Sciences Dresden, Division of Water Sciences, Friedrich-List-Platz 1, 01069 Dresden, Germany E-mail:
| | - Thomas Grischek
- University of Applied Sciences Dresden, Division of Water Sciences, Friedrich-List-Platz 1, 01069 Dresden, Germany E-mail:
| | - Bharti Saini
- Pandit Deendayal Petroleum University, School of Technology, Department of Chemical Engineering, Raisan 382 007, India
| | - Indu Mehrotra
- Indian Institute of Technology Roorkee, Department of Civil Engineering, Roorkee 247667, India
| | | | | |
Collapse
|
15
|
Dasgupta S, Chavali R, Kumar Gunda NS, Mitra SK. Hollow fiber concentrator for water quality monitoring: role of surfactant based elution fluids. RSC Adv 2015. [DOI: 10.1039/c5ra09662f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Simple and efficient concentrators are indispensable to the development of portable biosensor based detection platforms for the determination of microbial contamination in water.
Collapse
Affiliation(s)
- Saumyadeb Dasgupta
- Department of Mechanical Engineering
- Lassonde School of Engineering
- York University
- Toronto
- Canada
| | - Ravi Chavali
- Department of Mechanical Engineering
- Lassonde School of Engineering
- York University
- Toronto
- Canada
| | - Naga Siva Kumar Gunda
- Department of Mechanical Engineering
- Lassonde School of Engineering
- York University
- Toronto
- Canada
| | - Sushanta K. Mitra
- Department of Mechanical Engineering
- Lassonde School of Engineering
- York University
- Toronto
- Canada
| |
Collapse
|
16
|
Lalancette C, Papineau I, Payment P, Dorner S, Servais P, Barbeau B, Di Giovanni GD, Prévost M. Changes in Escherichia coli to Cryptosporidium ratios for various fecal pollution sources and drinking water intakes. WATER RESEARCH 2014; 55:150-161. [PMID: 24607521 DOI: 10.1016/j.watres.2014.01.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
Assessing the presence of human pathogenic Cryptosporidium oocysts in surface water remains a significant water treatment and public health challenge. Most drinking water suppliers rely on fecal indicators, such as the well-established Escherichia coli (E. coli), to avoid costly Cryptosporidium assays. However, the use of E. coli has significant limitations in predicting the concentration, the removal and the transport of Cryptosporidium. This study presents a meta-analysis of E. coli to Cryptosporidium concentration paired ratios to compare their complex relationships in eight municipal wastewater sources, five agricultural fecal pollution sources and at 13 drinking water intakes (DWI) to a risk threshold based on US Environmental Protection Agency (USEPA) regulations. Ratios lower than the USEPA risk threshold suggested higher concentrations of oocysts in relation to E. coli concentrations, revealing an underestimed risk for Cryptosporidium based on E. coli measurements. In raw sewage (RS), high ratios proved E. coli (or fecal coliforms) concentrations were a conservative indicator of Cryptosporidium concentrations, which was also typically true for secondary treated wastewater (TWW). Removals of fecal indicator bacteria (FIB) and parasites were quantified in WWTPs and their differences are put forward as a plausible explanation of the sporadic ratio shift. Ratios measured from agricultural runoff surface water were typically lower than the USEPA risk threshold and within the range of risk misinterpretation. Indeed, heavy precipitation events in the agricultural watershed led to high oocyst concentrations but not to E. coli or enterococci concentrations. More importantly, ratios established in variously impacted DWI from 13 Canadian drinking water plants were found to be related to dominant fecal pollution sources, namely municipal sewage. In most cases, when DWIs were mainly influenced by municipal sewage, E. coli or fecal coliforms concentrations agreed with Cryptosporidium concentrations as estimated by the meta-analysis, but when DWIs were influenced by agricultural runoff or wildlife, there was a poor relationship. Average recovery values were available for 6 out of 22 Cryptosporidium concentration data sets and concomitant analysis demonstrated no changes in trends, with and without correction. Nevertheless, recovery assays performed along with every oocyst count would have enhanced the precision of this work. Based on our findings, the use of annual averages of E. coli concentrations as a surrogate for Cryptosporidium concentrations can result in an inaccurate estimate of the Cryptosporidium risk for agriculture impacted drinking water intakes or for intakes with more distant wastewater sources. Studies of upstream fecal pollution sources are recommended for drinking water suppliers to improve their interpretation of source water quality data.
Collapse
Affiliation(s)
- Cindy Lalancette
- Polytechnique Montréal, Département des Génies Civil, Géologique et des Mines, CP 6079, Succ. Centre-ville, Montréal, Québec, Canada H3C 3A7; Centre INRS-Institut Armand-Frappier, Institut National de Recherche Scientifique (INRS), 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| | - Isabelle Papineau
- Polytechnique Montréal, Département des Génies Civil, Géologique et des Mines, CP 6079, Succ. Centre-ville, Montréal, Québec, Canada H3C 3A7
| | - Pierre Payment
- Centre INRS-Institut Armand-Frappier, Institut National de Recherche Scientifique (INRS), 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Sarah Dorner
- Polytechnique Montréal, Département des Génies Civil, Géologique et des Mines, CP 6079, Succ. Centre-ville, Montréal, Québec, Canada H3C 3A7
| | - Pierre Servais
- Écologie des Systèmes Aquatiques, Université Libre de Bruxelles, Campus de la Plaine, CP 221, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
| | - Benoit Barbeau
- Polytechnique Montréal, Département des Génies Civil, Géologique et des Mines, CP 6079, Succ. Centre-ville, Montréal, Québec, Canada H3C 3A7
| | - George D Di Giovanni
- University of Texas-Houston School of Public Health, Center for Infectious Diseases, El Paso Regional Campus, 1101 N. Campbell CH 412, El Paso, TX 79902, United States
| | - Michèle Prévost
- Polytechnique Montréal, Département des Génies Civil, Géologique et des Mines, CP 6079, Succ. Centre-ville, Montréal, Québec, Canada H3C 3A7
| |
Collapse
|
17
|
Abramson A, Benami M, Weisbrod N. Adapting enzyme-based microbial water quality analysis to remote areas in low-income countries. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10494-10501. [PMID: 23952711 DOI: 10.1021/es402175n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Enzyme-substrate microbial water tests, originally developed for efficiency gains in laboratory settings, are potentially useful for on-site analysis in remote settings. This is especially relevant in developing countries where water quality is a pressing concern and qualified laboratories are rare. We investigated one such method, Colisure, first for sensitivity to incubation temperatures in order to explore alternative incubation techniques appropriate for remote areas, and then in a remote community of Zambia for detection of total coliforms and Escherichia coli in drinking-water samples. We sampled and analyzed 352 water samples from source, transport containers and point-of-use from 164 random households. Both internal validity (96-100%) and laboratory trials (zero false negatives or positives at incubation between 30 and 40 °C) established reliability under field conditions. We therefore recommend the use of this and other enzyme-based methods for remote applications. We also found that most water samples from wells accessing groundwater were free of E. coli whereas most samples from surface sources were fecally contaminated. We further found very low awareness among the population of the high levels of recontamination in household storage containers, suggesting the need for monitoring and treatment beyond the water source itself.
Collapse
Affiliation(s)
- Adam Abramson
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev , Sede Boqer Campus, Midreshet Ben-Gurion, 84990 Israel
| | | | | |
Collapse
|
18
|
Atherholt TB, Bousenberry RT, Carter GP, Korn LR, Louis JB, Serfes ME, Waller DA. Coliform bacteria in New Jersey domestic wells: influence of geology, laboratory, and method. GROUND WATER 2013; 51:562-574. [PMID: 23025712 DOI: 10.1111/j.1745-6584.2012.00997.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Following passage of the New Jersey Private Well Testing Act, 50,800 domestic wells were tested between 2002 and 2007 for the presence of total coliform (TC) bacteria. Wells containing TC bacteria were further tested for either fecal coliform or Escherichia coli (FC/E. coli) bacteria. Analysis of the data, generated by 39 laboratories, revealed that the rate of coliform detections in groundwater (GW) was influenced by the laboratory and the method used, and also by geology. Based on one sample per well, TC and FC/E. coli were detected in wells located in bedrock 3 and 3.7 times more frequently, respectively, than in wells located in the unconsolidated strata of the Coastal Plain. In bedrock, detection rates were higher in sedimentary rock than in igneous or metamorphic rock. Ice-age glaciers also influenced detection rates, most likely by removing material in some areas and depositing thick layers of unconsolidated material in other areas. In bedrock, coliform bacteria were detected more often in wells with a pH of 3 to 6 than in wells with a pH of 7 to 10 whereas the reverse was true in the Coastal Plain. TC and FC/E. coli bacteria were detected in 33 and 9.5%, respectively, of sedimentary rock wells with pH 3 to 6. Conversely, for Coastal Plain wells with pH 3 to 6, detection rates were 4.4% for TC and 0.6% for FC/E. coli.
Collapse
Affiliation(s)
- Thomas B Atherholt
- Office of Science (OS), New Jersey Department of Environmental Protection (NJDEP), Trenton, NJ 08625, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Luyt CD, Tandlich R, Muller WJ, Wilhelmi BS. Microbial monitoring of surface water in South Africa: an overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2669-93. [PMID: 23066390 PMCID: PMC3447580 DOI: 10.3390/ijerph9082669] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/06/2012] [Accepted: 07/12/2012] [Indexed: 11/16/2022]
Abstract
Infrastructural problems force South African households to supplement their drinking water consumption from water resources of inadequate microbial quality. Microbial water quality monitoring is currently based on the Colilert®18 system which leads to rapidly available results. Using Escherichia coli as the indicator microorganism limits the influence of environmental sources on the reported results. The current system allows for understanding of long-term trends of microbial surface water quality and the related public health risks. However, rates of false positive for the Colilert®18-derived concentrations have been reported to range from 7.4% to 36.4%. At the same time, rates of false negative results vary from 3.5% to 12.5%; and the Colilert medium has been reported to provide for cultivation of only 56.8% of relevant strains. Identification of unknown sources of faecal contamination is not currently feasible. Based on literature review, calibration of the antibiotic-resistance spectra of Escherichia coli or the bifidobacterial tracking ratio should be investigated locally for potential implementation into the existing monitoring system. The current system could be too costly to implement in certain areas of South Africa where the modified H(2)S strip test might be used as a surrogate for the Colilert®18.
Collapse
Affiliation(s)
- Catherine D. Luyt
- Environmental Health and Biotechnology Research Group, Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa;
| | - Roman Tandlich
- Environmental Health and Biotechnology Research Group, Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa;
| | - Wilhelmine J. Muller
- Unilever Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa;
| | - Brendan S. Wilhelmi
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa;
| |
Collapse
|
20
|
Hachich EM, Di Bari M, Christ APG, Lamparelli CC, Ramos SS, Sato MIZ. Comparison of thermotolerant coliforms and Escherichia coli densities in freshwater bodies. Braz J Microbiol 2012; 43:675-81. [PMID: 24031879 PMCID: PMC3768823 DOI: 10.1590/s1517-83822012000200032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/05/2011] [Accepted: 06/07/2012] [Indexed: 11/21/2022] Open
Abstract
Fecal bacterial indicator analyses have been widely used for monitoring the water quality. This study was designed to determine the ratio between the density of Escherichia coli and other Thermotolerant Coliforms (TtC) bacteria from freshwater samples collected for a two-year period of monitoring. TtC were enumerated by membrane filtration on mFC agar. E. coli enumeration was done by two methods: TtC colonies identified in mFC were inoculated in EC-MUG or water samples were filtered and inoculated in modified mTEC agar media, and both methods were compared for quantitative recovery of E. coli. The results pointed out a mean percentage of E. coli among other thermotolerant coliforms (E. coli/TtC ratio) of 84.3% in mFC media. Taking these results into account, a mandatory standard of 1000 thermotolerant coliforms would correspond to 800 E. coli and the adoption of these E. coli based standards will represent a major improvement for the monitoring of freshwater quality.
Collapse
Affiliation(s)
- Elayse M Hachich
- Companhia Ambiental do Estado de São Paulo , Sao Paulo, SP , Brasil
| | | | | | | | | | | |
Collapse
|
21
|
Halpenny CM, Koski KG, Valdés VE, Scott ME. Prediction of child health by household density and asset-based indices in impoverished indigenous villages in rural Panamá. Am J Trop Med Hyg 2012; 86:280-91. [PMID: 22302864 DOI: 10.4269/ajtmh.2012.11-0289] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chronic infection over a 16-month period and stunting of preschool children were compared between more spatially dense versus dispersed households in rural Panamá. Chronic protozoan infection was associated with higher household density, lower household wealth index, poor household water quality, yard defecation, and the practice of not washing hands with soap before eating. Models for chronic diarrhea confirmed the importance of household wealth, water quality, sanitation, and hygiene practices. Furthermore, chronic protozoan infection was an important predictor for low height-for-age, along with low household wealth index scores, but not household density. Thus, despite better access to health related infrastructure in the more densely populated households, chronic protozoan infection was more common, and was associated with higher rates of child stunting, compared with more dispersed households.
Collapse
Affiliation(s)
- Carli M Halpenny
- Institute of Parasitology and McGill School of Environment Macdonald Campus of McGill University, Ste-Anne de Bellevue, Quebec, Canada.
| | | | | | | |
Collapse
|
22
|
Chen YC, Murthy SN, Hendrickson D, Higgins MJ. Do alternate bacterial indicators and pathogens increase after centrifuge dewatering of anaerobically digested biosolids? WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2011; 83:2057-2066. [PMID: 22195428 DOI: 10.2175/106143010x12851009156763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The objectives of this research were to evaluate the potential for sudden increase and/or regrowth of alternative bacteria as either indicators or pathogens after dewatering of thermophilic and mesophilically digested biosolids. The results showed that, in general, for thermophilic processes, even when a statistically significant (p < 0.05) sudden increase and regrowth occurred for fecal coliforms, Escherichia coli, and Enterococci, it did not occur for Salmonella or Aeromonas. For the mesophilic process evaluated, sudden increase did not occur, but regrowth occurred for fecal coliforms, E. coli, Enterococci, and Salmonella. The results have implications for Class A and B biosolids regulations, as both fecal coliform and Salmonella are part of the regulatory limits. The results also suggest that the public health risks are minimal, as a result of the potential sudden increase and regrowth that may occur.
Collapse
Affiliation(s)
- Yen-Chih Chen
- Environmental Engineering, Penn State Harrisburg, Middletown, Pennsylvania, USA
| | | | | | | |
Collapse
|
23
|
Langer V, Niessner R, Seidel M. Stopped-flow microarray immunoassay for detection of viable E. coli by use of chemiluminescence flow-through microarrays. Anal Bioanal Chem 2010; 399:1041-50. [DOI: 10.1007/s00216-010-4414-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 11/27/2022]
|
24
|
Samarajeewa A, Glasauer S, Dunfield K. Evaluation of Petrifilm™ EC method for enumeration ofE. colifrom soil. Lett Appl Microbiol 2010; 50:457-61. [DOI: 10.1111/j.1472-765x.2010.02819.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Sharan R, Chhibber S, Attri S, Reed RH. Inactivation and sub-lethal injury of Escherichia coli in a copper water storage vessel: effect of inorganic and organic constituents. Antonie van Leeuwenhoek 2010; 98:103-15. [PMID: 20358286 DOI: 10.1007/s10482-010-9435-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 03/22/2010] [Indexed: 01/11/2023]
Abstract
This study provides information on the effects of inorganic and organic constituents on inactivation and sub-lethal injury of Escherichia coli in water stored in a copper vessel. E. coli suspensions were stored for up to 24 h in copper vessels containing one of the following dissolved constituents at 1 g/l: salts of inorganic ions, carbohydrates, proteins and complex natural organic mixtures. Samples were surface plated onto (i) nutrient agar, incubated under standard aerobic conditions to provide conventional counts for uninjured bacteria count and onto (ii) nutrient agar plates with 0.5 g/l sodium pyruvate incubated under anaerobic conditions to enumerate sub-lethally injured (oxygen-sensitive) bacteria alongside their healthy counterparts. The concentration of dissolved copper in the stored water was determined using atomic absorption spectrophotometry. The addition of chloride salts resulted in a faster inactivation of E. coli compared to pure water with no dissolved additives, irrespective of the counterion. In contrast, a slower inactivation was observed in the presence of Na(2)SO(4), NaNO(3) and NaNO(2) when compared to NaCl. Addition of the carbohydrates glucose, lactose and starch gave broadly similar results to those obtained using unsupplemented water. However, the addition of amino acids, proteins, humic acid or complex organic mixtures caused a dramatic decrease in inactivation of E. coli, with evidence of a greater number of sub-lethally injured bacteria than was seen with other added constituents. The amount of copper was highest in stored water containing amino acids and complex organic constituents, with the slow inactivation most likely to be due to complex formation between leached copper and these organic constituents. The present study clearly demonstrates that water composition, particularly natural organic constituents, has a substantial impact on the antibacterial effectiveness and dissolved copper concentration of water stored in copper vessels and that both aspects will need to be considered in terms of their impact on the practical use of copper-based systems for small-scale water treatment.
Collapse
Affiliation(s)
- Riti Sharan
- Centre for Plant & Water Science, CQUniversity, Brisbane, Australia
| | | | | | | |
Collapse
|
26
|
Kodaka H, Saito M, Matsuoka H. Evaluation of a new most-probable-number (MPN) dilution plate method for the enumeration of Escherichia coli in water samples. Biocontrol Sci 2009; 14:123-6. [PMID: 19785286 DOI: 10.4265/bio.14.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The purpose of this study was to evaluate the most-probable-number dilution plate (MPN plate) method developed for the enumeration of Escherichia coil in water samples. Sterilized water was inoculated with E. coli ATCC 11775 to give between 2-1600 MPN/100 ml. The MPN was determined for both the MPN plate and 5-tube methods from the MPN table. The average of the natural logarithm (In) MPN with standard deviations in 95 samples was 4.26 +/- 1.48 by the 5-tube-method and 4.18 +/- 1.45 by the MPN plate method. The correlation coefficient was 0.96. These results were not significantly different according to the paired t-test (p > 0.05).
Collapse
Affiliation(s)
- Hidemasa Kodaka
- Nissui Pharmaceutical Co. Ltd., 1075-2, Hokunanmoro, Yuki, Ibaraki 307-0036, Japan.
| | | | | |
Collapse
|
27
|
Pereira VJ, Basílio MC, Fernandes D, Domingues M, Paiva JM, Benoliel MJ, Crespo MT, San Romão MV. Occurrence of filamentous fungi and yeasts in three different drinking water sources. WATER RESEARCH 2009; 43:3813-3819. [PMID: 19560184 DOI: 10.1016/j.watres.2009.05.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 05/07/2009] [Accepted: 05/11/2009] [Indexed: 05/28/2023]
Abstract
In order to determine the occurrence of fungi in different drinking water sources and capture variability in terms of matrix composition and seasonal effects, surface water, spring water, and groundwater samples were collected in numerous sampling events. The occurrence and significance of fungi detected in the different water sources are reported and discussed in terms of colony-forming units per millilitre and by the identification of the most frequently detected isolates, at the species level, based on morphology and other phenotypic characters. All the samples were also analyzed in terms of total coliforms and Escherichia coli that are widely monitored bacteria considered as microbiology indicators of water quality. All the groundwater samples showed significantly lower levels of total coliforms, E. coli, and fungi compared to the surface and spring water samples. No significant correlations were found between the levels of fungi detected in all the matrices and the physico-chemical parameters and bacteria regularly monitored by drinking water utilities. Fifty-two fungi isolates were identified in this study, most of which have never been described to occur in water sources. The results obtained show that fungi occur widely in drinking water sources and that further studies should be conducted to address their biodegradation potential as well as if the drinking water treatment processes currently used are effective in removing these organisms and the potential secondary metabolites produced.
Collapse
Affiliation(s)
- V J Pereira
- Instituto de Biologia Experimental e Tecnológica (IBET), Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The human tongue is particularly resistant to bacterial infections although the mouth is continuously exposed to a complex and abundant ensemble of microbes, such as the common intestinal bacterium Escherichia coli. We show that lingual epithelia produce and release, as a primary E. coli-killing compound, the S100 protein psoriasin. No significant reduction in psoriasin release could be achieved through repeated rinsing of the epithelial surface of the tongue. Psoriasin is produced in the upper layers of the lingual epithelia but is lacking in the most superficial and basal cells. It displays a gradient pattern of expression with decreasing expression from the anterior one-third to the posterior portion of the tongue. Thus, psoriasin may be the key to the resistance of the human tongue toward E. coli.
Collapse
|
29
|
|
30
|
Prats J, Garcia-Armisen T, Larrea J, Servais P. Comparison of culture-based methods to enumerate Escherichia coli in tropical and temperate freshwaters. Lett Appl Microbiol 2007; 46:243-8. [DOI: 10.1111/j.1472-765x.2007.02292.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Garcia-Armisen T, Prats J, Servais P. Comparison of culturable fecal coliforms and Escherichia coli enumeration in freshwaters. Can J Microbiol 2007; 53:798-801. [PMID: 17668040 DOI: 10.1139/w07-033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fecal coliforms (FC) counts were compared with Escherichia coli counts in differently contaminated freshwater samples (n = 166). FC were enumerated by plate count on triphenyl 2,3,5-tetrazolium chloride Tergitol medium. Escherichia coli were enumerated by the most probable number microplate method based on the detection of glucuronidase activity. FC and E. coli counts were highly correlated; an average E. coli/FC ratio equal to 0.77 was found, meaning that on average, 77% of FC were E. coli. Knowing the E. coli/FC ratio allows us to convert the historical microbiological quality data expressed in FC counts into E. coli abundance and thus to compare with present and future monitoring data that are (or will be) based on E. coli enumeration.
Collapse
Affiliation(s)
- Tamara Garcia-Armisen
- Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Campus de la Plaine, C.P. 221, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
| | | | | |
Collapse
|