1
|
El-Zahed MM, Abou-Dobara MI, El-Khodary MM, Mousa MMA. Antimicrobial activity and nanoremediation of heavy metals using biosynthesized CS/GO/ZnO nanocomposite by Bacillus subtilis ATCC 6633 alone or immobilized in a macroporous cryogel. Microb Cell Fact 2024; 23:278. [PMID: 39402571 PMCID: PMC11475717 DOI: 10.1186/s12934-024-02535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The world society is still suffering greatly from waterborne infections, with developing countries bearing most of the morbidity and death burden, especially concerning young children. Moreover, microbial resistance is one of the most prevalent global problems that extends the need for self-medication and the healing period, or it may be linked to treatment failure that results in further hospitalization, higher healthcare expenses, and higher mortality rates. Thus, innovative synthesis of new antimicrobial materials is required to preserve the environment and enhance human health. RESULTS The present study highlighted a simple and cost-effective approach to biosynthesize a chitosan/graphene oxide/zinc oxide nanocomposite (CS/GO/ZnO) alone and immobilized in a macroporous cryogel as a new antimicrobial agent. Bacillus subtilis ATCC 6633 was used as a safe and efficient bio-nano-factory during biosynthesis. The formation of CS/GO/ZnO was confirmed and characterized using different analyses including ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), selective area diffraction pattern (SADP), Zeta analyses, scanning electron microscope (SEM) and transmission electron microscopy (TEM). GO combined with ZnO NPs successfully and displayed an adsorption peak at 358 nm. The XRD results showed the crystalline composition of the loaded ZnO NPs on GO sheets. FTIR spectrum confirmed the presence of proteins during the synthesis which act as stabilizing and capping agents. The nanocomposite has a high negative surface charge (-32.8 ± 5.7 mV) which increases its stability. SEM and TEM showing the size of biosynthesized ZnO-NPs was in the range of 40-50 nm. The CS/GO/ZnO alone or immobilized in cryogel revealed good antimicrobial activities against B. cereus ATCC 14,579, Escherichia coli ATCC 25,922, and Candida albicans ATCC 10,231 in a dose-dependent manner. The CS/GO/ZnO cryogel revealed higher antimicrobial activity than GO/ZnO nanocomposite and standard antibiotics (amoxicillin and miconazole) with inhibition zones averages of 24.33 ± 0.12, 15.67 ± 0.03, and 17.5 ± 0.49 mm, respectively. The MIC values of the prepared nanocomposite against B. cereus, E. coli, and C. albicans were 80, 80, and 90 µg/ml compared to standard drugs (90, 120 and 150 µg/ml, respectively). According to the TEM ultrastructure studies of nanocomposite-treated microbes, treated cells had severe deformities and morphological alterations compared to the untreated cells including cell wall distortion, the separation between the cell wall and plasma membrane, vacuoles formation moreover complete cell lyses were also noted. In the cytotoxicity test of CS/GO/ZnO alone and its cryogel, there was a significant reduction (p˂0.05) in cell viability of WI-38 normal lung cell line after the concentration of 209 and 164 µg/ml, respectively. It showed the low toxic effect of the nanocomposite and its cryogel on the WI-38 line which implies its safety. In addition, water treatment with the CS/GO/ZnO cryogel decreased turbidity (0.58 NTU), total coliform (2 CFU/100 ml), fecal coliform (1 CFU/100 ml), fecal Streptococcus (2 CFU/100 ml), and heterotrophic plate counts (53 CFU/1 ml) not only in comparison with the chlorine-treated samples (1.69 NTU, 4 CFU/100 ml, 6 CFU/100 ml, 57 CFU/100 ml, and 140 CFU/1 ml, respectively) but also with the raw water samples (6.9 NTU, 10800 CFU/100 ml, 660 CFU/100 ml, 800 CFU/100 ml, and 4400 CFU/1 ml, respectively). Moreover, cryogel significantly decreased the concentration of different heavy metals, especially cobalt compared to chlorine (0.004 ppm, 0.002 ppm, and 0.001 ppm for raw water, chlorine-treated, and cryogel-treated groups, respectively) which helped in the reduction of their toxic effects. CONCLUSION This study provides an effective, promising, safe, and alternative nanocomposite to treat different human and animal pathogenic microbes that might be used in different environmental, industrial, and medical applications.
Collapse
Affiliation(s)
- Mohamed M El-Zahed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| | - Mohamed I Abou-Dobara
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Marwa M El-Khodary
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Mohamed M A Mousa
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| |
Collapse
|
2
|
Alanazi AM, Khan NA, Khan AA, Bhutto K, Askary SH, Askary G, Abrar E, Mahmood SJ, Qureshi A. Titanium oxide and chitosan nanoparticles loaded in methylene blue activated by photodynamic therapy on caries affected dentin disinfection, bond strength, and smear layer removal efficacy. Photodiagnosis Photodyn Ther 2024; 50:104343. [PMID: 39341329 DOI: 10.1016/j.pdpdt.2024.104343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
AIM Effect of nanoparticles (NPs) loaded methylene blue (MB) mediated photodynamic therapy (PDT) on caries-affected dentin (CAD) against S.mutans, smear layer (SL) elimination, and shear bond strength (SBS) of single bottle 7th generation adhesive. METHODOLOGY Sixty human molars with carious lesions were selected. Samples were randomly allocated into four groups, based on the disinfection regime (n = 11) Group 1-(CHX), Group 2-(MB-PDT), Group 3-(MB-CNPs-PDT), and Group 4-(MB-TiO2NPs-PDT). Following disinfection S.mutans' survival rate was assessed using the pour plate method. Five specimens from each disinfection group were subjected to SL removal assessment using a scanning electron microscope (SEM). Bonding of 7th generation adhesive and composite restoration was performed on ten samples from each group. Artificial aging of the bonded samples was performed followed by SBS and failure mode analysis using a universal testing machine and stereomicroscope respectively. One-way analysis of variance (ANOVA) and Tukey post hoc test were used to analyze the data. RESULTS Group 3 (MB-CNPs-PDT) treated CAD surface unveiled the lowest survival rate (0.12 ± 0.02 CFU/mL) of tested bacteria, maximum SL removal (1.21 ± 0.35), and highest bond strength (13.42 ± 1.05). However, Group 1 (CHX) treated specimens displayed the highest survival rate (0.53 ± 0.11 CFU/mL) with the lowest SL removal (2.24 ± 0.30) and SBS (8.88 ± 0.73 MPa). CONCLUSION MB-CNPs-PDT appears to be a suitable alternative to CHX for CAD disinfection as it displayed better antibacterial efficacy, SL removal, and SBS with 7th generation single bottle adhesive.
Collapse
Affiliation(s)
- Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Nabeel Ahmad Khan
- Masters in Multidisciplinary Biomedical University of Alabama Birmingham, UK.
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Kinza Bhutto
- Department of Surgery, Aga Khan University, Pakistan.
| | - Syed Hussain Askary
- Head of Department, Community Dentistry, Fatima Jinnah Dental College, Karachi, Pakistan.
| | - Gulrukh Askary
- Head of Department, Oral Pathology, Fatima Jinnah Dental College, Pakistan.
| | - Eisha Abrar
- Department of Operative Dentistry, Dow International Dental College, Dow University of Health Sciences, Pakistan.
| | - Syed Junaid Mahmood
- PCSIR (ACRC Polymer Section), Laboratories Complex Karachi, 75280, Pakistan.
| | - Ambrina Qureshi
- Chairperson of Community Dentistry, Dow University of Health Sciences, Pakistan.
| |
Collapse
|
3
|
Sukhsangchan R, Phaksopa J, Uchuwittayakul A, Chou CC, Srisapoome P. Effects of Zinc Oxide Nanoparticles (ZnO NPs) on Growth, Immune Responses and Histopathological Alterations in Asian Seabass ( Lates calcarifer, Bloch 1790) under Low-Salinity Conditions. Animals (Basel) 2024; 14:2737. [PMID: 39335326 PMCID: PMC11428624 DOI: 10.3390/ani14182737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
In the present study, Asian seabass (Lates calcarifer, Bloch) fingerings were used as an animal model to investigate the toxicological effects of zinc oxide nanoparticles (ZnO NPs) under 5 ppt estuarine conditions. The fish were exposed to 0, 1, 5 or 50 ppm ZnO NPs for 8 weeks. It was found that ZnO NP concentrations of 5-50 ppm negatively affected several growth rate parameters, such as the weight and total length of the fish. Additionally, 5 and 50 ppm ZnO NPs led to 32.55% and 100% mortality, respectively, after 8 weeks after exposure (WAE). Furthermore, compared with the control, exposure to 1-50 ppm ZnO NPs strongly affected hematological indices, such as total blood cells, red blood cells, leukocytes and hematocrit, and suppressed lysozyme activity, superoxide anion production and bactericidal activity. High Zn concentrations accumulated in the head kidney, gills and liver, whereas low levels were detected in the gut, skin and muscle. Expression analysis of immune-related genes via quantitative real-time RT-PCR revealed that 5 and 50 ppm ZnO NPs significantly upregulated the cc and cd4 genes at 1 WAE. In contrast, 50 ppm ZnNPs downregulated the expression levels of the cd8, cc, hsp70, hsp90, tcrα, lyz and igmh genes at 1 WAE (p < 0.05). Finally, at 8 WAE, histopathological analysis revealed that 5 and 50 ppm ZnO NPs severely induced alterations in the head kidney, gills and liver.
Collapse
Affiliation(s)
- Roochira Sukhsangchan
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (R.S.); (A.U.)
- Center of Excellence in Aquatic Animal Health Management (CE-AAHM), Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Jitraporn Phaksopa
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (J.P.); (C.-C.C.)
| | - Anurak Uchuwittayakul
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (R.S.); (A.U.)
- Center of Excellence in Aquatic Animal Health Management (CE-AAHM), Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand; (R.S.); (A.U.)
- Center of Excellence in Aquatic Animal Health Management (CE-AAHM), Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
4
|
Kohzadi S, Bundschuh M, Rezaee R, Marzban N, Vahabzadeh Z, Johari SA, Shahmoradi B, Amini N, Maleki A. Integrating machine learning with experimental investigation for optimizing photocatalytic degradation of Rhodamine B using neodymium-doped titanium dioxide: a comprehensive approach with toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55301-55316. [PMID: 39225930 DOI: 10.1007/s11356-024-34843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
In this study, neodymium-doped titanium dioxide (Nd-TiO2) nanoparticles were synthesized via a hydrothermal method for the photocatalytic degradation of Rhodamine B (RhB) under UV and sunlight conditions. The properties of these NPs were comprehensively characterized. And optimization of RhB degradation was conducted using control-variable experiment and artificial neural networks (ANN) under various operational conditions and in the presence of competing compounds. The acute toxicity of both NPs, RhB, and the environmental impact of the photocatalytic treatment effluent on Danio rerio were evaluated. The Nd modification increased the catalyst's specific surface area and thermal stability. X-ray diffraction confirmed the tetragonal anatase phase in undoped TiO2, while Nd-doped TiO2 exhibited shifts in peaks and the presence of brookite and rutile phases. Nd (1 mol%) doped TiO2 demonstrated superior RhB photocatalytic degradation efficiency, achieving 95% degradation and 82% total organic carbon (TOC) removal within 60 min under UV irradiation. Optimization under sunlight conditions yielded 95.14% RhB removal with 0.28 g/L photocatalyst and 1% doping. Under UV light, 98.12% RhB removal was optimized with 0.97% doping, along with the presence of humic acid and CaCl2. ANN modeling achieved high precision (R2 of 0.99) in modeling environmental photocatalysis. Toxicity assessments indicated that the 96-h LC50 values were 681.59 mg L-1 for both NPs, and 23.02 mg L-1 for RhB. The treated dye solution exhibited a significant decline in toxicity, emphasizing the potential of 1% Nd-TiO2 in wastewater treatment.
Collapse
Affiliation(s)
- Shadi Kohzadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstraße 7, 76829, Landau, Germany
| | - Reza Rezaee
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nader Marzban
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469, Potsdam-Bornim, Germany
| | - Zakaria Vahabzadeh
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
| | - Behzad Shahmoradi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nader Amini
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Afshin Maleki
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
5
|
Fodil N, Serra D, Abdullah JAA, Domínguez-Robles J, Romero A, Abdelilah A. Comparative Effect of Antioxidant and Antibacterial Potential of Zinc Oxide Nanoparticles from Aqueous Extract of Nepeta nepetella through Different Precursor Concentrations. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2853. [PMID: 38930221 PMCID: PMC11204487 DOI: 10.3390/ma17122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Antibiotic resistance is a global health crisis caused by the overuse and misuse of antibiotics. Accordingly, bacteria have developed mechanisms to resist antibiotics. This crisis endangers public health systems and medical procedures, underscoring the urgent need for novel antimicrobial agents. This study focuses on the green synthesis of ZnO nanoparticles (NPs) using aqueous extracts from Nepeta nepetella subps. amethystine leaves and stems, employing different zinc sulfate concentrations (0.5, 1, and 2 M). NP characterization included transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD), along with Fourier transform infrared spectroscopy (FTIR) analysis. This study aimed to assess the efficacy of ZnO NPs, prepared at varying concentrations of zinc sulfate, for their capacity to inhibit both Gram-positive and Gram-negative bacteria, as well as their antioxidant potential using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. SEM and TEM results showed predominantly spherical NPs. The smallest size (18.5 ± 1.3 nm for leaves and 18.1 ± 1.3 nm for stems) occurred with the 0.5 M precursor concentration. These NPs also exhibited remarkable antibacterial activity against both Gram-positive and Gram-negative bacteria at 10 µg/mL, as well as the highest antioxidant activity, with an IC50 (the concentration of NPs that scavenge 50% of the initial DPPH radicals) of 62 ± 0.8 (µg/mL) for the leaves and 35 ± 0.6 (µg/mL) for the stems. NPs and precursor concentrations were modeled to assess their impact on bacteria using a 2D polynomial equation. Response surface plots identified optimal concentration conditions for antibacterial effectiveness against each species, promising in combating antibiotic resistance.
Collapse
Affiliation(s)
- Nouzha Fodil
- Laboratory for Sustainable Management of Natural Resources in Arid and Semi-Arid Areas, University Center of Salhi Ahmed, P.O. Box 66, Naâma 45000, Algeria;
| | - Djaaboub Serra
- Laboratory of the Valorization of Plant Resources and Food Security in Semi-Arid Areas of Southwest Algeria, Bechar 08000, Algeria;
| | - Johar Amin Ahmed Abdullah
- Department of Chemical Engineering, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (J.A.A.A.); (A.R.)
| | - Juan Domínguez-Robles
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Alberto Romero
- Department of Chemical Engineering, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (J.A.A.A.); (A.R.)
| | - Amrouche Abdelilah
- Laboratory for Sustainable Management of Natural Resources in Arid and Semi-Arid Areas, University Center of Salhi Ahmed, P.O. Box 66, Naâma 45000, Algeria;
| |
Collapse
|
6
|
Nawaz T, Gu L, Fahad S, Saud S, Bleakley B, Zhou R. Exploring Sustainable Agriculture with Nitrogen-Fixing Cyanobacteria and Nanotechnology. Molecules 2024; 29:2534. [PMID: 38893411 PMCID: PMC11173783 DOI: 10.3390/molecules29112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
The symbiotic relationship between nitrogen-fixing cyanobacteria and plants offers a promising avenue for sustainable agricultural practices and environmental remediation. This review paper explores the molecular interactions between nitrogen-fixing cyanobacteria and nanoparticles, shedding light on their potential synergies in agricultural nanotechnology. Delving into the evolutionary history and specialized adaptations of cyanobacteria, this paper highlights their pivotal role in fixing atmospheric nitrogen, which is crucial for ecosystem productivity. The review discusses the unique characteristics of metal nanoparticles and their emerging applications in agriculture, including improved nutrient delivery, stress tolerance, and disease resistance. It delves into the complex mechanisms of nanoparticle entry into plant cells, intracellular transport, and localization, uncovering the impact on root-shoot translocation and systemic distribution. Furthermore, the paper elucidates cellular responses to nanoparticle exposure, emphasizing oxidative stress, signaling pathways, and enhanced nutrient uptake. The potential of metal nanoparticles as carriers of essential nutrients and their implications for nutrient-use efficiency and crop yield are also explored. Insights into the modulation of plant stress responses, disease resistance, and phytoremediation strategies demonstrate the multifaceted benefits of nanoparticles in agriculture. Current trends, prospects, and challenges in agricultural nanotechnology are discussed, underscoring the need for responsible and safe nanoparticle utilization. By harnessing the power of nitrogen-fixing cyanobacteria and leveraging the unique attributes of nanoparticles, this review paves the way for innovative, sustainable, and efficient agricultural practices.
Collapse
Affiliation(s)
- Taufiq Nawaz
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Liping Gu
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Shah Fahad
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Shah Saud
- College of Life Science, Linyi University, Linyi 276000, China
| | - Bruce Bleakley
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Ruanbao Zhou
- Department of Biology/Microbiology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
7
|
Abd El-Hack ME, Ashour EA, Aljahdali N, Zabermawi NM, Baset SA, Kamal M, Radhi KS, Moustafa M, Algopishi U, Alshaharni MO, Bassiony SS. Does the dietary supplementation of organic nano-zinc as a growth promoter impact broiler's growth, carcass and meat quality traits, blood metabolites and cecal microbiota? Poult Sci 2024; 103:103550. [PMID: 38452576 PMCID: PMC11067737 DOI: 10.1016/j.psj.2024.103550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
The present investigation aimed to examine the impact of different dietary organic zinc nanoparticle (ZnNP) levels on gut bacteria, meat quality, growth performance, carcass traits, and blood indicators of broilers. A total of 180 unsexed one-wk broiler chicks (Cobb) were allotted to 3 experimental groups and received a basal diet supplemented with 0, 0.2, and 0.4 mg ZnNPs/Kg diet, respectively. The results showed that, after 38 d of age, the supplementary ZnNPs at a level of 0.4 mg/kg raised body weight and weight gain compared to the control and 0.2 mg ZnNPs/kg diet. The addition of ZnNPs improved the daily feed intake. Some of the carcass characteristics in ZnNPs groups excelled that of the control. ZnNPs treatments gave higher dressing % and decreased (P < 0.05) the cholesterol rates, LDL, and uric acid in the blood. In addition, it gave the best concentrations of ALT and AST. The ZnNPs groups exhibited substantially (P < 0.05) improved moisture and fat values in meat samples. The group given ZnNPs at a concentration of 0.4 mg/kg had a substantially (P < 0.05) lower count of TYMC and E. coli. In conclusion, the high level of ZnNPs (0.4 mg/kg) improved the broilers' performance and some of their carcass traits, enhancing their health and meat quality.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Elwy A Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Nesreen Aljahdali
- Department of Biological Science, College of Science, King Abdulaziz University, Jeddah 21551, Saudi Arabia
| | - Nidal M Zabermawi
- Department of Biological Sciences and Microbiology, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shahira Abdel Baset
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud Kamal
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Khadija S Radhi
- Department of Food Science and Nutrition, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Uthman Algopishi
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Mohammed O Alshaharni
- Department of Biology, College of Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Samar S Bassiony
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
8
|
Zhang J, Williams G, Jitniyom T, Singh NS, Saal A, Riordan L, Berrow M, Churm J, Banzhaf M, de Cogan F, Gao N. Wettability and Bactericidal Properties of Bioinspired ZnO Nanopillar Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7353-7363. [PMID: 38536768 PMCID: PMC11008234 DOI: 10.1021/acs.langmuir.3c03537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
Nanomaterials of zinc oxide (ZnO) exhibit antibacterial activities under ambient illumination that result in cell membrane permeability and disorganization, representing an important opportunity for health-related applications. However, the development of antibiofouling surfaces incorporating ZnO nanomaterials has remained limited. In this work, we fabricate superhydrophobic surfaces based on ZnO nanopillars. Water droplets on these superhydrophobic surfaces exhibit small contact angle hysteresis (within 2-3°) and a minimal tilting angle of 1°. Further, falling droplets bounce off when impacting the superhydrophobic ZnO surfaces with a range of Weber numbers (8-46), demonstrating that the surface facilitates a robust Cassie-Baxter wetting state. In addition, the antibiofouling efficacy of the surfaces has been established against model pathogenic Gram-positive bacteria Staphylococcus aureus (S. aureus) and Gram-negative bacteria Escherichia coli (E. coli). No viable colonies of E. coli were recoverable on the superhydrophobic surfaces of ZnO nanopillars incubated with cultured bacterial solutions for 18 h. Further, our tests demonstrate a substantial reduction in the quantity of S. aureus that attached to the superhydrophobic ZnO nanopillars. Thus, the superhydrophobic ZnO surfaces offer a viable design of antibiofouling materials that do not require additional UV illumination or antimicrobial agents.
Collapse
Affiliation(s)
- Jitao Zhang
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Georgia Williams
- School
of Biosciences, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Thanaphun Jitniyom
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Navdeep Sangeet Singh
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Alexander Saal
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Lily Riordan
- School
of Pharmacy, University of Nottingham, University
Park, Nottingham NG7 2RD, United Kingdom
| | - Madeline Berrow
- School
of Pharmacy, University of Nottingham, University
Park, Nottingham NG7 2RD, United Kingdom
| | - James Churm
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Manuel Banzhaf
- School
of Biosciences, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Felicity de Cogan
- School
of Pharmacy, University of Nottingham, University
Park, Nottingham NG7 2RD, United Kingdom
| | - Nan Gao
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| |
Collapse
|
9
|
Zuo F, Wang B, Wang L, He J, Qiu X. UV-Triggered Drug Release from Mesoporous Titanium Nanoparticles Loaded with Berberine Hydrochloride: Enhanced Antibacterial Activity. Molecules 2024; 29:1607. [PMID: 38611885 PMCID: PMC11013668 DOI: 10.3390/molecules29071607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Mesoporous titanium nanoparticles (MTN) have always been a concern and are considered to have great potential for overcoming antibiotic-resistant bacteria. In our study, MTN modified with functionalized UV-responsive ethylene imine polymer (PEI) was synthesized. The characterization of all products was performed by different analyses, including SEM, TEM, FT-IR, TGA, XRD, XPS, and N2 adsorption-desorption isotherms. The typical antibacterial drug berberine hydrochloride (BH) was encapsulated in MTN-PEI. The process exhibited a high drug loading capacity (22.71 ± 1.12%) and encapsulation rate (46.56 ± 0.52%) due to its high specific surface area of 238.43 m2/g. Moreover, UV-controlled drug release was achieved by utilizing the photocatalytic performance of MTN. The antibacterial effect of BH@MTN-PEI was investigated, which showed that it could be controlled to release BH and achieve a corresponding antibacterial effect by UV illumination for different lengths of time, with bacterial lethality reaching 37.76% after only 8 min of irradiation. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the nanoparticles have also been studied. The MIC of BH@MTN-PEI was confirmed as 1 mg/mL against Escherichia coli (E. coli), at which the growth of bacteria was completely inhibited during 24 h and the concentration of 5 mg/mL for BH@MTN-PEI was regarded as MBC against E. coli. Although this proof-of-concept study is far from a real-life application, it provides a possible route to the discovery and application of antimicrobial drugs.
Collapse
Affiliation(s)
- Fanjiao Zuo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Boyao Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Lizhi Wang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Jun He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xilong Qiu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| |
Collapse
|
10
|
Summer M, Ali S, Tahir HM, Abaidullah R, Fiaz U, Mumtaz S, Fiaz H, Hassan A, Mughal TA, Farooq MA. Mode of Action of Biogenic Silver, Zinc, Copper, Titanium and Cobalt Nanoparticles Against Antibiotics Resistant Pathogens. J Inorg Organomet Polym Mater 2024; 34:1417-1451. [DOI: 10.1007/s10904-023-02935-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 08/04/2024]
|
11
|
Shivalingam C, Gurumoorthy K, Murugan R, Ali S. Herbal-Based Green Synthesis of TB-ZnO-TiO(II) Nanoparticles Composite From Terminalia bellirica: Characterization, Toxicity Assay, Antioxidant Assay, and Antimicrobial Activity. Cureus 2024; 16:e55686. [PMID: 38586786 PMCID: PMC10997881 DOI: 10.7759/cureus.55686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Background Terminalia bellirica leaf extract was used as an herbal to get an aqueous extract of Tb-ZnO-TiO2 (zinc and titanium dioxide) nanoparticles composite, and this was subsequently subjected to an analysis of its antioxidant properties and possible antimicrobial activity against gram-negative and gram-positive bacteria. Employing the 2,2-Diphenyl-1-picrylhydrazyl and hydrogen peroxide assay techniques for antioxidant properties. In addition to their biocompatibility, rapid biodegradability, and low toxicity, herbal-based nanoparticles (Tb-ZnO-TiO2 NPs composite) synthesized by T. bellirica have drawn a lot of interest as promising options for administering drugs and effective antimicrobial applications. Materials and methods The form and dimensions of the dispersion of the synthesized nanoparticles were investigated through scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy, and UV-visible for particle characterization. Nanoparticles were analyzed for antimicrobial activity using the well diffusion method. Ascorbic acid and vitamin E were used as two separate controls for antioxidant assay with different concentrations, and also toxicity assay was done by using zebrafish embryos. Results Tb-ZnO-TiO2 NPs composite were obtained as a powder, the X-beam diffraction (XRD) result revealed a small quantity of impurities and revealed that the structure was spherical in nature. A unique absorption peak for Tb-ZnO-TiO2 NPs composite may be seen in UV-Vis spectroscopy which is in the region of 260 to 320 nm. The Tb-ZnO-TiO2 NPs composite antibacterial efficacy was evaluated and showed noted antibacterial activity and free radical scavenging activity with less toxicity. Conclusion The results demonstrated the Tb-ZnO-TiO2 NPs composite has strong antioxidant qualities and enormous antibacterial activity obtained from T. bellirica extract. Therefore, the Tb-ZnO-TiO2 NPs composite synthesized nanoparticles can be used in biomedical applications as an effective antioxidant and antibacterial reagent.
Collapse
Affiliation(s)
- Chitra Shivalingam
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Kaarthikeyan Gurumoorthy
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ramadurai Murugan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Saheb Ali
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
12
|
Tran TK, Nguyen MK, Lin C, Hoang TD, Nguyen TC, Lone AM, Khedulkar AP, Gaballah MS, Singh J, Chung WJ, Nguyen DD. Review on fate, transport, toxicity and health risk of nanoparticles in natural ecosystems: Emerging challenges in the modern age and solutions toward a sustainable environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169331. [PMID: 38103619 DOI: 10.1016/j.scitotenv.2023.169331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
In today's era, nanoparticles (NPs) have become an integral part of human life, finding extensive applications in various fields of science, pharmacy, medicine, industry, electronics, and communication. The increasing popularity of NP usage worldwide is a testament to their tremendous potential. However, the widespread deployment of NPs unavoidably leads to their release into the environmental matrices, resulting in persistence in ecosystems and bioaccumulation in organisms. Understanding the environmental behavior of NPs poses a significant challenge due to their nanoscale size. Given the current environmental releases of NPs, known negative consequences, and the limited knowledge available for risk management, comprehending the toxicity of NPs in ecosystems is both awaiting and crucial. The present review aims to unravel the potential environmental influences of nano-scaled materials, and provides in-depth inferences of the current knowledge and understanding in this field. The review comprehensively summarizes the sources, fate, transport, toxicity, health risks, and remediation solutions associated with NP pollution in aquatic and soil ecosystems. Furthermore, it addresses the knowledge gaps and outlines further investigation priorities for the sustainable control of NP pollution in these environments. By gaining a holistic understanding of these aspects, we can work toward ensuring the responsible and sustainable use of NPs in today's fast-growing world.
Collapse
Affiliation(s)
- Thien-Khanh Tran
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Viet Nam; Vietnam National University, Hanoi, VNU Town, Hoa Lac, Thach That District, Hanoi 155500, Viet Nam
| | - Thanh-Cong Nguyen
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Aasif Mohmad Lone
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Akhil Pradiprao Khedulkar
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Mohamed S Gaballah
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India
| | - W Jin Chung
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
13
|
Abdul Sattar M. Surface Activated Pyrolytic Carbon Black: A Dual Functional Sustainable Filler for Natural Rubber Composites. CHEMSUSCHEM 2024; 17:e202301001. [PMID: 37743618 DOI: 10.1002/cssc.202301001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
The significant rise in end-of-life tires (ELTs) globally poses immediate environmental and human health risks. Therefore, to promote ELTs recycling and to reduce tire industry carbon emissions, herein we present a facile approach for fine-tuning the interfacial interactions between pyrolytic carbon black (P-CB) obtained from ELTs and natural rubber (NR) matrix using phosphonium-based ionic liquid (PIL). The reinforcing effect of PIL-activated P-CB was studied by replacing the furnace-grade carbon black (N330-CB) with varying PIL and P-CB loadings. Adding PIL improved the filler dispersion and the cross-linking kinetics with a substantially reduced zinc oxide (ZnO) loading. Considering the cross-linking and viscoelastic properties, it was concluded that the composite, P-CB/N330-CB-PIL (1.5)+ZnO (1) with half substitution of N330-CB with P-CB synergistically works with 1.5 phr PIL and 1 phr of ZnO resulting in improved dynamic-mechanical properties with a minimal loss tangent value at 60 °C (tanδ=0.0689) and improved glass transition temperature (Tg =-38 °C) compared to control composite. The significant drop (~29 % lower) in tanδ could reduce fuel consumption and related CO2 emissions. We envisage that this strategy opens an essential avenue for "Green Tire Technology" towards the substantial pollution abatement from ELTs and reduces the toxic ZnO.
Collapse
Affiliation(s)
- Mohammad Abdul Sattar
- Colloid and Interface Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
- R&D Centre, MRF Limited, Chennai, 600019, India
| |
Collapse
|
14
|
Gomte SS, Jadhav PV, Jothi Prasath V R N, Agnihotri TG, Jain A. From lab to ecosystem: Understanding the ecological footprints of engineered nanoparticles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:33-73. [PMID: 38063467 DOI: 10.1080/26896583.2023.2289767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Nanotechnology has attained significant attention from researchers in past decades due to its numerous advantages, such as biocompatibility, biodegradability, and improved stability over conventional drug delivery systems. The fabrication of engineered nanoparticles (ENPs), including carbon nanotubes (CNTs), fullerenes, metallic and metal oxide-based NPs, has been steadily increasing day due to their wide range of applications from household to industrial applications. Fabricated ENPs can release different materials into the environment during their fabrication process. The effect of such materials on the environment is the primary concern with due diligence on the safety and efficacy of prepared NPs. In addition, an understanding of chemistry, reactivity, fabrication process, and viable mechanism of NPs involved in the interaction with the environment is very important. To date, only a limited number of techniques are available to assess ENPs in the natural environment which makes it difficult to ascertain the impact of ENPs in natural settings. This review extensively examines the environmental effects of ENPs and briefly discusses useful tools for determining NP size, surface charge, surface area, and external appearance. In conclusion, the review highlights the potential risks associated with ENPs and suggests possible solutions.
Collapse
Affiliation(s)
- Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Pratiksha Vasant Jadhav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Naga Jothi Prasath V R
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India
| |
Collapse
|
15
|
Jayanetti M, Thambiliyagodage C, Liyanaarachchi H, Ekanayake G, Mendis A, Usgodaarachchi L. In vitro influence of PEG functionalized ZnO-CuO nanocomposites on bacterial growth. Sci Rep 2024; 14:1293. [PMID: 38221550 PMCID: PMC10788344 DOI: 10.1038/s41598-024-52014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/12/2024] [Indexed: 01/16/2024] Open
Abstract
Polyethyleneglycol-coated biocompatible CuO-ZnO nanocomposites were fabricated hydrothermally varying Zn:Cu ratios as 1:1, 2:1, and 1:2, and their antibacterial activity was determined through the well diffusion method against the Gram-negative Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and the Gram-positive Staphylococcus aureus. The minimum inhibitory concentration and the minimum bactericidal concentration values of the synthesized samples were determined. Subsequently, the time synergy kill assay was performed to elucidate the nature of the overall inhibitory effect against the aforementioned bacterial species. The mean zone of inhibition values for all four samples are presented. The inhibitory effect increased with increasing concentration of the nanocomposite (20, 40 and 60 mg/ml) on all the bacterial species except for S. aureus. According to the MBC/MIC ratio, ZnO was found to be bacteriostatic for E. coli and P. aeruginosa, and bactericidal for S. aureus and K. pneumoniae. Zn:Cu 2:1 was bactericidal on all bacterial species. A bacteriostatic effect was observed on E. coli and P. aeruginosa in the presence of Zn:Cu 1:1 whereas, it showed a bactericidal effect on S. aureus and K. pneumoniae. Zn:Cu 1:2 exhibited a bacteriostatic effect on E. coli while a bactericidal effect was observed for E. coli, P. aeruginosa, and K. pneumoniae. The metal oxide nanocomposites were found to be more sensitive towards the Gram-positive strain than the Gram-negative strains. Further, all the nanocomposites possess anti-oxidant activity as shown by the DPPH assay.
Collapse
Affiliation(s)
- Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka
| | - Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka.
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka
| | - Geethma Ekanayake
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka
| | - Amavin Mendis
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka
| | - Leshan Usgodaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, New Kandy Road, Malabe, Sri Lanka
| |
Collapse
|
16
|
Mohtasham Moein M, Rahmati K, Saradar A, Moon J, Karakouzian M. A Critical Review Examining the Characteristics of Modified Concretes with Different Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:409. [PMID: 38255577 PMCID: PMC10817359 DOI: 10.3390/ma17020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
The movement of the construction industry towards sustainable development has drawn attention to the revision of concrete. In addition to reducing pollution, the use of nano-materials should lead to the provision of higher quality concrete in terms of regulatory items (workability, resistance characteristics, durability characteristics, microstructure). The present study investigates 15 key characteristics of concrete modified with nano-CaCO3, nano-clay, nano-TiO2, and nano-SiO2. The results of the study showed that nanomaterials significantly have a positive effect on the hydration mechanism and the production of more C-S-H gel. The evaluation of resistance characteristics also indicates the promising results of these valuable materials. The durability characteristics of nano-containing concrete showed significant improvement despite high dispersion. Concrete in coastal areas (such as bridges or platforms), concrete exposed to radiation (such as hospitals), concrete exposed to impact load (such as nuclear power plants), and concrete containing recycled aggregate (such as bricks, tiles, ceramics) can be effectively improved by using nanomaterials. It is hoped that the current review paper can provide an effective image and idea for future applied studies by other researchers.
Collapse
Affiliation(s)
| | - Komeil Rahmati
- Department of Civil Engineering, Somesara Branch, Islamic Azad University, Somesara 4361947496, Iran;
| | - Ashkan Saradar
- Department of Civil Engineering, University of Guilan, Rasht 419961377, Iran
| | - Jaeyun Moon
- Department of Mechanical Engineering, University of Nevada, 4505 S Maryland Pkwy, Las Vegas, NV 89154, USA;
| | - Moses Karakouzian
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
17
|
Li J, Wang Y, Tang M, Zhang C, Fei Y, Li M, Li M, Gui S, Guo J. New insights into nanotherapeutics for periodontitis: a triple concerto of antimicrobial activity, immunomodulation and periodontium regeneration. J Nanobiotechnology 2024; 22:19. [PMID: 38178140 PMCID: PMC10768271 DOI: 10.1186/s12951-023-02261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by the local microbiome and the host immune response, resulting in periodontal structure damage and even tooth loss. Scaling and root planning combined with antibiotics are the conventional means of nonsurgical treatment of periodontitis, but they are insufficient to fully heal periodontitis due to intractable bacterial attachment and drug resistance. Novel and effective therapeutic options in clinical drug therapy remain scarce. Nanotherapeutics achieve stable cell targeting, oral retention and smart release by great flexibility in changing the chemical composition or physical characteristics of nanoparticles. Meanwhile, the protectiveness and high surface area to volume ratio of nanoparticles enable high drug loading, ensuring a remarkable therapeutic efficacy. Currently, the combination of advanced nanoparticles and novel therapeutic strategies is the most active research area in periodontitis treatment. In this review, we first introduce the pathogenesis of periodontitis, and then summarize the state-of-the-art nanotherapeutic strategies based on the triple concerto of antibacterial activity, immunomodulation and periodontium regeneration, particularly focusing on the therapeutic mechanism and ingenious design of nanomedicines. Finally, the challenges and prospects of nano therapy for periodontitis are discussed from the perspective of current treatment problems and future development trends.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yuxiao Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Maomao Tang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Chengdong Zhang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Yachen Fei
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Meng Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Mengjie Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Shuangying Gui
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department, Hefei, 230012, Anhui, China.
| | - Jian Guo
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, Anhui, China.
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department, Hefei, 230012, Anhui, China.
| |
Collapse
|
18
|
Ouyang B, Wei D, Wu B, Yan L, Gang H, Cao Y, Chen P, Zhang T, Wang H. In the View of Electrons Transfer and Energy Conversion: The Antimicrobial Activity and Cytotoxicity of Metal-Based Nanomaterials and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303153. [PMID: 37721195 DOI: 10.1002/smll.202303153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/28/2023] [Indexed: 09/19/2023]
Abstract
The global pandemic and excessive use of antibiotics have raised concerns about environmental health, and efforts are being made to develop alternative bactericidal agents for disinfection. Metal-based nanomaterials and their derivatives have emerged as promising candidates for antibacterial agents due to their broad-spectrum antibacterial activity, environmental friendliness, and excellent biocompatibility. However, the reported antibacterial mechanisms of these materials are complex and lack a comprehensive understanding from a coherent perspective. To address this issue, a new perspective is proposed in this review to demonstrate the toxic mechanisms and antibacterial activities of metal-based nanomaterials in terms of energy conversion and electron transfer. First, the antimicrobial mechanisms of different metal-based nanomaterials are discussed, and advanced research progresses are summarized. Then, the biological intelligence applications of these materials, such as biomedical implants, stimuli-responsive electronic devices, and biological monitoring, are concluded based on trappable electrical signals from electron transfer. Finally, current improvement strategies, future challenges, and possible resolutions are outlined to provide new insights into understanding the antimicrobial behaviors of metal-based materials and offer valuable inspiration and instructional suggestions for building future intelligent environmental health.
Collapse
Affiliation(s)
- Baixue Ouyang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Dun Wei
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Gang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yiyun Cao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Peng Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Tingzheng Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
- School of Metallurgy and Environment and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South, University, Changsha, 410083, China
| |
Collapse
|
19
|
Behzadinasab S, Williams MD, Falkinham Iii JO, Ducker WA. Antimicrobial mechanism of cuprous oxide (Cu 2O) coatings. J Colloid Interface Sci 2023; 652:1867-1877. [PMID: 37688933 DOI: 10.1016/j.jcis.2023.08.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Some very effective antimicrobial coatings exploit copper or cuprous oxide (Cu2O) as the active agent. The aim of this study is to determine which species is the active antimicrobial - dissolved ions, the Cu2O solid, or reactive oxygen species. Copper ions were leached from Cu2O into various solutions and the leachate tested for both dissolved copper and the efficacy in killing Pseudomonas aeruginosa. The concentration of copper species leached from Cu2O into aqueous solution varied greatly with the composition of the aqueous solution. For a range of solution buffers, killing of P. aeruginosa was highly correlated with the concentration of copper in the leachate. Further, 10 µL bacterial suspension droplets were placed on Cu2O coatings, with or without a polymer barrier layer, and tested for bacterial kill. Killing occurred without contact between bacterium and solid, demonstrating that contact with Cu2O is not necessary. We therefore conclude that soluble copper species are the antimicrobial agent, and that the most potent species is Cu+. The solid quickly raises and sustains the concentration of soluble copper species near the bacterium. Killing via soluble copper ions rather than contact should allow copper coatings to kill bacteria even when fouled, which is an important practical consideration.
Collapse
Affiliation(s)
- Saeed Behzadinasab
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Myra D Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | | | - William A Ducker
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
20
|
Ahluwalia KK, Thakur K, Ahluwalia AS, Hashem A, Avila-Quezada GD, Abd_Allah EF, Thakur N. Assessment of Genotoxicity of Zinc Oxide Nanoparticles Using Mosquito as Test Model. TOXICS 2023; 11:887. [PMID: 37999539 PMCID: PMC10674525 DOI: 10.3390/toxics11110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
The widespread applications of ZnO NPs in the different areas of science, technology, medicine, agriculture, and commercial products have led to increased chances of their release into the environment. This created a growing public concern about the toxicological and environmental effects of the nanoparticles. The impact of these NPs on the genetic materials of living organisms is documented in some cultured cells and plants, but there are only a few studies regarding this aspect in animals. In view of this, the present work regarding the assessment of the genotoxicity of zinc oxide nanoparticles using the mosquito Culex quinquefaciatus has been taken up. Statistically significant chromosomal aberrations over the control are recorded after the exposure of the fourth instar larvae to a dose of less than LD20 for 24 h. In order to select this dose, LD20 of ZnO NPs for the mosquito is determined by Probit analysis. Lacto-aceto-orcein stained chromosomal preparations are made from gonads of adult treated and control mosquitoes. Both structural aberrations, such as chromosomal breaks, fragments, translocations, and terminal fusions, resulting in the formation of rings and clumped chromosomes, and numerical ones, including hypo- and hyper-aneuploidy at metaphases, bridges, and laggards at the anaphase stage are observed. The percentage frequency of abnormalities in the shape of sperm heads is also found to be statistically significant over the controls. Besides this, zinc oxide nanoparticles are also found to affect the reproductive potential and embryo development as egg rafts obtained from the genetic crosses of ZnO nanoparticle-treated virgin females and normal males are small in size with a far smaller number of eggs per raft. The percentage frequencies of dominant lethal mutations indicated by the frequency of unhatched eggs are also statistically significant (p < 0.05) over the control. The induction of abnormalities in all of the three short-term assays studied during the present piece of work indicates the genotoxic potential of ZnO NPs, which cannot be labeled absolutely safe, and this study pinpoints the need to develop strategies for the protection of the environment and living organisms thriving in it.
Collapse
Affiliation(s)
- Kanwaljit Kaur Ahluwalia
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Himachal Pradesh 173101, India; (K.K.A.); (K.T.)
| | - Kritika Thakur
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Himachal Pradesh 173101, India; (K.K.A.); (K.T.)
| | - Amrik Singh Ahluwalia
- Department of Botany, Akal College of Basic Sciences, Eternal University, Baru Sahib, Himachal Pradesh 173101, India;
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | | | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | - Neelam Thakur
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Himachal Pradesh 173101, India; (K.K.A.); (K.T.)
| |
Collapse
|
21
|
Homaeigohar S, Assad MA, Azari AH, Ghorbani F, Rodgers C, Dalby MJ, Zheng K, Xu R, Elbahri M, Boccaccini AR. Biosynthesis of Zinc Oxide Nanoparticles on l-Carnosine Biofunctionalized Polyacrylonitrile Nanofibers; a Biomimetic Wound Healing Material. ACS APPLIED BIO MATERIALS 2023; 6:4290-4303. [PMID: 37721636 PMCID: PMC10583230 DOI: 10.1021/acsabm.3c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
Multifunctional biohybrid nanofibers (NFs) that can simultaneously drive various cellular activities and confer antibacterial properties are considered desirable in producing advanced wound healing materials. In this study, a bionanohybrid formulation was processed as a NF wound dressing to stimulate the adhesion and proliferation of fibroblast and endothelial cells that play a major role in wound healing. Polyacrylonitrile (PAN) electrospun NFs were hydrolyzed using NaOH and biofunctionalized with l-carnosine (CAR), a dipeptide which could later biosynthesize zinc oxide (ZnO) nanoparticles (NPs) on the NFs surface. The morphological study verified that ZnO NPs are uniformly distributed on the surface of CAR/PAN NFs. Through EDX and XRD analysis, it was validated that the NPs are composed of ZnO and/or ZnO/Zn(OH)2. The presence of CAR and ZnO NPs brought about a superhydrophilicity effect and notably raised the elastic modulus and tensile strength of Zn-CAR/PAN NFs. While CAR ligands were shown to improve the viability of fibroblast (L929) and endothelial (HUVEC) cells, ZnO NPs lowered the positive impact of CAR, most likely due to their repulsive negative surface charge. A scratch assay verified that CAR/PAN NFs and Zn-CAR/PAN NFs aided HUVEC migration more than PAN NFs. Also, an antibacterial assay implied that CAR/PAN NFs and Zn-CAR/PAN NFs are significantly more effective in inhibiting Staphylococcus aureus (S. aureus) than neat PAN NFs are (1000 and 500%, respectively). Taken together, compared to the neat PAN NFs, CAR/PAN NFs with and without the biosynthesized ZnO NPs can support the cellular activities of relevance for wound healing and inactivate bacteria.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School
of Science and Engineering, University of
Dundee, Dundee DD1 4HN, U.K.
| | - Mhd Adel Assad
- Nanochemistry
and Nanoengineering, Department of Chemistry and Materials Science,
School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Amir Hossein Azari
- Nanochemistry
and Nanoengineering, Department of Chemistry and Materials Science,
School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Farnaz Ghorbani
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Chloe Rodgers
- Centre
for the Cellular Microenvironment, University
of Glasgow, Glasgow 11 6EW, U.K.
| | - Matthew J. Dalby
- Centre
for the Cellular Microenvironment, University
of Glasgow, Glasgow 11 6EW, U.K.
| | - Kai Zheng
- Jiangsu
Province Engineering Research Center of Stomatological Translational
Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Rongyao Xu
- Jiangsu
Province Engineering Research Center of Stomatological Translational
Medicine, Nanjing Medical University, Nanjing 210029, China
- Department
of Oral and Maxillofacial Surgery, Stomatological Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Mady Elbahri
- Nanochemistry
and Nanoengineering, Department of Chemistry and Materials Science,
School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| | - Aldo. R. Boccaccini
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| |
Collapse
|
22
|
Soto-Garcia LF, Guerrero-Rodriguez ID, Hoang L, Laboy-Segarra SL, Phan NTK, Villafuerte E, Lee J, Nguyen KT. Photocatalytic and Photothermal Antimicrobial Mussel-Inspired Nanocomposites for Biomedical Applications. Int J Mol Sci 2023; 24:13272. [PMID: 37686076 PMCID: PMC10488035 DOI: 10.3390/ijms241713272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Bacterial infection has traditionally been treated with antibiotics, but their overuse is leading to the development of antibiotic resistance. This may be mitigated by alternative approaches to prevent or treat bacterial infections without utilization of antibiotics. Among the alternatives is the use of photo-responsive antimicrobial nanoparticles and/or nanocomposites, which present unique properties activated by light. In this study, we explored the combined use of titanium oxide and polydopamine to create nanoparticles with photocatalytic and photothermal antibacterial properties triggered by visible or near-infrared light. Furthermore, as a proof-of-concept, these photo-responsive nanoparticles were combined with mussel-inspired catechol-modified hyaluronic acid hydrogels to form novel light-driven antibacterial nanocomposites. The materials were challenged with models of Gram-negative and Gram-positive bacteria. For visible light, the average percentage killed (PK) was 94.6 for E. coli and 92.3 for S. aureus. For near-infrared light, PK for E. coli reported 52.8 and 99.2 for S. aureus. These results confirm the exciting potential of these nanocomposites to prevent the development of antibiotic resistance and also to open the door for further studies to optimize their composition in order to increase their bactericidal efficacy for biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kytai T. Nguyen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76010, USA
| |
Collapse
|
23
|
Tan YZ, Alias NH, Aziz MHA, Jaafar J, Othman FEC, Chew JW. Progress on Improved Fouling Resistance-Nanofibrous Membrane for Membrane Distillation: A Mini-Review. MEMBRANES 2023; 13:727. [PMID: 37623788 PMCID: PMC10456459 DOI: 10.3390/membranes13080727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Nanofibrous membranes for membrane distillation (MD) have demonstrated promising results in treating various water and wastewater streams. Significant progress has been made in recent decades because of the development of sophisticated membrane materials, such as superhydrophobic, omniphobic and Janus membranes. However, fouling and wetting remain crucial issues for long-term operation. This mini-review summarizes ideas as well as their limitations in understanding the fouling in membrane distillation, comprising organic, inorganic and biofouling. This review also provides progress in developing antifouling nanofibrous membranes for membrane distillation and ongoing modifications on nanofiber membranes for improved membrane distillation performance. Lastly, challenges and future ways to develop antifouling nanofiber membranes for MD application have been systematically elaborated. The present mini-review will interest scientists and engineers searching for the progress in MD development and its solutions to the MD fouling issues.
Collapse
Affiliation(s)
- Yong Zen Tan
- School of Chemistry, Chemical and Biotechnology Engineering, Nanyang Technological University, Singapore 637459, Singapore;
| | - Nur Hashimah Alias
- School of Chemistry, Chemical and Biotechnology Engineering, Nanyang Technological University, Singapore 637459, Singapore;
- Department of Oil and Gas Engineering, School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Mohd Haiqal Abd Aziz
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub Muar, Batu Pahat 84600, Johor, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;
| | - Faten Ermala Che Othman
- Digital Manufacturing & Design Center (DManD), Singapore University of Technology & Design, 8 Somapah Road, Singapore 487372, Singapore;
| | - Jia Wei Chew
- School of Chemistry, Chemical and Biotechnology Engineering, Nanyang Technological University, Singapore 637459, Singapore;
- Singapore Membrane Technology Center, Nanyang Technological University, Singapore 637141, Singapore
| |
Collapse
|
24
|
Ma Y, Yu N, Lu H, Shi J, Zhang Y, Chen Z, Jia G. Titanium dioxide nanoparticles: revealing the mechanisms underlying hepatotoxicity and effects in the gut microbiota. Arch Toxicol 2023; 97:2051-2067. [PMID: 37344693 DOI: 10.1007/s00204-023-03536-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Numerous studies in recent years have questioned the safety of oral exposure to titanium dioxide nanoparticles (TiO2 NPs). TiO2 NPs are not only likely to accumulate in the gastrointestinal tract, but they are also found to penetrate the body circulation and reach distant organs. The liver, which is considered to be a target organ for nanoparticles, is of particular concern. TiO2 NPs accumulate in the liver and cause oxidative stress and inflammatory reactions, resulting in pathological damage. The impact of TiO2 NPs on liver aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was studied using a meta-analysis. According to the findings, TiO2 NPs exposure can cause an elevation in AST and ALT levels in the blood. Furthermore, TiO2 NPs are eliminated mostly through feces, and their lengthy residence in the gut exposes them to microbiota. The gut microbiota is also dysbiotic due to titanium dioxide's antibacterial capabilities. This further leads to changes in the amount of microbiota metabolites, which can reach the liver with blood circulation and trigger hepatotoxicity through the gut-liver axis. This review examines the gut-liver axis to assess the effects of gut microbiota dysbiosis on the liver to provide suggestions for assessing the gut-hepatotoxicity of TiO2 NPs.
Collapse
Affiliation(s)
- Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Nairui Yu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Huaye Lu
- Jiangsu Prov Ctr Dis Control and Prevent, 172 Jiangsu Rd, Nanjing, 210009, People's Republic of China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China.
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| |
Collapse
|
25
|
Rehman S, Alahmari F, Aldossary L, Alhout M, Aljameel SS, Ali SM, Sabir JSM, Khan FA, Rather IA. Nano-sized warriors: zinc chromium vanadate nanoparticles as a dual solution for eradicating waterborne enterobacteriaceae and fighting cancer. Front Pharmacol 2023; 14:1213824. [PMID: 37521476 PMCID: PMC10373886 DOI: 10.3389/fphar.2023.1213824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
The revolution of biomedical applications has opened new avenues for nanotechnology. Zinc Chromium vanadate nanoparticles (VCrZnO4 NPs) have emerged as an up-and-coming candidate, with their exceptional physical and chemical properties setting them apart. In this study, a one-pot solvothermal method was employed to synthesize VCrZnO4 NPs, followed by a comprehensive structural and morphological analysis using a variety of techniques, including X-Ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, Energy-dispersive X-ray, and X-ray photoelectron spectroscopy. These techniques confirmed the crystallinity of the NPs. The VCrZnO4 NPs were tested for their antibacterial activity against primary contaminants such as Enterobacteriaceae, including Shigella flexneri, Salmonella cholerasis, and Escherichia coli, commonly found in hospital settings, using the broth dilution technique. The results indicated a stronger antibacterial activity of VCrZnO4 NPs against Shigella and Salmonella than E. coli. Electron microscopy showed that the NPs caused severe damage to the bacterial cell wall and membrane, leading to cell death. In addition, the study evaluated the anticancer activities of the metal complexes in vitro using colorectal cancer cells (HCT-116) and cervical cancer cells (HELA), along with non-cancer cells and human embryonic kidney cells (HEK-293). A vanadium complex demonstrated efficient anticancer effects with half-inhibitory concentrations (IC50) of 38.50+3.50 g/mL for HCT-116 cells and 42.25+4.15 g/mL for HELA cells. This study highlights the potential of Zinc Chromium vanadate nanoparticles as promising candidates for antibacterial and anticancer applications. Various advanced characterization techniques were used to analyze the properties of nanomaterials, which may help develop more effective and safer antibacterial and anticancer agents in the future.
Collapse
Affiliation(s)
- Suriya Rehman
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fatimah Alahmari
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Laila Aldossary
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Department of Environmental Sciences, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Maryam Alhout
- Summer Research Program, Institute for Research and Medical Consultations (IRMC), Department of Environmental Sciences, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Suhailah S. Aljameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Syed Mehmood Ali
- Department of Biomedical Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Jamal S. M. Sabir
- Department of Biological Science, Faulty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Irfan A. Rather
- Department of Biological Science, Faulty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Yang H, Zhang J, Li Z, Huang J, Wu J, Zhang Y, Ge H, Zhao Y. Antibacterial Effect of Low-Concentration ZnO Nanoparticles on Sulfate-Reducing Bacteria under Visible Light. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2033. [PMID: 37513044 PMCID: PMC10383825 DOI: 10.3390/nano13142033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The effect of ZnO nanoparticles (ZnO NPs), with different concentrations in simulated water, on the activity of sulfate-reducing bacteria (SRB) and their adhesion behaviour on stainless-steel surfaces, with and without visible light treatment, were investigated. The results showed that the concentration of ZnO NPs and light treatment greatly influenced the antibacterial performance of the NPs. In the water solution without light treatment, the low concentration (no more than 1 mg/L) of ZnO NPs in the aqueous solution promoted the growth of SRB, and the amount of biofilm attached to the stainless-steel surface increased. As the concentration increased, ZnO NPs exhibited antibacterial effects. In water under visible light irradiation, ZnO NPs showed antibacterial performance at all the concentrations studied (0.5~50 mg/L), and the antibacterial efficiency increased with the increase in the concentration of NPs. The determination results of the reactive oxygen species showed that light treatment can stimulate ZnO NPs in water to generate ·OH and O2·-, which exhibited good antibacterial properties. The adhesion amount of SRB on the stainless-steel surface was inversely proportional to the antibacterial efficiency of ZnO NPs.
Collapse
Affiliation(s)
- Hua Yang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jialin Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhuoran Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jinrong Huang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jun Wu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yixuan Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Honghua Ge
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yuzeng Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
27
|
Kumari H, Sonia, Suman, Ranga R, Chahal S, Devi S, Sharma S, Kumar S, Kumar P, Kumar S, Kumar A, Parmar R. A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. WATER, AIR, AND SOIL POLLUTION 2023; 234:349. [PMID: 37275322 PMCID: PMC10212744 DOI: 10.1007/s11270-023-06359-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Water pollution is a global issue as a consequence of rapid industrialization and urbanization. Organic compounds which are generated from various industries produce problematic pollutants in water. Recently, metal oxide (TiO2, SnO2, CeO2, ZrO2, WO3, and ZnO)-based semiconductors have been explored as excellent photocatalysts in order to degrade organic pollutants in wastewater. However, their photocatalytic performance is limited due to their high band gap (UV range) and recombination time of photogenerated electron-hole pairs. Strategies for improving the performance of these metal oxides in the fields of photocatalysis are discussed. To improve their photocatalytic activity, researchers have investigated the concept of doping, formation of nanocomposites and core-shell nanostructures of metal oxides. Rare-earth doped metal oxides have the advantage of interacting with functional groups quickly because of the 4f empty orbitals. More precisely, in this review, in-depth procedures for synthesizing rare earth doped metal oxides and nonocomposites, their efficiency towards organic pollutants degradation and sources have been discussed. The major goal of this review article is to propose high-performing, cost-effective combined tactics with prospective benefits for future industrial applications solutions.
Collapse
Affiliation(s)
- Harita Kumari
- Present Address: Department of Physics, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| | - Sonia
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Suman
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Rohit Ranga
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Surjeet Chahal
- Materials and Nano Engineering Research Laboratory, Department of Physics, School of Physical Sciences, DIT University, Dehradun, 248009 India
| | - Seema Devi
- Department of Physics, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Sourabh Sharma
- Department of Physics, Netaji Subhas University of Technology, New Delhi, 110078 India
| | - Sandeep Kumar
- J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | - Parmod Kumar
- J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | - Suresh Kumar
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Ashok Kumar
- Present Address: Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039 Haryana India
| | - Rajesh Parmar
- Present Address: Department of Physics, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| |
Collapse
|
28
|
Wang H, Fan H, Li Y, Ge C, Yao H. Elevated CO 2 altered the nano-ZnO-induced influence on bacterial and fungal composition in tomato (Solanum lycopersicum L.) rhizosphere soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27744-1. [PMID: 37227631 DOI: 10.1007/s11356-023-27744-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
To investigate whether elevated CO2 (eCO2) changes the influence of nanoparticles (NPs) on soil microbial communities and the mechanisms, various nano-ZnO (0, 100, 300, and 500 mg·kg-1) and CO2 concentrations (400 and 800 µmol·mol-1) were applied to tomato plants (Solanum lycopersicum L.) in growth chambers. Plant growth, soil biochemical properties, and rhizosphere soil microbial community composition were analyzed. In 500 mg·kg-1 nano-ZnO-treated soils, root Zn content was 58% higher, while total dry weight (TDW) was 39.8% lower under eCO2 than under atmospheric CO2 (aCO2). Compared with the control, the interaction of eCO2 and 300 mg·kg-1 nano-ZnO decreased and increased bacterial and fungal alpha diversities, respectively, which was caused by the direct effect of nano-ZnO (r = - 1.47, p < 0.01). Specifically, the bacterial OTUs decreased from 2691 to 2494, while fungal OTUs increased from 266 to 307, when 800-300 was compared with 400-0 treatment. eCO2 enhanced the influence of nano-ZnO on bacterial community structure, while only eCO2 significantly shaped fungal composition. In detail, nano-ZnO explained 32.4% of the bacterial variations, while the interaction of CO2 and nano-ZnO explained 47.9%. Betaproteobacteria, which are involved in C, N, and S cycling, and r-strategists, such as Alpha- and Gammaproteobacteria and Bacteroidetes, significantly decreased under 300 mg·kg-1 nano-ZnO, confirming reduced root secretions. In contrast, Alpha- and Gammaproteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria were enriched in 300 mg·kg-1 nano-ZnO under eCO2, suggesting greater adaptation to both nano-ZnO and eCO2. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) analysis demonstrated that bacterial functionality was unchanged under short-term nano-ZnO and eCO2 exposure. In conclusion, nano-ZnO significantly affected microbial diversities and the bacterial composition, and eCO2 intensified the damage of nano-ZnO, while the bacterial functionality was not changed in this study.
Collapse
Affiliation(s)
- Hehua Wang
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Haoxin Fan
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- Ningbo Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China.
| |
Collapse
|
29
|
Sattar MA, Patnaik A. Phosphonium Ionic Liquid-Activated Sulfur Vulcanization: A Way Forward to Reduce Zinc Oxide Levels in Industrial Rubber Formulations. CHEMSUSCHEM 2023; 16:e202202309. [PMID: 36756929 DOI: 10.1002/cssc.202202309] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 05/20/2023]
Abstract
Extensive use of zinc oxide and accelerators such as diphenyl guanidine (DPG) in the vulcanization of rubber composites entail potential environmental risks. These are pervasive contaminants of roadway runoff originating from tire wear particles (TWPs). Herein, the effect of phosphonium ionic liquids (PILs) in styrene-butadiene rubber compounds was demonstrated with reduced ZnO loading and no DPG to minimize the environmental footprint of the vulcanization process. The structure and chemistry of PILs were found to be the influencing parameters impelling the cross-linking kinetics, enabling shorter induction times. The generation of active Zn2+ sites by PILs was examined through FTIR spectroscopy, calorimetry, and molecular dynamics simulations. From a tire application perspective, the PILs not only enhanced the cure kinetics but also improved the dynamic-mechanical behavior of the rubber composites. Consequently, the harm caused by TWPs to the atmosphere, fuel intake, and CO2 emissions was minimal, thereby confirming the potential use of PILs in the tire industry.
Collapse
Affiliation(s)
- Mohammad Abdul Sattar
- Colloid and Interface Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
- R&D Centre, MRF Limited, Chennai, 600019, India
| | - Archita Patnaik
- Colloid and Interface Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
30
|
Natsathaporn P, Herwig G, Altenried S, Ren Q, Rossi RM, Crespy D, Itel F. Functional Fiber Membranes with Antibacterial Properties for Face Masks. ADVANCED FIBER MATERIALS 2023; 5:1-15. [PMID: 37361107 PMCID: PMC10189208 DOI: 10.1007/s42765-023-00291-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/09/2023] [Indexed: 06/28/2023]
Abstract
Reusable face masks are an important alternative for minimizing costs of disposable and surgical face masks during pandemics. Often complementary to washing, a prolonged lifetime of face masks relies on the incorporation of self-cleaning materials. The development of self-cleaning face mask materials requires the presence of a durable catalyst to deactivate contaminants and microbes after long-term use without reducing filtration efficiency. Herein, we generate self-cleaning fibers by functionalizing silicone-based (polydimethylsiloxane, PDMS) fibrous membranes with a photocatalyst. Coaxial electrospinning is performed to fabricate fibers with a non-crosslinked silicone core within a supporting shell scaffold, followed by thermal crosslinking and removal of the water-soluble shell. Photocatalytic zinc oxide nanoparticles (ZnO NPs) are immobilized on the PDMS fibers by colloid-electrospinning or post-functionalization procedures. The fibers functionalized with ZnO NPs can degrade a photo-sensitive dye and display antibacterial properties against Gram-positive and Gram-negative bacteria (Escherichia coli and Staphylococcus aureus) due to the generation of reactive oxygen species upon irradiation with UV light. Furthermore, a single layer of functionalized fibrous membrane shows an air permeability in the range of 80-180 L/m2s and 65% filtration efficiency against fine particulate matter with a diameter less than 1.0 µm (PM1.0). Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00291-7.
Collapse
Affiliation(s)
- Papada Natsathaporn
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210 Thailand
| | - Gordon Herwig
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Stefanie Altenried
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - René M. Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210 Thailand
| | - Fabian Itel
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
31
|
Copling A, Akantibila M, Kumaresan R, Fleischer G, Cortes D, Tripathi RS, Carabetta VJ, Vega SL. Recent Advances in Antimicrobial Peptide Hydrogels. Int J Mol Sci 2023; 24:7563. [PMID: 37108725 PMCID: PMC10139150 DOI: 10.3390/ijms24087563] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Advances in the number and type of available biomaterials have improved medical devices such as catheters, stents, pacemakers, prosthetic joints, and orthopedic devices. The introduction of a foreign material into the body comes with a risk of microbial colonization and subsequent infection. Infections of surgically implanted devices often lead to device failure, which leads to increased patient morbidity and mortality. The overuse and improper use of antimicrobials has led to an alarming rise and spread of drug-resistant infections. To overcome the problem of drug-resistant infections, novel antimicrobial biomaterials are increasingly being researched and developed. Hydrogels are a class of 3D biomaterials consisting of a hydrated polymer network with tunable functionality. As hydrogels are customizable, many different antimicrobial agents, such as inorganic molecules, metals, and antibiotics have been incorporated or tethered to them. Due to the increased prevalence of antibiotic resistance, antimicrobial peptides (AMPs) are being increasingly explored as alternative agents. AMP-tethered hydrogels are being increasingly examined for antimicrobial properties and practical applications, such as wound-healing. Here, we provide a recent update, from the last 5 years of innovations and discoveries made in the development of photopolymerizable, self-assembling, and AMP-releasing hydrogels.
Collapse
Affiliation(s)
- Aryanna Copling
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA;
| | - Maxwell Akantibila
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Raaha Kumaresan
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
| | - Gilbert Fleischer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Dennise Cortes
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Rahul S. Tripathi
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Sebastián L. Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
- Department of Orthopedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
32
|
Qian X, Xiong S, Rao Y, Low ZX, Zhong Z, Wang Y. Atomic layer deposition of ZnO on polypropylene nonwovens for photocatalytic antibacterial facemasks. NANOTECHNOLOGY 2023; 34:255701. [PMID: 36958026 DOI: 10.1088/1361-6528/acc6d6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
Addressing respiratory infectious diseases remains one of the main priorities due to the increased risk of exposure caused by population growth, increasing international travel and commerce, and most recently, the COVID-19 outbreak. In the war against respiratory diseases, facemasks are powerful tools to obstruct the penetration of microorganisms, thereby protecting the wearer from infections. Nonetheless, the intercepted microorganisms on the surface of facemasks may proliferate and lead to secondary infection. To solve this problem, atomic layer deposition is introduced to deposit uniform and mechanically robust ZnO layers on polypropylene (PP) nonwoven fabrics, a widely used raw material in fabricating facemasks. The loading of ZnO demonstrates no adverse effects on the separation performance of facemasks, and the filtration efficiency of the facemasks towards different types of nanoparticles remains higher than 98.9%. Moreover, the modified PP nonwoven fabrics are granted with excellent antibacterial activity and photocatalytic sterilization ability, which can inactivate both germ-negative and germ-positive bacteria (E. coliandS. aureus) effectively with and without light illumination. Therefore, the modified PP nonwoven fabrics are potential candidates to be used as the outer layer on facemasks and endow them with photocatalytic antibacterial activity.
Collapse
Affiliation(s)
- Xiaofeng Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, People's Republic of China
| | - Sen Xiong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, People's Republic of China
| | - Yuanyuan Rao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, People's Republic of China
| | - Ze-Xian Low
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, People's Republic of China
| | - Zhaoxiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, People's Republic of China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, People's Republic of China
| |
Collapse
|
33
|
Cevik P, Akca G, Asar NV, Avci E, Kiat-Amnuay S, Yilmaz B. Antimicrobial effects of nano titanium dioxide and disinfectants on maxillofacial silicones. J Prosthet Dent 2023:S0022-3913(23)00135-X. [PMID: 37012133 DOI: 10.1016/j.prosdent.2023.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
STATEMENT OF PROBLEM Deficient hygiene of maxillofacial prostheses can be a source of infection, and various disinfectants, including nano-oxides, have been suggested for the disinfection of silicone prostheses. While maxillofacial silicones involving nano-oxides at different sizes and concentrations have been evaluated in terms of their mechanical and physical properties, reports are lacking on the antimicrobial effect of nano titanium dioxide (TiO2) incorporated into maxillofacial silicones contaminated by different biofilms. PURPOSE The purpose of this in vitro study was to evaluate the antimicrobial effects of 6 different disinfectants and nano TiO2 incorporation into maxillofacial silicone contaminated with Staphylococcus aureus, Escherichia coli, and Candida albicans biofilms. MATERIAL AND METHODS A total of 258 silicone specimens (129 pure silicones and 129 nano TiO2-incorporated silicones) were fabricated. Specimens in each silicone group (with or without nano TiO2) were divided into 7 disinfectant groups (control, 0.2% chlorhexidine gluconate, 4% chlorhexidine gluconate, 1% sodium hypochlorite, neutral soap, 100% white vinegar, and effervescent) in each biofilm group. Contaminated specimens were disinfected, and the suspension of each specimen was incubated at 37 °C for 24 hours. Proliferated colonies were recorded in colony-forming units per mL (CFU/mL). The differences in microbial levels among specimens were evaluated to test the effect of the type of silicone and the disinfectant (α=.05). RESULTS Significant difference was found among disinfectants regardless of the silicone type (P<.05). Nano TiO2 incorporation showed an antimicrobial effect on S aureus, E coli, and C albicans biofilms. Nano TiO2 incorporated silicone cleaned with 4% chlorhexidine gluconate had statistically less C albicans than pure silicone. Using white vinegar or 4% chlorhexidine gluconate led to no E coli on either silicone. Nano TiO2 incorporated silicone cleaned with effervescent had fewer S aureus or C albicans biofilms. CONCLUSIONS The tested disinfectants and nano TiO2 incorporation into silicone were effective against most of the microorganisms used in this study.
Collapse
Affiliation(s)
- Pinar Cevik
- Associate Professor, Department of Prosthodontics, Faculty of Dentistry, Gazi University, Ankara, Turkey; and Research Scholar, Department of General Practice and Dental Public Health, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas.
| | - Gulcin Akca
- Professor, Department of Medical Microbiology, Faculty of Dentistry, Division of Basic Sciences, Gazi University, Ankara, Turkey
| | - Neset Volkan Asar
- Professor, Department of Prosthodontics, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Emine Avci
- Epidemiologist, General Directorate of Public Health, Turkish Ministry of Health, Turkey
| | - Sudarat Kiat-Amnuay
- Professor and Section Head, Department of General Practice and Dental Public Health, Houston Center for Biomaterials and Biomimetics, The University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas
| | - Burak Yilmaz
- Associate Professor, Department of Reconstructive Dentistry and Gerodontology, and Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland; and Adjunct Professor, Division of Restorative and Prosthetic Dentistry, The Ohio State University College of Dentistry, Columbus, Ohio
| |
Collapse
|
34
|
Sherif AH, Kassab AS. Multidrug-resistant Aeromonas bacteria prevalence in Nile tilapia broodstock. BMC Microbiol 2023; 23:80. [PMID: 36959570 PMCID: PMC10037768 DOI: 10.1186/s12866-023-02827-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Aeromonas hydrophila is an opportunistic pathogen. Thus, it has received significant attention mainly in the fish sectors with high production scales. Nile tilapia broodstock confined in the environment of fish hatcheries can be stressed. Hence, they are vulnerable to A. hydrophila. RESULTS Sequencing of the gyr B gene revealed the presence of 18 different A. hydrophila strains (kdy 10,620-10,637), which were deposited in the NCBI under accession numbers ON745861-ON745878. The median lethal doses of the isolates ranged from 2.62 × 104 to 3.02 × 106 CFU/mL. Antibiotic resistant genes, sulfonamide (sul1) and tetracycline (tetA) were found in the eighteen isolates. Approximately 83.3% of A. hydrophila strains were sensitive to ciprofloxacin and florfenicol. Further, eight A. hydrophila strains had high MDR indices at 0.27-0.45. All isolates presented with hemolysin activity. However, only 72.22% of them had proteolytic activity, and only 61.11% could form biofilms. Bacterial isolates harbored different pattern virulence genes, the heat-stable cytotonic enterotoxin (ast), cytotoxic enterotoxin (act), and hemolysin (hly) genes were the most prevalent. Also, a trial to inhibit bacterial growth was conducted using titanium dioxide nanoparticles (TiO2 NPs) with three sizes (13, 32, and 123 nm). If A. hydrophila strains with a high MDR index were tested against TiO2 NPs (20 µg/mL) for 1, 12, and 24 h, those with a small size had a greater bactericidal action than large ones. Bacterial strains were inhibited at different percentages in response to TiO2 NP treatment. CONCLUSIONS Nile tilapia broodstock, mortality is associated with different A. hydrophila strains, which harbored virulent and MDR genes. Furthermore, TiO2 NPs had bactericidal activity, thereby resulting in a considerable reduction in bacterial load.
Collapse
Affiliation(s)
- Ahmed H Sherif
- Fish Disease Department, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Kafrelsheikh, Egypt.
| | - Amina S Kassab
- Fish Disease Department, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Kafrelsheikh, Egypt
| |
Collapse
|
35
|
Yang S, Yin R, Wang C, Yang Y, Wang J. Phytotoxicity of zinc oxide nanoparticles and multi-walled carbon nanotubes, alone or in combination, on Arabidopsis thaliana and their mutual effects on oxidative homeostasis. PLoS One 2023; 18:e0281756. [PMID: 36791126 PMCID: PMC9931106 DOI: 10.1371/journal.pone.0281756] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
The extensive use of engineered nanoparticles (ENPs) has raised concerns about their potentially harmful effects on the ecosystem. Despite previous reports of a variety of individual ENPs, the mutual effects of ENPs when used in combination were not well understood. In this study, we first investigated the effects of different sizes and concentrations of ZnO nanoparticles (ZnO NPs) or multi-walled carbon nanotubes (MWCNTs) on the growth performance of Arabidopsis thaliana seedlings. Then, two concentrations of ZnO NP (40 and 50 mg/L) with a diameter of 90 nm and MWCNTs (100 and 500 mg/L) with an outer diameter of 40-60 nm were used to evaluate their respective or simultaneous phytotoxicity to Arabidopsis. The results showed that seedlings exposed to either ZnO NPs or MWCNTs exhibited significant phytotoxic symptoms. ZnO NPs caused stronger inhibitory effects than MWCNTs on several plant growth indices, including reduced root length, chlorophyll content, and increased ROS concentration. When applied together, the concurrent effects of ZnO NPs and MWCNTs on Arabidopsis seedlings appeared to be more negative, as evidenced not only by the further deterioration of several growth indices but also by their synergistic or additive regulation of the activities of several antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR). Moreover, qRT-PCR analysis revealed that in the presence of ZnO NPs and MWCNTs, the expression of genes important for maintaining cellular ROS homeostasis was differentially regulated in shoots and roots of Arabidopsis seedlings. Overall, our data may provide new insights into how plants respond to more than one type of nanomaterial and help us better understand the associated environmental risks.
Collapse
Affiliation(s)
- Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Tianjin, China
| | - Rong Yin
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Tianjin, China
| | - Chen Wang
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Tianjin, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Tianjin, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Tianjin, China
- * E-mail:
| |
Collapse
|
36
|
Siddique T, Gangadoo S, Quang Pham D, Dutta NK, Choudhury NR. Antifouling and Antimicrobial Study of Nanostructured Mixed-Matrix Membranes for Arsenic Filtration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040738. [PMID: 36839105 PMCID: PMC9964044 DOI: 10.3390/nano13040738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 05/08/2023]
Abstract
Membrane fouling is a major drawback in the membrane filtration industry for water treatment. Mixed-matrix membranes (MMMs) are well known for their enhanced antifouling and antibacterial properties, which could offer potential benefits for membrane filtration processes in the water treatment field. In this work, three electrospun nanofibrous MMMs (P, CP, and MCP, which were, respectively, the pristine polysulfone membrane and mixed-matrix membranes (MMMs) consisting of GO-ZnO and GO-ZnO-iron oxides) were studied for antifouling and antibacterial properties with respect to the arsenic nanofiltration process. The effects of these composites on the antifouling behaviour of the membranes were studied by characterising the bovine serum albumin (BSA) protein adsorption on the membranes and subsequent analysis using microscopic (morphology via scanning electron microscopy) and Brunauer-Emmett-Teller (BET) analyses. The antibacterial properties of these membranes were also studied against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). The composite nanoparticle-incorporated membranes showed improved antifouling properties in comparison with the pristine polysulfone (PSF) membrane. The excellent antimicrobial properties of these membranes make them appropriate candidates to contribute to or overcome biofouling issues in water or wastewater treatment applications.
Collapse
Affiliation(s)
- Tawsif Siddique
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Sheeana Gangadoo
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Duy Quang Pham
- College of Medicine and Public Health, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| | - Naba K. Dutta
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Correspondence: (N.K.D.); (N.R.C.)
| | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Correspondence: (N.K.D.); (N.R.C.)
| |
Collapse
|
37
|
Alallam B, Doolaanea AA, Alfatama M, Lim V. Phytofabrication and Characterisation of Zinc Oxide Nanoparticles Using Pure Curcumin. Pharmaceuticals (Basel) 2023; 16:269. [PMID: 37259414 PMCID: PMC9960272 DOI: 10.3390/ph16020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/29/2023] [Indexed: 09/02/2023] Open
Abstract
Zinc oxide and curcumin, on their own and in combination, have the potential as alternatives to conventional anticancer drugs. In this work, zinc oxide nanoparticles (ZnO NPs) were prepared by an eco-friendly method using pure curcumin, and their physicochemical properties were characterised. ATR-FTIR spectra confirmed the role of curcumin in synthesising zinc oxide curcumin nanoparticles (Green-ZnO-NPs). These nanoparticles exhibited a hexagonal wurtzite structure with a size and zeta potential of 27.61 ± 5.18 nm and -16.90 ± 0.26 mV, respectively. Green-ZnO-NPs showed good activity towards studied bacterial strains, including Escherichia coli, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. The minimum inhibitory concentration of Green-ZnO-NPs was consistently larger than that of chemically synthesised ZnO NPs (Std-ZnO-NPs) or mere curcumin, advocating an additive effect between the zinc oxide and curcumin. Green-ZnO-NPs demonstrated an efficient inhibitory effect towards MCF-7 cells with IC50 (20.53 ± 5.12 μg/mL) that was significantly lower compared to that of Std-ZnO-NPs (27.08 ± 0.91 μg/mL) after 48 h of treatment. When Green-ZnO-NPs were tested against Artemia larvae, a minimised cytotoxic effect was observed, with LC50 being almost three times lower compared to that of Std-ZnO-NPs (11.96 ± 1.89 μg/mL and 34.60 ± 9.45 μg/mL, respectively). This demonstrates that Green-ZnO-NPs can be a potent, additively enhanced combination delivery/therapeutic agent with the potential for anticancer therapy.
Collapse
Affiliation(s)
- Batoul Alallam
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kolej Universiti Antarabangsa Maiwp, Taman Batu Muda, Batu Caves, Kuala Lumpur 68100, Selangor, Malaysia
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia
| |
Collapse
|
38
|
Pattnaik A, Sahu J, Poonia AK, Ghosh P. Current perspective of nano-engineered metal oxide based photocatalysts in advanced oxidation processes for degradation of organic pollutants in wastewater. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Feng JR, Deng QX, Han SK, Ni HG. Use of nanoparticle-coated bacteria for the bioremediation of organic pollution: A mini review. CHEMOSPHERE 2023; 313:137391. [PMID: 36457267 DOI: 10.1016/j.chemosphere.2022.137391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Nanoparticle (NP)-coated (immobilized) bacteria are an effective method for treating environmental pollution due to their multifarious benefits. This review collates a vast amount of existing literature on organic pollution treatment using NP-coated bacteria. We discuss the features of bacteria, NPs, and decoration techniques of NP-bacteria assemblies, with special attention given to the surface modification of NPs and connection mechanisms between NPs and cells. Furthermore, the performance of NP-coated bacteria was examined. We summarize the factors that affect bioremediation efficiency using coated bacteria, including pH, temperature, and agitation, and the possible mechanisms involving them are proposed. From future perspectives, suitable surface modification of NPs and wide application in real practice will make the NP-coated bacterial technology a viable treatment strategy.
Collapse
Affiliation(s)
- Jin-Ru Feng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qing-Xin Deng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Shang-Kun Han
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
40
|
Biswas P, Polash SA, Dey D, Kaium MA, Mahmud AR, Yasmin F, Baral SK, Islam MA, Rahaman TI, Abdullah A, Ema TI, Khan DA, Bibi S, Chopra H, Kamel M, Najda A, Fouda MMA, Rehan UM, Mheidat M, Alsaidalani R, Abdel-Daim MM, Hasan MN. Advanced implications of nanotechnology in disease control and environmental perspectives. Biomed Pharmacother 2023; 158:114172. [PMID: 36916399 DOI: 10.1016/j.biopha.2022.114172] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nanotechnology encompasses a wide range of devices derived from biology, engineering, chemistry, and physics, and this scientific field is composed of great collaboration among researchers from several fields. It has diverse implications notably smart sensing technologies, effective disease diagnosis, and sometimes used in treatment. In medical science, the implications of nanotechnology include the development of elements and devices that interact with the body at subcellular (i.e., molecular) levels exhibiting high sensitivity and specificity. There is a plethora of new chances for medical science and disease treatment to be discovered and exploited in the rapidly developing field of nanotechnology. In different sectors, nanomaterials are used just because of their special characteristics. Their large surface area of them enables higher reactivity with greater efficiency. Furthermore, special surface chemistry is displayed by nanomaterials which compare to conventional materials and facilitate the nanomaterials to decrease pollutants efficiently. Recently, nanomaterials are used in some countries to reduce the levels of contaminants in water, air, and soil. Moreover, nanomaterials are used in the cosmetics and medical industry, and it develops the drug discovery (DD) system. Among a huge number of nanomaterials, Cu, Ag, TiO2, ZnO, Fe3O4, and carbon nanotubes (CNTs) are extensively used in different industries for various purposes. This extensive review study has introduced the major scientific and technical features of nanotechnology, as well as some possible clinical applications and positive feedback in environmental waste management and drug delivery systems.
Collapse
Affiliation(s)
- Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | | | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
| | - Md Abu Kaium
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University (MBSTU), Tangail 1902, Bangladesh
| | - Farhana Yasmin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sumit Kumar Baral
- Microbiology department, Jagannath University, Dhaka 1100, Bangladesh
| | - Md Aminul Islam
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Asif Abdullah
- Department of Biomedical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tanzila Ismail Ema
- North South University, Department of Biochemistry and Microbiology, Dhaka 1229, Bangladesh
| | - Dhrubo Ahmed Khan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Shabana Bibi
- Department of Bioscience, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China.
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50 A Doświadczalna Street, 20-280 Lublin, Poland; Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Maged M A Fouda
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - UmmeSalma M Rehan
- Department of Surgery, Medicine Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mayyadah Mheidat
- Medicine Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Rawidh Alsaidalani
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
41
|
Mechanistic Approaches to the Application of Nano-Zinc in the Poultry and Biomedical Industries: A Comprehensive Review of Future Perspectives and Challenges. Molecules 2023; 28:molecules28031064. [PMID: 36770731 PMCID: PMC9921179 DOI: 10.3390/molecules28031064] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Bio-fortification is a new, viable, cost-effective, and long-term method of administering crucial minerals to a populace with limited exposure to diversified foods and other nutritional regimens. Nanotechnology entities aid in the improvement of traditional nutraceutical absorption, digestibility, and bio-availability. Nano-applications are employed in poultry systems utilizing readily accessible instruments and processes that have no negative impact on animal health and welfare. Nanotechnology is a sophisticated innovation in the realm of biomedical engineering that is used to diagnose and cure various poultry ailments. In the 21st century, zinc nanoparticles had received a lot of considerable interest due to their unusual features. ZnO NPs exhibit antibacterial properties; however, the qualities of nanoparticles (NPs) vary with their size and structure, rendering them adaptable to diverse uses. ZnO NPs have shown remarkable promise in bio-imaging and drug delivery due to their high bio-compatibility. The green synthesized nanoparticles have robust biological activities and are used in a variety of biological applications across industries. The current review also discusses the formulation and recent advancements of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their anti-cancerous activities, activities in wound healing, and drug delivery, followed by a detailed discussion of their mechanisms of action.
Collapse
|
42
|
Bai L, Ding A, Li G, Liang H. Application of cellulose nanocrystals in water treatment membranes: A review. CHEMOSPHERE 2022; 308:136426. [PMID: 36113655 DOI: 10.1016/j.chemosphere.2022.136426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Nanomaterials have brought great changes to human society, and development has gradually shifted the focus to environmentally friendly applications. Cellulose nanocrystals (CNCs) are new one-dimensional nanomaterials that exhibit environmental friendliness and ensure the biological safety of water environment. CNCs have excellent physical and chemical properties, such as simple preparation process, nanoscale size, high specific surface area, high mechanical strength, good biocompatibility, high hydrophilicity and antifouling ability. Because of these characteristics, CNCs are widely used in ultrafiltration membranes, nanofiltration membranes and reverse osmosis membranes to solve the problems hindering development of membrane technology, such as insufficient interception and separation efficiency, low mechanical strength and poor antifouling performance. This review summarizes recent developments and uses of CNCs in water treatment membranes and discusses the challenges and development prospects of CNCs materials from the perspectives of ecological safety and human health by comparing them with traditional one-dimensional nanomaterials.
Collapse
Affiliation(s)
- Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Aiming Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
43
|
Tincu A, Shelemanov AA, Evstropiev SK, Nikonorov NV, Dukelskii KV. Controlled Chemical Transformation and Crystallization Design for the Formation of Multifunctional Cu-Doped ZnO/ZnAl2O4 Composites. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Ramadan T, Sayed SA, Abd-elaal AK, Amro AM. Re-translocation of photoassimilates by Nano-TiO2 spraying in favor of osmotic adjustment in water-stressed sunflower.. [DOI: 10.21203/rs.3.rs-2135004/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Background
Water deficit is one of the main environmental stresses that modifies the biomass allocation patterns between shoots and roots. Any attempt to improve the water status of plants, especially in regions of water scarcity, will be significantly important. In this study, the effect of foliar application of nanoparticles or ordinary TiO2 on water status of Helianthus annuus subjected to water deficit stress was evaluated.
Results
The water content of H. annuus shoots or roots didn’t change significantly by spraying with different concentrations of Nano- or Ord-TiO2. The dry mass (DM), relative dry mass (RDM) and root / shoot ratio of sunflower sprayed with Nano-TiO2, when averaged across all concentrations, mostly didn’t differ significantly from those sprayed with Ord-TiO2. In roots, the DM and RDM were decreased with increasing concentration of Ord-TiO2 but unchanged significantly by spraying with Nano-TiO2. Under all levels of water availability, total osmotic potential (ψs) and osmotic potential contributed by organic substances (ψorganic) didn’t change significantly by Ord-TiO2. Nano-TiO2 doesn't have any effect on the shoot or root dry mass and osmotic potential contributed by electrolytes (ψelect). Low concentrations of Nano-TiO2 significantly decreased relative water content (RWC) and ψs due to decreasing ψorganic. The ψs and ψelect of the root sap of sunflower were greatly lower than that of leaf sap. The soluble sugars partitioning and re-translocation was mainly in the priority of osmotic adjustment of the roots as a functional equilibrium under water deficit stress.
Conclusion
The foliar application of Nano-TiO2 didn’t significantly improve the sunflower water status built up by the shortage in water supply, and the quite small effect was via re-translocation of electrolytes and organic substances from shoots to roots.
Collapse
|
45
|
Sun Z, Khlusov IA, Evdokimov KE, Konishchev ME, Kuzmin OS, Khaziakhmatova OG, Malashchenko VV, Litvinova LS, Rutkowski S, Frueh J, Kozelskaya AI, Tverdokhlebov SI. Nitrogen-doped titanium dioxide films fabricated via magnetron sputtering for vascular stent biocompatibility improvement. J Colloid Interface Sci 2022; 626:101-112. [DOI: 10.1016/j.jcis.2022.06.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 10/31/2022]
|
46
|
Yan J, Hua F, Cao L, Yang H, He H. Multifunctional modification of orthodontic adhesives with ZnO quantum dots. Dent Mater 2022; 38:1728-1741. [PMID: 36137833 DOI: 10.1016/j.dental.2022.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To develop a multifunctional orthodontic adhesive (QDA) using ZnO quantum-dots (ZnQDs) as modifier and investigate the antibacterial capability, fluorescence property as well as biocompatibility and bonding property. METHODS ZnQDs were synthesized using sol-gel method. XPS, XRD, FT-IR, HRTEM, SAED, DLS and spectrofluorimetry were used to characterize ZnQDs. ZnQDs were incorporated into Transbond XT adhesive paste with 20 %, 30 %, 40 % mass fraction, respectively, to form the multifunctional adhesives (QDAs). Antibacterial capability was evaluated with MTT kit, CFU count and Live/Dead Bacterial Staining Kit. Ultraviolet photography and spectrofluorimetry were used to confirm the fluorescence property of QDAs. Biocompatibility assay was performed on gingival fibroblasts and subcutaneous tissue of rats. Softening in solvent rate, shear bond strength and degree of conversion (DC) were measured. RESULTS The synthesized ZnQDs presented excellent crystallinity and fluorescence properties. MTT assay, CFU count and CLSM analysis indicated that QDAs had significant antibacterial activity compared with Transbond XT adhesive paste. CCK-8 assay and Live/Dead cell staining analysis denied the cytotoxicity of QDAs and histological analysis proved that QDAs all had no inflammatory irritation to subcutaneous tissue. Softening in solvent, shear bond strength and DC evaluations indicated that 20 % mixing ratio of ZnQDs could enhance the resistance to degradation without influencing the bond strength and DC. Ultraviolet photography and spectrofluorimetry analysis proved the fluorescence capability of QDAs. SIGNIFICANCE ZnQDs can impart antibacterial and fluorescence properties to orthodontic adhesives without affecting biocompatibility and bonding performance. QDAs can be multifunctional orthodontic adhesives to reduce bacterial adhesion around brackets and help orthodontists remove residual adhesives precisely when needed.
Collapse
Affiliation(s)
- Jiarong Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fang Hua
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Lingyun Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Prosthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
47
|
Wang J, Tan L, Ni Z, Zhang N, Li Q, Wang J. Is hydrodynamic diameter the decisive factor? - Comparison of the toxic mechanism of nSiO 2 and mPS on marine microalgae Heterosigma akashiwo. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106309. [PMID: 36156355 DOI: 10.1016/j.aquatox.2022.106309] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
To investigate the toxic mechanism of SiO2 nanoparticles (nSiO2) and polystyrene microplastics (mPS) on microalgae Heterosigma akashiwo, growth inhibition tests were carried out. The growth and biological responses of the algae exposed to nSiO2 (0.5, 1, 1.5, 2, 5, 10 and 30 mg L-1) and mPS (1, 2, 5, 10, 30 and 75 mg L-1) were explored in f/2 media for 96 h. It was found that the hydrodynamic diameter of the particles seems to be one of the more important factors to influence the algae. nSiO2 and mPS with similar hydrodynamic diameters have the similar toxic mechanism on H. akashiwo, and the effects were dose- and time-dependent. High concentrations of micro-/nano-particles (MNPs) could inhibit the growth of algal cells, however, low concentrations of MNPs did not restrict or even promoted the growth of algae, known as "Hormesis" phenomenon. The 96 h-EC20 values of nSiO2 and mPS on H. akashiwo were 2.69 and 10.07 mg L-1, respectively, and chlorophyll fluorescence parameters indicated that the microalgal photosynthetic system were inhibited. The hydrophilic surface of nSiO2 increased the likelihood of nSiO2 binding to the hydrophilic functional group of microalgae, which may account for the slightly stronger toxic effect of nSiO2 than mPS. The algae continued to produce reactive oxygen species (ROS) under stress conditions. Total protein (TP) levels reduced, and superoxide dismutase (SOD) and catalase (CAT) levels increased to maintain ROS levels in the cells. The decrease in adenosine triphosphate (ATPase) indicated an impact on cellular energy metabolism. Cell membrane damage, cytoplasm and organelle efflux under stress were confirmed by scanning and transmission electron microscopy (SEM and TEM) images. This study contributes to the understanding of the size effect of MNPs on the growth of marine microalgae.
Collapse
Affiliation(s)
- Jiayin Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Ziqi Ni
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Na Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Qi Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
48
|
Abdolsattari P, Rezazadeh-Bari M, Pirsa S. Smart Film Based on Polylactic Acid, Modified with Polyaniline/ZnO/CuO: Investigation of Physicochemical Properties and Its Use of Intelligent Packaging of Orange Juice. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Separation of used automobile oil/water mixture by Nylon 6/ZnO nanoparticles electrospun membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Vineeth Kumar CM, Karthick V, Kumar VG, Inbakandan D, Rene ER, Suganya KSU, Embrandiri A, Dhas TS, Ravi M, Sowmiya P. The impact of engineered nanomaterials on the environment: Release mechanism, toxicity, transformation, and remediation. ENVIRONMENTAL RESEARCH 2022; 212:113202. [PMID: 35398077 DOI: 10.1016/j.envres.2022.113202] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The presence and longevity of nanomaterials in the ecosystem, as well as their properties, account for environmental toxicity. When nanomaterials in terrestrial and aquatic systems are exposed to the prevailing environmental conditions, they undergo various transformations such as dissociation, dissolution, and aggregation, which affects the food chain. The toxicity of nanomaterials is influenced by a variety of factors, including environmental factors and its physico-chemical characteristics. Bioaccumulation, biotransformation, and biomagnification are the mechanisms that have been identified for determining the fate of nanomaterials. The route taken by nanomaterials to reach living cells provides us with information about their toxicity profile. This review discusses the recent advances in the transport, transformation, and fate of nanomaterials after they are released into the environment. The review also discusses how nanoparticles affect lower trophic organisms through direct contact, the impact of nanoparticles on higher trophic organisms, and the possible options for remediation.
Collapse
Affiliation(s)
- C M Vineeth Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - V Karthick
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India.
| | - V Ganesh Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - D Inbakandan
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2611AX Delft, the Netherlands
| | - K S Uma Suganya
- Department of Biotechnology and Biochemical Engineering, Sree Chitra Thirunal College of Engineering, Pappanamcode, Thiruvananthapuram, 695018, Kerala, India
| | - Asha Embrandiri
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Amhara, Ethiopia
| | - T Stalin Dhas
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - M Ravi
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - P Sowmiya
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| |
Collapse
|