1
|
Liu Q, Liu C, Wang S, Zhang L, Sun H, Liao X. Differing envelope composition of Gram-negative and Gram-positive bacteria controls the adhesion and bactericidal performance of nanoscale zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137663. [PMID: 39987735 DOI: 10.1016/j.jhazmat.2025.137663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/18/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Zero-valent-iron (nZVI) is a candidate antimicrobial agent, and previous works revealed its varying inactivation performance on Gram-negative (G-) and Gram-positive (G+) bacteria, but the underlying mechanism remains ambiguous. Herein, we reported the easier inactivation of Escherichia coli (G-, E. coli) than Staphylococcus aureus (G+, S. aureus) by nZVI, and revealed the key role of cell-nZVI adsorption. nZVI adhered more massively on E. coli surface than on S. aureus, and subsequently led to more pronounced membrane damage of E. coli. Investigations of pH, zeta potential, and ionic strength ruled out the essential contribution of nZVI-bacteria electrostatic interaction due to the different surface charges of E. coli and S. aureus. Three-dimensional excitation emission matrix suggested that the extracellular polymeric substances of E. coli suffered more severe damage by nZVI and lead to greater exposure of membrane. Infrared spectra indicated that nZVI strongly bound with the membrane proteins of E. coli and destroyed the membrane components. By contrast, the bonding between nZVI and S. aureus was minimal because of the dominant multi-layered peptidoglycan. The enhanced nZVI adsorption and membrane disruption would result in magnified reactive oxygen species (ROS) generation and oxidative stress of E. coli. Moreover, the catalase activity normalized by ROS concentration of S. aureus was 14.9-fold higher than that of E. coli after nZVI treatment, suggesting the stronger antioxidative capability of S. aureus. Our findings highlight that the different envelope compositions and antioxidant capacities between G- and G+ bacteria were responsible for their varying susceptibility to nZVI.
Collapse
Affiliation(s)
- Qianhui Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China; Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Congcong Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Shaohui Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Xiaomei Liao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
2
|
Li J, Zhou L, Zhao J, Zhang W, Pan B, Hua M. Enhanced methanogenesis of wastewater anaerobic digestion by nanoscale zero-valent iron: Mechanism on intracellular energy conservation and amino acid metabolism. BIORESOURCE TECHNOLOGY 2025; 423:132243. [PMID: 39961521 DOI: 10.1016/j.biortech.2025.132243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Nanoscale zero-valent iron (nZVI)-mediated anaerobic digestion commonly focuses on electron transfer between syntrophic bacteria, neglecting intracellular energy conservation strategies and amino acid metabolism. In this study, F420H2 dehydrogenase abundance increased by 5.1 %, 27.0 %, and 31.5 % at 10 mM, mM, 30 mM, and 50 mM nZVI dosing, respectively, enabling an efficient transmembrane proton-coupled electron transfer mode. Electron bifurcation (EB) enzymes involved in methanogenesis responded differently to nZVI, with HdrA2B2C2 initially increasing at 10 mM and decreasing at 30 mM and 50 mM, while MvhADG-HdrABC was completely down-regulated. Metabolomics further demonstrated that nZVI reduced riboflavin and flavin mononucleotide content, which is detrimental to the EB. Instead, an alternative measure to maintain electron flow and energy conservation under high nZVI exposure is high expression of ndh and F-type or V/A-type ATPase genes. Additionally, enhancing C1-unit carrier expression through amino acid metabolism regulation emerged as a key strategy. This study provides new perspectives on nZVI-mediated anaerobic digestion.
Collapse
Affiliation(s)
- Jibin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Lingyun Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jinhao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Ming Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Yoon S, Kang Y, Yoon H, Bae S. Nanoscale Fe(0)-zeolite composite derived from coal bottom ash for efficient treatment of Cr(VI)-contaminated groundwater: Unveiling the importance of locations for surface-bound Fe(II) and Fe(0) passivation products. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137284. [PMID: 39847927 DOI: 10.1016/j.jhazmat.2025.137284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
The synthesis of coal bottom ash-induced zeolite (Si-Al material) has been widely reported; however, the selective recovery of the three main elements, viz., Si, Al, and Fe, from coal bottom ash for the synthesis of reactive adsorbents has not yet been reported. In this study, we separated the magnetic and non-magnetic fractions of coal bottom ash to selectively recover Fe and Si-Al for synthesizing nanoscale zero-valent iron@zeolite (NZVI@ZBA) composites with uniform formation of Fe(0) nanoparticles on the ZBA surface. NZVI@ZBA exhibited a higher removal capacity for Cr(VI) (153.9 mg gNZVI-1) than bare NZVI (3.6 times), NZVI@Al2O3 (4.1 times), and NZVI@SiO2 (3.5 times). The enhanced Cr(VI) removal was primarily attributed to well-distributed NZVI particles and the formation of surface-bound Fe(II) on the large surface area of ZBA. A significant portion of NZVI passivation products (i.e., CrxFe1-x(OH)3) was formed on the ZBA surface rather than on the NZVI surface, whereas bare NZVI signified that the entire NZVI surface was covered by passivation products, blocking electron transfer from the core NZVI. Finally, an adverse effect of Ca²⁺ was observed during the groundwater test, because Ca2+ occupied the adsorption sites of ZBA that were available for the released Fe²⁺ from NZVI. The novel findings in this study can provide insights into the complete recycling of coal bottom ash to produce value-added materials and highlight the importance of the formation location of surface-bound Fe(II) and Fe(0) passivation products when the NZVI@support composite is applied for the reductive removal of contaminants.
Collapse
Affiliation(s)
- Sunho Yoon
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Younwon Kang
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hanwool Yoon
- Department of Environmental Engineering, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Department of Environmental Engineering, Graduate School, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
4
|
Wang X, Che Y, Xu Y, Wu Y, Xu H, Li L. Mechanisms of nano zero-valent iron in enhancing dibenzofuran degradation by a Rhodococcus sp.: Trade-offs between ATP production and protection against reactive oxygen species. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136502. [PMID: 39549579 DOI: 10.1016/j.jhazmat.2024.136502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Nano zero-valent iron (nZVI) can enhance pollutants biodegradation, but it displays toxicity towards microorganisms. Gram-positive (G+) bacteria exhibit greater resistance to nZVI than Gram-negative bacteria. However, mechanisms of nZVI accelerating pollutants degradation by G+ bacteria remain unclear. Herein, we explored effects of nZVI on a G+ bacterium, Rhodococcus sp. strain p52, and mechanisms by which nZVI accelerates biodegradation of dibenzofuran, a typical polycyclic aromatic compound. Electron microscopy and energy dispersive spectroscopy analysis revealed that nZVI could penetrate cell membranes, which caused damage and growth inhibition. nZVI promoted dibenzofuran biodegradation at certain concentrations, while higher concentration functioned later due to the delayed reactive oxygen species (ROS) mitigation. Transcriptomic analysis revealed that cells adopted response mechanisms to handle the elevated ROS induced by nZVI. ATP production was enhanced by accelerated dibenzofuran degradation, providing energy for protein synthesis related to antioxidant stress and damage repair. Meanwhile, electron transport chain (ETC) was adjusted to mitigate ROS accumulation, which involved downregulating expression of ETC complex I-related genes, as well as upregulating expression of the genes for the ROS-scavenging cytochrome bd complex and ETC complex II. These findings revealed the mechanisms underlying nZVI-enhanced biodegradation by G+ bacteria, offering insights into optimizing bioremediation strategies involving nZVI.
Collapse
Affiliation(s)
- Xu Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao 266237, China
| | - Yaning Che
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao 266237, China
| | - Yonglan Xu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao 266237, China
| | - Yanan Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao 266237, China
| | - Hangzhou Xu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao 266237, China,; Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China.
| | - Li Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao 266237, China,.
| |
Collapse
|
5
|
Ren WT, Lv Y, He ZL, Wang HZ, Deng L, Ye SS, Wu QL, Guo WQ. Feedback of chain elongation microorganisms on iron-based conductive materials: Enhanced microbial functions and biotoxicity adaptation mechanisms. BIORESOURCE TECHNOLOGY 2024; 406:130959. [PMID: 38876286 DOI: 10.1016/j.biortech.2024.130959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Despite the increased research efforts aimed at understanding iron-based conductive materials (CMs) for facilitating chain elongation (CE) to produce medium chain fatty acids (MCFAs), the impact of these materials on microbial community functions and the adaptation mechanisms to their biotoxicity remain unclear. This study found that the supply of zero-valent iron (ZVI) and magnetite enhanced the MCFAs carbon-flow distribution by 26 % and 52 %, respectively. Metagenomic analysis revealed the upregulation of fatty acid metabolism, pyruvate metabolism and ABC transporters with ZVI and magnetite. The predominant functional microorganisms were Massilibacterium and Tidjanibacter with ZVI, and were Petrimonas and Candidatus_Microthrix with magnetite. Furthermore, it was demonstrated that CE microorganisms respond and adapt to the biotoxicity of iron-based CMs by adjusting Two-component system and Quorum sensing for the first time. In summary, this study provided a new deep-insight on the feedback mechanisms of CE microorganisms on iron-based CMs.
Collapse
Affiliation(s)
- Wei-Tong Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Lv
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Lin He
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hua-Zhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lin Deng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Ye
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
6
|
Yang L, Li Y, Li X, Lu H, Wang Y, Meng H, Ren Y, Lan J. Effect of interactions between humic acid and cerium oxide nanoparticles on the toxicity to the Chlorella sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38274-38287. [PMID: 38802614 DOI: 10.1007/s11356-024-33762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
With the wide application of nanomaterials, the concentration of nanomaterials in natural water continues to increase, which poses a severe threat to the water environment. However, the influence of organic matter and nanomaterials rich in natural water on the toxic effect of algae growth is still unclear. In this study, the effects of humic acid (HA) and nano-cerium oxide (nCeO2) on the physiology and transcriptome of Chlorella sp. were analyzed, and the mechanism of the toxic effect of HA on Chlorella sp. under nCeO2 stress was revealed. Under 20-200 mg/L nCeO2 stress, the growth of Chlorella cells was inhibited and the highest inhibition rate reached 52% within 200 mg/L nCeO2. The Fv/Fm and ETRmax values of Chlorella sp. decreased from 0.490 and 24.45 (20 mg/L nCeO2) to 0.488 and 23.4 (100 mg/L nCeO2), respectively. Under the stimulation of nCeO2, the level of reactive oxygen species in algal cells was increased, accompanied by lipid peroxidation and membrane damage. However, the addition of HA at concentrations of 5-10 mg/L effectively alleviated the toxic effect of nCeO2 on Chlorella sp. Transcriptome analysis showed that 10 mg/L HA could alleviate the cellular stress at 100 mg/L nCeO2 on Chlorella sp. by regulating genes related to photosynthesis and metabolism pathways. Moreover, the downregulation of genes (e.g., Lhca1, Lhcb1, AOC3, and AOC2) indicated that HA reduced the level of oxidative stress in Chlorella sp. These findings offer novel insights of evaluating the ecotoxicity nCeO2 and HA in natural water environment and their impact on Chlorella sp.
Collapse
Affiliation(s)
- Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yucai Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaotong Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Haoqi Lu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yuchao Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hongyan Meng
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jun Lan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
7
|
Sharan A, Nara S. Humic acid-mediated reduction in toxicity of Co 3O 4 NPs towards freshwater and marine microalgae in surfactant mixed medium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38645-38657. [PMID: 36441302 DOI: 10.1007/s11356-022-24227-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
The ever-increasing applications of Co3O4 nanoparticles (NPs) have posed a serious concern about their discharge in the aquatic environment and ecotoxic implications. Being toxic towards aquatic species, the impact of other aquatic components such as dissolved organic matter (DOM), salinity, and surfactants are not studied sufficiently for their effect on the stability and ecotoxicity of Co3O4 NPs. The present study aims at the influence of humic acid (HA) on the toxicity of Co3O4 NPs in freshwater (C. minutissima) and marine (T. suecica) microalgae under surfactants mixed medium. The measure of % reduction in biomass and photosynthetic pigment were used as toxicity endpoints. Among various tested concentrations of HA, 25 mg/L HA was found suitable to minimize the NP's toxicity with or without the presence of surfactants. Co3O4 NPs mediated reduction in biomass of C. minutissima was significantly minimized by the cumulative effect of HA with T80 (51.68 ± 4.55%) followed by CTAB (46.23 ± 5.62%) and SDS (42.60 ± 2.46%). Similarly, HA with T80 (26.93 ± 6.38%) followed by SDS (17.02 ± 6.64%) and CTAB (13.01 ± 3.81%) were found to minimize the growth inhibitory effect of Co3O4 NPs in T. suecica. The estimation of chlorophyll - a content also indicated that microalgae treated with HA could maintain their photosynthetic ability more than control even in the co-presence of surfactants. Also, the reduced toxicity of Co3O4 NPs were attributed to an increase in hydrodynamic sizes of HA-treated Co3O4 NPs in both marine media (f/2) and freshwater media (BG11) due to increased aggregation and faster sedimentation of Co3O4 NPs.
Collapse
Affiliation(s)
- Abhishek Sharan
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT), 211004, Allahabad, India
- Department of Biochemistry and Biochemical Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT), 211004, Allahabad, India.
| |
Collapse
|
8
|
Ali MA, Thapa U, Antle J, Tanim EUH, Aguilar JM, Bradley IM, Aga DS, Aich N. Influence of water chemistry and operating parameters on PFOS/PFOA removal using rGO-nZVI nanohybrid. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133912. [PMID: 38447366 DOI: 10.1016/j.jhazmat.2024.133912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Graphene and zero-valent-iron based nanohybrid (rGO-nZVI NH) with oxidant H2O2 can remove perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) through adsorption-degradation in a controlled aquatic environment. In this study, we evaluated how and to what extent different environmental and operational parameters, such as initial PFAS concentration, H2O2 dose, pH, ionic strength, and natural organic matter (NOM), influenced the removal of PFOS and PFOA by rGO-nZVI. With the increase in initial PFAS concentration (from 0.4 to 50 ppm), pH (3 to 9), ionic strength (0 to 100 mM), and NOM (0 to 10 ppm), PFOS removal reduced by 20%, 30%, 2%, and 6%, respectively, while PFOA removal reduced by 54%, 76%, 11%, and 33% respectively. In contrast, PFOS and PFOA removal increased by 10% and 41%, respectively, with the increase in H2O2 (from 0 to 1 mM). Overall, the effect of changes in environmental and operational parameters was more pronounced for PFOA than PFOS. Mechanistically, •OH radical generation and availability showed a profound effect on PFOA removal. Also, the electrostatic interaction between rGO-nZVI NH and deprotonated PFAS compounds was another key factor for removal. Most importantly, our study confirms that rGO-nZVI in the presence of H2O2 can degrade both PFOS and PFOA to some extent by identifying the important by-products such as acetate, formate, and fluoride.
Collapse
Affiliation(s)
- Md Arafat Ali
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - Utsav Thapa
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - Jonathan Antle
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - Ehsan Ul Hoque Tanim
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - John Michael Aguilar
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - Ian M Bradley
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States.
| | - Nirupam Aich
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States; Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
9
|
Li S, Hu X, Zhou J, Zheng S, Ma Q, Fu H, Zhang WX, Deng Z. Biomass-derived cellulose nanocrystals modified nZVI for enhanced tetrabromobisphenol A (TBBPA) removal. Int J Biol Macromol 2024; 268:131625. [PMID: 38631569 DOI: 10.1016/j.ijbiomac.2024.131625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/29/2023] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Nano zero-valent iron (nZVI) is an advanced environmental functional material for the degradation of tetrabromobisphenol A (TBBPA). However, high surface energy, self-agglomeration and low electron selectivity limit degradation rate and complete debromination of bare nZVI. Herein, we presented biomass-derived cellulose nanocrystals (CNC) modified nZVI (CNC/nZVI) for enhanced TBBPA removal. The effects of raw material (straw, filter paper and cotton), process (time, type and concentration of acid hydrolysis) and synthesis methods (in-situ and ex-situ) on fabrication of CNC/nZVI were systematically evaluated based on TBBPA removal performance. The optimized CNC-S/nZVI(in) was prepared via in-situ liquid-phase reduction using straw as raw material of CNC and processing through 44 % H2SO4 for 165 min. Characterizations illustrated nZVI was anchored to the active sites at CNC interface through electrostatic interactions, hydrogen bonds and FeO coordinations. The batch experiments showed 0.5 g/L CNC-S/nZVI(in) achieved 96.5 % removal efficiency at pH = 7 for 10 mg/L initial TBBPA. The enhanced TBBPA dehalogenation by CNC-S/nZVI(in), involving in initial adsorption, reduction process and partial detachment of debrominated products, were possibly attributed to elevated pre-adsorption capacity and high-efficiency delivery of electrons synergistically. This study indicated that fine-tuned fabrication of CNC/nZVI could potentially be a promising alternative for remediation of TBBPA-contaminated aquatic environments.
Collapse
Affiliation(s)
- Shiyan Li
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaolei Hu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jie Zhou
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Shuo Zheng
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Quanxue Ma
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haoyang Fu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
10
|
Raoelison OD, Das TK, Visweswaran A, Guyett K, Spallone S, Ramos R, Merrifield R, Dittrich TM, Mohanty SK. Do drinking water treatment residuals underperform in the presence of compost in stormwater media filters? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166635. [PMID: 37647961 DOI: 10.1016/j.scitotenv.2023.166635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Drinking water treatment residuals (WTR), a waste-derived product, are often recommended to use as an amendment in stormwater biofilters to enhance their capacity to remove phosphate and microbial pollutants. However, their efficacy has been assumed to remain high in the presence of compost, one of the most common amendments used in biofilters. This study tests the validity of that assumption by comparing the removal capacities of WTR-amended biofilters with and without the presence of compost. Our results show that amending sand with WTR increased E. coli removal by at least 1-log, but the addition of compost in the sand-WTR media lowered the removal capacity by 13 %. Similarly, the addition of WTR to sand improved phosphate removal to nearly 1177 %, but the removal decreased slightly by 8 % when adding compost to the media. The results confirmed that dissolved organic carbon (DOC) leached from the compost could compete for adsorption sites for bacteria and phosphate, thereby lowering WTR's adsorption capacity based on the amount of DOC adsorbed on WTR. Collectively, these results indicate that the stormwater treatment industry should avoid mixing compost with WTR to get the maximum benefits of WTR for bacterial removal and improve the performance lifetime of WTR-amended biofilters.
Collapse
Affiliation(s)
- Onja D Raoelison
- Civil and Environmental Engineering, University of California, Los Angeles 90095, USA.
| | - Tonoy K Das
- Civil and Environmental Engineering, University of California, Los Angeles 90095, USA
| | - Ananya Visweswaran
- Civil and Environmental Engineering, University of California, Los Angeles 90095, USA
| | - Keegan Guyett
- Civil and Environmental Engineering, University of California, Los Angeles 90095, USA
| | - Sophia Spallone
- Civil and Environmental Engineering, University of California, Los Angeles 90095, USA
| | - Roxana Ramos
- Civil and Environmental Engineering, University of California, Los Angeles 90095, USA
| | - Rachel Merrifield
- Civil and Environmental Engineering, University of California, Los Angeles 90095, USA
| | - Timothy M Dittrich
- Civil and Environmental Engineering, Wayne State University, Detroit 48202, USA
| | - Sanjay K Mohanty
- Civil and Environmental Engineering, University of California, Los Angeles 90095, USA.
| |
Collapse
|
11
|
Rani N, Singh P, Kumar S, Kumar P, Bhankar V, Kamra N, Kumar K. Recent advancement in nanomaterials for the detection and removal of uranium: A review. ENVIRONMENTAL RESEARCH 2023; 234:116536. [PMID: 37399984 DOI: 10.1016/j.envres.2023.116536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Uranyl ions U(VI), are the common by-product of nuclear power plants and anthropogenic activities like mining, excess utilization of fertilizers, oil industries, etc. Its intake into the body causes serious health concerns such as liver toxicity, brain damage, DNA damage and reproductive issues. Therefore, there is urgent need to develop the detection and remediation strategies. Nanomaterials (NMs), due to their unique physiochemical properties including very high specific area, tiny sizes, quantum effects, high chemical reactivity and selectivity have become emerging materials for the detection and remediation of these radioactive wastes. Therefore, the current study aims to provide a holistic view and investigation of these new emerging NMs that are effective for the detection and removal of Uranium including metal nanoparticles, carbon-based NMs, nanosized metal oxides, metal sulfides, metal-organic frameworks, cellulose NMs, metal carbides/nitrides, and carbon dots (CDs). Along with this, the production status, and its contamination data in food, water, and soil samples all across the world are also complied in this work.
Collapse
Affiliation(s)
- Neeru Rani
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Permender Singh
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Sandeep Kumar
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA, Faridabad, 126006, Haryana, India.
| | - Parmod Kumar
- Department of Physics, J. C. Bose University of Science & Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Vinita Bhankar
- Department of Biochemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Nisha Kamra
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Krishan Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India.
| |
Collapse
|
12
|
Wojcieszek J, Chay S, Jiménez-Lamana J, Curie C, Mari S. Study of the Stability, Uptake and Transformations of Zero Valent Iron Nanoparticles in a Model Plant by Means of an Optimised Single Particle ICP-MS/MS Method. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111736. [PMID: 37299639 DOI: 10.3390/nano13111736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
In the context of the widespread distribution of zero valent iron nanoparticles (nZVI) in the environment and its possible exposure to many aquatic and terrestrial organisms, this study investigates the effects, uptake, bioaccumulation, localisation and possible transformations of nZVI in two different forms (aqueous dispersion-Nanofer 25S and air-stable powder-Nanofer STAR) in a model plant-Arabidopsis thaliana. Seedlings exposed to Nanofer STAR displayed symptoms of toxicity, including chlorosis and reduced growth. At the tissue and cellular level, the exposure to Nanofer STAR induced a strong accumulation of Fe in the root intercellular spaces and in Fe-rich granules in pollen grains. Nanofer STAR did not undergo any transformations during 7 days of incubation, while in Nanofer 25S, three different behaviours were observed: (i) stability, (ii) partial dissolution and (iii) the agglomeration process. The size distributions obtained by SP-ICP-MS/MS demonstrated that regardless of the type of nZVI used, iron was taken up and accumulated in the plant, mainly in the form of intact nanoparticles. The agglomerates created in the growth medium in the case of Nanofer 25S were not taken up by the plant. Taken together, the results indicate that Arabidopsis plants do take up, transport and accumulate nZVI in all parts of the plants, including the seeds, which will provide a better understanding of the behaviour and transformations of nZVI once released into the environment, a critical issue from the point of view of food safety.
Collapse
Affiliation(s)
- Justyna Wojcieszek
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Sandrine Chay
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Place Viala, CEDEX 1, 34060 Montpellier, France
| | - Javier Jiménez-Lamana
- Universite de Pau et des Pays de l'Adour, E2SUPPA, CNRS UMR 5254, IPREM, 64053 Pau, France
| | - Catherine Curie
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Place Viala, CEDEX 1, 34060 Montpellier, France
| | - Stephane Mari
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Place Viala, CEDEX 1, 34060 Montpellier, France
| |
Collapse
|
13
|
Mohana Rangan S, Rao S, Robles A, Mouti A, LaPat-Polasko L, Lowry GV, Krajmalnik-Brown R, Delgado AG. Decoupling Fe 0 Application and Bioaugmentation in Space and Time Enables Microbial Reductive Dechlorination of Trichloroethene to Ethene: Evidence from Soil Columns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4167-4179. [PMID: 36866930 PMCID: PMC10018760 DOI: 10.1021/acs.est.2c06433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/28/2022] [Accepted: 02/14/2023] [Indexed: 06/06/2023]
Abstract
Fe0 is a powerful chemical reductant with applications for remediation of chlorinated solvents, including tetrachloroethene and trichloroethene. Its utilization efficiency at contaminated sites is limited because most of the electrons from Fe0 are channeled to the reduction of water to H2 rather than to the reduction of the contaminants. Coupling Fe0 with H2-utilizing organohalide-respiring bacteria (i.e., Dehalococcoides mccartyi) could enhance trichloroethene conversion to ethene while maximizing Fe0 utilization efficiency. Columns packed with aquifer materials have been used to assess the efficacy of a treatment combining in space and time Fe0 and aD. mccartyi-containing culture (bioaugmentation). To date, most column studies documented only partial conversion of the solvents to chlorinated byproducts, calling into question the feasibility of Fe0 to promote complete microbial reductive dechlorination. In this study, we decoupled the application of Fe0 in space and time from the addition of organic substrates andD. mccartyi-containing cultures. We used a column containing soil and Fe0 (at 15 g L-1 in porewater) and fed it with groundwater as a proxy for an upstream Fe0 injection zone dominated by abiotic reactions and biostimulated/bioaugmented soil columns (Bio-columns) as proxies for downstream microbiological zones. Results showed that Bio-columns receiving reduced groundwater from the Fe0-column supported microbial reductive dechlorination, yielding up to 98% trichloroethene conversion to ethene. The microbial community in the Bio-columns established with Fe0-reduced groundwater also sustained trichloroethene reduction to ethene (up to 100%) when challenged with aerobic groundwater. This study supports a conceptual model where decoupling the application of Fe0 and biostimulation/bioaugmentation in space and/or time could augment microbial trichloroethene reductive dechlorination, particularly under oxic conditions.
Collapse
Affiliation(s)
- Srivatsan Mohana Rangan
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Bio-Mediated and Bio-Inspired Geotechnics (CBBG), Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Center for Health Through Microbiomes, Arizona
State University, Tempe, Arizona 85287, United States
| | - Shefali Rao
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Bio-Mediated and Bio-Inspired Geotechnics (CBBG), Arizona State University, Tempe, Arizona 85281, United States
| | - Aide Robles
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Bio-Mediated and Bio-Inspired Geotechnics (CBBG), Arizona State University, Tempe, Arizona 85281, United States
| | - Aatikah Mouti
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
| | | | - Gregory V. Lowry
- Center
for Environmental Implications of Nanotechnology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rosa Krajmalnik-Brown
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Bio-Mediated and Bio-Inspired Geotechnics (CBBG), Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Center for Health Through Microbiomes, Arizona
State University, Tempe, Arizona 85287, United States
| | - Anca G. Delgado
- School
of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287, United States
- Center
for Bio-Mediated and Bio-Inspired Geotechnics (CBBG), Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
14
|
Kirthi AV, Kumar G, Pant G, Pant M, Hossain K, Ahmad A, Alshammari MB. Toxicity of Nanoscaled Zero-Valent Iron Particles on Tilapia, Oreochromis mossambicus. ACS OMEGA 2022; 7:47869-47879. [PMID: 36591132 PMCID: PMC9798762 DOI: 10.1021/acsomega.2c05696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
This research effort aims to evaluate the hazardous potential of the redox state (OH-) of zero-valent iron nanoparticles (nZVI) and its histopathological and oxidative stress toward Mozambique tilapia, Oreochromis mossambicus. X-ray powder diffraction (XRD) validated the nZVI nanoparticles' chemical composition, while transmission electron microscopy (TEM) revealed that their physical form is round and oval. The exposure to 10 g/mL of nZVI induced the activation of the cellular superoxide dismutase (SOD) activity. Dose-dependent testing of O. mossambicus had a reduction in SOD and an increase in malondialdehyde (MDA) levels, suggesting that nZVI caused oxidative damage. At a concentration of 100 g/mL, the catalase (CAT) and peroxidase (POD) activities of diverse tissues exhibited a gradual decrease after 2 days of exposure and a fast increase until day 6. The scavenging of reactive oxygen species (ROS) in the epidermis, liver, and gills of O. mossambicus deteriorated and accumulated gradually. MDA levels in the skin, gill, and liver tissues were substantially higher after 8 days of exposure to 100 and 200 g/mL nZVI compared to those of the control group and those exposed to 10 and 50 g/mL nZVI for 2 days. Extreme histological and morphological abnormalities were seen in the skin, gill, and liver tissues of experimental animals, demonstrating that the damage resulted from direct contact with nZVI in water. A one-way ANOVA followed by Dunnett's post-test was performed to investigate significant differences.
Collapse
Affiliation(s)
- Arivarasan Vishnu Kirthi
- Department
of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Kumar
- Department
of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Pant
- Department
of Life Sciences, Graphic Era (Deemed to
be University), Dehradun 248002, Uttarakhand, India
| | - Manu Pant
- Department
of Life Sciences, Graphic Era (Deemed to
be University), Dehradun 248002, Uttarakhand, India
| | - Kaizar Hossain
- Department
of Environmental Science, Asutosh College, University of Calcutta, 92, Shyama Prasad Mukherjee Rd, Bhowanipore, Kolkata 700026, West
Bengal, India
| | - Akil Ahmad
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
15
|
Microcontaminant removal in solar pilot scale photoreactors with commercial iron nanoparticles obtained from olive mill wastewater. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
16
|
Vásquez Y, Galvis JA, Pazos J, Vera C, Herrera O. Acid mine drainage treatment using zero-valent iron nanoparticles in biochemical passive reactors. ENVIRONMENTAL TECHNOLOGY 2022; 43:1988-2001. [PMID: 33308050 DOI: 10.1080/09593330.2020.1864024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Acid mine drainage (AMD) is the major effluent generated from metal and coal mines, causing serious ecological risks and degradation of aquatic habitats and surrounding soil quality. Biochemical passive reactors (BPRs) are an option for improving AMD affected water. This study investigates the effect of the size and concentration of zerovalent iron nanoparticles (nZVI) on the efficiency of batch BPRs during AMD remediation. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were also used as complementary techniques for the investigation of the changes in microbial cells and nZVI properties after the AMD remediation. The results from the batch experiment showed that the concentration of nZVI increases the pH and decreases ORP during AMD treatment, thus favouring the removal of metals. The results also suggest that metal sulfide precipitation occurred in all the batch with reactive mixture but was greater in reactors amended with nZVI of larger size. This study revealed that the presence of nZVI in the BPR leads to metal removal as well as the inhibition of sulfate-reducing bacteria (SRB) activity. Microscopy study indicated that the addition of nZVI creates a morphological change on certain microorganisms in which the cellular membrane was fully covered with nZVI, inducing cell lysis process. These results show that nZVI is a promising reactive material for the treatment of AMD in BPR systems.
Collapse
Affiliation(s)
- Yaneth Vásquez
- Faculty of Engineering and Basic Sciences, Department of Natural Sciences, Universidad Central, Bogotá, Colombia
| | - José A Galvis
- Faculty of Engineering and Basic Sciences, Department of Natural Sciences, Universidad Central, Bogotá, Colombia
| | - Jhon Pazos
- Convergence Science and Technology Cluster, Universidad Central, Bogotá, Colombia
| | - Camila Vera
- Faculty of Engineering and Basic Sciences, Department of Natural Sciences, Universidad Central, Bogotá, Colombia
| | - Oscar Herrera
- Faculty of Engineering and Basic Sciences, Department of Natural Sciences, Universidad Central, Bogotá, Colombia
| |
Collapse
|
17
|
Hussain A, Rehman F, Rafeeq H, Waqas M, Asghar A, Afsheen N, Rahdar A, Bilal M, Iqbal HMN. In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air - A review. CHEMOSPHERE 2022; 289:133252. [PMID: 34902385 DOI: 10.1016/j.chemosphere.2021.133252] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 02/05/2023]
Abstract
Nanotechnology, as an emerging science, has taken over all fields of life including industries, health and medicine, environmental issues, agriculture, biotechnology etc. The use of nanostructure molecules has revolutionized all sectors. Environmental pollution is a great concern now a days, in all industrial and developing as well as some developed countries. A number of remedies are in practice to overcome this problem. The application of nanotechnology in the bioremediation of environmental pollutants is a step towards revolution. The use of various types of nanoparticles (TiO2 based NPs, dendrimers, Fe based NPs, Silica and carbon nanomaterials, Graphene based NPs, nanotubes, polymers, micelles, nanomembranes etc.) is in practice to diminish environmental hazards. For this many In-situ (bioventing, bioslurping, biosparging, phytoremediation, permeable reactive barrier etc.) and Ex-situ (biopile, windrows, bioreactors, land farming etc.) methodologies are employed. Improved properties like nanoscale size, less time utilization, high adaptability for In-situ and Ex-situ use, undeniable degree of surface-region to-volume proportion for possible reactivity, and protection from ecological elements make nanoparticles ideal for natural applications. There are distinctive nanomaterials and nanotools accessible to treat the pollutants. Each of these methods and nanotools depends on the properties of foreign substances and the pollution site. The current designed review highlights the techniques used for bioremediation of environmental pollutants as well as use of various nanoparticles along with proposed In-situ and Ex-situ bioremediation techniques.
Collapse
Affiliation(s)
- Asim Hussain
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Fazeelat Rehman
- Department of Chemistry, School of Natural Sciences, National University of Sciences & Technology, Islamabad 44000, Pakistan
| | - Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Muhammad Waqas
- Department of Applied Sciences, National Textile University Faisalabad, 37610, Pakistan
| | - Asma Asghar
- Department of Biochemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
18
|
Xie Q, Li L, Dong H, Li R, Tian R, Chen J. Influence of several crucial groundwater components on the toxicity of nanoscale zero-valent iron towards Escherichia coli under aerobic and anaerobic conditions. CHEMOSPHERE 2021; 285:131453. [PMID: 34246093 DOI: 10.1016/j.chemosphere.2021.131453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
In this paper, the effects of several groundwater components (heavy metals, inorganic anions, and organics) on the cytotoxicity of nanoscale zero-valent iron (NZVI) towards Escherichia coli (E. coli) under aerobic/anaerobic conditions were studied. The results showed that NZVI exhibited much higher toxicity in anaerobic conditions than aerobic conditions. Under the state of air-saturation, corrosion of NZVI occurred rapidly, at the same time, it could stably and continuously generate Fe (Ⅱ) and trigger reactive oxygen species (ROS), which led to oxidative stress in E. coli. While in the deareated state, the TEM images showed that the integrity of the cell membrane was destroyed, which validated that the main mechanism of NZVI cytotoxicity was the rapid membrane damage of E. coli. The presence of Cr (Ⅵ) reduced the toxicity of NZVI through oxidation-reduction with NZVI, especially under anaerobic conditions. In contrast, the presence of Cd (Ⅱ) could be adsorbed onto NZVI to increase the cytotoxicity of NZVI. The presence of phosphate and humic acid greatly improved the survival rate of E. coli through the complex reaction with Fe (Ⅱ), especially under aerobic conditions. On the one hand, the formed Fe (II)-phosphate/humic acid complex could reduce the production of ROS. On the other hand, the complex accumulated on the outer surface of E. coli cells could provide steric hindrance to impede the contact between NZVI and cell. These findings were crucial for practical significance to evaluate environmental risk during the groundwater remediation process by using NZVI.
Collapse
Affiliation(s)
- Qianqian Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Rui Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ran Tian
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Jie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
19
|
Zhu X, Le TT, Du J, Xu T, Cui Y, Ling H, Kim SH. Novel core-shell sulfidated nano-Fe(0) particles for chromate sequestration: Promoted electron transfer and Fe(II) production. CHEMOSPHERE 2021; 284:131379. [PMID: 34225108 DOI: 10.1016/j.chemosphere.2021.131379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Sulfidated nanoscale valent iron in form of FeS/Fe (0) shell-core nanoparticle has the aptitude to be a promising remediation material toward reductive removal of metal oxyanions. However, disrupted contact between Fe (0) core and FeS shell by thick iron oxides limited its reactivity improvement, and its mechanism of electron transfer remains unveiled. In this study, a novel sulfidated nZVI core-shell particles (FeS/Fe (0)) was fabricated via a modified post sulfidation approach to achieve a more uniform coverage of FeS for aqueous Cr(VI) sequestration. SEM and STEM tests confirmed the formation of the core-shell FeS/Fe (0) structure with a more solid interaction between FeS layer and Fe (0) core. The highest Cr(VI) removal rate was offered at optimal S/Fe molar ratio of 1/25 that the most chelated Fe2+ was also observed. The improved performance was due to that FeS shell with greater electronegativity could significantly accelerate the corrosion of Fe (0), facilitate the electron transfer form Fe (0) core to FeS shell according to the electrochemical tests. Moreover, FeS shell provided a protective layer for Fe (0) core so as to alleviate its anoxic passivation in water that FeS/Fe (0) had a better longevity for Cr(VI) removal than nFe (0). Characterizations of STEM and XPS revealed that Cr(VI) was reduced to Cr(III) and evenly coprecipitated with surface Fe(II)/Fe(III).
Collapse
Affiliation(s)
- Xiaowei Zhu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Center, China University of Geosciences, Wuhan, 430074, PR China
| | - Thao Thi Le
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Nano and Information Technology, KIST School, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jiangkun Du
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Center, China University of Geosciences, Wuhan, 430074, PR China.
| | - Tiantian Xu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Center, China University of Geosciences, Wuhan, 430074, PR China
| | - Yayun Cui
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Center, China University of Geosciences, Wuhan, 430074, PR China
| | - Haibo Ling
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; Hubei Academy of Environmental Sciences, Wuhan, 430072, PR China; Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Center, China University of Geosciences, Wuhan, 430074, PR China
| | - Sang Hoon Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Nano and Information Technology, KIST School, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
20
|
Ratpukdi T, Intarasuwan K, Jutaporn P, Khan E. Interactions between natural organic matter fractions and nanoscale zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148954. [PMID: 34271382 DOI: 10.1016/j.scitotenv.2021.148954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The presence of natural organic matter (NOM) in groundwater could play an important role in the removal of contaminants by nanoscale zero-valent iron (NZVI). NOM has a heterogeneous structure and can be divided into 6 fractions based on polarity and charges: hydrophobic acid (HPOA), hydrophobic base (HPOB), hydrophobic neutral (HPON), hydrophilic acid (HPIA), hydrophilic base (HPIB), and hydrophilic neutral (HPIN). The objective of this study was to evaluate the interactions between NOM fractions and NZVI using two approaches: 1) the interaction between NOM fraction isolates and NZVI and 2) bulk NOM fractionation before and after reaction with NZVI. Two sources of NOM-groundwater (GWNOM), Khon Kaen, Thailand and Suwannee River NOM (SRNOM), USA-were examined. The isolated NOM had more interactions with NZVI at pH 5 compared to pH 7 and 9 for both GWNOM and SRNOM. HPOA of GWNOM had the highest adsorption capacity (qe) of 6.95 mg/g (pH 5), and that was also the case for HPIA of SRNOM (18.66 mg/g, pH 5). HPIN of both GWNOM and SRNOM yielded the lowest qe among the six fractions. The adsorption capacities of NOM fractions were well correlated with specific ultraviolet absorbance. Fluorescence excitation-emission spectra revealed that protein-like components preferentially reacted with NZVI. The results of bulk NOM fractionation after reacting with NZVI indicated that NOM not only adsorbed on NZVI but also reacted with NZVI and transformed to become more hydrophilic and neutral. This study's findings suggest that different NOM fractions had varying interactions with NZVI. The acid fractions tended to interact more than the other fractions. This work provides a deeper understanding of the reactivity between NOM and NZVI.
Collapse
Affiliation(s)
- Thunyalux Ratpukdi
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Katika Intarasuwan
- Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok 10330, Thailand; International Postgraduate Program in Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panitan Jutaporn
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
21
|
Marcon L, Oliveras J, Puntes VF. In situ nanoremediation of soils and groundwaters from the nanoparticle's standpoint: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148324. [PMID: 34412401 DOI: 10.1016/j.scitotenv.2021.148324] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/21/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic pollution coming from industrial processes, agricultural practices and consumer products, results in the release of toxic substances into rural and urban environments. Once released, these chemicals migrate through the atmosphere and water, and find their way into matrices such as sediments and groundwaters, thus making large areas potentially uninhabitable. Common pollutants, including heavy metal(loid)s, radionuclides, aliphatic hydrocarbons and halogenated organics, are known to adversely affect physiological systems in animal species. Pollution can be cleaned up using techniques such as coagulation, reverse osmosis, oxidation and biological methods, among others. The use of nanoparticles (NPs) extends the range of available technologies and offers particular benefits, not only by degrading, transforming and immobilizing contaminants, but also by reaching inaccessible areas and promoting biotic degradation. The development of NPs is understandably heralded as an environmentally beneficial technology; however, it is only now that the ecological risks associated with their use are being evaluated. This review presents recent developments in the use of engineered NPs for the in situ remediation of two paramount environmental matrices: soils and groundwaters. Emphasis will be placed on (i) the successful applications of nano-objects for environmental cleanup, (ii) the potential safety implications caused by the challenging requirements of [high reactivity toward pollutants] vs. [none reactivity toward biota], with a thorough view on their transport and evolution in the matrix, and (iii) the perspectives on scientific and regulatory challenges. To this end, the most promising nanomaterials will be considered, including nanoscale zerovalent iron, nano-oxides and carbonaceous materials. The purpose of the present review is to give an overview of the development of nanoremediators since they appeared in the 2000s, from their chemical modifications, mechanism of action and environmental behavior to an understanding of the problematics (technical limitations, economic constraints and institutional precautionary approaches) that will drive their future full-scale applications.
Collapse
Affiliation(s)
- Lionel Marcon
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM) USR CNRS 3579, Observatoire Océanologique, F-66650 Banyuls/Mer, France; Université de Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France.
| | - Jana Oliveras
- Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la Universitat Autònoma de Barcelona (Campus UAB), 08193, Bellaterra, Barcelona, Spain; Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193, Bellaterra, Barcelona, Catalonia, Spain
| | - Víctor F Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la Universitat Autònoma de Barcelona (Campus UAB), 08193, Bellaterra, Barcelona, Spain; Vall d'Hebron Institut de Recerca (VHIR), Edificio Mediterránea, Hospital Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Institut Català de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
22
|
Ye J, Luo Y, Sun J, Shi J. Nanoscale Zero-Valent Iron Modified by Bentonite with Enhanced Cr(VI) Removal Efficiency, Improved Mobility, and Reduced Toxicity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2580. [PMID: 34685019 PMCID: PMC8537176 DOI: 10.3390/nano11102580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/18/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022]
Abstract
The aggregation of nanoscale zero-valent iron (nZVI) particles and their limited transport ability in environmental media hinder their application in environmental remediation. In this study, the Cr(VI) removal efficiency, transport performance, and toxicity of nZVI and bentonite-modified nZVI (B-nZVI) were investigated. Compared with nZVI, B-nZVI improved the removal efficiency of Cr(VI) by 10%, and also significantly increased the transport in quartz sand and soil. Increasing the flow rate can enhance the transport of nZVI and B-nZVI in the quartz sand columns. The transport of the two materials in different soils was negatively correlated with the clay composition. Besides, modification of nZVI by bentonite could reduce toxicity to luminous bacteria (Photobacterium phosphereum T3) and ryegrass (Lolium perenne L.). Compared with Fe-EDTA, the transfer factors of nZVI and B-nZVI were 65.0% and 66.4% lower, respectively. This indicated that although iron nanoparticles accumulated in the roots of ryegrass, they were difficult to be transported to the shoots. The results of this study indicate that B-nZVI has a strong application potential in in situ environmental remediation.
Collapse
Affiliation(s)
- Jien Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; (J.Y.); (Y.L.); (J.S.)
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Yating Luo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; (J.Y.); (Y.L.); (J.S.)
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jiacong Sun
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; (J.Y.); (Y.L.); (J.S.)
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; (J.Y.); (Y.L.); (J.S.)
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Ghavanloughajar M, Borthakur A, Valenca R, McAdam M, Khor CM, Dittrich TM, Stenstrom MK, Mohanty SK. Iron amendments minimize the first-flush release of pathogens from stormwater biofilters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:116989. [PMID: 33799208 DOI: 10.1016/j.envpol.2021.116989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
First flush or the first pore volume of effluent eluted from biofilters at the start of rainfall contributes to most pollution downstream because it typically contains a high concentration of bacterial pathogens. Thus, it is critical to evaluate designs that could minimize the release of bacteria during a period of high risk. In this study, we test the hypothesis of whether an addition of iron-based media to biofilter could limit the leaching of Escherichia coli (E. coli), a pathogen indicator, during the first flush. We applied E. coli-contaminated stormwater intermittently in columns packed with a mixture of sand and compost (70:30 by volume, respectively) and iron filings at three concentrations: 0% (control), 3%, and 10% by weight. Columns packed with a mixture of sand and iron (3% or 10%) without compost were used to examine the maximum capacity of iron to remove E. coli. In columns with iron, particularly 10% by weight, the leaching of E. coli during the first flush was 32% lower than the leaching from compost columns, indicating that the addition of iron amendments could decrease first-flush leaching of E. coli. We attribute this result to the ability of iron to increase adsorption and decrease growth during antecedent drying periods. Although the addition of iron filings increased E. coli removal, the presence of compost decreased the adsorption capacity: exposure of 1 g of iron filings to 1 mg of DOC reduces E. coli removal by 8%. The result was attributed to the alteration of the surface charge of iron and blocking of adsorption sites shared by E. coli and DOC. Collectively, these results indicate that the addition of sufficient amounts of iron media could decrease pathogen leaching in the first flush effluent and increase the overall biofilter performance and protect downstream water quality.
Collapse
Affiliation(s)
- Maryam Ghavanloughajar
- Civil and Environmental Engineering, The University of California at Los Angeles, Los Angeles, CA, USA
| | - Annesh Borthakur
- Civil and Environmental Engineering, The University of California at Los Angeles, Los Angeles, CA, USA
| | - Renan Valenca
- Civil and Environmental Engineering, The University of California at Los Angeles, Los Angeles, CA, USA
| | - Meera McAdam
- Civil and Environmental Engineering, The University of California at Los Angeles, Los Angeles, CA, USA
| | - Chia Miang Khor
- Civil and Environmental Engineering, The University of California at Los Angeles, Los Angeles, CA, USA
| | - Timothy M Dittrich
- Civil and Environmental Engineering, Wayne State University, Detroit, MI, USA
| | - Michael K Stenstrom
- Civil and Environmental Engineering, The University of California at Los Angeles, Los Angeles, CA, USA
| | - Sanjay K Mohanty
- Civil and Environmental Engineering, The University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Aparicio JD, Lacalle RG, Artetxe U, Urionabarrenetxea E, Becerril JM, Polti MA, Garbisu C, Soto M. Successful remediation of soils with mixed contamination of chromium and lindane: Integration of biological and physico-chemical strategies. ENVIRONMENTAL RESEARCH 2021; 194:110666. [PMID: 33359700 DOI: 10.1016/j.envres.2020.110666] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Soils contaminated by organic and inorganic pollutants like Cr(VI) and lindane, is currently a main environmental challenge. Biological strategies, such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, and nanoremediation with nanoscale zero-valent iron (nZVI) are promising approaches for polluted soil health recovery. The combination of different remediation strategies might be key to address this problem. For this reason, a greenhouse experiment was performed using soil without or with an organic amendment. Both soils were contaminated with lindane (15 mg kg-1) and Cr(VI) (100 or 300 mg kg-1). After one month of aging, the following treatments were applied: (i) combination of bioaugmentation (actinobacteria), phytoremediation (Brassica napus), and vermiremediation (Eisenia fetida), or (ii) nanoremediation with nZVI, or (iii) combination of biological treatments and nanoremediation. After 60 days, the wellness of plants and earthworms was assessed, also, soil health was evaluated through physico-chemical parameters and biological indicators. Cr(VI) was more toxic and decreased soil health, however, it was reduced to Cr(III) by the amendment and nZVI and, to a lesser extent, by the biological treatment. Lindane was more effectively degraded through bioremediation. In non-polluted soils, nZVI had strong deleterious effects on soil biota when combined with the organic matter, but this effect was reverted in soils with a high concentration of Cr(VI). Therefore, under our experimental conditions bioremediation might be the best for soils with a moderate concentration of Cr(VI) and organic matter. The application of nZVI in soils with a high content of organic matter should be avoided except for soils with very high concentrations of Cr(VI). According to our study, among the treatments tested, the combination of an organic amendment, biological treatment, and nZVI was shown to be the strategy of choice in soils with high concentrations of Cr(VI) and lindane, while for moderate levels of chromium, the organic amendment plus biological treatment is the most profitable treatment.
Collapse
Affiliation(s)
- Juan Daniel Aparicio
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, Tucumán, 4000, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, Tucumán, 4000, Argentina
| | - Rafael G Lacalle
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, E-48940, Spain
| | - Unai Artetxe
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, E-48940, Spain
| | - Erik Urionabarrenetxea
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, 48940, Spain; Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Areatza Z-G, Plentzia, E-48620, Spain
| | - José María Becerril
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, E-48940, Spain
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pasaje Caseros, Tucumán, 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 205, Tucumán, 4000, Argentina.
| | - Carlos Garbisu
- NEIKER, Department of Conservation of Natural Resources, C/Berreaga 1, Derio, E-48160, Spain
| | - Manuel Soto
- Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B° Sarriena S/n, Leioa, 48940, Spain; Department of Zoology and Animal Cell Biology, Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Areatza Z-G, Plentzia, E-48620, Spain
| |
Collapse
|
25
|
Gong L, Qi J, Lv N, Qiu X, Gu Y, Zhao J, He F. Mechanistic role of nitrate anion in TCE dechlorination by ball milled ZVI and sulfidated ZVI: Experimental investigation and theoretical analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123844. [PMID: 33264925 DOI: 10.1016/j.jhazmat.2020.123844] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 06/12/2023]
Abstract
Mechanistic role of NO3- in trichloroethylene (TCE) dechlorination by ball milled, micro-scale sulfidated and unsulfidated ZVI (e.g., S-mZVIbm and mZVIbm) was explored through experiments and density functional theory (DFT) calculations. Sulfidation inhibited NO3- reduction by mZVIbm as S weakened its interaction with NO3-. mZVIbm reduced NO3- within 2 h. This just resulted in a short-term electron competition during the dechlorination process by mZVIbm and hardly affected its sluggish dechlorination kinetics (complete TCE dechlorination in 11 d). On the contrary, NO3- suppressed TCE dechlorination by S-mZVIbm. This was attributed to that inhibited NO3- reduction by S-mZVIbm (40 % reduction in 6 h) induced continuous electron competition with TCE during the time span of its dechlorination by S-mZVIbm. NO3- reduction was also observed to facilitate formation/crystallization of Fe3O4 on both ZVI particles, promoting dechlorination by mZVIbm after 4 d while not taking effect to the S-mZVIbm/TCE system, as its dechlorination time was too short for the surface of S-mZVIbm to transform. This observation has important implication on groundwater remediation by ZVI or sulfidated ZVI PRBs under a scenario of upgradient anthropogenic release of NO3-.
Collapse
Affiliation(s)
- Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianlong Qi
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Neng Lv
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaojiang Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yawei Gu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiawei Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
26
|
Shi C, Xu Y, Liu M, Chen X, Fan M, Liu J, Chen Y. Enhanced bisphenol S anaerobic degradation using an NZVI-HA-modified anode in bioelectrochemical systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124053. [PMID: 33265058 DOI: 10.1016/j.jhazmat.2020.124053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/15/2020] [Accepted: 09/20/2020] [Indexed: 06/12/2023]
Abstract
As a substitute for bisphenol A (BPA), bisphenol S (BPS) has a longer half-life, higher chemical inertness and better skin permeability than BPA, and it also has a strong endocrine disruption effect. Relatively few studies have focused on the main processing technology for BPS biodegradation, and the findings indicate that the biodegradation efficiency of BPS was relatively low. Therefore, this paper used an NZVI-HA composite-modified bio-anode to enhance the anaerobic degradation of BPS in a Bioelectrochemical Systems (BES). The results showed that the degradation efficiency of BPS was improved from 31.1% to 92.2% with the NZVI-HA modification compared with the control group (CC-BES). FTIR and XPS analyzes demonstrated that HA can accelerate the reduction rate of Fe3+ and increase the ratio of Fe2+/Fe3+. In addition, HA can form Fe-O-HA complexes with NZVI to promote electron transfer. An analysis of the NZVI-HA-BES intermediate metabolites revealed that complex modification properties altered the BPS degradation pathway. An analysis of microbial diversity indicated that the bacteria related to the degradation of BPS may be Terrimonas, Lysobacter, and Acidovorax.
Collapse
Affiliation(s)
- Chenyi Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuan Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mingqing Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiujuan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengjie Fan
- College of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
| | - Jining Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yingwen Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
27
|
Blundell SP, Owens G. Evaluation of enhancement techniques for the dechlorination of DDT by nanoscale zero-valent iron. CHEMOSPHERE 2021; 264:128324. [PMID: 33022509 DOI: 10.1016/j.chemosphere.2020.128324] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/16/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Due to its low toxicity and high reactivity, nanoscale zero-valent iron (nZVI) is widely used as a remediation agent. However, nZVI is also prone to rapid aggregation and surface oxidation, which significantly reduces its practical efficacy. Here three enhancement techniques, proposed to overcome these limiting factors, incremental addition, pH adjustment and the application of ultrasonic energy, were systematically evaluated for their ability to increase the remediation efficiency of 1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) sorbed onto the surface of a soil surrogate. The efficacy of nZVI was also compared to the effectiveness of microscale zero valent iron (μZVI). Of the three enhancement techniques studied, only ultrasonic energy significantly enhanced the effectiveness of nZVI for the degradation of DDT and its primary degradation products due to disaggregation and surface cleaning of nZVI and increased ultrasound induced mixing. While pH had no effect on the degradation efficiency of nZVI, low pH significantly enhanced the effectiveness of μZVI remediation. This was attributed to the sustained low solution pH reducing surface corrosion products, increasing surface area and maintaining a cationic surface for attracting anionic DDT.
Collapse
Affiliation(s)
- Stephen Paul Blundell
- Environmental Contaminants Group (ECG) - Future Industries Institute, University of South Australia, The Mawson Lakes Campus, Materials and Minerals Sciences Building MM, MM3-01B, Mawson Lakes Boulevard, MAWSON LAKES, South Australia
| | - Gary Owens
- Environmental Contaminants Group (ECG) - Future Industries Institute, University of South Australia, The Mawson Lakes Campus, Materials and Minerals Sciences Building MM, MM3-01B, Mawson Lakes Boulevard, MAWSON LAKES, South Australia.
| |
Collapse
|
28
|
Applications of Nanomaterials for Heavy Metal Removal from Water and Soil: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13020713] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Heavy metals are toxic and non-biodegradable environmental contaminants that seriously threaten human health. The remediation of heavy metal-contaminated water and soil is an urgent issue from both environmental and biological points of view. Recently, nanomaterials with excellent adsorption capacities, great chemical reactivity, active atomicity, and environmentally friendly performance have attracted widespread interest as potential adsorbents for heavy metal removal. This review first introduces the application of nanomaterials for removing heavy metal ions from the environment. Then, the environmental factors affecting the adsorption of nanomaterials, their toxicity, and environmental risks are discussed. Finally, the challenges and opportunities of applying nanomaterials in environmental remediation are discussed, which can provide perspectives for future in-depth studies and applications.
Collapse
|
29
|
Qasim GH, Nguyen VH, Lee S, Lee W, Han S. Countereffect of glutathione on divalent mercury removal by nanoscale zero-valent iron in the presence of natural organic matter. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122874. [PMID: 32512443 DOI: 10.1016/j.jhazmat.2020.122874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Although there have been multiple studies on the effects of natural organic matter (NOM) on zero-valent iron (ZVI) removal of several regulated heavy metal ions from contaminated water, the role of NOM on Hg(II) removal by nanoscale ZVI (nZVI) has not yet been studied. The experimental results showed that in the presence of 100 mg L-1 of Suwannee River NOM (SRNOM), the Hg(II) removal ratio by nZVI decreased from 89% to 36% after 80 min of reaction. Similar trends were observed in the long-term test maintained for 15 days, attributable to the surface passivation of nZVI by SRNOM. In contrast, addition of 100 μM glutathione (GSH) to the nZVI suspensions increased the Hg(II) removal ratio from 85% to 96% after 15 days of reaction. Furthermore, adding 100 μM of GSH to the nZVI and SRNOM suspensions largely improved the removal efficiency of Hg(II) to be > 99% after 9 days of reaction, related to the enhanced dissolution of Fe(II) and consequent formation of lepidocrocite and maghemite on the nZVI surface. The addition of thiolic compounds is suggested as a promising step in overcoming the inhibitory effect of SRNOM for the remediation of Hg(II) using nZVI technology.
Collapse
Affiliation(s)
- Ghulam Hussain Qasim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Viet Huu Nguyen
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sangwook Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Woojin Lee
- Department of Civil Engineering, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Republic of Kazakhstan.
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
30
|
Kumar V, Katyal D, Nayak S. Removal of heavy metals and radionuclides from water using nanomaterials: current scenario and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41199-41224. [PMID: 32829433 DOI: 10.1007/s11356-020-10348-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
There is an increase in concern about the hazardous effects of radioactivity due to the presence of undesirable radioactive substances in our vicinity. Nuclear accidents such as Chernobyl (1986) and Fukushima (2011) have further raised concerns towards such incidents which have led to contamination of water bodies. Conventional methods of water purification are less efficient in decontamination of radioisotopes. They are usually neither cost-effective nor environmentally friendly. However, nanotechnology can play a vital role in providing practical solutions to this problem. Nano-engineered materials like metal oxides, metallic organic frameworks, and nanoparticle-impregnated membranes have proven to be highly efficient in treating contaminated water. Their unique characteristics such as high adsorption capacity, large specific surface area, high tensile strength, and excellent biocompatibility properties make them useful in the field of water purification. This review explores the present status and future prospects of nanomaterials as the next-generation water purification systems that can play an important role in the removal of heavy metals and radioactive contaminants from aqueous solutions.
Collapse
Affiliation(s)
- Vinod Kumar
- University School of Environment Management (USEM), Guru Gobind Singh Indraprastha University, Dwarka, Delhi, 110078, India
- Division of CBRN Defense, Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi, 110054, India
| | - Deeksha Katyal
- University School of Environment Management (USEM), Guru Gobind Singh Indraprastha University, Dwarka, Delhi, 110078, India.
| | - SwayangSiddha Nayak
- Division of CBRN Defense, Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi, 110054, India
| |
Collapse
|
31
|
Xu W, Hu X, Lou Y, Jiang X, Shi K, Tong Y, Xu X, Shen C, Hu B, Lou L. Effects of environmental factors on the removal of heavy metals by sulfide-modified nanoscale zerovalent iron. ENVIRONMENTAL RESEARCH 2020; 187:109662. [PMID: 32460094 DOI: 10.1016/j.envres.2020.109662] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Sulfide-modified nanoscale zerovalent iron (S-nZVI) has excellent reducing performance for heavy metals in water. The influence of environmental factors on the reactivity can be used to explore the practical feasibility of S-nZVI and analyze the reaction mechanism in depth. This study compared the removal effect and mechanism of Cu2+ and Ni2+ by nanoscale zerovalent iron (nZVI), S-nZVI, and carboxymethyl cellulose-modified nanoscale zerovalent iron (CMC-nZVI). The results show that the pseudo-first-order kinetic constant of Cu2+ removal by nZVI, S-nZVI, and CMC-nZVI was 1.384, 1.919, and 2.890 min-1, respectively, and the rate of Ni2+ removal was 0.304, 0.931, and 0.360 min-1, respectively. The removal mechanism of S-nZVI was similar to that of nZVI and CMC-nZVI. Specifically, Cu2+ was predominantly removed by reduction, while Ni2+ removal included adsorption and reduction. Environmental factors had a specific inhibitory effect on the removal of Cu2+ but had a negligible impact on Ni2+. The condition of low pH, the presence of Cl- and humic acid (HA) promoted the corrosion consumption of Fe0, in which H+ directly corroded Fe0 at low pH. At the same time, Cl- and HA inhibited the adsorption or binding of heavy metal ions on the particle surface, thereby reducing the electron transfer and utilization efficiency. The passivation of NO3- reduced the anaerobic corrosion of the material in water but suppressed the release of electrons, thereby reducing the reduction efficiency of the three types of materials. The anaerobic corrosion of S-nZVI was less affected by environmental factors, and it can still maintain more than 80% of the electronic utilization efficiency under different environmental factors, which illustrates that S-nZVI has broad prospects for practical applications in heavy metal polluted water.
Collapse
Affiliation(s)
- Weijian Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Xinyi Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Yiling Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Xiaodong Jiang
- Environemtal Science Research & Design Institute of Zhejiang Province, Hangzhou, 310007, People's Republic of China
| | - Keke Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Yanning Tong
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310029, People's Republic of China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, 310020, People's Republic of China.
| |
Collapse
|
32
|
Dong H, Li L, Wang Y, Ning Q, Wang B, Zeng G. Aging of zero-valent iron-based nanoparticles in aqueous environment and the consequent effects on their reactivity and toxicity. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:646-661. [PMID: 31650665 DOI: 10.1002/wer.1265] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
A fundamental understanding of the long-term fate of nanoscale zero-valent iron (nZVI)-based particles in aqueous environment and the corresponding impacts on their reactivity and toxicity is essential for the responsible use and management of the nanoparticles in environmental applications. This paper comprehensively reviews the physicochemical transformations of nZVI-based particles and the consequent effects on the particle's reactivity and toxicity. The corrosions of nZVI in water under both anaerobic and aerobic conditions are summarized. The transformation of contaminant-bearing nZVI is also discussed. Besides, the factors influencing the transformation of nZVI (i.e., pH, typical anions and cations, natural organic matter, surface stabilizers, bimetal decoration, and sulfidation treatment) are summarized and discussed. In addition, the effects of particle aging on its reactivity and toxicity are discussed. Generally, the aging of nZVI-based particles would have negative impact on the removal of contaminants, especially for the degradation of organic pollutants. However, the aging process of nZVI-based particles would cause a significant reduction in their toxicity. It is suggested that the nZVI-based particles would finally transform to less toxic or benign materials (i.e., iron (oxyhydr)oxides) over time. Finally, future perspectives are proposed to better quantify and predict the transformation of nZVI-based particles in aqueous environment. PRACTITIONER POINTS: The corrosion rates and products of nZVI in water varied much under anaerobic and aerobic conditions. Typical anions and cations, natural organic matter, and iron types are critical factors influencing the physicochemical transformation of nZVI. The aging of nZVI would have negative impact its reactivity, especially for the degradation of organic pollutants. Although the fresh nZVI exhibits obvious toxicity, the aging process would cause a significant reduction in its toxicity.
Collapse
Affiliation(s)
- Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, China
| | - Yaoyao Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, China
| | - Qin Ning
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, China
| | - Bin Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, China
| |
Collapse
|
33
|
Zhu Q, Li N, Wang C, Zhang Q, Sun H. Effect of interactions between various humic acid fractions and iron nanoparticles on the toxicity to white rot fungus. CHEMOSPHERE 2020; 247:125895. [PMID: 31958649 DOI: 10.1016/j.chemosphere.2020.125895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Humic acid plays an important role in controlling the toxicity of nanoparticles to organisms. However, little is known about the influence of different fractions of dissolved humic acid (DHA) from soil on the toxicity of nanoparticles to organisms. The concentration of γ-Fe2O3 and the exposure time affected the malondialdehyde (MDA) content, reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) activity in P. chrysosporium cells and were inversely proportional to the relative activities of the cells. P. chrysosporium was exposed to γ-Fe2O3 and DHA1 for 3 h, 6 h and 12 h. Catalase (CAT) and peroxidase (POD) activities were generally higher than control. Particularly, under the influence of 50 mg/L DHA1 and different concentrations of γ-Fe2O3 (10 and 50 mg/L), the CAT and POD activities were higher than those of cells exposed to γ-Fe2O3 alone. Conversely, both activities of P. chrysosporium exposed to DHA4 combined with γ-Fe2O3 for 12 h were lower than those of cells exposed to γ-Fe2O3 alone and gradually decreased with increasing DHA4 concentration (0, 10 and 50 mg/L). The μ-XAFS normalized spectrum indicated that Fe3+ entering the cells tended to transform into Fe2+ as the stress time prolonged. TEM analysis confirmed the toxicity of high concentrations of γ-Fe2O3 to P. chrysosporium. The comet assay showed that DHA4 in soil enhanced the toxicity of γ-Fe2O3 to P. chrysosporium more than DHA1 did. Namely, compared to DHA1, DHA4 made it easier for nano-Fe2O3 to enter P. chrysosporium cells, causing more toxicity of γ-Fe2O3 to P. chrysosporium.
Collapse
Affiliation(s)
- Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Nan Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Qi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
34
|
Huo ZY, Du Y, Chen Z, Wu YH, Hu HY. Evaluation and prospects of nanomaterial-enabled innovative processes and devices for water disinfection: A state-of-the-art review. WATER RESEARCH 2020; 173:115581. [PMID: 32058153 DOI: 10.1016/j.watres.2020.115581] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/13/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
This study provided an overview of established and emerging nanomaterial (NM)-enabled processes and devices for water disinfection for both centralized and decentralized systems. In addition to a discussion of major disinfection mechanisms, data on disinfection performance (shortest contact time for complete disinfection) and energy efficiency (electrical energy per order; EEO) were collected enabling assessments firstly for disinfection processes and then for disinfection devices. The NM-enabled electro-based disinfection process gained the highest disinfection efficiency with the lowest energy consumption compared with physical-based, peroxy-based, and photo-based disinfection processes owing to the unique disinfection mechanism and the direct mean of translating energy input to microbes. Among the established disinfection devices (e.g., the stirred, the plug-flow, and the flow-through reactor), the flow-through reactor with mesh/membrane or 3-dimensional porous electrodes showed the highest disinfection performance and energy efficiency attributed to its highest mass transfer efficiency. Additionally, we also summarized recent knowledge about current and potential NMs separation and recovery methods as well as electrode strengthening and optimization strategies. Magnetic separation and robust immobilization (anchoring and coating) are feasible strategies to prompt the practical application of NM-enabled disinfection devices. Magnetic separation effectively solved the problem for the separation of evenly distributed particle-sized NMs from microbial solution and robust immobilization increased the stability of NM-modified electrodes and prevented these electrodes from degradation by hydraulic detachment and/or electrochemical dissolution. Furthermore, the study of computational fluid dynamics (CFD) was capable of simulating NM-enabled devices, which showed great potential for system optimization and reactor expansion. In this overview, we stressed the need to concern not only the treatment performance and energy efficiency of NM-enabled disinfection processes and devices but also the overall feasibility of system construction and operation for practical application.
Collapse
Affiliation(s)
- Zheng-Yang Huo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Du
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China
| |
Collapse
|
35
|
Zhang M, Yi K, Zhang X, Han P, Liu W, Tong M. Modification of zero valent iron nanoparticles by sodium alginate and bentonite: Enhanced transport, effective hexavalent chromium removal and reduced bacterial toxicity. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121822. [PMID: 31837936 DOI: 10.1016/j.jhazmat.2019.121822] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 05/26/2023]
Abstract
The rapid aggregation/sedimentation and decreased transport of nanoscale zero-valent iron (nZVI) particles limit their application in groundwater remediation. To decrease the aggregation/sedimentation and increase the transport of nZVI, sodium alginate (a natural polysaccharide) and bentonite (one type of ubiquitous clay) were employed to modify nZVI. Different techniques were utilized to characterize the modified nZVI. We found that modification with either sodium alginate or bentonite could disperse nZVI and shifted their zeta potentials from positive to negative. Comparing with the bare nZVI, the sedimentation rates of modified nZVI either by sodium alginate or bentonite are greatly decreased and their transport are significantly increased. The transport of modified nZVI can be greatly increased by increasing flow rate. Furthermore, Cr(VI) can be efficiently removed by the modified nZVI (both sodium alginate and bentonite modified nZVI). Comparing with bare nZVI, the two types of modified nZVI contain lower toxicities to Escherichia coli. The results of this study indicate that both sodium alginate and bentonite can be employed as potential stabilizers to disperse nZVI and improve their application feasibility for in situ groundwater remediation.
Collapse
Affiliation(s)
- Mengya Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Kexin Yi
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Xiangwei Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Peng Han
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
36
|
Armijo LM, Wawrzyniec SJ, Kopciuch M, Brandt YI, Rivera AC, Withers NJ, Cook NC, Huber DL, Monson TC, Smyth HDC, Osiński M. Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J Nanobiotechnology 2020; 18:35. [PMID: 32070354 PMCID: PMC7029462 DOI: 10.1186/s12951-020-0588-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 01/29/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Novel methods are necessary to reduce morbidity and mortality of patients suffering from infections with Pseudomonas aeruginosa. Being the most common infectious species of the Pseudomonas genus, P. aeruginosa is the primary Gram-negative etiology responsible for nosocomial infections. Due to the ubiquity and high adaptability of this species, an effective universal treatment method for P. aeruginosa infection still eludes investigators, despite the extensive research in this area. RESULTS We report bacterial inhibition by iron-oxide (nominally magnetite) nanoparticles (NPs) alone, having a mean hydrodynamic diameter of ~ 16 nm, as well as alginate-capped iron-oxide NPs. Alginate capping increased the average hydrodynamic diameter to ~ 230 nm. We also investigated alginate-capped iron-oxide NP-drug conjugates, with a practically unchanged hydrodynamic diameter of ~ 232 nm. Susceptibility and minimum inhibitory concentration (MIC) of the NPs, NP-tobramycin conjugates, and tobramycin alone were determined in the PAO1 bacterial colonies. Investigations into susceptibility using the disk diffusion method were done after 3 days of biofilm growth and after 60 days of growth. MIC of all compounds of interest was determined after 60-days of growth, to ensure thorough establishment of biofilm colonies. CONCLUSIONS Positive inhibition is reported for uncapped and alginate-capped iron-oxide NPs, and the corresponding MICs are presented. We report zero susceptibility to iron-oxide NPs capped with polyethylene glycol, suggesting that the capping agent plays a major role in enabling bactericidal ability in of the nanocomposite. Our findings suggest that the alginate-coated nanocomposites investigated in this study have the potential to overcome the bacterial biofilm barrier. Magnetic field application increases the action, likely via enhanced diffusion of the iron-oxide NPs and NP-drug conjugates through mucin and alginate barriers, which are characteristic of cystic-fibrosis respiratory infections. We demonstrate that iron-oxide NPs coated with alginate, as well as alginate-coated magnetite-tobramycin conjugates inhibit P. aeruginosa growth and biofilm formation in established colonies. We have also determined that susceptibility to tobramycin decreases for longer culture times. However, susceptibility to the iron-oxide NP compounds did not demonstrate any comparable decrease with increasing culture time. These findings imply that iron-oxide NPs are promising lower-cost alternatives to silver NPs in antibacterial coatings, solutions, and drugs, as well as other applications in which microbial abolition or infestation prevention is sought.
Collapse
Affiliation(s)
- Leisha M. Armijo
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Stephen J. Wawrzyniec
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Michael Kopciuch
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Yekaterina I. Brandt
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Antonio C. Rivera
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Nathan J. Withers
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Nathaniel C. Cook
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| | - Dale L. Huber
- Center for Integrated Nanotechnologies, Sandia National Laboratories, 1000 Eubank SE, Albuquerque, NM 87123 USA
| | - Todd C. Monson
- Sandia National Laboratories, Nanomaterials Sciences, P.O. Box 5800, MS 1415, Albuquerque, NM 87185 USA
| | - Hugh D. C. Smyth
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Stop A1900, Austin, TX 78712 USA
| | - Marek Osiński
- Center for High Technology Materials, University of New Mexico, 1313 Goddard Street SE, Albuquerque, NM 87106-4343 USA
| |
Collapse
|
37
|
Qin H, Yin D, Bandstra JZ, Sun Y, Cao G, Guan X. Ferrous ion mitigates the negative effects of humic acid on removal of 4-nitrophenol by zerovalent iron. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121218. [PMID: 31563765 DOI: 10.1016/j.jhazmat.2019.121218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
In this study, Fe2+ addition was employed to overcome the negative effects of humic acid (HA) on contaminant removal by zerovalent iron (ZVI), and its feasibility to improve electron efficiency of ZVI was also tested. HA at high concentrations suppressed the removal of 4-nitrophenol (4-NP) by ZVI, while the addition of 0.25-1.0 mM Fe2+ could greatly mitigate this inhibitory effect and enhance 4-NP reduction. Specifically, with a mixed-order model, global fitting results showed that the addition of Fe2+ increased the rate constant from 0.124 × 10-2-0.219 × 10-2 mM/min to 0.227 × 10-2-0.417 × 10-2 mM/min and shortened lag period from 19.7-47.9 min to 8.0-15.2 min for 4-NP removal. The mechanistic investigation revealed this trend could be explained by the following aspects: i) Fe2+ can facilitate the generation of Fe(II)-containing oxides, which can act as an electron mediator or direct electron donor for 4-NP reduction; ii) the presence of Fe2+ could lead to aggregation of HA particles and accordingly reduced its coverage on ZVI surface. But the results of respike experiments indicate that Fe2+ addition did not show remarkable effect on the electron efficiency of 4-NP by ZVI, which should be associated with that Fe2+ was not able to favor the enrichment of 4-NP on ZVI surface.
Collapse
Affiliation(s)
- Hejie Qin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Joel Z Bandstra
- Department of Mathematics, Engineering, and Computer Science, Saint Francis University, Loretto, PA, 15940, USA
| | - Yuankui Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Guomin Cao
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
38
|
Zhang W, Zeng Z, Liu Z, Huang J, Xiao R, Shao B, Liu Y, Liu Y, Tang W, Zeng G, Gong J, He Q. Effects of carbon nanotubes on biodegradation of pollutants: Positive or negative? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109914. [PMID: 31761551 DOI: 10.1016/j.ecoenv.2019.109914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Recently, a large quantity of carbon nanotubes (CNTs) enters the environment due to the increasing production and applications. More and more researches are focused on the fate and possible ecological risks of CNTs. Some literatures summarized the effects of CNTs on the chemical behavior and fate of pollutants. However, little reviewed the effects of CNTs on the biodegradation of pollutants. In general, the effects of CNTs on the biodegradation of pollutants and the related mechanisms were summarized in this review. CNTs have positive or negative effects on the biodegradation of contaminants by affecting the functional microorganisms, enzymes and the bioavailability of pollutants. CNTs may affect the microbial growth, activity, biomass, community composition, diversity and the activity of enzymes. The decrease of the bioavailability of pollutants due to the sorption on CNTs also causes the reduction of the biodegradation of contaminants. In addition, the roles of CNTs are controlled by multiple mechanisms, which are divided into three aspects i.e., properties of CNTs, environment condition, and microorganisms themself. The better understanding of the fate of CNTs and their impacts on the biochemical process in the environment is conducive to determine the release of CNTs into the environment.
Collapse
Affiliation(s)
- Wei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhuotong Zeng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Rong Xiao
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yujie Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
39
|
Wang J, Sheng J, Qian F, Ji X, Yin H, Wang J. Impacts of nanoscale zero-valent iron on nitrite accumulation performance of nitritation granular sludges with different spatial morphologies and its biosorption behavior. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-019-03989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Effects of copper oxide nanoparticles on the Chlorella algae in the presence of humic acid. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-019-1812-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Kansara K, Kumar A, Karakoti AS. Combination of humic acid and clay reduce the ecotoxic effect of TiO 2 NPs: A combined physico-chemical and genetic study using zebrafish embryo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134133. [PMID: 31505348 DOI: 10.1016/j.scitotenv.2019.134133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/06/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
The series of breakthroughs that have occurred within the realm of nanotechnology have been the source of several new products and technological interventions. One of the most salient examples in this regard is the widespread employment of titanium dioxide (TiO2) nanoparticles across a range of consumer goods. Given that waste is generated at every stage of the consumer-product cycle (from production to disposal), many items with TiO2 nanoparticles are likely to end up being discarded into water bodies. In order to understand the interaction of TiO2 NPs with aquatic ecosystem, the ecological fate and toxicity of TiO2 NPs was studied by exposing zebrafish embryos to a combination of abiotic factors (humic acid and clay) to assess its effect on the development of zebrafish embryos. The physiological changes were correlated with genetic marker analysis to holistically understand the effect on embryos development. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to analyze the interaction energy between TiO2 NPs and natural organic matter (NOM) for understanding the aggregation behavior of engineered nanoparticles (ENPs) in media. The study revealed that combination of HA and clay stabilized TiO2 NPs, compared to bare TiO2 and HA or clay alone. TiO2 NPs and TiO2 NPs + Clay significantly altered the expression of genes involved in development of dorsoventral axis and neural network of zebrafish embryos. However, the presence of HA and HA + clay showed protective effect on zebrafish embryo development. The complete system analysis demonstrated the possible ameliorating effects of abiotic factors on the ecotoxicity of ENPs.
Collapse
Affiliation(s)
- Krupa Kansara
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Ashutosh Kumar
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ajay S Karakoti
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
42
|
A comparative study on the activation of persulfate by bare and surface-stabilized nanoscale zero-valent iron for the removal of sulfamethazine. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115869] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Le TT, Yoon H, Son MH, Kang YG, Chang YS. Treatability of hexabromocyclododecane using Pd/Fe nanoparticles in the soil-plant system: Effects of humic acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:444-450. [PMID: 31279191 DOI: 10.1016/j.scitotenv.2019.06.290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 05/24/2023]
Abstract
Hexabromocyclododecane (HBCD) is a persistent organic pollutant that accumulates in soil and sediments, however, it has been difficult to degrade HBCD with developed remediation technologies so far. In this study, degradation of HBCD by bimetallic iron-based nanoparticles (NPs) under both aqueous and soil conditions considering the effects of humic acids (HAs) and tobacco plant was investigated. In the aqueous solution, 99% of the total HBCD (15 mM) was transformed by Pd/nFe (1 g L-1) within 9 h of treatment and the HBCD debromination by Pd/nFe increased with the addition of HAs. In the soil system, 13%, 15%, 41% and 27% of the total HBCD were removed by treatments consisting of plant only, plant with HAs, plant with NPs and plant + NPs + HAs, respectively, compared to the HBCD removal in an unplanted soil. The 221-986 ng/g of HBCD were detected inside the plant after the treatments, and HAs showed considerable influence on the selective bioaccumulation of HBCD stereoisomers in the plant. Overall, this approach represents a meaningful attempt to develop an efficient and eco-friendly technology for HBCD removal, and it provides advantages for the sustainable remediation of recalcitrant emerging contaminants in soils.
Collapse
Affiliation(s)
- Thao Thanh Le
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hakwon Yoon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Min-Hui Son
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yu-Gyeong Kang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
44
|
Dong LJ, Lai YJ, Yu SJ, Liu JF. Speciation Analysis of the Uptake and Biodistribution of Nanoparticulate and Ionic Silver in Escherichia coli. Anal Chem 2019; 91:12525-12530. [DOI: 10.1021/acs.analchem.9b03359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Li-Jie Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Jian Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Su-Juan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Vanzetto GV, Thomé A. Bibliometric study of the toxicology of nanoescale zero valent iron used in soil remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:74-83. [PMID: 31146240 DOI: 10.1016/j.envpol.2019.05.092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/02/2019] [Accepted: 05/17/2019] [Indexed: 05/28/2023]
Abstract
The application of nanoscale zero-valent iron is one of the most widely used remediation technologies; however, the potential environmental risks of this technology are largely unknown. In order to broaden the knowledge on this subject, the present work consists of a bibliometric study of all of publications related to the toxicity of zero-valent iron nanoparticles used in soil remediation available from the Scopus (Elsevier) and Web of Science (Thompson Reuters) databases. This study presents a temporal distribution of the publications, the most cited articles, the authors who have made the greatest contribution to the theme, and the institutions, countries, and scientific journals that have published the most on this subject. The use of bibliometrics has allowed for the visualization of a panorama of the publications, providing an appropriate analysis to guide new research towards an effective contribution to science by filling the existing gaps. In particular, the lack of studies in several countries reveals a promising area for the development of further research on this topic.
Collapse
|
46
|
Zhang H, Wen J, Fang Y, Zhang S, Zeng G. Influence of fulvic acid on Pb(II) removal from water using a post-synthetically modified MIL-100(Fe). J Colloid Interface Sci 2019; 551:155-163. [DOI: 10.1016/j.jcis.2019.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
|
47
|
Baniamerian H, Isfahani PG, Tsapekos P, Alvarado-Morales M, Shahrokhi M, Vossoughi M, Angelidaki I. Application of nano-structured materials in anaerobic digestion: Current status and perspectives. CHEMOSPHERE 2019; 229:188-199. [PMID: 31078033 DOI: 10.1016/j.chemosphere.2019.04.193] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 05/18/2023]
Abstract
Nanotechnology is gaining more attention in biotechnological applications as a research area with a huge potential. Nanoparticles (NPs) can influence the rate of anaerobic digestion (AD) as the nano-sized structures, with specific physicochemical properties, interact with substrate and microorganisms. The present work has classified the various types of additives used to improve the AD processes. Nanomaterials as new additives in AD process are classified into four categories: Zero-valent metallic NPs, Metal oxide NPs, Carbon based nanomaterials, and Multi-compound NPs. In the following, application of nanomaterials in AD process is reviewed and negative and positive effects of these materials on the AD process and subsequently biogas production rate are discussed. This study confirms that design and development of new nano-sized compounds can improve the performances of the AD processes.
Collapse
Affiliation(s)
- Hamed Baniamerian
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK, 2800, Denmark; Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Parisa Ghofrani Isfahani
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK, 2800, Denmark; Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11365-9465, Azadi Ave., Tehran, Iran
| | - Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK, 2800, Denmark
| | - Merlin Alvarado-Morales
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK, 2800, Denmark
| | - Mohammad Shahrokhi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11365-9465, Azadi Ave., Tehran, Iran.
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11365-9465, Azadi Ave., Tehran, Iran
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK, 2800, Denmark.
| |
Collapse
|
48
|
Han Y, Ghoshal S, Lowry GV, Chen J. A comparison of the effects of natural organic matter on sulfidated and nonsulfidated nanoscale zerovalent iron colloidal stability, toxicity, and reactivity to trichloroethylene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:254-261. [PMID: 30928754 DOI: 10.1016/j.scitotenv.2019.03.343] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Sulfidated nanoscale zerovalent iron (S-NZVI) is a new remediation material with higher reactivity and greater selectivity for chlorinated organic contaminants such as trichloroethene (TCE) than NZVI. The properties of S-NZVI and the effects of groundwater constituents like natural organic matter (NOM) on its reactivity are less well-characterized than for NZVI. In this study, S-NZVI (Fe/S mole ratio = 15) was synthesized by sonicating NZVI in a Na2S solution, yielding particles with greater surface charge, less aggregation, and higher reactivity with TCE compared to NZVI. The cytotoxicity of S-NZVI was not mitigated effectively due to the smaller size. The addition of Suwannee River humic acid (SRHA) increased the negative surface charge magnitude and dispersion stability and reduced the toxicity of both NZVI and S-NZVI significantly, but also enhanced the corrosion of particles and the formation of non-conductive film. The degradation rate constant (ksa) of both NZVI and S-NZVI was thus reduced with the increasing concentration of SRHA, which decreased by 78% and 60% to be 0.0004 and 0.0053 L m-2 h-1, respectively, with 200 mg C/L SRHA. Additionally, the performance of S-NZVI in field was evaluated to be depressed in simulated groundwater and the negative effect was exacerbated with increased concentration of SRHA. Hydro-chemical conditions like dissolved oxygen (DO), pH, and temperature also influenced the reactivity of S-NZVI. Hence, S-NZVI was a preferred candidate for in-situ remediation of TCE than NZVI. Nevertheless, the integrity of the FeS shell on S-NZVI influenced by NOM need to be considered during the long-term use of S-NZVI in groundwater remediation.
Collapse
Affiliation(s)
- Yitong Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec, H3A 0C3, Canada
| | - Gregory V Lowry
- Center for Environmental Implications of Nanotechnology, Carnegie Mellon University, Civil & Environmental Engineering, Pittsburgh, PA 15213, USA
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China.
| |
Collapse
|
49
|
Bakshi M, Liné C, Bedolla DE, Stein RJ, Kaegi R, Sarret G, Pradas Del Real AE, Castillo-Michel H, Abhilash PC, Larue C. Assessing the impacts of sewage sludge amendment containing nano-TiO 2 on tomato plants: A life cycle study. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:191-198. [PMID: 30776602 DOI: 10.1016/j.jhazmat.2019.02.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Increasing evidence indicates the presence of engineered nanoparticles (ENPs) in sewage sludge derived from wastewater treatment. Land application of sewage sludge is, therefore, considered as an important pathway for ENP transfer to the environment. The aim of this work was to understand the effects of sewage sludge containing nano-TiO2 on plants (tomato) when used as an amendment in agricultural soil. We assessed developmental parameters for the entire plant life cycle along with metabolic and bio-macromolecule changes and titanium accumulation in plants. The results suggest that the sewage sludge amendment containing nano-TiO2 increased plant growth (142% leaf biomass, 102% fruit yield), without causing changes in biochemical responses, except for a 43% decrease in leaf tannin concentration. Changes in elemental concentrations (mainly Fe, B, P, Na, and Mn) of plant stem, leaves and, to a lesser extent fruits were observed. Fourier-transformed infrared analysis showed maximum changes in plant leaves (decrease in tannins and lignins and increase in carbohydrates) but no change in fruits. No significant Ti enrichment was detected in tomato fruits. In conclusion, we evidenced no acute toxicity to plants and no major implication for food safety after one plant life cycle exposure.
Collapse
Affiliation(s)
- Mansi Bakshi
- EcoLab, Université de Toulouse, CNRS, Toulouse, France; Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Clarisse Liné
- EcoLab, Université de Toulouse, CNRS, Toulouse, France; CIRIMAT, UMR CNRS 5085/LCMI, Centre Inter-universitaire de Recherche et d'Ingénierie des Matériaux, Université Paul-Sabatier, F 31062, Toulouse cedex 4, France
| | - Diana E Bedolla
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza, 34149, Italy
| | - Ricardo José Stein
- Faculdade Murialdo, Marquês do Herval 701, CEP 95060-145, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Ralf Kaegi
- Eawag, Particle Laboratory, Dübendorf, 8600, Switzerland
| | - Géraldine Sarret
- ISTerre (Institut des Sciences de la Terre), Université Grenoble Alpes and CNRS, 38041, Grenoble, France
| | - Ana E Pradas Del Real
- ISTerre (Institut des Sciences de la Terre), Université Grenoble Alpes and CNRS, 38041, Grenoble, France; Beamline ID21, ESRF-The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
| | - Hiram Castillo-Michel
- Beamline ID21, ESRF-The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
| | - P C Abhilash
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Camille Larue
- EcoLab, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
50
|
Yan Y, Wang Y, Wang W, Zhou S, Wang J, Guo J. Comparison of short-term dosing ferrous ion and nanoscale zero-valent iron for rapid recovery of anammox activity from dissolved oxygen inhibition. WATER RESEARCH 2019; 153:284-294. [PMID: 30735958 DOI: 10.1016/j.watres.2019.01.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
As obligate anaerobes, anammox bacteria are sensitive to oxygen, which might hinder the maximization of anammox activity. However, there are very few effective strategies to rapidly recover anammox activity after its deterioration under exposure of oxygen. In this study, the activity recovery of anammox bacteria encountering dissolved oxygen (DO) exposure (0.2 and 2.0 mg L-1) were compared by three strategies in short-term experiments, nZVI, Fe(II) dosing, and N2 purging. nZVI is more effective in recovering anammox activity with a high DO exposure (2 mg L-1), compared to a low DO exposure (0.2 mg L-1). After inhibiting by 2.0 mg L-1 DO, anammox activity recovery (normalized to the control) was ranked in the order of nZVI (5 mg L-1) addition (63 ± 8.2%) > Fe(II) (5 mg L-1) addition (41 ± 8.0%) >N2 purging (39 ± 4.0%). In contrast to Fe(II) ion additions, the shell structure of nZVI combined with the buffering effect of biomass-extracellular polysaccharide (EPS) prevented the sharp pH variation and excessive dissolved Fe(II)/Fe(III) in solution. Under such circumstances, nZVI addition (5 and 25 mg L-1) increased the intracellular reactive oxygen species (ROS) to a moderate level (<200%), which might be responsible for the better activity recovery of anammox than that of Fe(II) addition and N2 purging. Specifically, 5 mg L-1 nZVI dosage moderately enhanced the intracellular O2- production (∼150% of the control) after scavenging 2.0 mg L-1 DO, and the anammox activity recovered better than that of both 5 and 25 mg L-1 Fe(II) ions additions. However, high dosage nZVI (75 mg L-1) inhibited anammox activity in spite of low or high DO exposure. Our findings elucidate that appropriate amount of nZVI (short-term dosing) can rapidly recover anammox activity when anammox bacteria encountering oxygen exposure accidentally and could be useful in facilitating the robust operation of anammox-based processes.
Collapse
Affiliation(s)
- Yuan Yan
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China.
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Shuai Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Junjie Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, PR China
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|