1
|
Wu L, Garg S, Waite TD. Progress and challenges in the use of electrochemical oxidation and reduction processes for heavy metals removal and recovery from wastewaters. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135581. [PMID: 39216250 DOI: 10.1016/j.jhazmat.2024.135581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Heavy metals-laden industrial wastewater represents both a threat to ecosystems and human health and, in some instances, a potential source of valuable metals however the presence of organic ligands that bind the metals in heavy metal complexes (HMCs) renders metal removal (and, where appropriate, recovery) difficult. Electrochemical-based oxidation and reduction processes represent a potentially promising means of degrading the organic ligands and reducing their ability to retain the metals in solution. In this state-of-the-art review, we provide a comprehensive overview of the current status on use of electrochemical redox technologies for organic ligand degradation and subsequent heavy metal removal and recovery from industrial wastewaters. The principles and degradation mechanism of common organic ligands by various types of electrochemical redox technologies are discussed in this review and consideration given to recent progress in electrode materials synthesis, cell architecture, and operation of electrochemical redox systems. Furthermore, we highlight the current challenges in application of electrochemical redox technologies for treatment of HMC-containing wastewaters including (i) limited understanding of the chemical composition of industrial wastewaters, (ii) constrained mass transfer process affecting the direct/indirect electron transfer, (iii) absence of approaches to convert recovered metal into high-value-added products, and (iv) restricted semi-or full-industrial-scale application of these technologies. Potential strategies for improvement are accordingly provided to guide efforts in addressing these challenges in future research.
Collapse
Affiliation(s)
- Lei Wu
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Chen N, Wu S, Xu Y, Lv S, Wang X, Zhang Q, Pan B. Accurately recognizing chromium species with multi-functionalized nano Au-based sensor array. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134981. [PMID: 38908187 DOI: 10.1016/j.jhazmat.2024.134981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
High-resolution identification of chromium (Cr) species, especially various organic-Cr complexes, in a convenient and economically-feasible manner is the prerequisite for achieving the advanced treatment of chromium wastewater. To this end, a colorimetric nano-Au sensor array was developed by taking advantage of the UV-spectra shift of gold nanoparticles (Au NPs) upon interaction with Cr species; specifically, four molecular modifiers [i.e., iminodiacetic acid (IDA), tripolyphosphate (TPP), cetyltrimethylammonium bromide (CTAB), and 1,5-diphenylcarbazide (DPC)] were intentionally employed for assembling nano-Au array receptors, which showed respective responses toward different Cr species through the formation of coordination, hydrophobic interaction, electrostatic attraction, and redox reaction, respectively; the "fingerprint" differences of the unique optical properties were then integrated for semi-quantitatively recognizing Cr species by pattern recognition techniques. Eleven ubiquitous Cr species [i.e., Cr(III), Cr(VI), and various Cr(III)-organic complexes] served as the model samples, which could be sensitively identified, no matter in individual or mixture mode, by the developed nano-Au sensor array on the basis of the colorimetric responses resulted from diverse nano-Au-aggregation behaviors, with excellent anti-interference ability in the simulated or actual water scenario. Attractively, the nano-Au sensor array can achieve very sensitive detection limit of the quantitative analyses of Cr species in a prompt in-situ manner, which usually requires a two-step process of separation and detection for the conventional analytical methods. Such a convenient strategy of Cr species discrimination conduces to rationally designing specific protocols for the advanced treatment of chromium wastewater.
Collapse
Affiliation(s)
- Ningyi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China; Moganshan Institute ZJUT, Deqing, Zhejiang 313200, PR China
| | - Shuang Wu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ying Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Sijie Lv
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xianhua Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qingrui Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, PR China
| | - Bingjun Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
3
|
Yu J, Deng W, Huang X, Zhao M, Li X, Zhang T, Pan B. Intramolecular generation of endogenous Cu(III) for selectively self-catalytic degradation of Cu(II)-EDTA from wastewater by UV/peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133521. [PMID: 38232554 DOI: 10.1016/j.jhazmat.2024.133521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
HO•/SO4•--based advanced oxidation processes for the decomplexation of heavy metal-organic complexes usually encounter poor efficiency in real scenarios. Herein, we reported an interesting self-catalyzed degradation of Cu(II)-EDTA with high selectivity in UV/peroxymonosulfate (PMS). Chemical probing experiments and competitive kinetic analysis quantitatively revealed the crucial role of in situ formed Cu(III). The Cu(III) species not only oxidized Cu(II)-EDTA rapidly at ∼3 × 107 M-1 s-1, but also exhibited 2-3 orders of magnitude higher steady-state concentration than HO•/SO4•-, leading to highly efficient and selective degradation of Cu(II)-EDTA even in complex matrices. The ternary Cu(II)-OOSO3- complexes derived from Cu(II)-EDTA decomposition could generate Cu(III) in situ via the Cu(II)-Cu(I)-Cu(III)-Cu(II) cycle involving intramolecular electron transfer. This method was also applicable to various Cu(II) complexes in real electroplating wastewater, demonstrating higher energy efficiency than commonly studied UV-based AOPs. This study provids a proof of concept for efficient decomplexation through activating complexed heavy metals into endogenous reactive species.
Collapse
Affiliation(s)
- Junyi Yu
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wei Deng
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xianfeng Huang
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Min Zhao
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xuchun Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Tao Zhang
- Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing 100085, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Tian H, Wang X, Pan R, Qin J, Xu N, Huang X. Decreasing dissolved oxygen enhances in situ curtailment of intermediate Cr(VI) during photo-oxidative decomplexation of Cr(III)-EDTA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62733-62743. [PMID: 36949374 DOI: 10.1007/s11356-023-26594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/18/2023] [Indexed: 05/10/2023]
Abstract
Cr(III)-organic complexes are stably presented in tanning, electroplating, and other industrial wastewaters, and their safe and efficient removal remains a current challenge. Available oxidation processes can remove Cr(III) complexes but readily result in highly toxic Cr(VI) accumulation. Herein, negligible Cr(VI) accumulation was achieved during photo-oxidation of Cr(III) complexes using a simple strategy of decreasing dissolved oxygen (DO). At the DO concentration of 5.0 mg·L-1 or less, the in-process formation of intermediate Cr(VI) was totally abated by in situ formed reductive species, and total Cr was reduced from 9.0-11.0 mg·L-1 to below 1.0 mg·L-1. A complete curtailment of Cr(VI) was observed after 30-60 min at pH 6.0-9.0. Increasing Cr(III)-EDTA concentration and decreasing pH value facilitated the in situ reduction of intermediate Cr(VI). Based on the identification of intermediates and additional Cr(II) and quenching experiments, the possible key species involved in intermediate Cr(VI) reduction were the photogenerated Cr(II) and some C-centered radicals from Cr(III)-EDTA decomplexation, and the possible mechanisms of Cr(III)-EDTA decomplexation and intermediate Cr(VI) reduction were thus proposed. The process also showed efficient treatment on other Cr(III) complexes (citrate, oxalate, and tartrate) and realistic Cr(III) complexed wastewater. This study would provide an insignificant Cr(VI)-accumulated alternative for efficient and safe removal of Cr(III) complexes from contaminated water.
Collapse
Affiliation(s)
- Hailong Tian
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Xuehui Wang
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Rubin Pan
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Jialu Qin
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Nuo Xu
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Xianfeng Huang
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
5
|
Zhang J, Luo J, Zhao X, Wang K, Xie T, Xu T, Qiao M. Enhanced photoelectrocatalytic decomplexation of Ni-EDTA and simultaneous recovery of metallic nickel via TiO 2/Ni-Sb-SnO 2 bifunctional photoanode and activated carbon fiber cathode. J Environ Sci (China) 2023; 126:198-210. [PMID: 36503749 DOI: 10.1016/j.jes.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 06/17/2023]
Abstract
In order to enhance Ni-EDTA decomplexation and Ni recovery via photoelectrocatalytic (PEC) process, TiO2/Ni-Sb-SnO2 bifunctional electrode was fabricated as the photoanode and activated carbon fiber (ACF) was introduced as the cathode. At a cell voltage of 3.5 V and initial solution pH of 6.3, the TiO2/Ni-Sb-SnO2 bifunctional photoanode exhibited a synergetic effect on the decomplexation of Ni-EDTA with the pseudo-first-order rate constant of 0.01068 min-1 with 180 min by using stainless steel (SS) cathode, which was 1.5 and 2.4 times higher than that of TiO2 photoanode and Ni-Sb-SnO2 anode, respectively. Moreover, both the efficiencies of Ni-EDTA decomplexation and Ni recovery were improved to 98% from 86% and 73% from 41% after replacing SS cathode with ACF cathode, respectively. Influencing factors on Ni-EDTA decomplexation and Ni recovery were investigated and the efficiencies were favored at acidic condition, higher cell voltage and lower initial Ni-EDTA concentration. Ni-EDTA was mainly decomposed via ·OH radicals which generated via the interaction of O3, H2O2, and UV irradiation in the contrasted PEC system. Then, the liberated Ni2+ ions which liberated from Ni-EDTA decomplexation were eventually reduced to metallic Ni on the ACF cathode surface. Finally, the stability of the constructed PEC system on Ni-EDTA decomplexation and Ni recovery was exhibited.
Collapse
Affiliation(s)
- Juanjuan Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Luo
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Drainage Group Co., Ltd., Beijing 100044, China; Beijing Engineering Research Center of Wastewater Resource, Beijing 100124, China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaifeng Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tengfei Xie
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tongguang Xu
- Beijing Third Class Tobacco Supervision Station, Beijing 101121, China
| | - Meng Qiao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
6
|
Ye Y, Yang N, Xiao L, Li Q, Pan F, Xia D. Coagulation characteristic and mechanism of Fe(III) salts toward typical Cr(III) complexes in wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30122-30129. [PMID: 36427131 DOI: 10.1007/s11356-022-24366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Cr(III) complexes are typical pollutants in various industrial wastewater and pose a serious threat to the ecosystem and humans. The coagulation process is commonly used in water treatment plants, yet its removal characteristic and mechanism toward Cr(III) complexes have been rarely reported. In this study, the Fe(III) coagulation process was adopted for the evaluation of Cr(III) complex removal in terms of Cr residual concentration as well as floc size. The results showed that Fe(III) with a dose of 0.8 mM removed more than 80% of total Cr for Cr3+ and Cr(III)-acetate, whereas poor removal rate (~ 50%) was obtained for Cr(III)-citrate under the same conditions. Neutral and alkaline conditions facilitated Cr(III)-acetate removal by Fe(III) coagulation, while limited influence was observed for Cr(III)-citrate with various pH. The main removal mechanism of Cr(III)-acetate was precipitation. Cr(III)-citrate elimination largely relied on the adsorption property and sweeping effect of Fe floc. Moreover, Cr(III)-acetate was easier to be separated from a solution since the generated floc sizes were 270 μm. Flocs that formed in the Cr(III)-citrate treatment were only 0.3 μm, resulting in separation difficulties during the coagulation process. The presence of Cr(III)-acetate and Cr(III)-citrate caused a significant decline in membrane flux. This study provided fundamental knowledge of Fe coagulation treatment in Cr(III) complex-containing wastewater.
Collapse
Affiliation(s)
- Yuxuan Ye
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| | - Ning Yang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Lixi Xiao
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Qiang Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
| | - Fei Pan
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China.
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China.
| | - Dongsheng Xia
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, China
| |
Collapse
|
7
|
Wang J, Lei S, Sun T, Han P. Adsorptive removal of Cr(III)-EDTA chelate from an aqueous solution by magnetic mesoporous silica microspheres. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:571-583. [PMID: 36789704 DOI: 10.2166/wst.2023.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The 3-aminopropyltrimethoxysilane-modified magnetic mesoporous adsorbent (FNMs/APTES) was synthesized and applied to remove Cr(III)-EDTA chelates from water. The characterization of FNMs/APTES showed that the prepared adsorbent with a magnetic mesoporous structure was successfully grafted by APTES, which has good stability under acid conditions. The maximum capacities of FNMs/APTES for Cr(III)-EDTA adsorption at 15, 25 and 35 °C and pH 4.0 were 12.58, 13.13 and 14.00 mg·g-1, respectively. The adsorption isotherm of FNMs/APTES for Cr(III)-EDTA conforms to the Freundlich model, and the adsorption kinetic model accords with the pseudo-second-order kinetic model. Adsorption of Cr(III)-EDTA on the adsorbent was not affected in the presence of Na+, K+ and Ca2+ even at 100 mmol·L-1. Cr(III)-EDTA was anchored on FNMs/APTES through electrostatic interaction between protonated amino groups of adsorbents and Cr(III)-EDTA anions, and Cr(III)-EDTA chelates were adsorbed as a whole on the adsorbent. The Cr(III)-EDTA-saturated adsorbent can be readily regenerated in HCl solution and 83.03% of the initial Cr(III)-EDTA adsorption capacity remains after four adsorption-regeneration experiment cycles. The results highlighted that the FNMs/APTES as a potential adsorbent can be applied for the minimization of Cr(III)-EDTA chelates from water.
Collapse
Affiliation(s)
- Jiahong Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China ; Shaanxi Key Laboratory of Green Preparation and Functionalization of Inorganic Materials, Xi'an 710021, China
| | - Sili Lei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China ; Shaanxi Key Laboratory of Green Preparation and Functionalization of Inorganic Materials, Xi'an 710021, China
| | - Tongtong Sun
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China ; Shaanxi Key Laboratory of Green Preparation and Functionalization of Inorganic Materials, Xi'an 710021, China
| | - Peiling Han
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China ; Shaanxi Key Laboratory of Green Preparation and Functionalization of Inorganic Materials, Xi'an 710021, China
| |
Collapse
|
8
|
Hao Y, Ma H, Wang Q, Zhu C, He A. Complexation behaviour and removal of organic-Cr(III) complexes from the environment: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113676. [PMID: 35653974 DOI: 10.1016/j.ecoenv.2022.113676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Chromium (Cr) is mainly found in the form of organic-Cr(III) complexes in the natural environment and industrial waste. The widespread existence of composite contaminants composed of organic matter (OM) and Cr pose a serious ecological threat, and its potential interaction and removal need to be further summarised. Organic ligands, such as carbohydrates, nitrogen compounds, phenolic compounds, humus substances (HS), and low molecular weight organic acids (LMWOAs), play an important role in governing the speciation, mobility, and absorption and desorption of Cr in the environment. Moreover, growing evidence indicates that oxygen-containing functional groups (e.g., carboxyl, hydroxyl, and phosphate) are closely related to the complexation of Cr(III). Advanced oxidation processes (AOPs) are efficient and widely applicable technologies. However, the re-complexation of oxidation intermediates with Cr(III) and the formation and accumulation of much more toxic Cr(VI) species hinder the possible utilisation of AOPs. In this paper, the sources and harmful effects of organic-Cr(III) complexes are reported in detail. The complexation behaviour and structure of the organic-Cr(III) complexes are also described. Subsequently, the application of AOPs in the decomplexation and degradation of organic-Cr(III) complexes is summarised. This review can be helpful for developing technologies that are more efficient for organic-Cr(III) complex removal and establishing the scientific background for reducing Cr discharge Cr into the environment.
Collapse
Affiliation(s)
- Yongyong Hao
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Hongrui Ma
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Qing Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chao Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Anqi He
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| |
Collapse
|
9
|
Chen C, Liu P, Li Y, Tian H, Zhang Y, Zheng X, Liu R, Zhao M, Huang X. Electro-peroxone enables efficient Cr removal and recovery from Cr(III) complexes and inhibits intermediate Cr(VI) generation in wastewater: Performance and mechanism. WATER RESEARCH 2022; 218:118502. [PMID: 35490457 DOI: 10.1016/j.watres.2022.118502] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/31/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Available oxidation processes for removing Cr(III) complexes from water/wastewater usually encounter the formation of highly toxic Cr(VI) and the generation of Cr enriched waste sludge, posing challenges on the subsequent disposal. Herein, we achieve efficient removal of Cr(III)-organic complexes and simultaneous recovery of Cr from wastewater with enhanced curtailment of intermediate Cr(VI), by using an electrochemically driven peroxone (i.e., electro-peroxone) process with activated carbon fiber (ACF) electrodes. For Cr(III)-EDTA, electro-peroxone could remove ∼90% total Cr from 11.50 mg/L to 1.20 mg/L and ∼80% total organic carbon, with a strong curtailment of Cr(VI) to less than 0.2 mg/L. Additionally, the process could obtain a complete recovery of the removable Cr, of which 78.3% are enriched at ACF cathode as amorphous Cr(OH)3 deposits and the remaining 21.7% are adsorbed at the anode, thus avoiding the generation of Cr laden sludge. Mechanism studies show the electro-generated H2O2 reacts with O3 to generate abundant HO· for decomplexation, which sequentially oxidizes Cr(III) to Cr(VI), and degrades the released EDTA via stepwise decarboxylated process, as confirmed by HPLC analysis. Multiple pathways including electro-reduction, H2O2 reduction and electro-adsorption synergistically curtail and immobilize the formed intermediate Cr(VI). ACF characterizations and continuous 5-cycle experiments substantiate the excellent reusability of the ACF electrodes. Moreover, this process exhibits satisfactory effectiveness to Cr(III) complexed with other ligands (e.g., citrate and oxalate), and complexed Cr(III) in the real electroplating wastewater. We believe this study would provide an efficient and eco-friendly alternative for Cr(III) complexes removal from wastewater.
Collapse
Affiliation(s)
- Cong Chen
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Pengfei Liu
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yubao Li
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Hailong Tian
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yanyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Xiangyong Zheng
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Renlan Liu
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Min Zhao
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xianfeng Huang
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Jiang X, Long W, Peng L, Xu T, He F, Tang Y, Zhang W. Reductive immobilization of Cr(VI) in contaminated water by tannic acid. CHEMOSPHERE 2022; 297:134081. [PMID: 35202661 DOI: 10.1016/j.chemosphere.2022.134081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/23/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
The rapid reductive immobilization of Cr(VI) from the aqueous solution was achieved by reduction to Cr(III) using tannic acid (TA), and subsequent pH-triggering precipitation of the organo-Cr(III) complexes formed in the redox reaction. The effects of TA concentration, temperature, and solution pH on the reduction of Cr(VI) were examined by batch experiments, and the rapid redox reduction followed a second-order kinetics with respect to Cr(VI) concentration in the pH range of 2.0-3.0. UV-visible spectra, FTIR, and XPS confirmed the complete detoxification of Cr(VI) concomitant with carboxylation of partial phenolic hydroxyls in TA. Synchronously, the reduced Cr(III) coordinated with carboxyl groups in oxidized TA (OTA) to form complexes, which exhibited remarkable pH-dependent size distribution characteristics as illustrated by SEM images and sequential filtration/ultrafiltration. The resulted Cr(III) complexes could aggregate into colloids with larger size and precipitate out at pH range of 6.0-8.0 via cross-linking, thereby leading to 93% Cr and 89% TOC immobilization. An eco-friendly and cost-effective method for Cr(VI) elimination and immobilization is provided because polyphenols are natural polymers derived from plants.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Wenjun Long
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liangqiong Peng
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Teng Xu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Faming He
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yuling Tang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Wenhua Zhang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
11
|
Zhuo Q, Xu X, Xie S, Ren X, Chen Z, Yang B, Li Y, Niu J. Electro-oxidation of Ni (II)-citrate complexes at BDD electrode and simultaneous recovery of metallic nickel by electrodeposition. J Environ Sci (China) 2022; 116:103-113. [PMID: 35219408 DOI: 10.1016/j.jes.2021.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 06/14/2023]
Abstract
The simultaneous electro-oxidation of Ni (II)-citrate and electrodeposition recovery of nickel metal were attempted in a combined electro-oxidation-electrodeposition reactor with a boron-doped diamond (BDD) anode and a polished titanium cathode. Effects of initial nickel citrate concentration, current density, initial pH, electrode spacing, electrolyte type, and initial electrolyte dosage on electrochemical performance were examined. The efficiencies of Ni (II)-citrate removal and nickel metal recovery were determined to be 100% and over 72%, respectively, under the optimized conditions (10 mA/cm2, pH 4.09, 80 mmol/L Na2SO4, initial Ni (II)-citrate concentration of 75 mg/L, electrode spacing of 1 cm, and 180 min of electrolysis). Energy consumption increased with increased current density, and the energy consumption was 0.032 kWh/L at a current density of 10 mA/cm2 (pH 6.58). The deposits at the cathode were characterized by scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). These characterization results indicated that the purity of metallic nickel in cathodic deposition was over 95%. The electrochemical system exhibited a prospective approach to oxidize metal complexes and recover metallic nickel.
Collapse
Affiliation(s)
- Qiongfang Zhuo
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaofeng Xu
- School of Civil Engineering, University of South China, Hengyang 421001, China; School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Shuibo Xie
- School of Civil Engineering, University of South China, Hengyang 421001, China.
| | - Xiuwen Ren
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China
| | - Zhongying Chen
- South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Yanliang Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Junfeng Niu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
12
|
Sun Y, Zhang C, Rong H, Wu L, Lian B, Wang Y, Chen Y, Tu Y, Waite TD. Electrochemical Ni-EDTA degradation and Ni removal from electroless plating wastewaters using an innovative Ni-doped PbO 2 anode: Optimization and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127655. [PMID: 34773795 DOI: 10.1016/j.jhazmat.2021.127655] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
In this work, a novel Ni-doped PbO2 anode (Ni-PbO2) was prepared via a co-electrodeposition method and used to remove Ni-ethylenediaminetetraacetic acid (Ni-EDTA) from solutions typical of electroless nickel plating wastewater. Compared with a pure PbO2 electrode, Ni doping increased the oxygen evolution potential as well as the reactive surface area and reactive site concentration and reduced the electron transfer resistance thereby resulting in superior Ni-EDTA degradation performance. The 1% Ni-doped PbO2 electrode exhibited the best electrochemical oxidation activity with a Ni-EDTA removal efficiency of 96.5 ± 1.2%, a Ni removal efficiency of 52.1 ± 1.4% and an energy consumption of 2.6 kWh m-3. Further investigations revealed that 1% Ni doping enhanced both direct oxidation and hydroxyl radical mediated oxidation processes involved in Ni-EDTA degradation. A mechanism for Ni-EDTA degradation is proposed based on the identified products. The free nickel ion concentration initially increased as a result of the degradation of Ni-EDTA complexes and subsequently decreased as a consequence of nickel electrodeposition on the cathode surface. Further characterization of the cathode deposits by X-ray diffraction and X-ray photoelectron spectra indicated that the deposition products were a mixture of Ni0, NiO and Ni(OH)2 with elemental Ni accounting for roughly 80% of the deposited nickel. Results of this study pave the way for the application of anodic oxidation processes for efficient degradation of Ni-containing complexes and recovery of Ni from nickel-containing wastewaters.
Collapse
Affiliation(s)
- Yuyang Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Hongyan Rong
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Lei Wu
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China.
| | - Boyue Lian
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Yuan Wang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China.
| | - Yong Chen
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, Jiangsu 210036, PR China.
| | - Yong Tu
- Jiangsu Provincial Academy of Environmental Sciences Environmental Technology Co., Ltd., Nanjing, Jiangsu 210036, PR China.
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China.
| |
Collapse
|
13
|
Zhang W, Li Q, Li R, Shen N, Li J, Shen J, Sun X, Han W. Enhanced sequestration of chelated Cr(III) from aqueous by Al-containing ferrihydrite: New expectation of overall removal of various heavy metal complexes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Song P, Sun C, Wang J, Ai S, Dong S, Sun J, Sun S. Efficient removal of Cu-EDTA complexes from wastewater by combined electrooxidation and electrocoagulation process: Performance and mechanism study. CHEMOSPHERE 2022; 287:131971. [PMID: 34438208 DOI: 10.1016/j.chemosphere.2021.131971] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, combined electrooxidation and electrocoagulation (EO-EC) reactor using RuO2-IrO2/Ti and Al electrodes has been built for treatment of Cu-EDTA wastewater. Effects of current density, electrolyte, NaCl concentration, pH and initial concentration on EO-EC performance were investigated. In this study, Cu-EDTA removal efficiency increased with a higher current density. The electrolyte type exerted a significant role in EO-EC process, compared with Na2SO4 and NaNO3, NaCl was a superior supporting electrolyte because the oxidation of Cl- into Cl2 provided additional highly reactive oxidant ClO- for Cu-EDTA oxidation or mineralization. In neutral or alkaline solution, EO-EC reactor performed better than when it was acid. At the condition of current density 10.29 mA cm-2, C0(NaCl) 1 g L-1, C0(Cu) 50 mg L-1 and pH 7, the Cu and COD removal efficiency reached 99.85% and 85.01%, respectively within 60 min. The possible mechanism of Cu-EDTA removal was proposed based on SEM, EDS, XRD, FTIR and XPS analysis of the products. Cu-EDTA chelates were degraded or mineralized by direct charge transfer, chemisorbed M(·OH) and active chorine species produced on anode surface, in which degradation intermediates and mineralization products of Cu-EDTA were generated. Meanwhile, residual degradation intermediates and mineralization products were removed by electrocoagulation. In this study, EO-EC process has been proved to be an effective way for the treatment of Cu-EDTA contaminated wastewater.
Collapse
Affiliation(s)
- Peipei Song
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Chengye Sun
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Shujun Dong
- Hunan University of Arts and Sciences, Changde, 415000, PR China
| | - Jie Sun
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Shuai Sun
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271018, PR China
| |
Collapse
|
15
|
Multiprocess catalyzed Cu-EDTA decomplexation by non-thermal plasma coupled with Fe/C microelectrolysis: Reaction process and mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119831] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Electrocoagulation Process: An Approach to Continuous Processes, Reactors Design, Pharmaceuticals Removal, and Hybrid Systems—A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9101831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The electrocoagulation (EC) process has been widely studied in recent years to remove a wide range of contaminants present in different types of water: fluorides, arsenic, heavy metals, organic matter, colorants, oils, and recently, pharmaceutical compounds. However, most of the studies have been aimed at understanding the process factors that have the most significant effect on efficiency, and these studies have been mainly on a batch process. Therefore, this review is focused on elucidating the current state of development of this process and the challenges it involves transferring to continuous processes and the recent exploration of its potential use in the removal of pharmaceutical contaminants and its implementation with other technologies.
Collapse
|
17
|
Rapid sequestration of chelated Cr(III) by ferrihydrite: Adsorption and overall transformation of Cr(III) complexes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Zhang F, Wang W, Xu L, Zhou C, Sun Y, Niu J. Treatment of Ni-EDTA containing wastewater by electrochemical degradation using Ti 3+ self-doped TiO 2 nanotube arrays anode. CHEMOSPHERE 2021; 278:130465. [PMID: 34126689 DOI: 10.1016/j.chemosphere.2021.130465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Ethylene diamine tetraacetic acid (EDTA) could form stable complexes with nickel due to its strong chelation. Ni-EDTA has significant impacts on human health because of its acute toxicity and low biodegradability, thus some appropriate approaches are required for its removal. In this research, a Ti3+ self-doped TiO2 nanotube arrays electrode (ECR-TiO2 NTA) was prepared and employed in electrochemical degradation of Ni-EDTA. The oxygen evolution potential of ECR-TiO2 NTA was 2.6 V vs. SCE. More than 96% Ni-EDTA and 88% TOC was removed after reaction for 120 min at current density 2 mA cm-2 at pH 4.34. The degradation of Ni-EDTA was mainly through the cleavage of amine group within Ni-EDTA and furthermore decomposed it into small molecular acids and inorganic ions including NH4+and NO3-. The electro-deposition of nickel ions at cathode was confirmed by XPS and was greatly affected by the pH of solution. The effects of current density, initial Ni-EDTA concentration, initial pH of solution and HCO3- concentration on Ni-EDTA degradation were investigated. The results exhibited that the ECR-TiO2 NTA had excellent efficiencies in electrochemical degradation of Ni-EDTA. The LSV analysis suggested that Ni-EDTA oxidation on ECR-TiO2 NTA anode and the production of hydroxyl radical (·OH) on the anode played an important role in the removal of Ni-EDTA.
Collapse
Affiliation(s)
- Fan Zhang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Weilai Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Lei Xu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Chengzhi Zhou
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yanglong Sun
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| |
Collapse
|
19
|
He J, Song W, Huang X, Gao Z. Preparation, characterization, and catalytic activity of a novel MgO/expanded graphite for ozonation of Cu-EDTA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39513-39523. [PMID: 33755889 DOI: 10.1007/s11356-021-13551-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Magnesium oxide/expanded graphite (MgO/EG) catalyst was synthesized and applied for enhancing the degradation of Cu-ethylenediaminetetraacetic acid (Cu-EDTA) in an aqueous solution. The MgO/EG catalyst was characterized by XRD, SEM, EDS, and FTIR. For assessing the catalytic activity of MgO/EG, essential influencing factors were investigated including catalyst dosage, O3 dosage, initial pH, initial Cu-EDTA concentration, and coexisting ions. The results show that the catalytic material showed high catalytic oxidation capacity for the Cu-EDTA removal in the MgO/EG/O3 system. 100% of Cu(II) and 73.2% of TOC removal efficiency could be achieved in the MgO/EG/O3 system at the reaction times of 90 min. This efficiency was higher than that seen for other systems, including O3 alone (Cu(II) 81.4%/TOC 60.6%), EG/O3 (84.2%/64.1), MgO/EG (< 4%/< 4%), and EG (< 4%/< 4%). A small decrease in the Cu(II) and TOC removal rate was observed after three runs in the stability and reusability experiments of the catalyst. Assays with radical scavenging experiments confirmed that MgO/EG-mediated oxidation was dependent on a hydroxyl radical pathway. The UV-vis spectra confirmed that the absorption peak of Cu-EDTA was gradually decreased and finally disappeared.
Collapse
Affiliation(s)
- Jun He
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Qinhuangdao, 066004, China.
- Hebei Key Laboratory of Applied Chemistry, Qinhuangdao, 066004, China.
| | - Wenchao Song
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Applied Chemistry, Qinhuangdao, 066004, China
| | - Xiaohan Huang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Applied Chemistry, Qinhuangdao, 066004, China
| | - Zuoyu Gao
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Applied Chemistry, Qinhuangdao, 066004, China
| |
Collapse
|
20
|
Tong J, Zhu Z, Yang Y, Jiang Y. Removal of chemical oxygen demand from ethylenediaminetetraacetic acid cleaning wastewater with electrochemical treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Zhang W, Zhou Y, Hu C, Qu J. Electricity generation from salinity gradient to remove chromium using reverse electrodialysis coupled with electrocoagulation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Li J, Ma J, Dai R, Wang X, Chen M, Waite TD, Wang Z. Self-Enhanced Decomplexation of Cu-Organic Complexes and Cu Recovery from Wastewaters Using an Electrochemical Membrane Filtration System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:655-664. [PMID: 33103901 DOI: 10.1021/acs.est.0c05554] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heavy metals in industrial wastewaters are typically present as stable metal-organic complexes with their cost-effective treatment remaining a significant challenge. Herein, a self-enhanced decomplexation scenario is developed using an electrochemical membrane filtration (EMF) system for efficient decomplexation and Cu recovery. Using Cu-EDTA as a model pollutant, the EMF system achieved 81.5% decomplexation of the Cu-EDTA complex and 72.4% recovery of Cu at a cell voltage of 3 V. The •OH produced at the anode first attacked Cu-EDTA to produce intermediate Cu-organic complexes that reacted catalytically with the H2O2 generated from the reduction of dissolved oxygen at the cathode to initiate chainlike self-enhanced decomplexation in the EMF system. The decomplexed Cu products were further reduced or precipitated at the cathodic membrane surface thereby achieving efficient Cu recovery. By scavenging H2O2 (excluding self-enhanced decomplexation), the rate of decomplexation decreased from 8.8 × 10-1 to 4.1 × 10-1 h-1, confirming the important role of self-enhanced decomplexation in this system. The energy efficiency of this system is 93.5 g kWh-1 for Cu-EDTA decomplexation and 15.0 g kWh-1 for Cu recovery, which is much higher than that reported in the previous literature (i.e., 7.5 g kWh-1 for decomplexation and 1.2 g kWh-1 for recovery). Our results highlight the potential of using EMF for the cost-effective treatment of industrial wastewaters containing heavy metals.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jinxing Ma
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mei Chen
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
23
|
Du J, Zhang B, Li J, Lai B. Decontamination of heavy metal complexes by advanced oxidation processes: A review. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.050] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Ma H, Wang Q, Hao Y, Zhu C, Chen X, Wang C, Yang Y. Fenton reaction induced in-situ redox and re-complexation of polyphenol-Cr complex and their products. CHEMOSPHERE 2020; 250:126214. [PMID: 32088615 DOI: 10.1016/j.chemosphere.2020.126214] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/29/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
In this study, in-situ Fenton oxidation was used for the de-complexation and degradation of tannin-Cr(III) complexes. Cr(III) can be oxidized into free Cr(VI) under the effect of ·OH and oxidation products of tannin can be used as reductant for Cr(VI) to establish a redox cycle of Cr(III)-Cr(VI)-Cr(III). Thus, it is crucial to investigate the interactions of Cr(III) with tannin derived oxidation products due to negligible accumulation of Cr(VI) during Fenton oxidation treatment. Here, sequential filtration/ultrafiltration was applied to reveal the distribution characteristics of TOC and Cr fractions during the oxidation of tannin-Cr(III). As the increase of colloidal size of tannic acid products, residual TOC and Cr mainly distribute in larger size range after the oxidation of tannin-Cr(III) which can be ascribed to re-complexation between oxidation products and Cr(III). Besides, analytical results indicate that carboxyl group and hydroxyl group in oxidation products may cause the re-complexation of Cr(III), resulting in the formation of highly conjugated materials containing Cr(III). It can be concluded that due attention should be paid to the efficient removal technology and mechanism for polymer-Cr complexes, as well as the oxidation intermediates in the role of conversion and removal of Cr species.
Collapse
Affiliation(s)
- Hongrui Ma
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Qing Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yongyong Hao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Chao Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xiangping Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yonglin Yang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
25
|
Tang Y, Zhao J, Zhou J, Zeng Y, Zhang W, Shi B. Highly efficient removal of Cr(III)-poly(acrylic acid) complex by coprecipitation with polyvalent metal ions: Performance, mechanism, and validation. WATER RESEARCH 2020; 178:115807. [PMID: 32361347 DOI: 10.1016/j.watres.2020.115807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
The Cr(III)-organic complexes formed between Cr(III) and multifunctional group ligands, such as polyacrylate, are highly water soluble and difficult to be removed from wastewater by common treatments. A novel strategy for efficiently removing Cr(III)-poly (acrylic acid) complex (Cr(III)-PAA) from wastewater without introducing secondary pollution is proposed using a coprecipitation method with polyvalent metal ions. Al(III), Fe(III), Zr(IV), and Ti(IV) were combined with the carboxyl of Cr(III)-PAA to decrease hydrophilia and achieve fast and efficient coprecipitation. Cr(III)-PAA was efficiently removed from wastewater by using these polyvalent metal ions, especially at low pH, where the ions exist as monomer. The residual concentration of Cr(III) in treated wastewater under the optimized experimental condition was less than 1.0 mg/L. No Cr(VI) and negligible amount of polyvalent metal ions were detected in the treated wastewater, indicating that almost all of the ions coprecipitated with Cr(III)-PAA. No secondary pollution also occurred. The high reactivity between the polyvalent metal ions and Cr(III)-PAA and the sharp decrease in the hydrophilia of the complex contributed to its highly efficient removal from wastewater. Actual tannery wastewater containing Cr(III)-organic complexes with high solubility and stability was treated through coprecipitation with Al(III). A high Cr(III) removal efficiency of 99.0% was obtained. This work provides new insights into the removal of soluble Cr(III)-organic complexes from wastewater by using an environment-friendly and cost-effective method.
Collapse
Affiliation(s)
- Yuling Tang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| | - Jieting Zhao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| | - Jianfei Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| | - Yunhang Zeng
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China.
| | - Wenhua Zhang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
26
|
Moersidik SS, Nugroho R, Handayani M, Kamilawati, Pratama MA. Optimization and reaction kinetics on the removal of Nickel and COD from wastewater from electroplating industry using Electrocoagulation and Advanced Oxidation Processes. Heliyon 2020; 6:e03319. [PMID: 32099914 PMCID: PMC7031355 DOI: 10.1016/j.heliyon.2020.e03319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/12/2019] [Accepted: 01/24/2020] [Indexed: 10/28/2022] Open
Abstract
Suzuki Indomobil Motor Plant (SIMP) Cakung, East Jakarta, Indonesia generates wastewater containing heavy metals such as nickel, zinc, chromium, copper, and COD derived from the metal coating process using the electroplating system. Electroplating wastewater produced by this company contains Nickel and COD above the quality standards set by the Government of DKI Jakarta (Governor Regulation No. 69/2013). This research aims to analyze and compare the efficiency and kinetics of Nickel complexes and COD removal using the Advanced Oxidation Process (AOP) and Electrocoagulation (EC) method. Electroplating wastewater generated by SIMP Cakung (ratio of plating wastewater to overflow plating wastewater is 1:30) in this study had characteristics of 379-568 ppm (effluent standard = 75 ppm) of COD, and 87.555-121 ppm (effluent standard = 1 ppm) of Nickel. Preliminary experiments with the factorial design method indicated that independent variables (pH, current density, ozone flow rate, and contact time) had a critical influence/significance on the removal efficiency of Nickel complexes, while the influence of the above variables in COD removal efficiency was not significant. Optimum operating conditions for Nickel complexes and COD removal using both AOP and EC reactor were found in this study as well as the reaction kinetics of the removal rate. Our study found that the optimum operating conditions for Nickel complexes and COD removal using the AOP reactor were at the pH of 10, the ozone flow rate of 2 L/min, the contact time of 60 min (99.75% and 51.25% for Nickel and COD removal, respectively). For the EC reactor, the optimum condition for Nickel and COD removal are pH of 6.5, the current density of 20 mA/cm2 and the contact time of 50 min (99.75% and 51.25% for Nickel and COD removal, respectively). In these conditions, the AOP reactor in its optimum condition could remove Nickel and COD more compared to the EC reactor. This finding suggests that AOP technology is not only reliable in removing Nickel from electroplating industrial wastewater, but also it could reduce the loading of COD for further treatment units by more than 50%. Further studies in the effect of the longer contact time and higher ozone flowrate on COD removal is suggested.
Collapse
Affiliation(s)
- Setyo Sarwanto Moersidik
- Study Program of Civil Engineering-Specialization in Environmental Engineering, Departement of Civil Engineering, Faculty of Engineering, Indonesia University, Depok, 16424, Indonesia
| | - Rudi Nugroho
- Pusat Teknologi Lingkungan, Badan Pengkajian dan Penerapan Teknologi, Gedung Geostech Komplek Puspitek, Serpong, Tangerang, Indonesia
| | - Mira Handayani
- Study Program of Civil Engineering-Specialization in Environmental Engineering, Departement of Civil Engineering, Faculty of Engineering, Indonesia University, Depok, 16424, Indonesia
| | - Kamilawati
- Study Program of Civil Engineering-Specialization in Environmental Engineering, Departement of Civil Engineering, Faculty of Engineering, Indonesia University, Depok, 16424, Indonesia
| | - Mochamad A Pratama
- Study Program of Civil Engineering-Specialization in Environmental Engineering, Departement of Civil Engineering, Faculty of Engineering, Indonesia University, Depok, 16424, Indonesia
| |
Collapse
|
27
|
Wang Y, Liu Y, Wu B, Rui M, Liu J, Lu G. Comparison of toxicity induced by EDTA-Cu after UV/H 2O 2 and UV/persulfate treatment: Species-specific and technology-dependent toxicity. CHEMOSPHERE 2020; 240:124942. [PMID: 31574434 DOI: 10.1016/j.chemosphere.2019.124942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Advanced oxidation processes (AOPs) can degrade heavy metal complexes in wastewater to improve the removal efficiency of metals. However, the influences of AOP treatments on toxicity induced by metal complexes are not well understood. This study compared the toxicity induced by EDTA-copper (Cu) after UV/persulfate (PS) and UV/H2O2 treatments on luminescent bacteria and human HepG2 cells. The results showed that EDTA-Cu complexes decreased Cu toxicity in luminescent bacteria but increased the cytotoxicity in HepG2 cells, indicating species-specific toxicity. The UV/PS and UV/H2O2 treatments under most pH values and [oxidant]/[EDTA-Cu] conditions decreased the toxicity of EDTA-Cu in HepG2 cells but increased the toxicity in luminescent bacteria. When the ratio of [oxidant] to [EDTA-Cu] was 10, low toxicity in treated solutions was observed in both UV treatment processes. The alkaline precipitation treatment had a significant influence on toxicity reduction after UV/PS treatment; however, it had minimal influence on the UV/H2O2 treatment system. The Cu and total organic carbon (TOC) removal efficiency cannot completely explain the results of toxicity assays. EDTA-Cu intermediates might play important roles in changing the toxicity of EDTA-Cu after both UV treatments. This study provides insights into evaluating the treatment efficiency of UV/PS and UV/H2O2 on EDTA-Cu decomplexation.
Collapse
Affiliation(s)
- Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Yuxuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Min Rui
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
28
|
Xu S, Yan N, Cui M, Liu H. Decomplexation of Cu(II)/Ni(II)-EDTA by ozone-oxidation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:812-822. [PMID: 31811611 DOI: 10.1007/s11356-019-06900-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
In this study, ozone-oxidation was used to treat synthetic chemical plating solution containing Cu(II)/Ni(II)-EDTA solution to realize the purpose of decomplexation. The effects of solution pH, initial concentration of Cu(II)/Ni(II)-EDTA, the molar ratio of EDTA to Cu(II)/Ni(II), and the coexistence of Cu(II)/Ni(II) on their removal efficiencies were investigated. The degradation of EDTA-Cu(II) and EDTA-Ni(II) were mainly attributed to OH oxidation, and the removal rates of Cu(II)/Ni(II) depend on the complete decomplexation. The removal rates of Cu(II) and Ni(II) was affected by the pH of solution, and the optimal pH was found to be 7-9; nevertheless, their removal rates can still be up to 90% even in acidic pHs of 3~5. When the molar ratio of EDTA to Cu(II)/Ni(II) increased from 1:1 to 3:1, the kinetics of metal ion removal rate declined from 0.0788 and 0.1139 min-1 to 0.0250 and 0.0271 min-1. The synergistic effect was found in the Cu(II)/Ni(II) blended system due to the higher catalytic capability and the lower complexation affinity toward EDTA for Ni(II). In summary, ozone oxidation can be considered as an effective technology to realize the complete decomplexation of Cu(II)/Ni(II)-EDTA that contained in chemical plating industry wastewater. Graphical Abstract.
Collapse
Affiliation(s)
- Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Ning Yan
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Minghao Cui
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
29
|
Shan C, Yang B, Xin B, Wang D, Huang P, Chen Z, Wei Z, Hua M, Zhang W, Dionysiou DD, Pan B. Molecular identification guided process design for advanced treatment of electroless nickel plating effluent. WATER RESEARCH 2020; 168:115211. [PMID: 31669780 DOI: 10.1016/j.watres.2019.115211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
It has been long desired but challenging to forward the advanced treatment of wastewater from empirical trials towards scientific design due to the lack of molecular insight into the pollutants of concern. Herein, we first established a systematic methodology to identify the ligands of Ni(II)-complexes in an electroless nickel (EN) plating effluent. The presence of N-containing groups in the ligands of most Ni(II)-complexes was verified by time-aligned ICP-MS and ESI-HRMS, implying the suitability of autocatalytic ozonation for efficient decomplexation. Thereby, a combined process was proposed on the basis of ozonation to achieve over 83% decomplexation of Ni(II) (initially at 0.36 mg/L), followed by selective Ni(II) sequestration for resource recovery. Combinational LC-MS systems revealed the ozonation-induced fragmentation or elimination of most Ni(II)-complexes as well as the structural change of the residual complexed molecules. The released free Ni(II) was further sequestrated by a nanocomposite of hydrated Zr(IV) oxide confined in a polymeric cation exchanger (nHZO@PCE). The fixed-bed working capacity of nHZO@PCE (∼550 BV) for the ozonated EN plating effluent was over 18 times that of the cation exchanger host (∼30 BV) at the breakthrough point of 0.10 mg Ni/L. More attractively, five adsorption-regeneration cycles demonstrated the great potential of the hybrid adsorbent for sustainable utilization. This study is believed to shed new light on how to design rational processes for advanced treatment of real wastewater based on molecular identification.
Collapse
Affiliation(s)
- Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China
| | - Bowen Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bo Xin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Dandan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ping Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhicai Chen
- Huizhou Jinmao Industrial Investment Co., Ltd, Huizhou, 516000, China
| | - Zhongbo Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ming Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China.
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0071, USA
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
30
|
Zhu Y, Fan W, Zhou T, Li X. Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:253-266. [PMID: 31075592 DOI: 10.1016/j.scitotenv.2019.04.416] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Water contamination with heavy metal ions and organic compounds such as citrate, ethylenediaminetetraacetic acid, tartrate, pharmaceuticals, surfactants and natural organic matter, is a serious problem in the natural environment. Although many methods have been effectively applied to the removal of heavy metal complexes from aqueous solution, there is a lack of information available on the mechanisms, advantages and disadvantages of these various methods. This review summarizes the various treatment methods applied to the removal of heavy metal complexes, with a summary of the mechanisms of action and recent research progress. The methods reviewed in detail include electrolysis, membrane separation, adsorption, precipitation, replacement-coprecipitation, TiO2 photocatalysis and Fenton oxidation-precipitation, with the advantages and disadvantages of each method discussed. Furthermore, the heavy metal complex removal mechanisms are analyzed comprehensively. Results show that the adsorption method exhibited unique merits, showing much promise for future development. Finally, this review comprehensively analyzes future prospects and developments in methods for removal of chelated heavy metals.
Collapse
Affiliation(s)
- Ying Zhu
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China.
| | - Tingting Zhou
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Xiaomin Li
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| |
Collapse
|
31
|
Liang H, Xiao K, Wei L, Yang B, Yu G, Deng S, Duan H, Zhu C, Li J, Zhang J. Decomplexation removal of Ni(II)-citrate complexes through heterogeneous Fenton-like process using novel CuO-CeO 2-CoO x composite nanocatalyst. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:167-176. [PMID: 30999140 DOI: 10.1016/j.jhazmat.2019.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
A novel CuO-CeO2-CoOx nanocatalyst was prepared for heterogeneous Fenton-like reaction to break the Ni2+-chelate into free Ni2+ in electroless nickel plating wastewater, followed by separation of Ni2+ in an insoluble form. The composite nanocatalysts prepared by co-precipitation method were characterized by XRD, TEM, and XPS, et al. Its catalytic activity as Fenton-like reagent was evaluated by the removal efficiency of Ni(II)-citrate after decomplexation and postprecipitation treatment. Subsequently, the effects of operating parameters on the decomplexation efficiency of the nanocatalysts were investigated including calcination temperature of catalysts, H2O2 concentration, catalyst dosage, initial pH and reaction temperature. Under optimized condition, the Ni(II)-citrate complexes (C0 = 1.0 mM) achieved the complete decomplexation (>99.9%) within 60-min reaction using 0.3 g/L of CuO-CeO2-CoOx calcined at 450 °C and 75 mM of H2O2 at pH 3.0 under 50 °C of reaction. Then, Ni2+ after decomplexation could be completely removed by the subsequent precipitation at pH 11.0. In addition, the life test of CuO-CeO2-CoOx catalyst indicated that, after recycled 10 times, its activity for decomplexation of Ni(II)-citrate decreased no more than 8%. As a result, this new heterogeneous Fenton-like process is promising for decomplexation and purification of electroless nickel plating wastewater as a sludge reduction technology.
Collapse
Affiliation(s)
- Huiyu Liang
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ke Xiao
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; Water Science and Environmental Engineering Research Center, Shenzhen University, Shenzhen 518060, PR China
| | - Liyan Wei
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Bo Yang
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Gang Yu
- POPs Research Center, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Shubo Deng
- POPs Research Center, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Huabo Duan
- Smart City Research Institute, College of Civil Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Caizhen Zhu
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Juying Li
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Junmin Zhang
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
32
|
Huang X, Wang X, Guan DX, Zhou H, Bei K, Zheng X, Jin Z, Zhang Y, Wang Q, Zhao M. Decomplexation of Cr(III)-EDTA and simultaneous abatement of total Cr by photo-oxidation: efficiency and in situ reduction of intermediate Cr(VI). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8516-8524. [PMID: 30761490 DOI: 10.1007/s11356-018-04091-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Most prevailing processes are incapable of removing Cr(III)-organic complexes efficiently and facing the problem of in-process formation of highly toxic Cr(VI) based on oxidation. The efficient decomplexation of Cr(III) complexes and simultaneous abatement of Cr with low Cr(VI) accumulation would be desirable in treatment of Cr(III)-complexed wastewater. Here, we found efficient degradation of Cr(III)-EDTA and simultaneous removal of Cr by forming Cr2O3 precipitate from simulated solution as well as an electroplating effluent under UV irradiation. The results showed a complete degradation of Cr(III)-EDTA after reaction time of 60 min and 70-80% of TOC mineralization within 180 min as well. About 90% of Cr(III) precipitated as Cr2O3 simultaneously, with the residual total Cr below 1.5 mg/L. The degradation of Cr(III)-EDTA was a stepwise de-acetate group process, as proven by the obvious attenuation of peaks related to carboxyl groups and C-C bond from FT-IR spectra of Cr(III)-EDTA and significant mineralization of TOC after UV irradiation. Based on negligible accumulation of Cr(VI) (less than 0.1 mg/L) under N2-sparged condition, the C-centered radicals from the β-fragmentation of O-centered radicals formed by photo-induced ligand-to-metal charge transfer were responsible for the in situ reduction of intermediate Cr(VI), resulting in the low accumulation of Cr(VI). The addition of 20 mg/L Fe2+ was capable of removing the remaining Cr(VI) and total Cr, with Cr(VI) and total Cr less than 0.1 and 1.0 mg/L, respectively. Moreover, the photo-oxidation process combined with Fe2+ addition were efficient in removing other Cr(III) complexes, such as Cr(III)-citrate and those from a realistic electroplating effluent. We believe that this study would provide an alternative option for efficient degradation of Cr(III) complexes and simultaneous abatement of Cr from contaminated water.
Collapse
Affiliation(s)
- Xianfeng Huang
- School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Xiran Wang
- School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Dong-Xing Guan
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Huabin Zhou
- School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Ke Bei
- School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Xiangyong Zheng
- School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Zhan Jin
- School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yejian Zhang
- School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Qi Wang
- School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Min Zhao
- School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
33
|
Huang X, Wang Y, Li X, Guan D, Li Y, Zheng X, Zhao M, Shan C, Pan B. Autocatalytic Decomplexation of Cu(II)-EDTA and Simultaneous Removal of Aqueous Cu(II) by UV/Chlorine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2036-2044. [PMID: 30653306 DOI: 10.1021/acs.est.8b05346] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Traditional processes usually cannot enable efficient water decontamination from toxic heavy metals complexed with organic ligands. Herein, we first reported the removal of Cu(II)-EDTA by a UV/chlorine process, where the Cu(II)-EDTA degradation obeyed autocatalytic two-stage kinetics, and Cu(II) was simultaneously removed as CuO precipitate. The scavenging experiments and EPR analysis indicated that Cl• accounted for the Cu(II)-EDTA degradation at diffusion-controlled rate (∼1010 M-1 s-1). Mechanism study with mass spectrometry evidence of 11 key intermediates revealed that the Cu(II)-EDTA degradation by UV/chlorine was an autocatalytic successive decarboxylation process mediated by the Cu(II)/Cu(I) redox cycle. Under UV irradiation, Cu(I) was generated during the photolysis of the Cl•-attacked complexed Cu(II) via ligand-to-metal charge transfer (LMCT). Both free and organic ligand-complexed Cu(I) could form binary/ternary complexes with ClO-, which were oxidized back to Cu(II) via metal-to-ligand charge transfer (MLCT) with simultaneous production of Cl•, resulting in the autocatalytic effect on Cu(II)-EDTA removal. Effects of chlorine dosage and pH were examined, and the technological practicability was validated with authentic electroplating wastewater and other Cu(II)-organic complexes. This study shed light on a new mechanism of decomplexation by Cl• and broadened the applicability of the promising UV/chlorine process in water treatment.
Collapse
Affiliation(s)
- Xianfeng Huang
- School of Life and Environmental Science , Wenzhou University , Wenzhou , 325035 , China
| | - Yi Wang
- School of Life and Environmental Science , Wenzhou University , Wenzhou , 325035 , China
| | - Xuchun Li
- School of Environmental Science and Engineering , Zhejiang Gongshang University , Hangzhou , 310018 , China
| | - Dongxing Guan
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering , Nanjing University , Nanjing 210023 , China
| | - Yubao Li
- School of Life and Environmental Science , Wenzhou University , Wenzhou , 325035 , China
| | - Xiangyong Zheng
- School of Life and Environmental Science , Wenzhou University , Wenzhou , 325035 , China
| | - Min Zhao
- School of Life and Environmental Science , Wenzhou University , Wenzhou , 325035 , China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse , School of the Environment, Nanjing University , Nanjing 210023 , China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse , School of the Environment, Nanjing University , Nanjing 210023 , China
| |
Collapse
|
34
|
Yang N, Yu S, Macpherson JV, Einaga Y, Zhao H, Zhao G, Swain GM, Jiang X. Conductive diamond: synthesis, properties, and electrochemical applications. Chem Soc Rev 2019; 48:157-204. [DOI: 10.1039/c7cs00757d] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review summarizes systematically the growth, properties, and electrochemical applications of conductive diamond.
Collapse
Affiliation(s)
- Nianjun Yang
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| | - Siyu Yu
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| | | | - Yasuaki Einaga
- Department of Chemistry
- Keio University
- Yokohama 223-8522
- Japan
| | - Hongying Zhao
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Guohua Zhao
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | | | - Xin Jiang
- Institute of Materials Engineering
- University of Siegen
- Siegen 57076
- Germany
| |
Collapse
|
35
|
Ye Y, Shan C, Zhang X, Liu H, Wang D, Lv L, Pan B. Water Decontamination from Cr(III)-Organic Complexes Based on Pyrite/H 2O 2: Performance, Mechanism, and Validation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10657-10664. [PMID: 30130960 DOI: 10.1021/acs.est.8b01693] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fenton reaction is a widely used pretreatment technology to degrade toxic metal-organic complexes. However, its efficiency is greatly compromised for Cr(III)-organic complexes due to accumulation of more toxic Cr(VI) and pH dependence. Herein, we proposed a combined pyrite/H2O2-precipitation process to efficiently remove Cr(III) (initially at 10.4 mg Cr/L) complexed by various ligands (citrate, EDTA, oxalate, and tartrate). Negligible Cr(VI) and <0.3 mg/L Cr were detected in the effluent treated by pyrite/H2O2-precipitation over a wide pH range of 3-9. In contrast, > 0.5 mg/L Cr(VI) and >5 mg/L Cr remained after treatment by the ZVI/H2O2-precipitaion process at pH0 > 5. As for the mechanisms, pyrite/H2O2 produced a considerable amount of aqueous Fe(II) to initiate Fenton reaction, concurrently releasing massive H+ to keep the reaction pH at ∼3.0 irrespective of the initial pHs. The generated •OH radicals oxidized Cr(III) into Cr(VI) and thereby releasing the organic ligands for further mineralization. The generated Cr(VI) was in situ reduced back to Cr(III) by aqueous Fe(II) and FeS2. Subsequently, all the free metal ions including Cr(III), Fe(III), and Fe(II) were removed via precipitation. Kinetic modeling of the pyrite/H2O2 process involving 17 reactions was performed to verify the proposed mechanism. Additionally, the effectiveness of the combined process was further validated by its satisfactory performance in treating authentic tannery wastewater.
Collapse
Affiliation(s)
- Yuxuan Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
- Research Center for Environmental Nanotechnology (ReCENT) , Nanjing University , Nanjing 210023 , China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
- Research Center for Environmental Nanotechnology (ReCENT) , Nanjing University , Nanjing 210023 , China
| | - Hui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Dandan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
- Research Center for Environmental Nanotechnology (ReCENT) , Nanjing University , Nanjing 210023 , China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
- Research Center for Environmental Nanotechnology (ReCENT) , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
36
|
Wang Y, Wu X, Yi J, Chen L, Lan T, Dai J. Pretreatment of printing and dyeing wastewater by Fe/C micro-electrolysis combined with H 2O 2 process. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 2017:707-717. [PMID: 30016288 DOI: 10.2166/wst.2018.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel iron-carbon (Fe/C) micro-electrolysis combined with H2O2 (ICMH) process was proposed to pretreat the printing and dyeing wastewater (PDW), using a micro-electrolysis filling. The effects of H2O2 concentration, reaction time, initial pH, and Fe/C dosage on chemical oxygen demand (COD) removal rate of PDW were optimized by response surface methodology (RSM). The maximum COD removal rate was approximately 77.65% after 186 min treatment, when the concentration of H2O2, initial pH and the dosage of Fe/C were 8.88 g/L, 1.5 and 837 g/L, respectively. Analysis of variance (ANOVA) showed a high coefficient of determination value (R2 = 0.9780). And H2O2 concentration and initial pH were the key factors to improve the treatment effect. UV-Vis spectra indicated that a significant blue shift at 220 nm, attributing that fused aromatic hydrocarbons were degraded effectively. 3D-EEM spectra analysis showed that the water samples of PDW mainly contained three kinds of organic matter: refractory fulvic acid, soluble microbial metabolites and aromatic proteins, and the degradation rate of these was 81.76%, 53.78% and 70.83%, respectively.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China E-mail:
| | - Xianwei Wu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China E-mail:
| | - Ju Yi
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China E-mail:
| | - Lijun Chen
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China E-mail:
| | - Tianxiang Lan
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China E-mail:
| | - Jie Dai
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China E-mail:
| |
Collapse
|
37
|
Ding J, Wei L, Huang H, Zhao Q, Hou W, Kabutey FT, Yuan Y, Dionysiou DD. Tertiary treatment of landfill leachate by an integrated Electro-Oxidation/Electro-Coagulation/Electro-Reduction process: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2018; 351:90-97. [PMID: 29522929 DOI: 10.1016/j.jhazmat.2018.02.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/06/2018] [Accepted: 02/21/2018] [Indexed: 05/28/2023]
Abstract
This study presents an integrated Electro-Oxidation/Electro-Coagulation/Electro-Reduction (EO/EC/ER) process for tertiary landfill leachate treatment. The influence of variables including leachate characteristics and operation conditions on the performance of EO/EC/ER process was evaluated. The removal mechanisms were explored by comparing results of anode, cathode, and bipolar electrode substitution experiments. The performance of the process in a scaled-up reactor was investigated to assure the feasibility of the process. Results showed that simultaneous removal of carbonaceous and nitrogenous pollutants was achieved under optimal conditions. Ammonia removal was due to the free chlorine generation of EO while organic matter degradation was achieved by both EO and EC processes. Nitrate removal was attributed to both ER and EC processes, with the higher removal achieved by ER process. In a scaled-up reactor, the EO/EC/ER process was able to remove 50-60% organic matter and 100% ammonia at charge of 1.5 Ah/L with energy consumption of 15 kW h/m3. Considering energy cost, the process is more efficient to meet the requirement of organic removal efficiency less than 70%. These results show the feasibility and potential of the EO/EC/ER process as an alternative tertiary treatment to achieve the simultaneous removal of organic matter, ammonia, nitrate, and color of leachate.
Collapse
Affiliation(s)
- Jing Ding
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huibin Huang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Weizhu Hou
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Felix Tetteh Kabutey
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| |
Collapse
|
38
|
Zhao Z, Dong W, Wang H, Chen G, Tang J, Wu Y. Simultaneous decomplexation in blended Cu(II)/Ni(II)-EDTA systems by electro-Fenton process using iron sacrificing electrodes. JOURNAL OF HAZARDOUS MATERIALS 2018; 350:128-135. [PMID: 29466779 DOI: 10.1016/j.jhazmat.2018.02.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/03/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
This research explored the application of electro-Fenton (E-Fenton) technique for the simultaneous decomplexation in blended Cu(II)/Ni(II)-EDTA systems by using iron sacrificing electrodes. Standard discharge (0.3 mg L-1 for Cu and 0.1 mg L-1 for Ni in China) could be achieved after 30 min reaction under the optimum conditions (i.e. initial solution pH of 2.0, H2O2 dosage of 6 mL L-1 h-1, current density of 20 mA/cm2, inter-electrode distance of 2 cm, and sulfate electrolyte concentration of 2000 mg L-1). The distinct differences in apparent kinetic rate constants (kapp) and intermediate removal efficiencies corresponding to mere and blended systems indicated the mutual promotion effect toward the decomplexation between Cu(II) and Ni(II). Massive accumulation of Fe(Ⅲ) favored the further removal of Cu(II) and Ni(II) by metal ion substitution. Species distribution results demonstrated that the decomplexation of metal-EDTA in E-Fenton process was mainly contributed to the combination of various reactions, including Fenton reaction together with the anodic oxidation, electro-coagulation (E-coagulation) and electrodeposition. Unlike hypophosphite and citrate, the presence of chlorine ion displayed favorable effects on the removal efficiencies of Cu(II) and Ni(II) at low dosage, but facilitated the ammonia nitrogen (NH4+-N) removal only at high dosage.
Collapse
Affiliation(s)
- Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Graduate School, Shenzhen, 518055, China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Graduate School, Shenzhen, 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Graduate School, Shenzhen, 518055, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, China.
| | - Guanhan Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Graduate School, Shenzhen, 518055, China
| | - Junyi Tang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Graduate School, Shenzhen, 518055, China
| | - Yang Wu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Graduate School, Shenzhen, 518055, China
| |
Collapse
|
39
|
Lei X, Li L, Chen Y, Hu Y. Effect of calcination temperature on the properties of Ti/SnO 2-Sb anode and its performance in Ni-EDTA electrochemical degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11683-11693. [PMID: 29442304 DOI: 10.1007/s11356-018-1444-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Pd-doped Ti/SnO2-Sb anode was prepared at different calcination temperatures by a wet-impregnation method and employed in simultaneous electrochemical catalytic degradation of Ni-EDTA and recovery of nickel. The results showed that Ti/SnO2-Sb-Pd-500 could achieve the highest electrochemical activity (87.5% of Ni-EDTA removal efficiency), superior durability (50.7 h of accelerated lifetime), and higher Ni recovery (19.8%) on cathode. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) analysis suggested that Ni-EDTA degradation on anode was mainly indirect oxidation-controlled reaction, attributing to the high oxide state of MOX + 1 and MOX(·OH), rather than direct oxidation. Scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses indicated that calcination temperature could modify the morphology of electrode surface and affect the incorporation and valence state transformation of metal species (Sb and Pd) in SnO2 lattice. Ti/SnO2-Sb-Pd-500 achieved the highest electrochemical capacity with the highest levels of adsorbed oxygen Oads/ET (27.11%) and lattice oxygen Olat/ET (29.69%). Moreover, the operation conditions for Ni-EDTA electrochemical degradation were optimized. These findings were valuable for developing a high-performance electrode for Ni-EDTA electrochemical degradation.
Collapse
Affiliation(s)
- Xin Lei
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Lianghao Li
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Yongyou Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
40
|
Ye Y, Jiang Z, Xu Z, Zhang X, Wang D, Lv L, Pan B. Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: Negligible Cr(VI) accumulation and mechanism. WATER RESEARCH 2017; 126:172-178. [PMID: 28946060 DOI: 10.1016/j.watres.2017.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
Most available processes are incapable of removing Cr(III)-organic complexes from water due to their high solubility, extremely slow decomplexation rate, and possible formation of more toxic Cr(VI) during oxidation. Herein, we proposed a new combined process, i.e., UV/Fe(III) followed by alkaline precipitation (namely UV/Fe(III)+OH), to achieve highly efficient and environmentally benign removal of Cr(III)-organic complexes from water. The combined process could remove Cr(III)-citrate from 10.4 mg Cr/L to 0.36 mg Cr/L and ∼60% total organic carbon as well. More attractively, negligible Cr(VI) (<0.06 mg/L) was formed during the process. In the viewpoint of mechanism, the added Fe(III) generates ·OH radicals to transform Cr(III) into Cr(VI) and simultaneously released the citrate ligand to form Fe(III)-citrate simultaneously. Then, the photolysis of Fe(III)-citrate under UV irradiation involved the citrate degradation and the production of massive Fe(II) species, which in turn transformed the formed Cr(VI) back to Cr(III). The free metal ions, including Cr(III), Fe(II) and Fe(III) were removed by the subsequent alkaline precipitation. Also, the combined process is applicable to other Cr(III) complexes with EDTA, tartrate, oxalate, acetate. The applicability of the combined process was further demonstrated by treating two real tanning effluents, resulting in the residual Cr(III) below 1.5 mg/L (the discharge standard of China) and negligible formation of Cr(VI) (<0.004 mg/L) as well. In general, the combined process has a great potential for efficient removal of Cr(III) complexes from contaminated waters.
Collapse
Affiliation(s)
- Yuxuan Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhao Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhe Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China.
| | - Dandan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
41
|
Lu J, Wang Z, Ma X, Tang Q, Li Y. Modeling of the electrocoagulation process: A study on the mass transfer of electrolysis and hydrolysis products. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Li L, Huang Z, Fan X, Zhang Z, Dou R, Wen S, Chen Y, Chen Y, Hu Y. Preparation and Characterization of a Pd modified Ti/SnO 2 -Sb anode and its electrochemical degradation of Ni-EDTA. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.072] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Dandapat A, Huang Y, Gnayem H, Sasson Y. Bismuth Oxyhalide Induced Growth of Pt Nanoparticles within Mesoporous Alumina Films and their Use as Reusable Catalyst for Chromium(VI) Reduction. ChemistrySelect 2017. [DOI: 10.1002/slct.201601399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anirban Dandapat
- Casali Center of Applied Chemistry, Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
- Department of Biotechnology; Kumaun University; Bhimtal- 263136, Nainital, Uttarakhand India
| | - Youju Huang
- Division of Polymer and Composite Materials; Ningbo Institute of Material Technology and Engineering; Chinese Academy of Sciences; No. 1219 Zhongguan West Road, Zhenhai District Ningbo 315201 China
| | - Hani Gnayem
- Casali Center of Applied Chemistry, Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| | - Yoel Sasson
- Casali Center of Applied Chemistry, Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| |
Collapse
|
44
|
Ye X, Zhang J, Zhang Y, Lv Y, Dou R, Wen S, Li L, Chen Y, Hu Y. Treatment of Ni-EDTA containing wastewater by electrocoagulation using iron scraps packed-bed anode. CHEMOSPHERE 2016; 164:304-313. [PMID: 27592320 DOI: 10.1016/j.chemosphere.2016.08.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
The unique electrocoagulator proposed in this study is highly efficient at removing Ni-EDTA, providing a potential remediation option for wastewater containing lower concentrations of Ni-EDTA (Ni ≤ 10 mg L-1). In the electrocoagulation (EC) system, cylindrical graphite was used as a cathode, and a packed-bed formed from iron scraps was used as an anode. The results showed that the removal of Ni-EDTA increased with the application of current and favoured acidic conditions. We also found that the iron scrap packed-bed anode was superior in its treatment ability and specific energy consumption (SECS) compared with the iron rod anode. In addition, the packed density and temperature had a large influence on the energy consumption (ECS). Over 94.3% of Ni and 95.8% of TOC were removed when conducting the EC treatment at an applied current of 0.5 A, initial pH of 3, air-purged rate 0.2 L min-1, anode packed density of 400 kg m-3 temperature of 313 K and time of 30 min. SEM analysis of the iron scraps indicated that the specific area of the anode increased after the EC. The XRD analysis of flocs produced during EC revealed that hematite (α-Fe2O3) and magnetite (Fe3O4) were the main by-products under aerobic and anoxic conditions, respectively. A kinetic study demonstrated that the removal of Ni-EDTA followed a first-order model with the current parameters. Moreover, the removal efficiency of real wastewater was essentially consistent with that of synthetic wastewater.
Collapse
Affiliation(s)
- Xiaokun Ye
- State Key Laboratory of Pulp and Paper Engineering, Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Junya Zhang
- State Key Laboratory of Pulp and Paper Engineering, Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yan Zhang
- State Key Laboratory of Pulp and Paper Engineering, Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuancai Lv
- State Key Laboratory of Pulp and Paper Engineering, Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Rongni Dou
- State Key Laboratory of Pulp and Paper Engineering, Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shulong Wen
- State Key Laboratory of Pulp and Paper Engineering, Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Lianghao Li
- State Key Laboratory of Pulp and Paper Engineering, Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuancai Chen
- State Key Laboratory of Pulp and Paper Engineering, Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - YongYou Hu
- State Key Laboratory of Pulp and Paper Engineering, Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
45
|
Perazzolo V, Durante C, Gennaro A. Nitrogen and sulfur doped mesoporous carbon cathodes for water treatment. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Xu Z, Gao G, Pan B, Zhang W, Lv L. A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation. WATER RESEARCH 2015; 87:378-384. [PMID: 26454633 DOI: 10.1016/j.watres.2015.09.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/04/2015] [Accepted: 09/12/2015] [Indexed: 06/05/2023]
Abstract
Efficient removal of heavy metals complexed with organic ligands from water is still an important but challenging task now. Herein, a novel combined process, i.e., Fe(III)-displacement/UV degradation/alkaline precipitation (abbreviated as Fe(III)/UV/OH) was developed to remove copper-organic complexes from synthetic solution and real electroplating effluent, and other processes including alkaline precipitation, Fe(III)/OH, UV/OH were employed for comparison. By using the Fe(III)/UV/OH process, some typical Cu(II) complexes, such as Cu(II)-ethylenediaminetetraacetic acid (EDTA), Cu(II)-nitrilotriacetic acid (NTA), Cu(II)-citrate, Cu(II)-tartrate, and Cu(II)-sorbate, each at 19.2 mg Cu/L initially, were efficiently removed from synthetic solution with the residual Cu below 1 mg/L. Simultaneously, 30-48% of total organic carbon was eliminated with exception of Cu(II)-sorbate. Comparatively, the efficiency of other processes was much lower than the Fe(III)/UV/OH process. With Cu(II)-citrate as the model complex, the optimal conditions for the combined process were obtained as: initial pH for Fe(III) displacement, 1.8-5.4; molar ratio of [Fe]/[Cu], 4:1; UV irradiation, 10 min; precipitation pH, 6.6-13. The mechanism responsible for the process involved the liberation of Cu(II) ions from organic complexes as a result of Fe(III) displacement, decarboxylation of Fe(III)-ligand complexes subjected to UV irradiation, and final coprecipitation of Cu(II) and Fe(II)/Fe(III) ions. Up to 338.1 mg/L of Cu(II) in the electroplating effluent could be efficiently removed by the process with the residual Cu(II) below 1 mg/L and the removal efficiency of ∼99.8%, whereas direct precipitation by using NaOH could only result in total Cu(II) removal of ∼8.6%. In addition, sunlight could take the place of UV to achieve similar removal efficiency with longer irradiation time (90 min).
Collapse
Affiliation(s)
- Zhe Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guandao Gao
- School of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
47
|
Novel electrodialysis–electrochlorination integrated process for the reclamation of treated wastewaters. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
48
|
Use of Ethylenediaminetetraacetic Acid as a Scavenger for Chromium from “Wet Blue” Leather Waste: Thermodynamic and Kinetics Parameters. J CHEM-NY 2014. [DOI: 10.1155/2014/754526] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
One serious consequence of the current consumer society is the transformation of the environment into a waste receptacle arising from human activities. Because of the potential toxic effects of chromium solid waste containing this metal there are grounds for serious concern for the tanning and leather processing industry. The application of tannery waste as organic fertilizer has led to extensive contamination by chromium in agricultural areas and may cause the accumulation of this metal in soils and plants. This work evaluated the extraction of Cr+3and Cr+6contained in solid waste from the leather industry through density functional theory (DFT) calculations. The Gibbs free energy calculations reveal that the chelator ethylenediaminetetraacetic acid (EDTA) forms more stable complexes with metal ions of chromium compared with the structures of the complexes [Cr(NTA)(H2O)2] and [Cr-collagen], the latter used to simulate the protein bound chrome leather.
Collapse
|
49
|
Khandegar V, Saroha AK. Electrocoagulation for the treatment of textile industry effluent--a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 128:949-63. [PMID: 23892280 DOI: 10.1016/j.jenvman.2013.06.043] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 04/01/2013] [Accepted: 06/24/2013] [Indexed: 05/10/2023]
Abstract
Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical are used for the treatment of industrial effluent. The commonly used conventional biological treatment processes are time consuming, need large operational area and are not effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation has recently attracted attention as a potential technique for treating industrial effluent due to its versatility and environmental compatibility. This technique uses direct current source between metal electrodes immersed in the effluent, which causes the dissolution of electrode plates into the effluent. The metal ions, at an appropriate pH, can form wide range of coagulated species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb the dissolved contaminants. Therefore, the objective of the present manuscript is to review the potential of electrocoagulation for the treatment of industrial effluents, mainly removal of dyes from textile effluent.
Collapse
Affiliation(s)
- V Khandegar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | | |
Collapse
|
50
|
Cotillas S, Llanos J, Cañizares P, Mateo S, Rodrigo MA. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation. WATER RESEARCH 2013; 47:1741-50. [PMID: 23351433 DOI: 10.1016/j.watres.2012.12.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 05/21/2023]
Abstract
In this work, a novel integrated electrochemical process for urban wastewater regeneration is described. The electrochemical cell consists in a Boron Doped Diamond (BDD) or a Dimensionally Stable Anode (DSA) as anode, a Stainless Steel (SS) as cathode and a perforated aluminum plate, which behaves as bipolar electrode, between anode and cathode. Thus, in this cell, it is possible to carry out, at the same time, two different electrochemical processes: electrodisinfection (ED) and electrocoagulation (EC). The treatment of urban wastewater with different anodes and different operating conditions is studied. First of all, in order to check the process performance, experiments with synthetic wastewaters were carried out, showing that it is possible to achieve a 100% of turbidity removal by the electrodissolution of the bipolar electrode. Next, the effect of the current density and the anode material are studied during the ED-EC process of actual effluents. Results show that it is possible to remove Escherichia coli and turbidity simultaneously of an actual effluent from a WasteWater Treatment Facility (WWTF). The use of BDD anodes allows to remove the E. coli completely at an applied electric charge of 0.0077 A h dm(-3) when working with a current density of 6.65 A m(-2). On the other hand, with DSA anodes, the current density necessary to achieve the total removal of E. coli is higher (11.12 A m(-2)) than that required with BDD anodes. Finally, the influence of cell flow path and flow rate have been studied. Results show that the performance of the process strongly depends on the characteristics of the initial effluent (E. coli concentration and Cl(-)/NH(4)(+) initial ratio) and that a cell configuration cathode (inlet)-anode (outlet) and a higher flow rate enhance the removal of the turbidity from the treated effluent.
Collapse
Affiliation(s)
- Salvador Cotillas
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | | | | | | | | |
Collapse
|