1
|
Duan Y, She H, Jing L, Duan L, Zheng J, Shao Y, Che Y, Shi Y, Guo C, Zhao W, Yang T, Yang L. Investigating the impact of fecal contamination on antibiotic resistance genes in urban environments using host-associated molecular indicators. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126296. [PMID: 40274216 DOI: 10.1016/j.envpol.2025.126296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Antibiotic resistome of gut microbiota can be transmitted into the urban ecosystems via fecal pollution, potentially leading to a public health crisis. It is essential to determine the primary sources of fecal contamination and accurately evaluate the health risks for the propagation of antibiotic resistance genes (ARGs) from the intestinal microbiota. In this research, the occurrence, sources and potential hosts of ARGs in urban environmental samples collected from a wastewater treatment plant (WWTP), natural water bodies, tap water and farmland soil were comprehensively investigated. Host-associated fecal indicators for general warm-blooded animals (BacGeneral), humans (crAssphage), and other animals (bovines and swine) were employed for reliable microbial source tracking (MST). Results showed that the fecal indicator BacGeneral was detected in 84.00 % of collected environmental samples, indicating the widespread fecal contamination in local water and farmland. The WWTP was the reservoir and main source of fecal contamination in local environment, harboring the highest total abundances of ARGs (3.85 ± 2.72 ARGs/16S rRNA) and mobile genetic elements (MGEs) (0.32 ± 0.12 MGEs/16S rRNA) from multiple animals and humans. Although the swine-associated indicator was undetected, fecal contamination from both bovines and humans was prevalent in collected samples, with detection rates of pollution indicators at 52.00 % for bovine and 28.00 % for human sources. The co-occurrence of ARGs, fecal indicators and MGEs was analyzed, and significant correlation (P < 0.01) between total ARG abundance and fecal indicator (BacGeneral) in contaminated environments demonstrated that fecal pollution exhibited a great influence on overall resistome in local environment. This research offers a comprehensive understanding of the sources and dissemination of ARGs in feces-polluted urban environments, providing data for the monitoring and prevention of ARG pollution.
Collapse
Affiliation(s)
- Yujing Duan
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China.
| | - Hui She
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Lingna Jing
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Lianrui Duan
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Jinxiu Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Ying Shao
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China; Department of Pathophysiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Yuxin Che
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China
| | - Yu Shi
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China
| | - Chao Guo
- School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Wenhui Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Tao Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China; Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Lijun Yang
- Higher Education Key Laboratory of Tumor Immunology & Targeted Drug Development in Shanxi Province, Shanxi Medical University, Taiyuan, 030001, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China; Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
2
|
Fulke AB, Mamidala S, Nikalje P. Advances in chemical and microbial source tracking (MST) of fecal pollution in coastal waters: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:144. [PMID: 39775284 DOI: 10.1007/s10661-024-13609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Coastal waters are the ultimate destination for both point and non-point sources of contamination. The uncontrolled dicharge of fecal waste into the ocean harms natural resources, marine life, and poses health risks to humans. Regular monitoring of coastal water quality and source tracking is important to prevent disease outbreaks. This review discusses all the fecal source tracking (FST) methods, ranging from traditional enumeration techniques to recent next-generation sequencing approaches, in the light of application on coastal waters. The advantages and disadvantages of the individual markers, method comparisons based on performance, correlation of marker with fecal indicator bacteria, and stability under waste water treatment and in field applications are mainly focused on enlightening the "tool box" approach for the marine environment.
Collapse
Affiliation(s)
- Abhay B Fulke
- Regional Centre, CSIR-National Institute of Oceanography (NIO), Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai, 400053, Maharashtra, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - Srilakshmi Mamidala
- Regional Centre, CSIR-National Institute of Oceanography (NIO), Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai, 400053, Maharashtra, India
| | | |
Collapse
|
3
|
Paar J, Willis JR, Sette L, Wood SA, Bogomolni A, Dulac M, Sivaganesan M, Shanks OC. Occurrence of recreational water quality monitoring general fecal indicator bacteria and fecal source identification genetic markers in gray seal scat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173220. [PMID: 38761521 DOI: 10.1016/j.scitotenv.2024.173220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
The number of gray seals (Halichoerus grypus) observed along the United States Northwest Atlantic region has been increasing for decades. These colonial animals often haul-out on beaches seasonally in numbers ranging from a few individuals to several thousands. While these larger aggregations are an important part of gray seal behavior, there is public concern that haul-outs could lead to large amounts of fecal waste in recreational areas, potentially resulting in beach closures. Yet, data to confirm whether these animals contribute to beach closures is lacking and minimal information is available on the occurrence of key water quality monitoring genetic markers in gray seal scat. This study evaluates the concentration of E. coli (EC23S857), enterococci (Entero1a), and fecal Bacteroidetes (GenBac3) as well as six fecal source identification genetic markers (HF183/BacR287, HumM2, CPQ_056, Rum2Bac, DG3, and GFD) measured by qPCR in 48 wild gray seal scat samples collected from two haul-out areas in Cape Cod (Massachusetts, U.S.A.). Findings indicate that FIB genetic markers are shed in gray seal scat at significantly different concentrations with the Entero1a genetic marker exhibiting the lowest average concentration (-0.73 log10 estimated mean copies per nanogram of DNA). In addition, systematic testing of scat samples demonstrated that qPCR assays targeting host-associated genetic markers indicative of human, ruminant, and canine fecal pollution sources remain highly specific in waters frequented by gray seals (>97 % specificity).
Collapse
Affiliation(s)
- Jack Paar
- U.S. Environmental Protection Agency, New England Regional Laboratory, North Chelmsford, MA 01863, USA
| | - Jessica R Willis
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, OH 45268, USA
| | - Lisa Sette
- Center for Coastal Studies, 5 Holway Avenue, Provincetown, MA 02657, USA
| | - Stephanie A Wood
- University of Massachusetts, Boston, Biology Department, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Andrea Bogomolni
- Massachusetts Maritime Academy, Marine Science, Safety and Environmental Protection, 101 Academy Drive, Buzzards Bay, MA 02532, USA
| | - Monique Dulac
- U.S. Environmental Protection Agency, New England Regional Laboratory, North Chelmsford, MA 01863, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, OH 45268, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Cincinnati, OH 45268, USA.
| |
Collapse
|
4
|
Vanderzalm J, Currie S, Smith W, Metcalfe S, Taylor N, Ahmed W. Microbial source tracking of fecal pollution to coral reef lagoons of Norfolk Island, Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168906. [PMID: 38016554 DOI: 10.1016/j.scitotenv.2023.168906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Fecal pollution contributes to global degradation of water quality and requires identification of the source(s) for predicting human health risk, tracking disease, and developing management strategies. While fecal indicator bacteria are commonly used to detect fecal pollution, they cannot identify sources. Novel approaches, such as microbial source tracking (MST), can be applied to evaluate the origin of fecal pollution. This study examined fecal pollution in the coral reef lagoons of Norfolk Island, Australia where reef health decline has been related to nutrient input. The primary objective of this study was to evaluate the host sensitivity and specificity of two human wastewater-associated marker genes (Bacteroides HF183 (HF183) and cross-assembly phage (crAssphage)) and four animal feces associated marker genes targeting avian, ruminant, dog, and pig (Helicobacter-associated GFD (GFD), Bacteroides BacR (BacR), Bacteroides DogBact (DogBact), and Bacteroides Pig-2-Bac (Pig-2-Bac)) in wastewater and animal fecal samples collected from Norfolk Island. The prevalence and concentrations of these marker genes along with enterococci genetic marker (ENT 23S rRNA) of general fecal pollution and human adenovirus (HAdV), which is considered predominantly a pathogen but also a human-wastewater associated marker gene, were determined in surface, ground, and marine water resources. A secondary objective of this study was to assess the sources and pathways of fecal pollution to a sensitive marine environment under rainfall events. HF183, crAssphage, HAdV, and BacR demonstrated absolute host sensitivity values of 1.00, while GFD and Pig-2-Bac had host sensitivity values of 0.60, and 0.20, respectively. Host specificity values were > 0.94 for all marker genes. Human and animal (avian, ruminant, dog) fecal sources were present in the coral reef lagoons and surface water whereas groundwater was polluted by human wastewater markers. This study provides understanding of fecal pollution in water resources on Norfolk Island, Australia after precipitation events. The results may aid in effective water quality management, mitigating potential adverse effects on both human and environmental health.
Collapse
Affiliation(s)
- Joanne Vanderzalm
- CSIRO Environment, Waite Campus, Waite Rd, Urrbrae, SA 5064, Australia.
| | - Sharon Currie
- CSIRO Environment, Waite Campus, Waite Rd, Urrbrae, SA 5064, Australia
| | - Wendy Smith
- CSIRO Environment, Ecosciences Precint, 41 Boggo Road, Dutton Park, QLD 4202, Australia
| | - Suzanne Metcalfe
- CSIRO Environment, Ecosciences Precint, 41 Boggo Road, Dutton Park, QLD 4202, Australia
| | - Nathan Taylor
- Norfolk Island Water Resource Assessment Team, Kingston, Norfolk Island
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precint, 41 Boggo Road, Dutton Park, QLD 4202, Australia
| |
Collapse
|
5
|
Blanch AR, Méndez J, Lucena F, Casas-Mangas R, Chesa-Marro MJ, Llopart-Mascaró A, Jofre J. Somatic Coliphages as an Operational Tool to Assess Loss of Bathing Water Quality after Heavy Rain Events. WATER RESEARCH 2024; 249:120981. [PMID: 38091698 DOI: 10.1016/j.watres.2023.120981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Rapid population growth and coastal development has led to increased fecal contamination of coastal surface waters worldwide, enhancing the potential risk of waterborne human pathogens in bathing areas. More frequent heavy rainfall events, attributed to global warming, have further exacerbated the problem by causing sometimes sewer overflows into recreational waters. As traditional bacterial indicators have limited accuracy for predicting health risks associated with waterborne viruses, the additional use of viral indicators such as coliphages is recommended. In this study, we compared the behavior of bacterial and viral indicators of water quality at 10 Barcelona beaches during three bathing seasons, in dry conditions, and after four rainstorms that caused specific pollution events due to rain runoff with combined sewer overflows (CSO). Levels of all target indicators increased after the rainstorms, but compared to Escherichia coli and intestinal enterococci, somatic coliphages exhibited a slower decline and higher environmental persistence following a rain event. Daily continuous sampling carried out during the days following a rainstorm allowed not only the determination of the decay kinetics of each target indicator but also the day when the water quality recovered the values established in the current European regulation in approximately 2 -3 days after each CSO. These observations indicate that the combined use of bacterial and viral indicators can enhance the surveillance of microbial quality of bathing waters. Moreover, coliphages can swiftly provide insights into transient fecal pollution linked to rainfall episodes, thanks to available analytical techniques that enable same-day recommendations. The management of urban wastewater and recreational water regulations should consistently employ microbial indicators to address rainwater runoff or sewer overflows resulting from heavy rainfall.
Collapse
Affiliation(s)
- A R Blanch
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain.
| | - J Méndez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - F Lucena
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - R Casas-Mangas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - M J Chesa-Marro
- Barcelona Cicle de l'Aigua, S.A. (BCASA). Ajuntament de Barcelona. Barcelona. Spain
| | - A Llopart-Mascaró
- Barcelona Cicle de l'Aigua, S.A. (BCASA). Ajuntament de Barcelona. Barcelona. Spain
| | - J Jofre
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Reial Acadèmia de Ciències i Arts de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Zhao S, Rogers MJ, Liu Y, Andersen GL, He J. Anthropogenic activity remains the main contributor to fecal pollution in managed tropical watersheds as unraveled by PhyloChip microarray-based microbial source tracking. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132474. [PMID: 37717440 DOI: 10.1016/j.jhazmat.2023.132474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 09/02/2023] [Indexed: 09/19/2023]
Abstract
The spread of disease by enteric pathogens associated with fecal contamination is a major concern for the management of urban watersheds. So far, the relative contribution of natural and anthropogenic sources to fecal pollution in managed tropical watersheds remains poorly evaluated. In this study, the microbiomes of water samples collected from managed watersheds in Singapore were elicited using the PhyloChip, a dense 16S rRNA gene-based DNA microarray, and fecal impairment was inferred using a machine-learning classification algorithm (SourceTracker). The predicted contribution of wildlife fecal sources to environmental samples was generally negligible (< 0.01 ± 0.01), indicating a low likelihood of fecal impairment from natural sources. However, sewage showed considerably higher contribution (0.09 ± 0.05) to microbial communities in a subset of watershed samples from canals and rivers, suggesting persistent impairment of certain areas by anthropogenic activity although being managed. Interestingly, the contribution of sewage microbial communities showed decreasing trends from canals/rivers to the connected reservoirs, indicating meaningful auto-mitigation of fecal pollution in canals and rivers. Notably, exclusion of locally derived fecal samples and source categories from the training data set impaired the predictive performance of the classification algorithm despite a high degree of similarity in the phylogenetic composition of microbiomes in biologically similar but geographically distinct sources.
Collapse
Affiliation(s)
- Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Yuda Liu
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Gary L Andersen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore.
| |
Collapse
|
7
|
Gitter A, Gidley M, Mena KD, Ferguson A, Sinigalliano C, Bonacolta A, Solo-Gabriele H. Integrating microbial source tracking with quantitative microbial risk assessment to evaluate site specific risk based thresholds at two South Florida beaches. Front Microbiol 2023; 14:1210192. [PMID: 37901823 PMCID: PMC10602684 DOI: 10.3389/fmicb.2023.1210192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Quantitative microbial risk assessment (QMRA) can be used to evaluate health risks associated with recreational beach use. This study developed a site-specific risk assessment using a novel approach that combined quantitative PCR-based measurement of microbial source tracking (MST) genetic markers (human, dog, and gull fecal bacteria) with a QMRA analysis of potential pathogen risk. Water samples (n = 24) from two recreational beaches were collected and analyzed for MST markers as part of a broader Beach Exposure And Child Health Study that examined child behavior interactions with the beach environment. We report here the measurements of fecal bacteria MST markers in the environmental DNA extracts of those samples and a QMRA analysis of potential health risks utilizing the results from the MST measurements in the water samples. Human-specific Bacteroides was enumerated by the HF183 Taqman qPCR assay, gull-specific Catellicoccus was enumerated by the Gull2 qPCR assay, and dog-specific Bacteroides was enumerated by the DogBact qPCR assay. Derived reference pathogen doses, calculated from the MST marker concentrations detected in recreational waters, were used to estimate the risk of gastrointestinal illness for both children and adults. Dose-response equations were used to estimate the probability of the risk of infection (Pinf) per a swimming exposure event. Based on the QMRA simulations presented in this study, the GI risk from swimming or playing in water containing a mixture of human and non-human fecal sources appear to be primarily driven by the human fecal source. However, the estimated median GI health risk for both beaches never exceeded the U.S. EPA risk threshold of 32 illnesses per 1,000 recreation events. Our research suggests that utilizing QMRA together with MST can further extend our understanding of potential recreational bather risk by identifying the source contributing the greatest risk in a particular location, therefore informing beach management responses and decision-making.
Collapse
Affiliation(s)
- Anna Gitter
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center Houston School of Public Health, El Paso, TX, United States
| | - Maribeth Gidley
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, United States
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States
| | - Kristina D. Mena
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center Houston School of Public Health, El Paso, TX, United States
| | - Alesia Ferguson
- Department of Built Environment, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Christopher Sinigalliano
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States
| | - Anthony Bonacolta
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, United States
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Helena Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
8
|
Ben-Haddad M, Charroud I, Mghili B, Abelouah MR, Hajji S, Aragaw TA, Rangel-Buitrago N, Alla AA. Examining the influence of COVID-19 lockdowns on coastal water quality: A study on fecal bacteria levels in Moroccan seawaters. MARINE POLLUTION BULLETIN 2023; 195:115476. [PMID: 37677975 DOI: 10.1016/j.marpolbul.2023.115476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Fecal bacteria in bathing seawater pose a substantial public health risk and require rigorous monitoring. The unexpected beach closures during the COVID-19 lockdowns have afforded unique opportunities to evaluate the impact of human activities on bathing water quality (BWQ). This study examined the temporal changes in fecal coliforms (FC) and streptococci (FS) within bathing seawater across a popular coastal region in Morocco during two lockdown periods (2020 L and 2021 L), comparing these data with observations from pre-lockdown years (2018, 2019) and post-lockdown periods (2020, 2021, 2022). Our findings illuminate the influential role the hiatus periods played in enhancing bathing water quality, attaining an "excellent" status with marked reductions in fecal coliform and streptococci levels. Consequently, the FC/FS analysis exposed a clear preponderance of humans as the primary sources of fecal contamination, a trend that aligns with the burgeoning coastal tourism and the escalating numbers of beach visitors. Additionally, the presence of domestic animals like camels and horses used for tourist rides, coupled with an increase in wild animals such as dogs during the lockdown periods, compounded the potential sources of fecal bacteria in the study area. Furthermore, occasional sewage discharge from tourist accommodations and wastewater treatment plants may also contribute to fecal contamination. To effectively mitigate these concerns and bolster public health, a commitment to relentless surveillance efforts, leveraging novel and innovative tools, is essential. These findings underline the crucial interplay between human activities and the health of our coastal ecosystems, emphasizing the need for sustainable practices for a safer and healthier future.
Collapse
Affiliation(s)
- Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Imane Charroud
- Laboratory of Biotechnologies and Valorization of Natural Resources, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco; Laboratory of Biology and Ecology of Deep Marine Ecosystems (BEEP), UMR 6197 (UBO, CNRS, Ifremer), Plouzané, France.
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco.
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Tadele Assefa Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Atlantico, Colombia.
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|
9
|
Ahmed W, Payyappat S, Cassidy M, Harrison N, Besley C. Microbial source tracking of untreated human wastewater and animal scats in urbanized estuarine waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162764. [PMID: 36907409 DOI: 10.1016/j.scitotenv.2023.162764] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 05/06/2023]
Abstract
The study assessed the performance characteristics of host sensitivity, host specificity and concentration for seven human wastewater- and six animal scat-associated marker genes by analysing human wastewater and animal scat samples from urban catchments of the mega-coastal city of Sydney, Australia. Absolute host sensitivity was exhibited across three criteria used to assess seven human wastewater-associated marker genes of cross-assembly phage (CrAssphage), human adenovirus (HAdV), Bacteroides HF183 (HF183), human polyomavirus (HPyV), Lachnospiraceae (Lachno3), Methnobrevibacter smithii nifH (nifH) and pepper mild mottle virus (PMMoV). In contrast, only the horse scat-associated marker gene Bacteroides HoF597 (HoF597) exhibited absolute host sensitivity. The absolute host specificity value of 1.0 was returned for the wastewater-associated marker genes of HAdV, HPyV, nifH and PMMoV for each of the three applied host specificity calculation criteria, while values of >0.9 were returned for CrAssphage and Lachno3. Ruminants and cow scat-associated marker genes of BacR and CowM2, respectively exhibited the absolute host specificity value of 1.0. Concentrations of Lachno3 were greater in most human wastewater samples followed by CrAssphage, HF183, nifH, HPyV, PMMoV and HAdV. Human wastewater marker genes were detected in several scat samples from cats and dogs, and this suggests concordant sampling of animal scat-associated marker genes and at least two human wastewater-associated marker genes will be required to assist in interpretation of fecal sources in environmental waters. A greater prevalence, together with several samples with greater concentrations of human wastewater-associated marker genes PMMoV and CrAssphage warrant consideration by water quality managers for the detection of diluted human fecal pollution in estuarine waters.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Nathan Harrison
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| |
Collapse
|
10
|
Sresung M, Paisantham P, Ruksakul P, Kongprajug A, Chyerochana N, Gallage TP, Srathongneam T, Rattanakul S, Maneein S, Surasen C, Passananon S, Mongkolsuk S, Sirikanchana K. Microbial source tracking using molecular and cultivable methods in a tropical mixed-use drinking water source to support water safety plans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162689. [PMID: 36898534 DOI: 10.1016/j.scitotenv.2023.162689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Microbial contamination deteriorates source water quality, posing a severe problem for drinking water suppliers worldwide and addressed by the Water Safety Plan framework to ensure high-quality and reliable drinking water. Microbial source tracking (MST) is used to examine different microbial pollution sources via host-specific intestinal markers for humans and different types of animals. However, the application of MST in tropical surface water catchments that provide raw water for drinking water supplies is limited. We analyzed a set of MST markers, namely, three cultivable bacteriophages and four molecular PCR and qPCR assays, together with 17 microbial and physicochemical parameters, to identify fecal pollution from general, human-, swine-, and cattle-specific sources. Seventy-two river water samples at six sampling sites were collected over 12 sampling events during wet and dry seasons. We found persistent fecal contamination via the general fecal marker GenBac3 (100 % detection; 2.10-5.42 log10 copies/100 mL), with humans (crAssphage; 74 % detection; 1.62-3.81 log10 copies/100 mL) and swine (Pig-2-Bac; 25 % detection; 1.92-2.91 log10 copies/100 mL). Higher contamination levels were observed during the wet season (p < 0.05). The conventional PCR screening used for the general and human markers showed 94.4 % and 69.8 % agreement with the respective qPCR results. Specifically, in the studied watershed, coliphage could be a screening parameter for the crAssphage marker (90.6 % and 73.7 % positive and negative predictive values; Spearman's rank correlation coefficient = 0.66; p < 0.001). The likelihood of detecting the crAssphage marker significantly increased when total and fecal coliforms exceeded 20,000 and 4000 MPN/100 mL, respectively, as Thailand Surface Water Quality Standards, with odds ratios and 95 % confidence intervals of 15.75 (4.43-55.98) and 5.65 (1.39-23.05). Our study confirms the potential benefits of incorporating MST monitoring into water safety plans, supporting the use of this approach to ensure high-quality drinking water supplies worldwide.
Collapse
Affiliation(s)
- Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Phongsawat Paisantham
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Pacharaporn Ruksakul
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Tharindu Pollwatta Gallage
- Program in Environmental Toxicology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Thitima Srathongneam
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Siriwara Maneein
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Chatsinee Surasen
- Water Resources and Environment Department, Metropolitan Waterworks Authority, Bangkok 10210, Thailand
| | - Somsak Passananon
- Line of Deputy Governor (Water Production), Metropolitan Waterworks Authority, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand.
| |
Collapse
|
11
|
Chen Z, Duan Y, Yin L, Chen Y, Xue Y, Wang X, Mao D, Luo Y. Unraveling the influence of human fecal pollution on antibiotic resistance gene levels in different receiving water bodies using crAssphage indicator gene. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130005. [PMID: 36179618 DOI: 10.1016/j.jhazmat.2022.130005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Discharged wastewater treatment plant (WWTP) effluents can contaminate receiving water bodies with human feces and alter the abundance of antibiotic resistance genes (ARGs). In this study, we examined the co-occurrence of ARGs, human fecal pollution indicator crAssphage, and antibiotics in human feces and a series of connected receiving water bodies affected by human feces, including water from different treatment units of a WWTP, river, lake, and tap waters. Results showed that crAssphage was detected in 68.2 % of the studied water bodies, confirming widespread human fecal contamination. Both ARG and crAssphage abundances exhibited a distance-decay effect from the emission source to the receiving environment. Interestingly, the detected ARG abundance in the water bodies was significantly correlated with crAssphage abundance but not with the residual antibiotic concentration, demonstrating that the presence of ARG could largely be explained by the extent of fecal pollution, with no clear signs of antibiotic selection. In addition, 14 ARGs co-shared by human feces and water bodies were significantly correlated with crAssphage. Furthermore, a close evolutionary relationship was observed between the blaTEM-1 gene from human feces and aquatic environments. These results imply a potential ARG exchange between human feces and receiving water bodies. Overall, this study provides important insights into the distribution and sources of ARGs in water bodies affected by human fecal contamination.
Collapse
Affiliation(s)
- Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yujing Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Lichun Yin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ying Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yingang Xue
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213003, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
12
|
Abdool-Ghany AA, Sahwell PJ, Klaus J, Gidley ML, Sinigalliano CD, Solo-Gabriele HM. Fecal indicator bacteria levels at a marine beach before, during, and after the COVID-19 shutdown period and associations with decomposing seaweed and human presence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158349. [PMID: 36041612 DOI: 10.1016/j.scitotenv.2022.158349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Studies are limited that evaluate seaweed as a source of bacteria to beach waters. The objective of the current study was to evaluate whether seaweed, along with humans and other animals, could be the cause of beach advisories due to elevated levels of enterococci. The monitoring period occurred a year prior to and through the COVID-19 beach shutdown period, which provided a unique opportunity to evaluate bacteria levels during prolonged periods without recreational activity. Samples of water, sediment, and seaweed were measured for enterococci by culture and qPCR, in addition to microbial source tracking by qPCR of fecal bacteria markers from humans, dogs, and birds. During periods of elevated enterococci levels in water, these analyses were supplemented by chemical source tracking of human-associated excretion markers (caffeine, sucralose, acetaminophen, ibuprofen, and naproxen). Results show that enterococci with elevated levels of human fecal markers persist in the seaweed and sediment and are the likely contributor to elevated levels of bacteria to the nearshore waters. During the shutdown period the elevated levels of enterococci in the sediment were isolated to the seaweed stranding areas. During periods when the beaches were open, enterococci were distributed more uniformly in sediment across the supratidal and intertidal zones. It is hypothesized from this study that human foot traffic may be responsible for the spread of enterococci throughout these areas. Overall, this study found high levels of enterococci in decomposing seaweed supporting the hypothesis that decomposing seaweed provides an additional substrate for enterococci to grow.
Collapse
Affiliation(s)
- Afeefa A Abdool-Ghany
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA
| | - Peter J Sahwell
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA
| | - James Klaus
- Department of Marine Geosciences, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Key Biscayne, FL, USA
| | - Maribeth L Gidley
- University of Miami, Cooperative Institute for Marine and Atmospheric Studies (CIMAS), Miami, FL, USA; National Oceanic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, FL, USA
| | - Christopher D Sinigalliano
- National Oceanic and Atmospheric Administration (NOAA), Atlantic Oceanographic and Meteorological Laboratory (AOML), Miami, FL, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
13
|
Nguyen KH, Smith S, Roundtree A, Feistel DJ, Kirby AE, Levy K, Mattioli MC. Fecal indicators and antibiotic resistance genes exhibit diurnal trends in the Chattahoochee River: Implications for water quality monitoring. Front Microbiol 2022; 13:1029176. [PMID: 36439800 PMCID: PMC9684717 DOI: 10.3389/fmicb.2022.1029176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
Water bodies that serve as sources of drinking or recreational water are routinely monitored for fecal indicator bacteria (FIB) by state and local agencies. Exceedances of monitoring thresholds set by those agencies signal likely elevated human health risk from exposure, but FIB give little information about the potential source of contamination. To improve our understanding of how within-day variation could impact monitoring data interpretation, we conducted a study at two sites along the Chattahoochee River that varied in their recreational usage and adjacent land-use (natural versus urban), collecting samples every 30 min over one 24-h period. We assayed for three types of microbial indicators: FIB (total coliforms and Escherichia coli); human fecal-associated microbial source tracking (MST) markers (crAssphage and HF183/BacR287); and a suite of clinically relevant antibiotic resistance genes (ARGs; blaCTX-M, blaCMY, MCR, KPC, VIM, NDM) and a gene associated with antibiotic resistance (intl1). Mean levels of FIB and clinically relevant ARGs (blaCMY and KPC) were similar across sites, while MST markers and intI1 occurred at higher mean levels at the natural site. The human-associated MST markers positively correlated with antibiotic resistant-associated genes at both sites, but no consistent associations were detected between culturable FIB and any molecular markers. For all microbial indicators, generalized additive mixed models were used to examine diurnal variability and whether this variability was associated with environmental factors (water temperature, turbidity, pH, and sunlight). We found that FIB peaked during morning and early afternoon hours and were not associated with environmental factors. With the exception of HF183/BacR287 at the urban site, molecular MST markers and intI1 exhibited diurnal variability, and water temperature, pH, and turbidity were significantly associated with this variability. For blaCMY and KPC, diurnal variability was present but was not correlated with environmental factors. These results suggest that differences in land use (natural or urban) both adjacent and upstream may impact overall levels of microbial contamination. Monitoring agencies should consider matching sample collection times with peak levels of target microbial indicators, which would be in the morning or early afternoon for the fecal associated indicators. Measuring multiple microbial indicators can lead to clearer interpretations of human health risk associated with exposure to contaminated water.
Collapse
Affiliation(s)
| | - Shanon Smith
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Alexis Roundtree
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Dorian J. Feistel
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Amy E. Kirby
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Karen Levy
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Mia Catharine Mattioli
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
- *Correspondence: Mia Catharine Mattioli,
| |
Collapse
|
14
|
Khamesi F, Ehrampoush MH, Dad V, Jambarsang S, Ghaneian MT. Prevalence of MRSA as an Infectious Agent in Sanitary Swimming Pools and Jacuzzis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:139-146. [PMID: 35669818 PMCID: PMC9163221 DOI: 10.1007/s40201-021-00761-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 11/15/2021] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is considered resistant to beta-lactam antibiotic groups. Infection caused by this strain is more difficult to treat with antibiotics, and hence, it will be more dangerous. This study focused on detecting the mecA gene Staphylococcus in sanitary swimming pools and Jacuzzis in Yazd city, Iran (2019). Also, the relationship between methicillin-resistant Staphylococcus aureus (MRSA) and the water quality standards has been investigated. MATERIALS AND METHODS 60 samples were randomly collected in sterile bottles from 20 active pools and Jacuzzis. Quality parameters were analyzed by standard methods. Antibiotic resistance and the mecA gene's presence were detected by the disk diffusion and PCR method, respectively. RESULTS The results of this study showed that the resistance of Staphylococcus aureus isolates was high against erythromycin (41.20%), tetracycline (35.10%), clindamycin (28.90%), and cefoxitin (25.80%). Out of 97 samples, 9 (25.80%) strains of Staphylococcus aureus were identified as MRSA, 30 samples (30.92%) showed multiple patterns of antibiotic resistance, and 9 samples (9.27%) carried the mecA gene. The results revealed that water quality has greatly impacted the mecA gene strain presence, especially microbial parameters. On the other hand, in the presence of mecA gene strains, the averages of microbial qualities were higher than standard in Jacuzzis; the latter finding was confirmed for swimming pools due to physicochemical parameters. CONCLUSION The number of reported sanitary water is increasing, and this study's results are useful examples of these findings. Therefore, a lack of careful and regular monitoring of swimming pools and Jacuzzis can lead to MSRA prevalence and outbreak sources.
Collapse
Affiliation(s)
- Fatemeh Khamesi
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hasan Ehrampoush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Vali Dad
- Medical Microbiologist (Master of Science) Reference Laboratory of Water and Wastewater, Environment and Occupational Department, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Jambarsang
- Center for Healthcare Data Modeling, Department of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Taghi Ghaneian
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
15
|
Wade TJ, Arnold BF, Schiff K, Colford JM, Weisberg SB, Griffith JF, Dufour AP. Health risks to children from exposure to fecally-contaminated recreational water. PLoS One 2022; 17:e0266749. [PMID: 35413082 PMCID: PMC9004770 DOI: 10.1371/journal.pone.0266749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/27/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Children may be at higher risk for swimming-associated illness following exposure to fecally-contaminated recreational waters. We analyzed a pooled data set of over 80,000 beachgoers from 13 beach sites across the United States to compare risks associated with the fecal indicator bacteria Enterococcus spp. (measured by colony forming units, CFU and quantitative polymerase chain reaction cell equivalents, qPCR CE) for different age groups across different exposures, sites and health endpoints. METHODS Sites were categorized according to the predominant type of fecal contamination (human or non-human). Swimming exposures of varying intensity were considered according to degree of contact and time spent in the water. Health endpoints included gastrointestinal and respiratory symptoms and skin rashes. Logistic regression models were used to analyze the risk of illness as a function of fecal contamination in water as measured by Enterococcus spp. among the exposed groups. Non-swimmers (those who did not enter the water) were excluded from the models to reduce bias and facilitate comparison across groups. RESULTS Gastrointestinal symptoms were the most sensitive health endpoint and strongest associations were observed with Enterococcus qPCR CE at sites impacted by human fecal contamination. Under several exposure scenarios, associations between illness and Enterococcus spp. levels were significantly higher among children compared to adolescents and adults. Respiratory symptoms were also associated with Enterococcus spp. exposures among young children at sites affected by human fecal sources, although small sample sizes resulted in imprecise estimates for these associations. CONCLUSION Under many exposure scenarios, children were at higher risk of illness associated with exposure to fecal contamination as measured by the indicator bacteria Enterococcus spp. The source of fecal contamination and the intensity of swimming exposure were also important factors affecting the association between Enterococcus spp. and swimming-associated illness.
Collapse
Affiliation(s)
- Timothy J. Wade
- U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina, United States of America
| | - Benjamin F. Arnold
- F.I. Proctor Foundation, University of California, San Francisco, San Francisco, California, United States of America
| | - Ken Schiff
- Southern California Coastal Water Research Project, Costa Mesa, California, United States of America
| | - John M. Colford
- University of California, Berkeley, Division of Epidemiology, Berkeley, California, United States of America
| | - Stephen B. Weisberg
- Southern California Coastal Water Research Project, Costa Mesa, California, United States of America
| | - John F. Griffith
- Southern California Coastal Water Research Project, Costa Mesa, California, United States of America
| | - Alfred P. Dufour
- U.S. Environmental Protection Agency Office of Research and Development, Cincinnati, Ohio, United States of America
| |
Collapse
|
16
|
Sala-Comorera L, Reynolds LJ, Martin NA, Pascual-Benito M, Stephens JH, Nolan TM, Gitto A, O'Hare GMP, O'Sullivan JJ, García-Aljaro C, Meijer WG. crAssphage as a human molecular marker to evaluate temporal and spatial variability in faecal contamination of urban marine bathing waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147828. [PMID: 34052479 DOI: 10.1016/j.scitotenv.2021.147828] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/23/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Bathing water quality may be negatively impacted by diffuse pollution arising from urban and agricultural activities and wildlife, it is therefore important to be able to differentiate between biological and geographical sources of faecal pollution. crAssphage was recently described as a novel human-associated microbial source tracking marker. This study aimed to evaluate the performance of the crAssphage marker in designated bathing waters. The sensitivity and specificity of the crAss_2 marker was evaluated using faecal samples from herring gulls, dogs, sewage and a stream impacted by human pollution (n = 80), which showed that all human impacted samples tested positive for the marker while none of the animal samples did. The crAss_2 marker was field tested in an urban marine bathing water close to the discharge point of human impacted streams. In addition, the bathing water is affected by dog and gull fouling. Analysis of water samples taken at the compliance point every 30 min during a tidal cycle following a rain event showed that the crAss_2 and HF183 markers performed equally well (Spearman correlation ρ = 0.84). The levels of these marker and faecal indicators (Escherichia coli, intestinal enterococci, somatic coliphages) varied by up to 2.5 log10 during the day. Analysis of a high-tide transect perpendicular to the shoreline revealed high levels of localised faecal contamination 1 km offshore, with a concomitant spike in the gull marker. In contrast, both the crAss_2 and HF183 markers remained at a constant level, showing that human faecal contamination is homogenously distributed, while gull pollution is localised. Performance of the crAss_2 and HF183 assay was further evaluated in bimonthly compliance point samples over an 18-month period. The co-occurrence between the crAss_2 and HF183 markers in compliance sampling was 76%. A combination of both markers should be applied in low pollution impacted environments to obtain a high confidence level.
Collapse
Affiliation(s)
- Laura Sala-Comorera
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Ireland
| | - Liam J Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Ireland
| | - Niamh A Martin
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Ireland
| | - Míriam Pascual-Benito
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Jayne H Stephens
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Ireland
| | - Tristan M Nolan
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Ireland
| | - Aurora Gitto
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Ireland
| | - Gregory M P O'Hare
- UCD School of Computer Science and UCD Earth Institute, University College Dublin, Belfield Dublin 4, Ireland
| | - John J O'Sullivan
- UCD School of Civil Engineering, UCD Dooge Centre for Water Resources Research, UCD Earth Institute, University College Dublin, Dublin 4, Ireland
| | - Cristina García-Aljaro
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Ireland.
| |
Collapse
|
17
|
Akita LG, Laudien J, Biney C, Akrong MO. A baseline study of spatial variability of bacteria (total coliform, E. coli, and Enterococcus spp.) as biomarkers of pollution in ten tropical Atlantic beaches: concern for environmental and public health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50941-50965. [PMID: 34386920 DOI: 10.1007/s11356-021-15432-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Coastal water quality in urban cities is increasingly impacted by human activities such as agricultural runoff, sewage discharges, and poor sanitation. However, environmental factors controlling bacteria abundance remain poorly understood. The study employed multiple indicators to assess ten beach water qualities in Ghana during minor wet seasons. Environmental parameters (e.g. temperature, electrical conductivity, total dissolved solids) were measured in situ using the Horiba multiple parameter probe. Surface water samples were collected to measure total suspended solids, nutrients, and chlorophyll-a via standard methods and bacteria determination through membrane filtration. Environmental parameters measured showed no significant variation for the sample period. However, bacteria loads differ significantly (p = 0.024) among the beaches and influenced significantly by nitrate (55.3%, p = 0.02) and total dissolved solids (17.1%, p = 0.017). The baseline study detected an increased amount of total coliforms and faecal indicator bacteria (Escherichia coli and Enterococcus spp.) in beach waters along the coast of Ghana, suggesting faecal contamination, which can pose health risks. The mean ± standard deviations of bacteria loads in beach water are total coliforms (4.06 × 103 ± 4.16 × 103 CFU/100 mL), E. coli (7.06 × 102 ± 1.72 × 103 CFU/100 mL), and Enterococcus spp. (6.15 × 102 ± 1.75 × 103 CFU/100 mL). Evidence of pollution calls for public awareness to prevent ecological and health-related risks and policy reforms to control coastal water pollution. Future research should focus on identifying the sources of contamination in the tropical Atlantic region.
Collapse
Affiliation(s)
- Lailah Gifty Akita
- Department of Marine and Fisheries Sciences, University of Ghana, P. O. Box LG 99, Legon, Accra, Ghana.
| | - Juergen Laudien
- Alfred Wegner Institute Helmholtz Centre of Polar and Marine Research, Am Alten Hafen 26, 27568, Bremerhaven, Germany
| | - Charles Biney
- Ecosystems Environmental Solutions, GD-213-5404, Accra, Ghana
| | - Mark Osei Akrong
- CSIR-Research Institute, P.O. Box M 32, GP-018-964, Accra, Ghana
| |
Collapse
|
18
|
Li D, Van De Werfhorst LC, Steets B, Ervin J, Murray JLS, Devarajan N, Holden PA. Bather Shedding as a Source of Human Fecal Markers to a Recreational Beach. Front Microbiol 2021; 12:673190. [PMID: 34248883 PMCID: PMC8269448 DOI: 10.3389/fmicb.2021.673190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/30/2021] [Indexed: 11/24/2022] Open
Abstract
Microbial source tracking (MST) can identify and locate surf zone fecal indicator bacteria (FIB) sources. However, DNA-based fecal marker results may raise new questions, since FIB and DNA marker sources can differ. Here, during 2 years of summertime (dry season) MST for a Goleta, California recreational beach, surf zone FIB were mainly from gulls, yet low level human-associated DNA-based fecal marker (HF183) was detected in 25 and 14% of surf zone water samples, respectively. Watershed sources were hypothesized because dry weather creek waters had elevated FIB, and runoff-generating rain events mobilized human (and dog) fecal markers and Salmonella spp. into creeks, with human marker HF183 detected in 40 and 50% of creek water samples, dog markers detected in 70 and 50% of samples, and Salmonella spp. in 40 and 33.3% of samples, respectively over 2 years. However, the dry weather estuary outlet was bermed in the first study year; simultaneously, creek fecal markers and pathogens were lower or similar to surf zone results. Although the berm breached in the second year, surf zone fecal markers stayed low. Watershed sediments, intertidal beach sands, and nearshore sediments were devoid of HF183 and dog-associated DNA markers. Based on dye tests and groundwater sampling, beach sanitary sewers were not leaking; groundwater was also devoid of HF183. Offshore sources appeared unlikely, since FIB and fecal markers decreased along a spatial gradient from the surf zone toward nearshore and offshore ocean waters. Further, like other regional beaches, surf zone HF183 corresponded significantly to bather counts, especially in the afternoons when there were more swimmers. However, morning detections of surf zone HF183 when there were few swimmers raised the possibility that the wastewater treatment plant (WWTP) offshore outfall discharged HF183 overnight which transported to the surf zone. These findings support that there may be lowest achievable limits of surf zone HF183 owing to several chronic and permanent, perhaps diurnal, low concentration sources.
Collapse
Affiliation(s)
- Dong Li
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Laurie C. Van De Werfhorst
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, United States
| | | | - Jared Ervin
- Geosyntec Consultants, Santa Barbara, CA, United States
| | - Jill L. S. Murray
- Creeks Division, Department of Parks and Recreation, Santa Barbara, CA, United States
| | - Naresh Devarajan
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patricia A. Holden
- Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
19
|
Takasaki K, Aihara H, Imanaka T, Matsudaira T, Tsukahara K, Usui A, Osaki S, Doi H. Water pre-filtration methods to improve environmental DNA detection by real-time PCR and metabarcoding. PLoS One 2021; 16:e0250162. [PMID: 33961651 PMCID: PMC8104373 DOI: 10.1371/journal.pone.0250162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/01/2021] [Indexed: 11/19/2022] Open
Abstract
Environmental DNA (eDNA) analysis is a novel approach for biomonitoring and has been mostly used in clear water. It is difficult to detect eDNA in turbid water as filter clogging occurs, and environmental samples contain various substances that inhibit the polymerase chain reaction (PCR) and affect the accuracy of eDNA analysis. Therefore, we applied a pre-filtration method to better detect the fish species (particularly pale chub, Opsariichthys platypus) present in a water body by measuring eDNA in environmental samples containing PCR inhibitors. Upon conducting 12S rRNA metabarcoding analysis (MiFish), we found that pre-filtration did not affect the number or identities of fish species detected in our samples, but pre-filtration through pore sizes resulted in significantly reduced variance among replicate samples. Additionally, PCR amplification was improved by the pre-filtration of environmental samples containing PCR inhibitors such as humic substances. Although this study may appear to be a conservative and ancillary experiment, pre-filtration is a simple technique that can not only improve the physical properties of water, such as turbidity, but also the quality of eDNA biomonitoring.
Collapse
Affiliation(s)
- Kazuto Takasaki
- Research and Development Division, FASMAC Co., Ltd., Atsugi, Kanagawa, Japan
| | - Hiroki Aihara
- Biotechnological Research Support Division, FASMAC Co., Ltd., Atsugi, Kanagawa, Japan
| | - Takanobu Imanaka
- Biotechnological Research Support Division, FASMAC Co., Ltd., Atsugi, Kanagawa, Japan
| | - Takahiro Matsudaira
- Biotechnological Research Support Division, FASMAC Co., Ltd., Atsugi, Kanagawa, Japan
| | - Keita Tsukahara
- Biotechnological Research Support Division, FASMAC Co., Ltd., Atsugi, Kanagawa, Japan
| | - Atsuko Usui
- Biotechnological Research Support Division, FASMAC Co., Ltd., Atsugi, Kanagawa, Japan
| | - Sora Osaki
- Biotechnological Research Support Division, FASMAC Co., Ltd., Atsugi, Kanagawa, Japan
| | - Hideyuki Doi
- Graduate School of Information Science, University of Hyogo, Kobe, Hyogo, Japan
| |
Collapse
|
20
|
Goshu G, Koelmans AA, de Klein JJM. Performance of faecal indicator bacteria, microbial source tracking, and pollution risk mapping in tropical water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116693. [PMID: 33631685 DOI: 10.1016/j.envpol.2021.116693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Faecal indicator bacteria (FIB) are used for the assessment of faecal pollution and possible water quality deterioration. There is growing evidence that FIB used in temperate regions are not adequate and reliable to detect faecal pollution in tropical regions. Hence, this study evaluated the adequacy of FIB, including total coliforms (TC), Escherichia coli (EC), Enterococci (IEC), and Clostridium perfringens (CP) in the high-altitude, tropical country of Ethiopia. In addition to FIB, for microbial source tracking (MST), a ruminant-associated molecular marker was applied at different water types and altitudes, and faecal pollution risk mapping was conducted based on consensus FIB. The performances of the indicators were evaluated at 22 sites from different water types. The results indicate that EC cell enumeration and CP spore determination perform well for faecal contamination monitoring. Most of the sub-basins of Lake Tana were found to be moderately to highly polluted, and the levels of pollution were demonstrated to be higher in the rainy season than in the post-rainy season. Markers associated with ruminants (BacR) were identified in more than three quarters of the sites. A bacterial pollution risk map was developed for sub-basins of Lake Tana, including the un-gauged sub-basins. We demonstrate how bacterial pollution risk mapping can aid in improvements to water quality testing and reduce risk to the general population from stream bacteria.
Collapse
Affiliation(s)
- Goraw Goshu
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University &Research, P.O. Box, 47,6700AA, Wageningen, the Netherlands; College of Agriculture and Environmental Sciences and Blue Nile Water Institute, Bahir Dar University, P.O. Box 1701, Bahir Dar, Ethiopia.
| | - A A Koelmans
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University &Research, P.O. Box, 47,6700AA, Wageningen, the Netherlands
| | - J J M de Klein
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University &Research, P.O. Box, 47,6700AA, Wageningen, the Netherlands
| |
Collapse
|
21
|
Sinigalliano C, Kim K, Gidley M, Yuknavage K, Knee K, Palacios D, Bautista C, Bonacolta A, Lee HW, Maurin L. Microbial Source Tracking of Fecal Indicating Bacteria in Coral Reef Waters, Recreational Waters, and Groundwater of Saipan by Real-Time Quantitative PCR. Front Microbiol 2021; 11:596650. [PMID: 33537011 PMCID: PMC7848096 DOI: 10.3389/fmicb.2020.596650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
The Commonwealth of the Northern Mariana Islands (CNMI) recently identified the need to improve its capacity for detecting and tracking land-based sources of pollution (LBSP) in coastal waters, particularly microbial contaminants like fecal indicator bacteria (FIB). Reported here is a baseline study of a suite of host-specific FIB microbial source tracking (MST) markers in the coastal shoreline and reef waters around the island of Saipan. Three sampling campaigns were conducted in September 2017, March 2018, and August 2018. Samples were collected from the nearshore surface waters of Saipan, the reef waters of Saipan Lagoon, and groundwater from beaches along the Saipan Lagoon shoreline. Measurements of submarine groundwater discharge (SGD) into nearshore waters and isotopic source tracking of nitrogen inputs were conducted concurrently with MST. Environmental DNA was extracted from the samples and analyzed by quantitative polymerase chain reaction (qPCR) for MST gene markers of fecal Bacteroidales specifically associated with humans, dogs, cows, and pigs, and for an MST gene marker of Catellicoccus associated with seabirds. MST assessments were combined with local knowledge, assessments of sanitary infrastructure, and routine watershed surveys. This study identified hotspots of human FIB along the western Saipan Lagoon shoreline in both surface waters and groundwater, plus another hotspot of human FIB at a popular tourist bathing area known as the Grotto. FIB hotspots on the Lagoon shoreline coincided with areas of high SGD and nitrogen isotopic data indicating sewage-derived N inputs. It appears that faulty sanitary infrastructure may be contributing to inputs to Saipan Lagoon, while bather shedding is likely a primary input for the Grotto area. Moderate levels of dog fecal contamination were common and widespread across the island. High levels of seabird fecal contamination were more random, both spatially and temporally, and mostly concentrated along the less developed northeast region of Saipan. No significant levels of cow or pig fecal marker were detected in coastal water samples. This study provides demonstration and establishment of analytical capacity to resource management in CNMI for MST technology to aid in trouble-shooting water quality issues involving land-based sources of microbial contaminants to CNMI coastal waters.
Collapse
Affiliation(s)
- Christopher Sinigalliano
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States
| | - Kiho Kim
- Department of Environmental Science, American University, Washington, DC, United States
| | - Maribeth Gidley
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States.,Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, United States
| | - Kathy Yuknavage
- Water Quality Surveillance/Nonpoint Source Program, Bureau of Environmental and Coastal Quality, Commonwealth of the Northern Mariana Islands, Saipan, MP, United States
| | - Karen Knee
- Department of Environmental Science, American University, Washington, DC, United States
| | - Dean Palacios
- Water Quality Surveillance/Nonpoint Source Program, Bureau of Environmental and Coastal Quality, Commonwealth of the Northern Mariana Islands, Saipan, MP, United States
| | - Charito Bautista
- Water Quality Surveillance/Nonpoint Source Program, Bureau of Environmental and Coastal Quality, Commonwealth of the Northern Mariana Islands, Saipan, MP, United States
| | - Anthony Bonacolta
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States.,Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, United States
| | - Hyo Won Lee
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States.,Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, United States
| | - Larry Maurin
- Water Quality Surveillance/Nonpoint Source Program, Bureau of Environmental and Coastal Quality, Commonwealth of the Northern Mariana Islands, Saipan, MP, United States
| |
Collapse
|
22
|
Zeki S, Aslan A, Burak S, Rose JB. Occurrence of a human-associated microbial source tracking marker and its relationship with faecal indicator bacteria in an urban estuary. Lett Appl Microbiol 2020; 72:167-177. [PMID: 33025621 DOI: 10.1111/lam.13405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 12/22/2022]
Abstract
One of the main impacts of urban sprawl in rapidly growing countries has been contamination of coastal environments by waterborne pathogens, posing a critical risk to ecosystem and human health. Microbial source tracking (MST) has been a robust tool to identify the origin of these pathogens globally. This study compared the occurrence of a human-associated Bacteroides marker (BT-α) with faecal indicator bacteria (FIB) in an urban estuary (Golden Horn, Istanbul, Turkey). Faecal coliform (culture method), enterococci (both culture and qPCR method) concentrations and physicochemical variables were compared with the BT-α concentrations in monthly collected samples for a year (n = 108). Enterococci concentrations detected by culture and qPCR were positively correlated (r = 0·86, P < 0·01) suggesting that qPCR can be an alternative method for monitoring. BT-α marker was positive for 30% of the samples and positively correlated with enterococci (r = 0·61 and r = 0·64 for culture and qPCR methods respectively, P < 0·01). Rainfall had a moderate positive correlation with all faecal/MST indicators suggesting combined sewer overflows also severely impacted estuarine water quality. The high FIB and BT-α concentrations at upper estuary suggested that faecal pollution mainly originated from the peri-urban settlements around two creeks entering the estuary.
Collapse
Affiliation(s)
- S Zeki
- Department of Marine Environment, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| | - A Aslan
- Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA, USA
| | - S Burak
- Department of Marine Environment, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| | - J B Rose
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
23
|
An XL, Wang JY, Pu Q, Li H, Pan T, Li HQ, Pan FX, Su JQ. High-throughput diagnosis of human pathogens and fecal contamination in marine recreational water. ENVIRONMENTAL RESEARCH 2020; 190:109982. [PMID: 32745749 DOI: 10.1016/j.envres.2020.109982] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Waterborne pathogens and their associated diseases are major threats to public health, and surveillance of pathogens and identification of the sources of pollution are imperative for preventing infections. However, simultaneously quantitative detection of multiple pathogens and pollution sources in water environments is the major challenge. In this study, we developed and validated a highly sensitive (mostly >80%) and highly specific (>99%) high-throughput quantitative PCR (HT-qPCR) approach, which could simultaneously quantify 68 marker genes of 33 human pathogens and 23 fecal markers of 10 hosts. The HT-qPCR approach was then successfully used to investigate pathogens and fecal pollution in marine recreational water samples of Xiamen, China. Totally, seven pathogenic marker genes were found in 13 beach bathing waters, which targeted Acanthamoeba spp., Clostridium perfringens, enteropathogenic Escherichia coli, Klebsiella pneumoniae, Vibrio cholera/V. parahaemolyticus and Legionella spp.. Fecal markers from human and dog were the most frequently detected, indicating human and dog feces were the main contamination in the recreational waters. Nanopore sequencing of full-length 16S rRNA gene revealed that 28 potential human pathogens were detected and electrical conductivity, salinity, oxidation-reduction potential and dissolved oxygen were significantly correlated with the variation in bacterial community. Our results demonstrated that HT-qPCR approach had the potential rapid quantification of microbial contamination, providing useful data for assessment of microbial pathogen associated health risk and development of management practices to protect human health.
Collapse
Affiliation(s)
- Xin-Li An
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jia-Ying Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Pu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hu Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Ting Pan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huan-Qin Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of the Environmental & Ecology, Xiamen University, 361102, China
| | - Fu-Xia Pan
- Jinan Environmental Research Institute, Jinan, 250100, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
24
|
Ahmed W, Payyappat S, Cassidy M, Harrison N, Marinoni O, Besley C. Prevalence and abundance of traditional and host-associated fecal indicators in urban estuarine sediments: Potential implications for estuarine water quality monitoring. WATER RESEARCH 2020; 184:116109. [PMID: 32818744 DOI: 10.1016/j.watres.2020.116109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to determine the prevalence and abundance of sewage and animal fecal contamination of sediment at seven estuarine locations in Sydney, NSW, Australia. Sediment samples were tested for the occurrence of microbial targets including molecular marker genes of enterococci (ENT), Bacteroides HF183 (HF183), Methanobrevibacter smithii (nifH), human adenovirus (HAdV) and emerging sewage-associated marker genes crAssphage (CPQ_056) and Lachnospiraceae (Lachno3) and animal feces-associated marker genes, including avian feces-associated Helicobacter spp. (GFD), canine-feces associated Bacteroides (DogBact), cattle-feces associated (cowM2) and horse feces-associated Bacteroides (HoF597). Results from this study showed that urban estuarine sediment can act as a reservoir of fecal indicator bacteria (FIB) and several microbial source tracking (MST) marker genes, including previously unreported Lachno3. The sewage-associated marker gene CPQ_056 was most prevalent, in 63.8% of sediment samples, while the avian associated marker gene GFD had the highest mean abundance. The GFD marker gene was highly abundant and widely detected in sediment samples from all seven locations compared to the other animal feces-associated marker genes. In all, 31 (44.9%) sediment samples were positive for at least two sewage-associated marker genes. However, the non-quantifiable detection of the HAdV marker gene did not always align with the detection of two or more sewage-associated marker genes. In addition, the most frequent wet weather overflow exposure occurred at locations that did not have a consistent pattern of detection of the sewage-associated marker genes, suggesting sediments may not be a suitable measure of recent sewage contamination. To assist water quality and public health managers better understand past microbial contamination of estuarine sediment, further studies seem justified to explore the role of decay of MST marker genes in sediment. Further work is also needed on the role of resuspension of MST marker genes from sediment during storm events to the water column as a source of contamination for both the GFD and sewage-associated marker genes.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia.
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| | - Michele Cassidy
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| | - Nathan Harrison
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| | - Oswald Marinoni
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Colin Besley
- Sydney Water, 1 Smith Street, Parramatta, NSW, 2150, Australia
| |
Collapse
|
25
|
Relationship between Rainfall, Fecal Pollution, Antimicrobial Resistance, and Microbial Diversity in an Urbanized Subtropical Bay. Appl Environ Microbiol 2020; 86:AEM.01229-20. [PMID: 32709726 PMCID: PMC7499047 DOI: 10.1128/aem.01229-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
The presence of human enteric pathogens, stemming from fecal pollution, is a serious environmental and public health concern in recreational waters. Accurate assessments of fecal pollution are therefore needed to properly assess exposure risks and guide water quality policies and practices. In this study, the absence of a direct correlation between enterococci and source-specific human and animal markers disputes the utility of enterococci as an indicator of fecal pollution in urbanized subtropical bays. Moreover, the inverse correlation between enterococci and the human-specific marker HF183 indicates that recreational beach advisories, triggered by elevated enterococcus concentrations, are a misleading practice. This study clearly demonstrates that a multiparameter approach that includes the quantitation of host-specific markers, as well as analyses of microbial diversity, is a more effective means of assessing water quality in urbanized subtropical bays. Urbanized bays are vulnerable to fecal bacterial pollution, and the extent of this pollution, in marine recreational waters, is commonly assessed by quantifying enterococcus concentrations. Recent reports have questioned the utility of enterococci as an indicator of fecal bacterial pollution in subtropical bays impaired by non-point source pollution, and enterococcus data alone cannot identify fecal bacterial sources (i.e., hosts). The purpose of this study was to assess relationships between rainfall, fecal bacterial pollution, antimicrobial resistance, and microbial diversity in an urbanized subtropical bay. Thus, a comprehensive bacterial source tracking (BST) study was conducted using a combination of traditional and modern BST methods. Findings show that rainfall was directly correlated with elevated enterococcus concentrations, including the increased prevalence of Enterococcus faecium, although it was not correlated with an increase in the prevalence of antimicrobial-resistant strains. Rainfall was also correlated with decreased microbial diversity. In contrast, neither rainfall nor enterococcus concentrations were directly correlated with the concentrations of three omnipresent host-associated fecal markers (i.e., human, canine, and gull). Notably, the human fecal marker (HF183) was inversely correlated with enterococcus concentrations, signifying that traditional enterococcus data alone are not an accurate proxy for human fecal waste in urbanized subtropical bays. IMPORTANCE The presence of human enteric pathogens, stemming from fecal pollution, is a serious environmental and public health concern in recreational waters. Accurate assessments of fecal pollution are therefore needed to properly assess exposure risks and guide water quality policies and practices. In this study, the absence of a direct correlation between enterococci and source-specific human and animal markers disputes the utility of enterococci as an indicator of fecal pollution in urbanized subtropical bays. Moreover, the inverse correlation between enterococci and the human-specific marker HF183 indicates that recreational beach advisories, triggered by elevated enterococcus concentrations, are a misleading practice. This study clearly demonstrates that a multiparameter approach that includes the quantitation of host-specific markers, as well as analyses of microbial diversity, is a more effective means of assessing water quality in urbanized subtropical bays.
Collapse
|
26
|
Li D, Van De Werfhorst LC, Dunne T, Devarajan N, Ayala TG, Holden PA. Surf zone microbiological water quality following emergency beach nourishment using sediments from a catastrophic debris flow. WATER RESEARCH 2020; 176:115733. [PMID: 32234606 DOI: 10.1016/j.watres.2020.115733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Urban disaster response requires disposal of complex wastes. This study regards a case wherein high intensity rainfall fell over a remote mountainous area previously burned by wildfire, generating debris flows that devastated a downstream town. Sanitary sewers and homes with septic systems were damaged, releasing human waste into the debris flow field. Contaminated sediments, with their high fecal indicator bacteria (FIB) concentrations, were cleared from public rights-of-way and creek channels by local authorities, then disposed onto distant Goleta Beach for beach nourishment, causing immediate surf zone microbiological water quality exceedances. To determine potential public health threats, disposed sediments and surf zone waters were sampled and analyzed-relative to reference samples of mountain soil and raw sewage-for FIB, pathogens, human (HF183) and other host- (Gull2 TaqMan, and DogBact) associated DNA-based fecal markers, and bacterial community 16S rRNA gene sequences. Approximately 20% of disposed sediment samples contained the HF183 marker; sequencing suggested that all samples were contaminated by sewage. In an initial sediment disposal period, surf zone waters harbored intestinal bacterial sequences that were shared with disposed sediments and sewage. Yet surf zone bacterial communities returned to mostly marine clades within weeks. Taken together, multiple conventional and DNA-based analyses informed this forensic assessment of human waste contamination. In the future, similar analyses could be used earlier in disaster response to guide sediment disposal decisions towards continuously protecting beachgoer health.
Collapse
Affiliation(s)
- Dong Li
- Bren School of Environmental Science & Management, and the Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Laurie C Van De Werfhorst
- Bren School of Environmental Science & Management, and the Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Thomas Dunne
- Bren School of Environmental Science & Management, and the Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Naresh Devarajan
- Bren School of Environmental Science & Management, and the Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Tania Gomez Ayala
- Bren School of Environmental Science & Management, and the Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Patricia A Holden
- Bren School of Environmental Science & Management, and the Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
27
|
Gyawali P, Hamilton K, Joshi S, Aster D, Ahmed W. Identification of reliable marker genes for the detection of canine fecal contamination in sub-tropical Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137246. [PMID: 32105941 DOI: 10.1016/j.scitotenv.2020.137246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Animal fecal contamination in aquatic environments is a major source of zoonotic diseases in humans. While concerns are focused on livestock, companion animals such as dogs can also be a source of a wide range of zoonotic pathogens. Therefore, detection of dog or canine fecal contamination in aquatic environments is important for mitigating risks. In this study, host-sensitivity and specificity of four canine fecal-associated marker genes were evaluated by analyzing 30 canine and 240 non-canine fecal samples. The application of these markers was also tested in water from an urban river under dry weather conditions. The host sensitivity values of the Bacteroides BacCan-UCD, DogBact, DF113 and DF418 were 1.00, 0.90, 0.83, and 0.90, respectively. The host specificity value of the BacCan-UCD, DogBact, DF113 and DF418 were 0.87, 0.98, 0.83, and 0.41, respectively. The mean concentrations of DF418 were highest (7.82 ± 1.13 log10 gene copies (GC)/g of feces) followed by BacCan-UCD (7.61 ± 1.06 log10 GC/g) and DogBact (7.15 ± 0.92 log10 GC/g). The mean concentration of DF113 (5.80 ± 1.25 log10 GC/g) was 1.5 to 2.5 orders of magnitude lower than the other marker genes. The DogBact marker gene was not detected in any other animal feces other than a small number of untreated sewage samples. The BacCan-UCD marker gene cross-reacted with cat, chicken, and pig fecal samples, while the DF113 marker gene cross-reacted with cat, chicken, cattle fecal and untreated sewage samples. The DF418 marker gene was detected in all sewage and animal feces and deemed not suitable for canine fecal contamination tracking in sub-tropical Australia. Canine fecal contamination was infrequently detected in environmental water samples. Based on the results obtained in this study, we recommend that at least two canine feces-associated marker genes should be used in field studies.
Collapse
Affiliation(s)
- Pradip Gyawali
- Institute of Environmental Science and Research Ltd (ESR), Porirua 5240, New Zealand
| | - Kerry Hamilton
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Sayalee Joshi
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - David Aster
- Department of Agriculture and Fisheries, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| |
Collapse
|
28
|
He Y, He Y, Sen B, Li H, Li J, Zhang Y, Zhang J, Jiang SC, Wang G. Storm runoff differentially influences the nutrient concentrations and microbial contamination at two distinct beaches in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:400-407. [PMID: 30716630 DOI: 10.1016/j.scitotenv.2019.01.369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
With the escalating coastal development and loss of vegetated landscape, the volume of storm runoff increases significantly in Chinese coastal cities. To protect human health and valuable recreational resources, it is necessary to develop a quantitative understanding of coastal pollution. Here we studied the influence of storm runoff on the nutrients and microbial pathogens at two popular bathing beaches in northern China. Dongshan Beach, located near the mouth of an urban river, is influenced by non-point source pollution while Tiger-Rock Beach, a coastal beach, is primarily influenced by a point source from a storm drain outfall. Storm runoff significantly (P < 0.001) decreased the salinity and Chl a post-storm at both the beaches, but only reduced the concentration of dissolved inorganic N at Tiger-Rock Beach. Escherichia coli decreased by 68.7% at Dongshan Beach, possibly due to the dilution effect of the stormflow, contradicting the notion of elevated fecal contamination in coastal beaches from storm runoff. Vibrio parahaemolyticus increased at both beaches post-storm, by 155.7% at Dongshan Beach and 136.7% at Tiger-Rock Beach. Regardless of storm impact, both E. coli and V. parahaemolyticus were much higher at Dongshan Beach than that at Tiger-Rock, suggesting the influence of different surrounding topographies. Lastly, the statistical models developed based on the environmental and microbial parameters regression showed predictive power (adjusted R2 > 0.5) to estimate the concentration of E. coli at Dongshan Beach and V. parahaemolyticus at Tiger-Rock Beach. Overall, the results suggest the unique role of the individual beaches in attenuating the effect of rainfall on the concentration of microbial pathogens in bathing water quality and provide unique predictive models for recreational water management and public health protection.
Collapse
Affiliation(s)
- Yike He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hao Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiaqian Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yongfeng Zhang
- Qinhuangdao Marine Environmental Monitoring Central Station, SOA, Qinhuangdao, Hebei 066002, China
| | - Jianle Zhang
- Qinhuangdao Marine Environmental Monitoring Central Station, SOA, Qinhuangdao, Hebei 066002, China
| | - Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California at Irvine, CA 92697, USA
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
29
|
García-Bonilla E, Brandão PFB, Pérez T, Junca H. Stable and Enriched Cenarchaeum symbiosum and Uncultured Betaproteobacteria HF1 in the Microbiome of the Mediterranean Sponge Haliclona fulva (Demospongiae: Haplosclerida). MICROBIAL ECOLOGY 2019; 77:25-36. [PMID: 29766224 DOI: 10.1007/s00248-018-1201-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Sponges harbor characteristic microbiomes derived from symbiotic relationships shaping their lifestyle and survival. Haliclona fulva is encrusting marine sponge species dwelling in coralligenous accretions or semidark caves of the Mediterranean Sea and the near Atlantic Ocean. In this work, we characterized the abundance and core microbial community composition found in specimens of H. fulva by means of electron microscopy and 16S amplicon Illumina sequencing. We provide evidence of its low microbial abundance (LMA) nature. We found that the H. fulva core microbiome is dominated by sequences belonging to the orders Nitrosomonadales and Cenarchaeales. Seventy percent of the reads assigned to these phylotypes grouped in a very small number of high-frequency operational taxonomic units, representing niche-specific species Cenarchaeum symbiosum and uncultured Betaproteobacteria HF1, a new eubacterial ribotype variant found in H. fulva. The microbial composition of H. fulva is quite distinct from those reported in sponge species of the same Haliclona genus. We also detected evidence of an excretion/capturing loop between these abundant microorganisms and planktonic microbes by analyzing shifts in seawater planktonic microbial content exposed to healthy sponge specimens maintained in aquaria. Our results suggest that horizontal transmission is very likely the main mechanism for symbionts' acquisition by H. fulva. So far, this is the first shallow water sponge species harboring such a specific and predominant assemblage composed of these eubacterial and archaeal ribotypes. Our data suggests that this symbiotic relationship is very stable over time, indicating that the identified core microbial symbionts may play key roles in the holobiont functioning.
Collapse
Affiliation(s)
- Erika García-Bonilla
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Div Ecogenomics & Holobionts, Microbiomas Foundation, LT 11, Chía, 250008, Colombia
| | - Pedro F B Brandão
- Laboratorio de Microbiología Ambiental y Aplicada, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Avenida Carrera 30 No. 45-03, Bogotá, Colombia
| | - Thierry Pérez
- Station Marine d'Endoume SME - IMBE, Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale, UMR 7263 CNRS, Aix-Marseille Université, IRD, Avignon Université, Rue Batterie des Lions, 13007, Marseille, France
| | - Howard Junca
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Div Ecogenomics & Holobionts, Microbiomas Foundation, LT 11, Chía, 250008, Colombia.
| |
Collapse
|
30
|
Korajkic A, McMinn BR, Harwood VJ. Relationships between Microbial Indicators and Pathogens in Recreational Water Settings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2842. [PMID: 30551597 PMCID: PMC6313479 DOI: 10.3390/ijerph15122842] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022]
Abstract
Fecal pollution of recreational waters can cause scenic blight and pose a threat to public health, resulting in beach advisories and closures. Fecal indicator bacteria (total and fecal coliforms, Escherichia coli, and enterococci), and alternative indicators of fecal pollution (Clostridium perfringens and bacteriophages) are routinely used in the assessment of sanitary quality of recreational waters. However, fecal indicator bacteria (FIB), and alternative indicators are found in the gastrointestinal tract of humans, and many other animals and therefore are considered general indicators of fecal pollution. As such, there is room for improvement in terms of their use for informing risk assessment and remediation strategies. Microbial source tracking (MST) genetic markers are closely associated with animal hosts and are used to identify fecal pollution sources. In this review, we examine 73 papers generated over 40 years that reported the relationship between at least one indicator and one pathogen group or species. Nearly half of the reports did not include statistical analysis, while the remainder were almost equally split between those that observed statistically significant relationships and those that did not. Statistical significance was reported less frequently in marine and brackish waters compared to freshwater, and the number of statistically significant relationships was considerably higher in freshwater (p < 0.0001). Overall, significant relationships were more commonly reported between FIB and pathogenic bacteria or protozoa, compared to pathogenic viruses (p: 0.0022⁻0.0005), and this was more pronounced in freshwater compared to marine. Statistically significant relationships were typically noted following wet weather events and at sites known to be impacted by recent fecal pollution. Among the studies that reported frequency of detection, FIB were detected most consistently, followed by alternative indicators. MST markers and the three pathogen groups were detected least frequently. This trend was mirrored by reported concentrations for each group of organisms (FIB > alternative indicators > MST markers > pathogens). Thus, while FIB, alternative indicators, and MST markers continue to be suitable indicators of fecal pollution, their relationship with waterborne pathogens, particularly viruses, is tenuous at best and influenced by many different factors such as frequency of detection, variable shedding rates, differential fate and transport characteristics, as well as a broad range of site-specific factors such as the potential for the presence of a complex mixture of multiple sources of fecal contamination and pathogens.
Collapse
Affiliation(s)
- Asja Korajkic
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Brian R McMinn
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Ave, SCA 110, Tampa, FL 33620, USA.
| |
Collapse
|
31
|
Identification of Human and Animal Fecal Contamination in Drinking Water Sources in the Kathmandu Valley, Nepal, Using Host-Associated Bacteroidales Quantitative PCR Assays. WATER 2018. [DOI: 10.3390/w10121796] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study identified the sources of fecal contamination in the groundwater of different land covers. A total of 300 groundwater samples were collected in the Kathmandu Valley, Nepal, in the dry (n = 152) and wet (n = 148) seasons of 2016. Fecal indicator bacteria were initially enumerated, and then fecal contamination sources were identified using human (BacHum), ruminant (BacR), and pig-associated (Pig2Bac) Bacteroidales quantitative polymerase chain reaction assays. Sixty-six percent (197/300) of the tested groundwater samples had Escherichia coli concentrations higher than the World Health Organization threshold for drinking (<1 most probable number/100 mL). The fecal contamination of the groundwater was of human (22%, 55/250), ruminant (11%, 28/250), and pig (3%, 8/250) origin. Deep tube wells were less likely to be positive for E. coli and fecal markers compared to shallow dug wells. The human fecal marker was more likely to be detected in sources from built-up as compared to agricultural areas (Adjusted odds ratio (AOR) = 3.60, p = 0.002). Likewise, the ruminant fecal marker was more likely to be detected in sources from agricultural as compared to built-up areas (AOR = 2.90, p = 0.018). These findings suggest the preparation of mitigation strategies for controlling fecal pollution based on land cover and well types.
Collapse
|
32
|
Suzuki Y, Teranishi K, Matsuwaki T, Nukazawa K, Ogura Y. Effects of bacterial pollution caused by a strong typhoon event and the restoration of a recreational beach: Transitions of fecal bacterial counts and bacterial flora in beach sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:52-61. [PMID: 29852447 DOI: 10.1016/j.scitotenv.2018.05.265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
To determine the effects of bacteria pollution associated with a strong typhoon event and to assess the restoration of the normal bacterial flora, we used conventional filtration methods and nextgeneration sequencing of 16S rRNA genes to analyze the transition of fecal and total bacterial counts in water and core sand samples collected from a recreational beach. Immediately after the typhoon event, Escherichia coli counts increased to 82 CFU/100 g in the surface beach sand. E. coli was detected through the surface to sand 85-cm deep at the land side point (10-m land side from the high-water line). However, E. coli disappeared within a month from the land side point. The composition of the bacterial flora in the beach sand at the land point was directly influenced by the typhoon event. Pseudomonas was the most prevalent genus throughout the sand layers (0-102-cm deep) during the typhoon event. After 3 months, the population of Pseudomonas significantly decreased, and the predominant genus in the surface layer was Kaistobacter, although Pseudomonas was the major genus in the 17- to 85-cm layer. When the beach conditions stabilized, the number of pollutant Pseudomonas among the 10 most abundant genera decreased to lower than the limit of detection. The bacterial population of the sand was subsequently restored to the most populous pre-event orders at the land point. A land-side beach, where users directly contact the sand, was significantly affected by bacterial pollution caused by a strong typhoon event. We show here that the normal bacterial flora of the surface sand was restored within 1 month.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan.
| | - Kotaro Teranishi
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan
| | - Tomonori Matsuwaki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan
| | - Kei Nukazawa
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai-Nishi 1-1, Miyazaki 889-2192, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Maidashi Higashi-ku 3-1-1, Fukuoka 812-8582, Japan
| |
Collapse
|
33
|
Mahon AR, Horton DJ, Learman DR, Nathan LR, Jerde CL. Investigating diversity of pathogenic microbes in commercial bait trade water. PeerJ 2018; 6:e5468. [PMID: 30155365 PMCID: PMC6109586 DOI: 10.7717/peerj.5468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/27/2018] [Indexed: 01/21/2023] Open
Abstract
The recreational bait trade is a potential pathway for pathogen introduction and spread when anglers dump bait shop sourced water into aquatic systems. Despite this possibility, and previous recognition of the importance of the bait trade in the spread of aquatic invasive species (AIS), to date there has been no region wide survey documenting pathogens in retail bait shops. In this study, we analyzed 96 environmental DNA samples from retail bait shops around the Great Lakes region to identify pathogens, targeting the V4 hypervariable region of the 16S rRNA gene. Additionally, we used samples from one site in Lake Michigan as a comparison to pathogen diversity and abundance in natural aquatic systems. Our results identified nine different groups of pathogens in the bait shop samples, including those that pose risks to both humans and fish species. Compared to wild sourced samples, the bait shops had higher relative abundance and greater taxonomic diversity. These findings suggest that the bait trade represents a potentially important pathway that could introduce and spread pathogens throughout the Great Lakes region. Improving pathogen screening and angler outreach should be used in combination to aid in preventing the future spread of high risk pathogens.
Collapse
Affiliation(s)
- Andrew R Mahon
- Department of Biology, Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, United States of America
| | - Dean J Horton
- Department of Biology, Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, United States of America
| | - Deric R Learman
- Department of Biology, Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, United States of America
| | - Lucas R Nathan
- Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT, United States of America
| | - Christopher L Jerde
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| |
Collapse
|
34
|
Human-Associated Lachnospiraceae Genetic Markers Improve Detection of Fecal Pollution Sources in Urban Waters. Appl Environ Microbiol 2018; 84:AEM.00309-18. [PMID: 29728386 DOI: 10.1128/aem.00309-18] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/24/2018] [Indexed: 11/20/2022] Open
Abstract
The human microbiome contains many organisms that could potentially be used as indicators of human fecal pollution. Here we report the development of two novel human-associated genetic marker assays that target organisms within the family Lachnospiraceae Next-generation sequencing of the V6 region of the 16S rRNA gene from sewage and animal stool samples identified 40 human-associated marker candidates with a robust signal in sewage and low or no occurrence in samples from nonhuman hosts. Two were chosen for quantitative PCR (qPCR) assay development using longer sequences (the V2 to V9 regions) generated from clone libraries. Validation of these assays with these markers, designated Lachno3 and Lachno12, was performed using fecal samples (n = 55) from cat, dog, pig, cow, deer, and gull sources, and the results were compared with those of established host-associated assays (the Lachno2 marker and two human Bacteroides markers, the HB and HF183/BacR287). Each of the established assays cross-reacted with samples from at least one other animal species, including animals common in urban areas. The Lachno3 and Lachno12 markers were primarily human associated; however, the Lachno12 marker demonstrated low levels of cross-reactivity with samples from select cows and nonspecific amplification with samples from pigs. This limitation may not be problematic when testing urban waters. These novel markers resolved ambiguous results from previous investigations of stormwater-impacted waters, demonstrating their utility. The complexity of the microbiome in humans and animals suggests that no single organism is strictly specific to humans, and the use of multiple complementary markers in combination will provide the highest resolution and specificity for assessing fecal pollution sources.IMPORTANCE Traditional fecal indicator bacteria do not distinguish animal from human fecal pollution, which is necessary to evaluate health risks and mitigate pollution sources. Assessing water in urban areas is challenging, since the water can be impacted by sewage, which has a high likelihood of carrying human pathogens, as well as pet and urban wildlife waste. We demonstrate that the Lachno3 and Lachno12 markers are human associated and highly specific for the detection of human fecal pollution from urban sources, offering reliable identification of fecal pollution sources in urban waters.
Collapse
|
35
|
Thoe W, Lee OHK, Leung KF, Lee T, Ashbolt NJ, Yang RR, Chui SHK. Twenty five years of beach monitoring in Hong Kong: A re-examination of the beach water quality classification scheme from a comparative and global perspective. MARINE POLLUTION BULLETIN 2018; 131:793-803. [PMID: 29887007 DOI: 10.1016/j.marpolbul.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Hong Kong's beach water quality classification scheme, used effectively for >25 years in protecting public health, was first established in local epidemiology studies during the late 1980s where Escherichia coli (E. coli) was identified as the most suitable faecal indicator bacteria. To review and further substantiate the scheme's robustness, a performance check was carried out to classify water quality of 37 major local beaches in Hong Kong during four bathing seasons (March-October) from 2010 to 2013. Given the enterococci and E. coli data collected, beach classification by the local scheme was found to be in line with the prominent international benchmarks recommended by the World Health Organization and the European Union. Local bacteriological studies over the last 15 years further confirmed that E. coli is the more suitable faecal indicator bacteria than enterococci in the local context.
Collapse
Affiliation(s)
- W Thoe
- Water Policy and Science Group, Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong
| | - Olive H K Lee
- Water Policy and Science Group, Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong
| | - K F Leung
- Water Policy and Science Group, Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong
| | - T Lee
- Water Policy and Science Group, Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong
| | | | - Ron R Yang
- Water Policy and Science Group, Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong.
| | - Samuel H K Chui
- Water Policy and Science Group, Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong
| |
Collapse
|
36
|
Kelly EA, Feng Z, Gidley ML, Sinigalliano CD, Kumar N, Donahue AG, Reniers AJHM, Solo-Gabriele HM. Effect of beach management policies on recreational water quality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 212:266-277. [PMID: 29448181 PMCID: PMC5844856 DOI: 10.1016/j.jenvman.2018.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/19/2017] [Accepted: 02/02/2018] [Indexed: 05/30/2023]
Abstract
When beach water monitoring programs identify poor water quality, the causes are frequently unknown. We hypothesize that management policies play an important role in the frequency of fecal indicator bacteria (FIB) exceedances (enterococci and fecal coliform) at recreational beaches. To test this hypothesis we implemented an innovative approach utilizing large amounts of monitoring data (n > 150,000 measurements per FIB) to determine associations between the frequency of contaminant exceedances and beach management practices. The large FIB database was augmented with results from a survey designed to assess management policies for 316 beaches throughout the state of Florida. The FIB and survey data were analyzed using t-tests, ANOVA, factor analysis, and linear regression. Results show that beach geomorphology (beach type) was highly associated with exceedance of regulatory standards. Low enterococci exceedances were associated with open coast beaches (n = 211) that have sparse human densities, no homeless populations, low densities of dogs and birds, bird management policies, low densities of seaweed, beach renourishment, charge access fees, employ lifeguards, without nearby marinas, and those that manage storm water. Factor analysis and a linear regression confirmed beach type as the predominant factor with secondary influences from grooming activities (including seaweed densities and beach renourishment) and beach access (including charging fees, employing lifeguards, and without nearby marinas). Our results were observable primarily because of the very large public FIB database available for analyses; similar approaches can be adopted at other beaches. The findings of this research have important policy implications because the selected beach management practices that were associated with low levels of FIB can be implemented in other parts of the US and around the world to improve recreational beach water quality.
Collapse
Affiliation(s)
- Elizabeth A Kelly
- University of Miami, Leonard and Jayne Abess Center for Ecosystem Science and Policy, Coral Gables, FL, USA; NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key Biscayne, FL, USA; University of Miami, College of Engineering, Department of Civil, Architectural, and Environmental Engineering, USA
| | - Zhixuan Feng
- NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key Biscayne, FL, USA; Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Maribeth L Gidley
- NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key Biscayne, FL, USA; University of Miami Cooperative Institute for Marine and Atmospheric Studies, Key Biscayne, FL, USA; NOAA Atlantic Oceanographic and Meteorological Laboratory, Key Biscayne, FL, USA
| | - Christopher D Sinigalliano
- NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key Biscayne, FL, USA; NOAA Atlantic Oceanographic and Meteorological Laboratory, Key Biscayne, FL, USA
| | - Naresh Kumar
- University of Miami Department of Public Health Sciences, Division of Environment & Public Health, Miami, FL, USA
| | - Allison G Donahue
- NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key Biscayne, FL, USA; University of Miami, Department of Biology, Coral Gables, FL, USA
| | - Adrianus J H M Reniers
- NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key Biscayne, FL, USA; Delft University of Technology, Department of Hydraulic Engineering, Delft, The Netherlands
| | - Helena M Solo-Gabriele
- University of Miami, Leonard and Jayne Abess Center for Ecosystem Science and Policy, Coral Gables, FL, USA; NSF NIEHS Oceans and Human Health Center, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key Biscayne, FL, USA; University of Miami, College of Engineering, Department of Civil, Architectural, and Environmental Engineering, USA.
| |
Collapse
|
37
|
McClary JS, Boehm AB. Transcriptional Response of Staphylococcus aureus to Sunlight in Oxic and Anoxic Conditions. Front Microbiol 2018; 9:249. [PMID: 29599752 PMCID: PMC5863498 DOI: 10.3389/fmicb.2018.00249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
The transcriptional response of Staphylococcus aureus strain Newman to sunlight exposure was investigated under both oxic and anoxic conditions using RNA sequencing to gain insight into potential mechanisms of inactivation. S. aureus is a pathogenic bacterium detected at recreational beaches which can cause gastrointestinal illness and skin infections, and is of increasing public health concern. To investigate the S. aureus photostress response in oligotrophic seawater, S. aureus cultures were suspended in seawater and exposed to full spectrum simulated sunlight. Experiments were performed under oxic or anoxic conditions to gain insight into the effects of oxygen-mediated and non-oxygen-mediated inactivation mechanisms. Transcript abundance was measured after 6 h of sunlight exposure using RNA sequencing and was compared to transcript abundance in paired dark control experiments. Culturable S. aureus decayed following biphasic inactivation kinetics with initial decay rate constants of 0.1 and 0.03 m2 kJ−1 in oxic and anoxic conditions, respectively. RNA sequencing revealed that 71 genes had different transcript abundance in the oxic sunlit experiments compared to dark controls, and 18 genes had different transcript abundance in the anoxic sunlit experiments compared to dark controls. The majority of genes showed reduced transcript abundance in the sunlit experiments under both conditions. Three genes (ebpS, NWMN_0867, and NWMN_1608) were found to have the same transcriptional response to sunlight between both oxic and anoxic conditions. In the oxic condition, transcripts associated with porphyrin metabolism, nitrate metabolism, and membrane transport functions were increased in abundance during sunlight exposure. Results suggest that S. aureus responds differently to oxygen-dependent and oxygen-independent photostress, and that endogenous photosensitizers play an important role during oxygen-dependent indirect photoinactivation.
Collapse
Affiliation(s)
- Jill S McClary
- Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| | - Alexandria B Boehm
- Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
38
|
Hassard F, Andrews A, Jones DL, Parsons L, Jones V, Cox BA, Daldorph P, Brett H, McDonald JE, Malham SK. Physicochemical Factors Influence the Abundance and Culturability of Human Enteric Pathogens and Fecal Indicator Organisms in Estuarine Water and Sediment. Front Microbiol 2017; 8:1996. [PMID: 29089931 PMCID: PMC5650961 DOI: 10.3389/fmicb.2017.01996] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
To assess fecal pollution in coastal waters, current monitoring is reliant on culture-based enumeration of bacterial indicators, which does not account for the presence of viable but non-culturable or sediment-associated micro-organisms, preventing effective quantitative microbial risk assessment (QMRA). Seasonal variability in viable but non-culturable or sediment-associated bacteria challenge the use of fecal indicator organisms (FIOs) for water monitoring. We evaluated seasonal changes in FIOs and human enteric pathogen abundance in water and sediments from the Ribble and Conwy estuaries in the UK. Sediments possessed greater bacterial abundance than the overlying water column, however, key pathogenic species (Shigella spp., Campylobacter jejuni, Salmonella spp., hepatitis A virus, hepatitis E virus and norovirus GI and GII) were not detected in sediments. Salmonella was detected in low levels in the Conwy water in spring/summer and norovirus GII was detected in the Ribble water in winter. The abundance of E. coli and Enterococcus spp. quantified by culture-based methods, rarely matched the abundance of these species when measured by qPCR. The discrepancy between these methods was greatest in winter at both estuaries, due to low CFU's, coupled with higher gene copies (GC). Temperature accounted for 60% the variability in bacterial abundance in water in autumn, whilst in winter salinity explained 15% of the variance. Relationships between bacterial indicators/pathogens and physicochemical variables were inconsistent in sediments, no single indicator adequately described occurrence of all bacterial indicators/pathogens. However, important variables included grain size, porosity, clay content and concentrations of Zn, K, and Al. Sediments with greater organic matter content and lower porosity harbored a greater proportion of non-culturable bacteria (including dead cells and extracellular DNA) in winter. Here, we show the link between physicochemical variables and season which govern culturability of human enteric pathogens and FIOs. Therefore, knowledge of these factors is critical for accurate microbial risk assessment. Future water quality management strategies could be improved through monitoring sediment-associated bacteria and non-culturable bacteria. This could facilitate source apportionment of human enteric pathogens and FIOs and direct remedial action to improve water quality.
Collapse
Affiliation(s)
- Francis Hassard
- School of Ocean Sciences, Bangor University, Bangor, United Kingdom.,Cranfield Water Science Institute, Cranfield University, Bedford, United Kingdom
| | | | - Davey L Jones
- School of Environment, Natural Resources and Geography, Bangor University, Bangor, United Kingdom
| | - Louise Parsons
- School of Ocean Sciences, Bangor University, Bangor, United Kingdom
| | | | | | | | | | - James E McDonald
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
39
|
Napier MD, Haugland R, Poole C, Dufour AP, Stewart JR, Weber DJ, Varma M, Lavender JS, Wade TJ. Exposure to human-associated fecal indicators and self-reported illness among swimmers at recreational beaches: a cohort study. Environ Health 2017; 16:103. [PMID: 28969670 PMCID: PMC5625766 DOI: 10.1186/s12940-017-0308-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/18/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Fecal indicator bacteria used to assess illness risks in recreational waters (e.g., Escherichia coli, Enterococci) cannot discriminate among pollution sources. To address this limitation, human-associated Bacteroides markers have been proposed, but the risk of illness associated with the presence of these markers in recreational waters is unclear. Our objective was to estimate associations between human-associated Bacteroides markers in water and self-reported illness among swimmers at 6 U.S. beaches spanning 2003-2007. METHODS We used data from a prospectively-enrolled cohort of 12,060 swimmers surveyed about beach activities and water exposure on the day of their beach visit. Ten to twelve days later, participants reported gastroinestinal, diarrheal, and respiratory illnesses experienced since the visit. Daily water samples were analyzed for the presence of human-associated Bacteroides genetic markers: HF183, BsteriF1, BuniF2, HumM2. We used model-based standardization to estimate risk differences (RD) and 95% confidence intervals (CI). We assessed whether the presence of Bacteroides markers were modifiers of the association between general Enterococcus and illness among swimmers using interaction contrast. RESULTS Overall we observed inconsistent associations between the presence of Bacteroides markers and illness. There was a pattern of increased risks of gastrointestinal (RD = 1.9%; 95% CI: 0.1%, 3.7%), diarrheal (RD = 1.3%; 95% CI: -0.2%, 2.7%), and respiratory illnesses (RD = 1.1%; 95% CI: -0.2%, 2.5%) associated with BsteriF1. There was no evidence that Bacteroides markers acted as modifiers of Enterococcus and illness. Patterns were similar when stratified by water matrix. CONCLUSIONS Quantitative measures of fecal pollution using Bacteroides, rather than presence-absence indicators, may be necessary to accurately assess human risk specific to the presence of human fecal pollution.
Collapse
Affiliation(s)
- Melanie D. Napier
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill, NC 27599 USA
| | - Richard Haugland
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH USA
| | - Charles Poole
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill, NC 27599 USA
| | - Alfred P. Dufour
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH USA
| | - Jill R. Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, CB #7431, Chapel Hill, NC 27599 USA
| | - David J. Weber
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill, NC 27599 USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina Health Care, Bioinformatics Building, 130 Mason Farm Road, 2nd Floor, CB#7030, Chapel Hill, NC 27599 USA
| | - Manju Varma
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH USA
| | - Jennifer S. Lavender
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH USA
| | - Timothy J. Wade
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| |
Collapse
|
40
|
Staphylococcus aureus Strain Newman Photoinactivation and Cellular Response to Sunlight Exposure. Appl Environ Microbiol 2017. [PMID: 28646114 DOI: 10.1128/aem.01052-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sunlight influences microbial water quality of surface waters. Previous studies have investigated photoinactivation mechanisms and cellular photostress responses of fecal indicator bacteria (FIB), including Escherichia coli and enterococci, but further work is needed to characterize photostress responses of bacterial pathogens. Here we investigate the photoinactivation of Staphylococcus aureus (strain Newman), a pigmented, waterborne pathogen of emerging concern. We measured photodecay using standard culture-based assays and cellular membrane integrity and investigated photostress response by measuring the relative number of mRNA transcripts of select oxidative stress, DNA repair, and metabolism genes. Photoinactivation experiments were performed in both oxic and anoxic systems to further investigate the role of oxygen-mediated and non-oxygen-mediated photoinactivation mechanisms. S. aureus lost culturability much faster in oxic systems than in anoxic systems, indicating an important role for oxygen in photodecay mechanisms. S. aureus cell membranes were damaged by sunlight exposure in anoxic systems but not in oxic systems, as measured by cell membrane permeability to propidium iodide. After sunlight exposure, S. aureus increased expression of a gene coding for methionine sulfoxide reductase after 12 h of sunlight exposure in the oxic system and after 6 h of sunlight exposure in the anoxic system, suggesting that methionine sulfoxide reductase is an important enzyme for defense against both oxygen-dependent and oxygen-independent photostresses. This research highlights the importance of oxygen in bacterial photoinactivation in environmentally relevant systems and the complexity of the bacterial photostress response with respect to cell structure and transcriptional regulation.IMPORTANCEStaphylococcus aureus is a pathogenic bacterium that causes gastrointestinal, respiratory, and skin infections. In severe cases, S. aureus infection can lead to life-threatening diseases, including pneumonia and sepsis. Cases of community-acquired S. aureus infection have been increasing in recent years, pointing to the importance of considering S. aureus transmission pathways outside the hospital environment. Associations have been observed between recreational water contact and staphylococcal skin infections, suggesting that recreational waters may be an important environmental transmission pathway for S. aureus However, prediction of human health risk in recreational waters is hindered by incomplete knowledge of pathogen sources, fate, and transport in this environment. This study is an in-depth investigation of the inactivation of a representative strain of S. aureus by sunlight exposure, one of the most important factors controlling the fate of microbial contaminants in clear waters, which will improve our ability to predict water quality changes and human health risk in recreational waters.
Collapse
|
41
|
Symonds EM, Young S, Verbyla ME, McQuaig-Ulrich SM, Ross E, Jiménez JA, Harwood VJ, Breitbart M. Microbial source tracking in shellfish harvesting waters in the Gulf of Nicoya, Costa Rica. WATER RESEARCH 2017; 111:177-184. [PMID: 28086114 DOI: 10.1016/j.watres.2017.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/07/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Current microbial water quality monitoring is generally limited to culture-based measurements of fecal indicator bacteria (FIB). Given the many possible sources of fecal pollution within a watershed and extra-intestinal FIB reservoirs, it is important to determine source(s) of fecal pollution as a means to improve water quality and protect public health. The principal objective of this investigation was to characterize the microbial water quality of shellfish harvesting areas in the Gulf of Nicoya, Costa Rica during 2015. In order to achieve this objective, the specificity and sensitivity of 11 existing microbial source tracking (MST) PCR assays, associated with cows (BacCow), dogs (BacCan, DogBac), domestic wastewater (PMMoV), general avian (GFD), gulls (Gull2), horses (HorseBac, HoF), humans (HF183, HPyV), and pigs (PF), were evaluated using domestic wastewater and animal fecal samples collected from the region. The sensitivity of animal-associated assays ranged from 13 to 100%, while assay specificity ranged from 38 to 100%. The specificity of pepper mild mottle virus (PMMoV) and human polyomavirus (HPyV) was 100% for domestic wastewater, as compared to 94% specificity of the HF183 Bacteroidales marker. PMMoV was identified as a useful domestic wastewater-associated marker, with concentrations as high as 1.1 × 105 copies/ml and 100% sensitivity and specificity. Monthly surface water samples collected from four shellfish harvesting areas were analyzed using culture-based methods for Escherichia coli as well as molecular methods for FIB and a suite of MST markers, which were selected for their specificity in the region. While culturable E. coli results suggested possible fecal pollution during the monitoring period, the absence of human/domestic wastewater-associated markers and low FIB concentrations determined using molecular methods indicated sufficient microbial water quality for shellfish harvesting. This is the first study to our knowledge to test the performance of MST markers in Costa Rica as well as in Central America. Given the lack of wastewater treatment and the presence of secondary sources of FIB, this study highlights the importance of an MST toolbox approach to characterize water quality in tropical regions. Furthermore, it confirms and extends the geographic range of PMMoV as an effective tool for monitoring domestic wastewater pollution.
Collapse
Affiliation(s)
- E M Symonds
- University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, Florida, USA.
| | - S Young
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Avenue, Tampa, FL, USA.
| | - M E Verbyla
- University of South Florida, Department of Civil & Environmental Engineering, 4202 E. Fowler Avenue, Tampa, FL, USA.
| | - S M McQuaig-Ulrich
- St. Petersburg College, Natural Sciences Department, 2465 Drew Street, Clearwater, FL, USA.
| | - E Ross
- Fundación MarViva, Apartado 020-6151 Santa Ana, San José, Costa Rica.
| | - J A Jiménez
- Fundación MarViva, Apartado 020-6151 Santa Ana, San José, Costa Rica.
| | - V J Harwood
- University of South Florida, Department of Integrative Biology, 4202 E. Fowler Avenue, Tampa, FL, USA.
| | - M Breitbart
- University of South Florida, College of Marine Science, 140 7th Avenue South, St. Petersburg, Florida, USA.
| |
Collapse
|
42
|
Wangkahad B, Mongkolsuk S, Sirikanchana K. Integrated Multivariate Analysis with Nondetects for the Development of Human Sewage Source-Tracking Tools Using Bacteriophages of Enterococcus faecalis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2235-2245. [PMID: 27983829 DOI: 10.1021/acs.est.6b04714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We developed sewage-specific microbial source tracking (MST) tools using enterococci bacteriophages and evaluated their performance with univariate and multivariate analyses involving data below detection limits. Newly isolated Enterococci faecalis bacterial strains AIM06 (DSM100702) and SR14 (DSM100701) demonstrated 100% specificity and 90% sensitivity to human sewage without detecting 68 animal manure pooled samples of cats, chickens, cows, dogs, ducks, pigs, and pigeons. AIM06 and SR14 bacteriophages were present in human sewage at 2-4 orders of magnitude. A principal component analysis confirmed the importance of both phages as main water quality parameters. The phages presented only in the polluted water, as classified by a cluster analysis, and at median concentrations of 1.71 × 102 and 4.27 × 102 PFU/100 mL, respectively, higher than nonhost specific RYC2056 phages and sewage-specific KS148 phages (p < 0.05). Interestingly, AIM06 and SR14 phages exhibited significant correlations with each other and with total coliforms, E. coli, enterococci, and biochemical oxygen demand (Kendall's tau = 0.348 to 0.605, p < 0.05), a result supporting their roles as water quality indicators. This research demonstrates the multiregional applicability of enterococci hosts in MST application and highlights the significance of multivariate analysis with nondetects in evaluating the performance of new MST host strains.
Collapse
Affiliation(s)
| | - Skorn Mongkolsuk
- Department of Biotechnology and Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University , Bangkok, Thailand 10400
- Laboratory of Biotechnology, Chulabhorn Research Institute , Bangkok, Thailand 10210
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education , Phitsanulok 10400, Thailand
| | - Kwanrawee Sirikanchana
- Laboratory of Biotechnology, Chulabhorn Research Institute , Bangkok, Thailand 10210
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education , Phitsanulok 10400, Thailand
| |
Collapse
|
43
|
Distribution and Differential Survival of Traditional and Alternative Indicators of Fecal Pollution at Freshwater Beaches. Appl Environ Microbiol 2017; 83:AEM.02881-16. [PMID: 27940538 DOI: 10.1128/aem.02881-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/02/2016] [Indexed: 12/30/2022] Open
Abstract
Alternative indicators have been developed that can be used to identify host sources of fecal pollution, yet little is known about how their distribution and fate compare to traditional indicators. Escherichia coli and enterococci were widely distributed at the six beaches studied and were detected in almost 95% of water samples (n = 422) and 100% of sand samples (n = 400). Berm sand contained the largest amount of E. coli (P < 0.01), whereas levels of enterococci were highest in the backshore (P < 0.01). E. coli and enterococci were the lowest in water, using a weight-to-volume comparison. The gull-associated Catellicoccus marimammalium (Gull2) marker was found in over 80% of water samples, regardless of E. coli levels, and in 25% of sand samples. Human-associated Bacteroides (HB) and Lachnospiraceae (Lachno2) were detected in only 2.4% of water samples collected under baseflow and post-rain conditions but produced a robust signal after a combined sewage overflow, despite low E. coli concentrations. Burdens of E. coli and enterococci in water and sand were disproportionately high in relation to alternative indicators when comparing environmental samples to source material. In microcosm studies, Gull2, HB, and Lachno2 quantitative PCR (qPCR) signals were reduced twice as quickly as those from E. coli and enterococci and approximately 20% faster than signals from culturable E. coli High concentrations of alternative indicators in source material illustrated their high sensitivity for the identification of fecal sources; however, differential survival and the potential for long-term persistence of traditional fecal indicators complicate the use of alternative indicator data to account for the levels of E. coli and enterococci in environmental samples. IMPORTANCE E. coli and enterococci are general indicators of fecal pollution and may persist in beach sand, making their use problematic for many applications. This study demonstrates that gull fecal pollution is widespread at Great Lakes beaches, whereas human and ruminant contamination is evident only after major rain events. An exploration of sand as a reservoir for indicators found that E. coli was ubiquitous, while gull host markers were detected in only 25% of samples. In situ sand beach microcosms provided decay rate constants for E. coli and enterococci relative to alternative indicators, which establish comparative benchmarks that would be helpful to distinguish recent from past pollution. Overall, alternative indicators are useful for identifying sources and assessing potentially high health risk contamination events; however, beach managers should be cautious in attempting to directly link their detection to the levels of E. coli or enterococci.
Collapse
|
44
|
Abreu R, Figueira C, Romão D, Brandão J, Freitas MC, Andrade C, Calado G, Ferreira C, Campos A, Prada S. Sediment characteristics and microbiological contamination of beach sand - A case-study in the archipelago of Madeira. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:627-638. [PMID: 27585431 DOI: 10.1016/j.scitotenv.2016.08.160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 05/06/2023]
Abstract
Beach sand can harbour pathogenic and opportunistic microorganisms, as well as faecal indicator bacteria that influence directly the bathing water quality. Pathogenic and opportunistic microorganisms often raise concern of exposure during beach related recreational activities. In this work, three different types of sandy beaches (natural basaltic, natural calcareous and artificial calcareous) of the Archipelago of Madeira (Portugal) were sampled for bacterial and fungal contaminants and grain size distribution, during four years (2010-2013). Following an extreme weather event in 2010, the faecal indicator bacteria levels spiked, returning to base levels shortly thereafter. The same phenomenon occurred with fungi, where potentially pathogenic fungi were the dominant group. Yeast-like fungi and dermatophytes were, however, mainly associated to months of higher usage by recreational users. Statistical analysis showed higher contamination of sediment in artificial beaches compared to natural beaches and granulometry and chemical composition of sand did not influence in the microbial loads. Instead, bather density and the influence of coastal protection structures needed to maintain the volume of artificial beach sand regarding the removal potential of wave induced currents are obvious influencing factors.
Collapse
Affiliation(s)
- Roberto Abreu
- Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Madeira, Portugal
| | - Celso Figueira
- Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Madeira, Portugal.
| | - Daniela Romão
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - João Brandão
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - M Conceição Freitas
- Faculdade de Ciências da Universidade de Lisboa, Instituto Dom Luis, Bloco C6, 3° piso, Campo Grande, 1749-016 Lisboa, Portugal
| | - César Andrade
- Faculdade de Ciências da Universidade de Lisboa, Instituto Dom Luis, Bloco C6, 3° piso, Campo Grande, 1749-016 Lisboa, Portugal
| | - Graça Calado
- Laboratório de Saúde Pública, IASaúde, Rua das Pretas n° 1, 9004-515 Funchal, Portugal
| | - Carmen Ferreira
- Laboratório Regional de Veterinária e Segurança Alimentar, Caminho das Quebradas de Baixo n° 79, 9000-254 Funchal, Portugal
| | - Ana Campos
- Laboratório Regional de Veterinária e Segurança Alimentar, Caminho das Quebradas de Baixo n° 79, 9000-254 Funchal, Portugal
| | - Susana Prada
- Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Madeira, Portugal; Centro de Vulcanologia e Avaliação de Riscos Geológicos, Universidade dos Açores, 9501-801 Ponta Delgada, Açores, Portugal
| |
Collapse
|
45
|
Assessment of Fecal Contamination in Oklahoma Water Systems through the Use of Sterol Fingerprints. ENVIRONMENTS 2016. [DOI: 10.3390/environments3040028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Symonds E, Sinigalliano C, Gidley M, Ahmed W, McQuaig-Ulrich S, Breitbart M. Faecal pollution along the southeastern coast of Florida and insight into the use of pepper mild mottle virus as an indicator. J Appl Microbiol 2016; 121:1469-1481. [DOI: 10.1111/jam.13252] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022]
Affiliation(s)
- E.M. Symonds
- College of Marine Science; University of South Florida; St. Petersburg FL USA
| | - C. Sinigalliano
- U.S. National Oceanographic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory; Miami FL USA
| | - M. Gidley
- U.S. National Oceanographic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory; Miami FL USA
| | - W. Ahmed
- Commonwealth Scientific and Industrial Research Organisation; Brisbane QLD Australia
| | | | - M. Breitbart
- College of Marine Science; University of South Florida; St. Petersburg FL USA
| |
Collapse
|
47
|
Schang C, Henry R, Kolotelo PA, Prosser T, Crosbie N, Grant T, Cottam D, O’Brien P, Coutts S, Deletic A, McCarthy DT. Evaluation of Techniques for Measuring Microbial Hazards in Bathing Waters: A Comparative Study. PLoS One 2016; 11:e0155848. [PMID: 27213772 PMCID: PMC4877094 DOI: 10.1371/journal.pone.0155848] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/05/2016] [Indexed: 11/23/2022] Open
Abstract
Recreational water quality is commonly monitored by means of culture based faecal indicator organism (FIOs) assays. However, these methods are costly and time-consuming; a serious disadvantage when combined with issues such as non-specificity and user bias. New culture and molecular methods have been developed to counter these drawbacks. This study compared industry-standard IDEXX methods (Colilert and Enterolert) with three alternative approaches: 1) TECTA™ system for E. coli and enterococci; 2) US EPA’s 1611 method (qPCR based enterococci enumeration); and 3) Next Generation Sequencing (NGS). Water samples (233) were collected from riverine, estuarine and marine environments over the 2014–2015 summer period and analysed by the four methods. The results demonstrated that E. coli and coliform densities, inferred by the IDEXX system, correlated strongly with the TECTA™ system. The TECTA™ system had further advantages in faster turnaround times (~12 hrs from sample receipt to result compared to 24 hrs); no staff time required for interpretation and less user bias (results are automatically calculated, compared to subjective colorimetric decisions). The US EPA Method 1611 qPCR method also showed significant correlation with the IDEXX enterococci method; but had significant disadvantages such as highly technical analysis and higher operational costs (330% of IDEXX). The NGS method demonstrated statistically significant correlations between IDEXX and the proportions of sequences belonging to FIOs, Enterobacteriaceae, and Enterococcaceae. While costs (3,000% of IDEXX) and analysis time (300% of IDEXX) were found to be significant drawbacks of NGS, rapid technological advances in this field will soon see it widely adopted.
Collapse
Affiliation(s)
- Christelle Schang
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash University, Clayton, Victoria, Australia
| | - Rebekah Henry
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash University, Clayton, Victoria, Australia
| | - Peter A. Kolotelo
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash University, Clayton, Victoria, Australia
| | | | | | - Trish Grant
- Melbourne Water, Docklands, Victoria, Australia
| | - Darren Cottam
- Environment Protection Authority Victoria, Melbourne, Victoria, Australia
| | - Peter O’Brien
- Mornington Peninsula Shire, Rosebud, Victoria, Australia
| | - Scott Coutts
- Micromon, Monash University, Clayton, Victoria, Australia
| | - Ana Deletic
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash University, Clayton, Victoria, Australia
| | - David T. McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
48
|
Griffith JF, Weisberg SB, Arnold BF, Cao Y, Schiff KC, Colford JM. Epidemiologic evaluation of multiple alternate microbial water quality monitoring indicators at three California beaches. WATER RESEARCH 2016; 94:371-381. [PMID: 27040577 DOI: 10.1016/j.watres.2016.02.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
INTRODUCTION Advances in molecular methods provide new opportunities for directly measuring pathogens or host-associated markers of fecal pollution instead of relying on fecal indicator bacteria (FIB) alone for beach water quality monitoring. Adoption of new indicators depends on identifying relationships between either the presence or concentration of the indicators and illness among swimmers. Here we present results from three epidemiologic studies in which a broad range of bacterial and viral indicators of fecal contamination were measured simultaneously by either culture or molecular methods along with Enterococcus to assess whether they provide better health risk prediction than current microbial indicators of recreational water quality. METHODS We conducted prospective cohort studies at three California beaches -- Avalon Bay (Avalon), Doheny State Beach (Doheny), Surfrider State Beach (Malibu) -- during the summers of 2007, 2008 and 2009. The studies enrolled 10,785 swimmers across the beaches and recorded each swimmer's water exposure. Water and sand samples were collected several times per day at multiple locations at each beach and analyzed for up to 41 target indicators using 67 different methodologies. Interviewers contacted participants by phone 10-14 days later and recorded symptoms of gastrointestinal illness occurring after their beach visit. Regression models were used to evaluate the association between water quality indicators and gastrointestinal illness among swimmers at each beach. RESULTS F+ coliphage (measured using EPA Method 1602) exhibited a stronger association with GI illness than did EPA Method 1600 at the two beaches where it was measured, while a molecular method, F+ RNA Coliphage Genotype II, was the only indicator significantly associated with GI illness at Malibu. MRSA, a known pathogen, had the strongest association with GI illness of any microbe measured at Avalon. There were two methods targeting human-associated fecal anaerobic bacteria that were more strongly associated with GI illness than EPA Method 1600, but only at Avalon. No indicator combinations consistently had a higher odds ratio than EPA Method 1600, but one composite indicator, based on the number of pathogens detected at a beach, was significantly associated with gastrointestinal illness at both Avalon and Doheny when freshwater flow was high. DISCUSSION While EPA Method1600 performed adequately at two beaches based on its consistency of association with gastrointestinal illness and the precision of its estimated associations, F+ coliphage measured by EPA Method 1602 had a stronger association with GI illness under high risk conditions at the two beaches where it was measured. One indicator, F+ Coliphage Genotype II was the only indicator significantly associated with GI illness at Malibu. Several indicators, particularly those targeting human associated bacteria, exhibited relationships with GI illness that were equal to or greater than that of EPA Method 1600 at Avalon, which has a focused human fecal source. Our results suggest that site-specific conditions at each beach determine which indicator or indicators best predict GI illness.
Collapse
Affiliation(s)
- John F Griffith
- Department of Microbiology, Southern California Coastal Water Research Project, 3535 Harbor Blvd. Suite 110, Costa Mesa, CA 92626, USA.
| | - Stephen B Weisberg
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA
| | - Benjamin F Arnold
- Division of Epidemiology, School of Public Health, University of California, Berkeley, USA
| | - Yiping Cao
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA
| | - Kenneth C Schiff
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA
| | - John M Colford
- Division of Epidemiology, School of Public Health, University of California, Berkeley, USA
| |
Collapse
|
49
|
Abstract
This paper reviews the latest evidence provided by epidemiological studies and quantitative microbial risk assessments (QMRAs) of infection risk from recreational water use. Studies for review were selected following a PubMed search for articles published between January 2010 and April 2014. Epidemiological studies show a generally elevated risk of gastrointestinal illness in bathers compared to non-bathers but often no clear association with water quality as measured by faecal indicator bacteria; this is especially true where study sites are impacted by non-point source pollution. Evidence from QMRAs support the lack of a consistent water quality association for non-point source-impacted beaches. It is suggested that source attribution, through quantified microbial source apportionment, linked with appropriate use of microbial source tracking methods should be employed as an integral part of future epidemiological surveys.
Collapse
Affiliation(s)
- Lorna Fewtrell
- Centre for Research into Environment and Health (CREH), Department of Geography and Earth Sciences, Aberystwyth University, Ceredigion, SY23 3DB UK
| | - David Kay
- Centre for Research into Environment and Health (CREH), Department of Geography and Earth Sciences, Aberystwyth University, Ceredigion, SY23 3DB UK
| |
Collapse
|
50
|
Wang Z, Xiao G, Zhou N, Qi W, Han L, Ruan Y, Guo D, Zhou H. Comparison of two methods for detection of fecal indicator bacteria used in water quality monitoring of the Three Gorges Reservoir. J Environ Sci (China) 2015; 38:42-51. [PMID: 26702967 DOI: 10.1016/j.jes.2015.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 06/05/2023]
Abstract
Scientifically sound methods to rapidly measure fecal indicator bacteria are important to ensure safe water for drinking and recreational purposes. A total of 200 water samples obtained from the Three Gorges Reservoir during three successive one-year study periods (October 2009 to September 2012) were analyzed using multiple-tube fermentation (MTF) and most probable numbers combined with polymerase chain reaction (MPN-PCR). The MPN-PCR method was found to be significantly more sensitive than the MTF method for detecting Escherichia coli and Enterococcus spp., and of equal sensitivity for detecting total coliforms when all surface water samples were grouped together. The two analytical methods had a strong, significant relationship, but MPN-PCR took only 12-18hr, compared with the 3-8days needed using the MTF method. Bacterial concentrations varied per sampling site but were significantly lower in the mainstream of the Yangtze River than those in the backwater areas of tributaries. The water quality of 85.8% of water samples from the mainstream was suitable for use as a centralized potable water source, while the water quality of 52.5% of water samples from the backwater areas was unsuitable for recreational activities. Relationships between fecal indicator bacteria showed significant correlation (r=0.636-0.909, p<0.01, n=200), while a weak but significant correlation was found between fecal indicators and water turbidity, water temperature, daily inflow, and total dissolved solids (r=0.237-0.532, p<0.05, n=200). The study indicated that MPN-PCR is a rapid and easily performed deoxyribonucleic acid (DNA)-based method for quantitative detection of viable total coliforms, E. coli, and Enterococcus spp. in surface water.
Collapse
Affiliation(s)
- Zhaodan Wang
- College of life science and engineering, Chongqing Three Gorges University, Wanzhou 404100 Chongqing, China.
| | - Guosheng Xiao
- College of life science and engineering, Chongqing Three Gorges University, Wanzhou 404100 Chongqing, China.
| | - Nong Zhou
- College of life science and engineering, Chongqing Three Gorges University, Wanzhou 404100 Chongqing, China
| | - Wenhua Qi
- College of life science and engineering, Chongqing Three Gorges University, Wanzhou 404100 Chongqing, China
| | - Lin Han
- College of life science and engineering, Chongqing Three Gorges University, Wanzhou 404100 Chongqing, China
| | - Yu Ruan
- College of life science and engineering, Chongqing Three Gorges University, Wanzhou 404100 Chongqing, China
| | - Dongqin Guo
- College of life science and engineering, Chongqing Three Gorges University, Wanzhou 404100 Chongqing, China
| | - Hong Zhou
- College of life science and engineering, Chongqing Three Gorges University, Wanzhou 404100 Chongqing, China
| |
Collapse
|