1
|
Li Y, Wang H, Liu J, Liu X, Guan J, Fu J, Li S. Synthesis of a novel Bi 19Cl 3S 27/Bi 2MoO 6 Z-type heterojunction for efficient photocatalytic removal of tetracycline antibiotic and Cr(VI): Intermediate toxicity and mechanism insight. ENVIRONMENTAL RESEARCH 2024; 263:120212. [PMID: 39442663 DOI: 10.1016/j.envres.2024.120212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Novel Bi19Cl3S27/Bi2MoO6 (BCS/BMO) Z-type heterojunctions were synthesized using a straightforward hydrothermal method. Benefiting from the large specific surface area (62.41 m2/g) and the effective separation of photogenerated carriers facilitated by the Z-scheme heterojunction, the BCS/BMO exhibited remarkable improved photocatalytic tetracycline degradation and Cr(VI) reduction efficiency in comparison to BCS, BMO, and their physical mixture. Specifically, the photocatalytic degradation rate constants for TC and Cr(VI) are 0.0209 and 0.0218 min-1, respectively, which are 16.08 and 15.57 times those of BCS, 1.74 and 1.31 times those of BMO, and 2.4 and 1.73 times those of the physical mixture. Additionally, based on density functional theory (DFT) calculations and empirical data, three potential photocatalytic pathways of tetracycline were presented. This study presents a novel approach for designing and synthesizing high-efficiency Z-scheme photocatalysts for the degradation of TC and the reduction of Cr(VI) in wastewater.
Collapse
Affiliation(s)
- Yuanfei Li
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong Province, 266033, China
| | - Huanli Wang
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong Province, 266033, China.
| | - Jiayuan Liu
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong Province, 266033, China
| | - Xiaodong Liu
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong Province, 266033, China
| | - Jing Guan
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong Province, 266033, China.
| | - Jingchuan Fu
- College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, Shandong Province, 266033, China
| | - Shijie Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China.
| |
Collapse
|
2
|
Udaondo A, Montes V, Gimeno O, Rivas FJ. Excess secondary sludge reuse by H 2O 2 thermal dehydration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23023-23036. [PMID: 38418785 PMCID: PMC10997731 DOI: 10.1007/s11356-024-32568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
The excess of activated sludge generated in municipal wastewater treatment plants constitutes one of the challenging problems facing modern society. The high-water content of this waste makes difficult the transport, disposal, and management of these solids. In this work, activated sludge excess from a secondary clarifier has been dehydrated by means of a combination of temperature and hydrogen peroxide treatment. Three main operating variables have been considered to affect sludge dewaterability and filterability. Temperature (120-180 °C), hydrogen peroxide dose (0.01-0.03 M), and treatment time (20-60 min) influence have been assessed by completing a 15-run Box Behnken experimental design. Different output variables (water content, resistance to filtration, sedimentation volumetric index, extracellular polymeric substances, etc.) have been monitored. Generally, temperature seems to be the most influencing parameter to obtain a dehydrated sludge with acceptable management/disposal characteristics (sludge volume reduction and filterability). In line with the concept of circular economy, an attempt has been conducted to obtain a sustainable biosorbent from the dehydrated sludge generated in the previous stage. Optimum conditions of carbonization and activation revealed that the solid obtained at 400 °C by using ammonium nitrate as activation agent was the most efficient absorbent to eliminate some model compounds from water (namely, phenol, ofloxacin, and diuron); however, a clear improvement margin in the synthesis is foreseen.
Collapse
Affiliation(s)
- Ana Udaondo
- Departamento de Ingeniería Química y Química Física, Instituto Universitario de investigación del agua, cambio climático y sostenibilidad, Universidad de Extremadura, Badajoz, Spain
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de investigación del agua, cambio climático y sostenibilidad, Universidad de Extremadura, Badajoz, Spain
| | - Vicente Montes
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de investigación del agua, cambio climático y sostenibilidad, Universidad de Extremadura, Badajoz, Spain.
| | - Olga Gimeno
- Departamento de Ingeniería Química y Química Física, Instituto Universitario de investigación del agua, cambio climático y sostenibilidad, Universidad de Extremadura, Badajoz, Spain
| | - Francisco Javier Rivas
- Departamento de Ingeniería Química y Química Física, Instituto Universitario de investigación del agua, cambio climático y sostenibilidad, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
3
|
Ghasemzadeh MS, Ahmadpour A. Design and synthesis of high performance magnetically separable exfoliated g-C 3N 4/γ-Fe 2O 3/ZnO yolk-shell nanoparticles: a novel and eco-friendly photocatalyst toward removal of organic pollutants from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80162-80180. [PMID: 37294493 DOI: 10.1007/s11356-023-28113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Herein, a new visible-light active exfoliated g-C3N4/γ-Fe2O3/ZnO yolk-shell nanoparticles (NPs) was synthesized as a magnetically separable photocatalyst. For an in-depth understanding of the magnetic photocatalyst's structural, morphological, and optical properties, the products were extensively characterized with FT-IR, XRD, TEM, HRTEM, FESEM, EDS, EDS-mapping, VSM, DRS, EIS, and photocurrent. The photocatalyst was then utilized to degrade Levofloxacin (LEVO) and Indigo Carmine (IC) by visible light at room temperature. The exfoliated g-C3N4/γ-Fe2O3/ZnO yolk-shell NPs photocatalyst revealed 80% and 95.6% degradation efficiency for Levofloxacin and Indigo Carmine within 25 and 15 min, respectively. In addition, the optimal factors such as concentration, loading of photocatalyst, and pH were also assessed. Levofloxacin degradation mechanistic studies showed that electrons and holes significantly contribute to the photocatalytic process of photocatalyst degradation. In addition, after 5 times regeneration, exfoliated g-C3N4/γ-Fe2O3/ZnO yolk-shell NPs remained as an excellent magnetic photocatalyst for the eco-friendly degradation of Levofloxacin and Indigo Carmine (76% and 90%), respectively. The superior photocatalytic performance of exfoliated g-C3N4/γ-Fe2O3/ZnO yolk-shell nanoparticles (NPs) was mostly ascribed to the synergistic advantages of stronger visible light response, larger specific surface area, and the more effective separation and transfer of photogenerated charge carriers. Based on these results, the highly effective magnetic photocatalyst achieved better results than numerous studied catalysts in the literature. The degradation of Levofloxacin and Indigo Carmine under environmentally friendly conditions can be achieved using exfoliated g-C3N4/γ-Fe2O3/ZnO yolk-shell NPs (V) as an efficient and green photocatalyst. The magnetic photocatalyst was characterized by spectroscopic and microscopic methods, revealing a spherical shape and particle size of 23 nm. Additionally, the magnetic photocatalyst could be separated from the reaction mixture by a magnet without significantly reducing its catalytic activity.
Collapse
Affiliation(s)
- Maryam Sadat Ghasemzadeh
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box, Mashhad, 91779-48944, Iran
- Industrial Catalysts, Adsorbents and Environment Lab., Oil and Gas Research Institute, Ferdowsi University of Mashhad, P.O. Box, Mashhad, 91779-48974, Iran
| | - Ali Ahmadpour
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box, Mashhad, 91779-48944, Iran.
- Industrial Catalysts, Adsorbents and Environment Lab., Oil and Gas Research Institute, Ferdowsi University of Mashhad, P.O. Box, Mashhad, 91779-48974, Iran.
| |
Collapse
|
4
|
Ettadili FE, Aghris S, Laghrib F, Farahi A, Bakasse M, Lahrich S, Mhammedi MAEL. Electrochemical detection of ornidazole in commercial milk and water samples using an electrode based on green synthesis of silver nanoparticles using cellulose separated from Phoenix dactylifera seed. Int J Biol Macromol 2023; 242:124995. [PMID: 37236559 DOI: 10.1016/j.ijbiomac.2023.124995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The widespread use of antibiotics has contributed to the control of disease and the nutritional well-being of livestock. Antibiotics reach the environment via excretions (urine and feces) from human and domestic animals, through non proper disposal or handling of unused drugs. The present study describes a green method for the synthesis of silver nanoparticle (AgNPs) using cellulose extracted from Phoenix dactylifera seed powder via mechanical stirrer method for the electroanalytical determination of ornidazole (ODZ) in milk and water samples. The cellulose extract is used as the reducing and stabilizer agent for the synthesis of AgNPs. The obtained AgNPs were characterized by UV-Vis, SEM and EDX, presenting a spherical shape and an average size of 48.6 nm. The electrochemical sensor (AgNPs/CPE) was fabricated by dipping a carbon paste electrode (CPE) in the AgNPs colloidal solution. The sensor shows acceptable linearity with ODZ concentration in the linear range from 1.0 × 10-5 to 1.0 × 10-3 M with a limit of detection (LOD =3S/P) and quantification (LOQ =10S/P) of 7.58 × 10-7 M and 2.08 × 10-6 M respectively.
Collapse
Affiliation(s)
- F E Ettadili
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - S Aghris
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - F Laghrib
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco; Sidi Mohamed Ben Abdellah University, Laboratory of Electrochemistry Engineering, Modeling, and Environment, Faculty of Sciences, Fez, Morocco
| | - A Farahi
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - M Bakasse
- Chouaib Doukkali University, Organic Micropollutants Analysis Team, Faculty of Sciences, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco
| | - M A E L Mhammedi
- Sultan Moulay Slimane University, Laboratory of Materials Science, Mathematics and Environment, Polydisciplinary Faculty, Khouribga, Morocco.
| |
Collapse
|
5
|
Ke Y, Zhu X, Si S, Zhang T, Wang J, Zhang Z. A Novel Adsorbent of Attapulgite & Carbon Composites Derived from Spent Bleaching Earth for Synergistic Removal of Copper and Tetracycline in Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1573. [PMID: 36674334 PMCID: PMC9865348 DOI: 10.3390/ijerph20021573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Simultaneously eliminating tetracycline (TC) and copper (Cu-II) from wastewater was investigated by applying a novel adsorbent fabricated by transforming spent bleaching earth (SBE) into attapulgite & carbon composites (A&Cs). Pyrolysis temperature for A&Cs preparation exhibited a positive effect on Cu(II) adsorption, while the AC500 possessed the greatest performance for TC remediation. Interestingly, a synergistic effect instead of competitive adsorption occurred between Cu(II) and TC under the combined binary system, as both TC and Cu(II) adsorption amount on A&C500 increased more than that in the single system, which could be mainly attributed to the bridge actions between the TC and Cu(II). In addition, hydrogen bonding, ᴨ-ᴨ EDA interaction, pore-filling and complexation exerted significant roles in the adsorption process of TC and Cu(II). In general, this study offered a new perspective on the regeneration of livestock and poultry industry wastewater polluted with antibiotics and heavy metals.
Collapse
Affiliation(s)
- Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Northwest University, Xi’an 710127, China
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Northwest University, Xi’an 710127, China
| | - Shaocheng Si
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Northwest University, Xi’an 710127, China
| | - Ting Zhang
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory of Earth Surface System and Environment Carrying Capacity, Northwest University, Xi’an 710127, China
| | - Junqiang Wang
- College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
- Xi’an Jinborui Ecological Tech. Co., Ltd., Xi’an 710065, China
| | - Ziye Zhang
- Xi’an Jinborui Ecological Tech. Co., Ltd., Xi’an 710065, China
| |
Collapse
|
6
|
Efficient and Reusable Sorbents Based on Nanostructured BN Coatings for Water Treatment from Antibiotics. Int J Mol Sci 2022; 23:ijms232416097. [PMID: 36555734 PMCID: PMC9788227 DOI: 10.3390/ijms232416097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing contamination of wastewater with antibiotics used in agriculture, animal husbandry, and medicine is a serious problem for all living things. To address this important issue, we have developed an efficient platform based on a high specific surface area hexagonal boron nitride (BN) coating formed by numerous nanopetals and nanoneedles. The maximum sorption capacity of 1 × 1 cm2 BN coatings is 502.78 µg/g (tetracycline, TET), 315.75 µg/g (ciprofloxacin, CIP), 400.17 µg/g (amoxicillin, AMOX), and 269.7 µg/g (amphotericin B, AMP), which exceeds the sorption capacity of many known materials. Unlike nanoparticles, BN-coated Si wafers are easy to place in and remove from antibiotic-contaminated aqueous solutions, and are easy to clean. When reusing the adsorbents, 100% efficiency was observed at the same time intervals as in the first cleaning cycle: 7 days (TET) and 14 days (CIP, AMOX, AMP) at 10 µg/mL, 14 days (TET, CIP, and AMOX) and 28 days (AMP) at 50 µg/mL, and 14 days (TET) and 28 days (CIP, AMOX and AMP) at 100 µg/mL. The results obtained showed that TET and CIP are best adsorbed on the surface of BN, so TET was chosen as an example for further theoretical modeling of the sorption process. It was found that adsorption is the main mechanism, and this process is spontaneous and endothermic. This highlights the importance of a high specific surface area for the efficient removal of antibiotics from aqueous solutions.
Collapse
|
7
|
Cao X, Meng Z, Song E, Sun X, Hu X, Liu Z, Gao S, Song B. Co-adsorption capabilities and mechanisms of bentonite enhanced sludge biochar for de-risking norfloxacin and Cu 2+ contaminated water. CHEMOSPHERE 2022; 299:134414. [PMID: 35346740 DOI: 10.1016/j.chemosphere.2022.134414] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 05/27/2023]
Abstract
Various bentonite-sludge biochar composites were fabricated by a sequence of loading and pyrolysis for the simultaneous removal of norfloxacin (NOR) and copper (Cu2+) from an aqueous solution. The morphology and characteristics of obtained composites were reflected through cation exchange capacity (CEC), BET specific surface area (SBET), SEM, XRD, FTIR and XPS. The isothermal adsorption results showed that Sips adsorption model fitted better for the adsorption of NOR and Cu2+ during co-adsorption. The theoretical maximum adsorption capacity of BT:2 SB (the mass ratio of bentonite to sludge is 1:2) for NOR and Cu2+ was 89.36 mg g-1 and 104.10 mg g-1 at 25 °C in the co-adsorption system. The thermodynamic results showed the capture of NOR and Cu2+ was spontaneous, accompanied by an endothermic reaction with different randomness. In the co-adsorption system, the two were antagonistic to each other due to competition for the adsorption sites of hydroxyl, carboxylic acid and negatively charged provided by bentonite-sludge biochar. This study suggests that using natural mineral as a pyrolysis improver for sludge biochar can product the value-enhanced biochar for simultaneous removal of antibiotic and metal contaminants.
Collapse
Affiliation(s)
- Xuewen Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhaofu Meng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, China.
| | - En Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xiuxian Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xiaolong Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ze Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, China
| | - Shuai Gao
- School of Chemical Engineering, The University of Queensland, QLD, 4072, Australia
| | - Bing Song
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand
| |
Collapse
|
8
|
Chen Z, Tang Y, Wen Q, Hu H. Evaluation of Fe(VI)/Fe(II) combined with sludge adsorbents in secondary effluent organic matter removal. ENVIRONMENTAL RESEARCH 2022; 208:112737. [PMID: 35074351 DOI: 10.1016/j.envres.2022.112737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Wastewater reclamation and reuse are important methods that help to achieve an equilibrium within demand and offer, and also one of the important ways to reduce carbon emission. The existence of secondary effluent organic matter (EfOM) will bring potential threat to the environment in reuse process. Therefore, it is important to develop reclaimed water reuse technology that effectively remove EfOM. In this study, the removal of EfOM performance of ferrates enhanced by FeCl2 (Fe(VI)/Fe(II)) combined with sludge adsorbents (SAs) was evaluated by using the continuous-flow process (FeSDF), which was composed of Fe(VI)/Fe(II), SAs, densadeg and filtration. The results showed that when the inflow rate was 1 L/h, the optimal operating conditions of FeSDF including 5 mg/L of Fe(VI), 1 mg/L of Fe(II), 1 g/L of SA and 50% of the reflux ratio. Bulk organic indicators, including chemical oxygen demand, dissolved organic carbon, ammonia, total nitrogen, total phosphorus, turbidity, and ultraviolet absorbance at 254 nm in the effluent met the water quality standard for scenic environment use (GB/T 18921-2019 in China). The addition of Fe(II) makes the coagulation process by Fe(VI) produce more Fe(III) and produce more quality of sedimentary flocs and improve the removal efficiency of EfOM. The removal of organic micro-pollutants (OMPs) was mainly due to ferrate oxidation and SA adsorption in FeSDF, and the removal of most of the OMPs was more than 90%. The total fluorescence intensity removal efficiency in FeSDF was 63.8%. Moreover, the genotoxicity of the FeSDF effluent decreased to 0.73 μg 4-nitroquiniline-N-oxide/L, and the reduction efficiency reached 97.6%. The actual efficiency of most of the indicators is greater than the expected efficiency, indicating that there is a synergistic comprehensive effect during the whole process operation of FeSDF.
Collapse
Affiliation(s)
- Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE HIT), Harbin, 150090, PR China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730070, PR China
| | - Yingcai Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE HIT), Harbin, 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE HIT), Harbin, 150090, PR China.
| | - Hongying Hu
- School of Environmental Science and Engineering, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
9
|
Ihsanullah I, Khan MT, Zubair M, Bilal M, Sajid M. Removal of pharmaceuticals from water using sewage sludge-derived biochar: A review. CHEMOSPHERE 2022; 289:133196. [PMID: 34890621 DOI: 10.1016/j.chemosphere.2021.133196] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
In recent years, considerable attention has been paid to the beneficial utilization of sewage sludge to reduce the risks associated with sludge disposal. Besides other applications of sludge, biochar produced from sludge has also been employed for the elimination of various pollutants from water. This review critically evaluates the recent progress in applications of sludge-based biochar for the adsorption of pharmaceuticals from water. The synthesis techniques of biochar production from sludge and their effects on physicochemical characteristics of produced biochar are discussed. The removal of various pharmaceuticals by sludge-based biochar are described in detail, with the emphasis on the adsorption mechanism and their reusability potential. It is evident from the literature that sludge-based biochar has demonstrated excellent potential for the adsorption of numerous pharmaceuticals from the aqueous phase. The major hurdles and issues related to the synthesis of sludge-based biochar and applications are highlighted, with reference to the adsorption of pharmaceuticals. Finally, a roadmap is suggested along with future research directions to ensure the sustainable production of biochar from sludge and its applications in water treatment.
Collapse
Affiliation(s)
- Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Muhammad Tariq Khan
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai po New Territories, Hong Kong
| | - Mukarram Zubair
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
10
|
Liu M, Xia S, Liu Z, Ma T, Liu Z, Li Y, Zou D. Luminescent porous metal–organic gels for efficient adsorption and sensitive detection of chlortetracycline hydrochloride assisted by smartphones and test paper-based analytical device. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01669e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing dual functional materials for chlortetracycline hydrochloride (CTC) adsorption and detection is of great importance for wastewater treatment and pollution monitoring. Herein, three novel (Fe-Tb) JLUE-MOGs are synthesized through the...
Collapse
|
11
|
Adsorptive Removal of Azithromycin Antibiotic from Aqueous Solution by Azolla Filiculoides-Based Activated Porous Carbon. NANOMATERIALS 2021; 11:nano11123281. [PMID: 34947630 PMCID: PMC8709189 DOI: 10.3390/nano11123281] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 12/07/2022]
Abstract
Due to the shortage of freshwater availability, reclaimed water has become an important source of irrigation water. Nevertheless, emergent contaminants such as antibiotics in reclaimed water can cause potential health risks because antibiotics are nonbiodegradable. In this paper, we report the adsorptive removal of azithromycin (AZM) antibiotics using activated porous carbon prepared from Azolla filiculoides (AF) (AFAC). The influence of the adsorption process variables, such as temperature, pH, time, and adsorbent dosage, is investigated and described. The prepared AFAC is very effective in removing AZM with 87% and 98% removal after the treatment of 75 min, at 303 and 333 K, respectively. The Langmuir, Temkin, Freundlich, and Dubinin–Radushkevich isotherm models were used to analyze the adsorption results. The Freundlich isotherm was best to describe the adsorption isotherm. The adsorption process follows second-order pseudo kinetics. The adsorption was endothermic (ΔH°= 32.25 kJ/mol) and spontaneous (ΔS° = 0.128 kJ/mol·K). Increasing the temperature from 273 to 333 K makes the process more spontaneous (ΔG° = −2.38 and −8.72 KJ/mol). The lower mean square energy of 0.07 to 0.845 kJ/mol confirms the process’ physical nature. The results indicate that AFAC can be a potential low-cost adsorbent of AZM from aqueous solutions.
Collapse
|
12
|
Yadav A, Singh S, Garg A. Optimization for the conditions to prepare sewage sludge derived adsorbent and ciprofloxacin adsorption. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2754-2768. [PMID: 34438464 DOI: 10.1002/wer.1632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In the present study, sewage sludge (SS) was used to synthesize activated carbon (AC) which was further utilized as adsorbent for the removal of ciprofloxacin (CPX) from synthetic wastewater. The adsorbent was prepared by chemical activation method using ZnCl2 as activating agent. Design of experiments (DOE) approach was explored to determine the optimum operating conditions for the synthesis of AC and CPX removal from the wastewater. The optimum conditions for AC synthesis (i.e., carbonization temperature = ~500°C, activation time = 30 min, and impregnation ratio = 2.26) were decided based on results for three response parameters, that is, adsorbent yield, methylene blue removal, and iodine number. The synthesized adsorbent showed ~93% CPX removal (initial CPX concentration = 100 mg/L) at the following optimum conditions: adsorbent dose = 1.31 g/L, pH = 7 and reaction time = 12 h. Langmuir isotherm model was best fit to the equilibrium adsorption data (maximum adsorption capacity of SS derived AC = 102 mg/g) whereas pseudo-second order model showed the best fit to adsorption kinetic data (adsorption capacity = 77.5 mg/g). An effort was also made to reduce fresh water requirement for adsorbent synthesis by recycling the wastewater produced during chemical activation of SS. PRACTITIONER POINTS: Experiment design approach was used for optimization of adsorbent preparation conditions and CPX removal conditions by waste derived adsorbent. Sewage sludge derived adsorbent had BET surface area of 564 m2 /g which is comparable to commercial activated carbon. 93% CPX adsorption with the sewage sludge derived adsorbent at optimum conditions. Langmuir model better suited the CPX adsorption data. Wastewater recycling and ZnO recovery from wastewater produced during adsorbent synthesis were performed.
Collapse
Affiliation(s)
- Anshu Yadav
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India
| | - Swati Singh
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India
| | - Anurag Garg
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
13
|
Gholamian S, Hamzehloo M, Farrokhnia A, Mahdavifar Z. Response surface methodology optimizing the adsorptive removal of azithromycin using mesoporous silica SBA-15: Mechanism, thermodynamic, equilibrium, and kinetics modeling studies. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1145-1164. [PMID: 34558387 DOI: 10.1080/10934529.2021.1974267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The objective of this research was to study an effective adsorbent for removing azithromycin (AZT) from industrial wastewater. AZT is an antibiotic used for many diseases remedy, but it is a pollutant to our environment; therefore, its residual should be removed from wastewater. The mesoporous SBA-15 silica as an efficient adsorbent was prepared by the hydrothermal method. The surface of mesoporous SBA-15 plays a significant role in the removal process; therefore, the characterization of the adsorbent was accomplished by several techniques. The batch system has been used, and the effect of four essential variables: pH (3-10), drug concentration (20-200 mg L-1), sorbent weight (0.2-2 g L-1), and temperature (20-40 °C) were investigated on the AZT removal efficiency by response surface methodology (RSM). The isotherm results were found to be in proper compliance with the isotherm model of Freundlich. In the kinetics part of this study, the experimental outcomes were fitted to the equation model of pseudo-second-order. The calculation of thermodynamic parameters shows that the removal process is spontaneous and endothermic. Upon the results, the vast surface area, the active functional groups, reusability, stability, and inexpensively make the mesoporous SBA-15 a suitable candidate for removal of AZT and similar antibiotics.
Collapse
Affiliation(s)
- Soheila Gholamian
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Majid Hamzehloo
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Abdolhadi Farrokhnia
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zabiollah Mahdavifar
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
14
|
Zhang Y, Tang J, Zhang W, Ai J, Liu Y, Wang Q, Wang D. Preparation of ultrahigh-surface-area sludge biopolymers-based carbon using alkali treatment for organic matters recovery coupled to catalytic pyrolysis. J Environ Sci (China) 2021; 106:83-96. [PMID: 34210442 DOI: 10.1016/j.jes.2021.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 06/13/2023]
Abstract
In this work, we employed waste activated sludge (WAS) as carbon source to prepare ultrahigh specific surface area (SSA) biopolymers-based carbons (BBCs) through alkali (KOH) treatment coupled to pyrolysis strategy. Before the pyrolysis process, the involvement of KOH made a great recovery of soluble biopolymers from WAS, resulting in highly-efficient catalytic pyrolysis. The Brunner-Emmett-Teller and pore volume of BBCs prepared at 800°C (BBC800) reached the maximum at 2633.89 m2·g-1 and 2.919 m3·g-1, respectively. X-ray photoelectron spectroscopy suggested that aromatic carbon in the form of C=C was the dominant fraction of C element in BBCs. The N element in BBCs were composed of pyrrolic nitrogen and pyridinic nitrogen at 700°C, while a new graphitic nitrogen appeared over 800°C. As a refractory pollutant of wastewater treatment plants, tetracycline (TC) was selected to evaluate adsorption performance of BBCs. The adsorption behavior of BBCs towards TC was conformed to the pseudo-second-order kinetic and the Langmuir models, signifying that chemisorption of monolayers was dominant in TC adsorption. The adsorption capacity of BBC800 reached the maximum at 877.19 mg·g-1 for 90 min at 298 K. Thermodynamic analysis indicated that the adsorption process was endothermic and spontaneous. Hydrogen bonding and π-π stacking interaction were mainly responsible for TC adsorption, and interfacial diffusion was the main rate-control step in adsorption process. The presence of soluble microbial products (SMPs) enhanced TC removal. This work provided a novel strategy to prepare bio-carbon with ultrahigh SSA using WAS for highly-efficient removal of organic pollutants.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jiayi Tang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Hubei Provincial Engineering Research Center of Systematic Water Pollution Control, Wuhan 430074, China.
| | - Jing Ai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yanyang Liu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Qiandi Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Dongsheng Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
15
|
Carbon nanotubes intercalated RGO electro-Fenton membrane for coenhanced permeability, rejection and catalytic oxidation of organic micropollutants. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119069] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Dias R, Sousa D, Bernardo M, Matos I, Fonseca I, Vale Cardoso V, Neves Carneiro R, Silva S, Fontes P, Daam MA, Maurício R. Study of the Potential of Water Treatment Sludges in the Removal of Emerging Pollutants. Molecules 2021; 26:molecules26041010. [PMID: 33672924 PMCID: PMC7918913 DOI: 10.3390/molecules26041010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/12/2023] Open
Abstract
Presently, water quantity and quality problems persist both in developed and developing countries, and concerns have been raised about the presence of emerging pollutants (EPs) in water. The circular economy provides ways of achieving sustainable resource management that can be implemented in the water sector, such as the reuse of drinking water treatment sludges (WTSs). This study evaluated the potential of WTS containing a high concentration of activated carbon for the removal of two EPs: the steroid hormones 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). To this end, WTSs from two Portuguese water treatment plants (WTPs) were characterised and tested for their hormone adsorbance potential. Both WTSs showed a promising adsorption potential for the two hormones studied due to their textural and chemical properties. For WTS1, the final concentration for both hormones was lower than the limit of quantification (LOQ). As for WTS2, the results for E2 removal were similar to WTS1, although for EE2, the removal efficiency was lower (around 50%). The overall results indicate that this method may lead to new ways of using this erstwhile residue as a possible adsorbent material for the removal of several EPs present in wastewaters or other matrixes, and as such contributing to the achievement of Sustainable Development Goals (SDG) targets.
Collapse
Affiliation(s)
- Rita Dias
- CENSE—Center for Environmental and Sustainability Research, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (D.S.); (M.A.D.); (R.M.)
- Correspondence:
| | - Diogo Sousa
- CENSE—Center for Environmental and Sustainability Research, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (D.S.); (M.A.D.); (R.M.)
| | - Maria Bernardo
- LAQV/REQUIMTE, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (M.B.); (I.M.); (I.F.)
| | - Inês Matos
- LAQV/REQUIMTE, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (M.B.); (I.M.); (I.F.)
| | - Isabel Fonseca
- LAQV/REQUIMTE, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (M.B.); (I.M.); (I.F.)
| | - Vitor Vale Cardoso
- EPAL—Empresa Pública de Águas Lives S.A., AdP—Grupo Águas de Portugal, 31700-421 Lisboa, Portugal; (V.V.C.); (R.N.C.); (S.S.); (P.F.)
| | - Rui Neves Carneiro
- EPAL—Empresa Pública de Águas Lives S.A., AdP—Grupo Águas de Portugal, 31700-421 Lisboa, Portugal; (V.V.C.); (R.N.C.); (S.S.); (P.F.)
| | - Sofia Silva
- EPAL—Empresa Pública de Águas Lives S.A., AdP—Grupo Águas de Portugal, 31700-421 Lisboa, Portugal; (V.V.C.); (R.N.C.); (S.S.); (P.F.)
| | - Pedro Fontes
- EPAL—Empresa Pública de Águas Lives S.A., AdP—Grupo Águas de Portugal, 31700-421 Lisboa, Portugal; (V.V.C.); (R.N.C.); (S.S.); (P.F.)
| | - Michiel A. Daam
- CENSE—Center for Environmental and Sustainability Research, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (D.S.); (M.A.D.); (R.M.)
| | - Rita Maurício
- CENSE—Center for Environmental and Sustainability Research, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (D.S.); (M.A.D.); (R.M.)
| |
Collapse
|
17
|
Effective adsorption of ciprofloxacin antibiotic using powdered activated carbon magnetized by iron(III) oxide magnetic nanoparticles. JOURNAL OF POROUS MATERIALS 2021. [DOI: 10.1007/s10934-021-01039-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
18
|
Wu C, Li L, Zhou H, Ai J, Zhang H, Tao J, Wang D, Zhang W. Effects of chemical modification on physicochemical properties and adsorption behavior of sludge-based activated carbon. J Environ Sci (China) 2021; 100:340-352. [PMID: 33279048 DOI: 10.1016/j.jes.2020.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/09/2020] [Accepted: 08/09/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to explore the adsorption performance of sludge-based activated carbon (SBC) towards dissolved organic matters (DOMs) removal from sewage, and investigated the modification effect of different types of chemicals on the structure of synthesized SBC. Waste activated sludge (WAS) was used as a carbon source, and HCl, HNO3, and NaOH were used as different types of chemicals to modify the SBC. With the aid of chemical activation, the modified SBC showed higher adsorption performances on DOMs removal with maximum adsorption of 29.05 mg/g and second-order constant (k) of 0.1367 (L/mol/sec) due to the surface elution of ash and minerals by chemicals. The surface elemental composition of MSBC suggested that the content of C-C and C-O functional groups on the surface of modified sludge-based activated carbon (MSBC) played an important role on the adsorption capacities of MSBC towards DOMs removal in sewage. Additionally, the residual molecular weight of DOMs in sewage was investigated using a 3-dimension fluorescence excitation-emission matrix (3D-EEM) and high-performance size exclusion chromatography (HP-SEC). Results showed that the chemical modification significantly improved the adsorption capacity of MSBC on humic acids (HA) and aromatic proteins (APN), and both of NaOH-MSBC and HCl-MSBC were effective for a wide range of different AMW DOMs removal from sewage, while the HNO3-MSBC exhibited poorly on AMW organics of 2,617 Da and 409 Da due to the reducing content of macropore. In brief, this study provides reference values for the impact of the chemicals of the activation stage before the SBCs application.
Collapse
Affiliation(s)
- Chunxu Wu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Lanfeng Li
- School of Environment Studies, China University of Geosciences, Wuhan 430074, China
| | - Hao Zhou
- School of Environment Studies, China University of Geosciences, Wuhan 430074, China
| | - Jing Ai
- School of Environment Studies, China University of Geosciences, Wuhan 430074, China
| | - Hongtao Zhang
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jialin Tao
- School of Environment Studies, China University of Geosciences, Wuhan 430074, China
| | - Dongsheng Wang
- School of Environment Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weijun Zhang
- School of Environment Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
19
|
Lv C, Lan X, Wang L, Dai X, Zhang M, Cui J, Yuan S, Wang S, Shi J. Rapidly and highly efficient degradation of tetracycline hydrochloride in wastewater by 3D IO-TiO 2-CdS nanocomposite under visible light. ENVIRONMENTAL TECHNOLOGY 2021; 42:377-387. [PMID: 31180796 DOI: 10.1080/09593330.2019.1629183] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/28/2019] [Indexed: 05/22/2023]
Abstract
Tetracycline hydrochloride as an environmental pollutant is biologically toxic and highly difficult to degrade. To solve this problem, an efficient catalyst IO-TiO2-CdS composite with honeycomb-like three-dimensional (3D) inverse opal TiO2 (IO-TiO2) and cadmium sulphide (CdS) was synthesized and applied in the degradation of tetracycline hydrochloride in this paper. More than 99% of the tetracycline hydrochloride (30 mg/L) can be degraded by IO-TiO2-CdS (30 mg) within 20 min under visible light irradiation. Surprisingly, the naphthol rings can be opened and degraded to alkane with a minimum molecular weight of 60, which is the smallest fragment among all publications. The three-dimensional ordered macroporous (3DOM) structure of IO-TiO2 improves the utilization of light via the slow photon effect. Meanwhile, the addition of CdS enhances the degradation efficiency of tetracycline by broadening the range of absorption spectrum and improving the separation of charge carrier on the catalyst. In addition to the degradation of tetracycline hydrochloride, IO-TiO2-CdS also shows a good degradation efficiency of Rhodamine B (RhB). This work provides a promising approach to construct visible light response photocatalysts with non-noble metal for efficient degradation of wastewater pollutants.
Collapse
Affiliation(s)
- Chao Lv
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Xuefang Lan
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Lili Wang
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Xiaomeng Dai
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Mengli Zhang
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Junyuan Cui
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Shaoteng Yuan
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Song Wang
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Jinsheng Shi
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao, People's Republic of China
| |
Collapse
|
20
|
Lv C, Lan X, Wang L, Wang C, Liu X, Shi J. Hierarchical Pores Structured Inverse Opal‐TiO
2
‐Bi
2
WO
6
for Photocatalytic Tetracycline Elimination‐Testing by Real‐Time Monitor of Germination Rate and Growth Rate of Chinese Cabbage. ChemistrySelect 2020. [DOI: 10.1002/slct.202003183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Chao Lv
- Qingdao Agricultural University Department of Chemistry and Pharmacy Chengyang District, Qingdao China
| | - Xuefang Lan
- Qingdao Agricultural University Department of Chemistry and Pharmacy Chengyang District, Qingdao China
| | - Lili Wang
- Qingdao Agricultural University Department of Chemistry and Pharmacy Chengyang District, Qingdao China
| | - Cheng Wang
- Qingdao Agricultural University Department of Chemistry and Pharmacy Chengyang District, Qingdao China
| | - Xiaogang Liu
- Qingdao Agricultural University Department of Chemistry and Pharmacy Chengyang District, Qingdao China
| | - Jinsheng Shi
- Qingdao Agricultural University Department of Chemistry and Pharmacy Chengyang District, Qingdao China
| |
Collapse
|
21
|
Yu H, Gu L, Chen L, Wen H, Zhang D, Tao H. Activation of grapefruit derived biochar by its peel extracts and its performance for tetracycline removal. BIORESOURCE TECHNOLOGY 2020; 316:123971. [PMID: 32777718 DOI: 10.1016/j.biortech.2020.123971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
A novel adsorbent derived from grapefruit peel (GP) based biochar (GPBC) was synthesized by combined carbonization of GP and subsequent activation by GP extracts. Compared to biochar without extracts activation, the technique granted GPBC-20 (with 1:20 of solid-solution ratio) more abundant surface functional groups, which exerts the adsorbent superior performance for tetracycline (TC) adsorption (37.92 mg/g v.s. 16.64 mg/g). The adsorption kinetics, isotherms and thermodynamics models were further used to evaluate the adsorption behavior of GPBC. The enhanced adsorption was analyzed by characterization of fresh and used GPBC, revealing that the adsorption mechanism was comprised of pore filling, charge interaction and chemical bonding. The comprehensive investigation of using agricultural waste extracts as activator to prepare its raw materials-based adsorbents may be of great significance for enhanced resource utilization.
Collapse
Affiliation(s)
- Haixiang Yu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Lin Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Lu Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Haifeng Wen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Daofang Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai University of International Business and Economics, Shanghai 201620, PR China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| |
Collapse
|
22
|
Guo Z, Ma L, Dai Q, Ao R, Liu H, Yang J. Combined application of modified corn-core powder and sludge-based biochar for sewage sludge pretreatment: Dewatering performance and dissipative particle dynamics simulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115095. [PMID: 32806410 DOI: 10.1016/j.envpol.2020.115095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Sludge is an inevitable by-product of municipal wastewater treatment processes, and its high moisture content poses a major challenge for its subsequent treatment and disposal. Previous studies have explored the effects of applying modified corn-core powder (MCCP) on dewatering sludge. Here, we characterized the effects of applying both MCCP and sludge-based biochar (SBB) on dewatering sludge. Analysis of the anti-shear ability of SBB revealed that SBB was a skeleton builder with high compressive strength, demonstrating that SBB could maintain the permeability of sludge under high-pressure filtration processes and facilitate the flow of bound water. Dissipative particle dynamics (DPD) was used to simulated the sludge flocculating process and verify the feasibility of the experiment. As the simulation progressed, the reaction in the sludge network reached equilibrium and the simulated structure of the sludge became loose. The dewatering performance and physicochemical properties of the treated sludge were studied to further characterize the effect of this combined technology. Compared with MCCP-sludge, MCCP&SBB-sludge, which was treated by 20% DS (mass of dry solids in sludge) of SBB and 20% DS of MCCP, achieved superior dewaterability. This combined method reduced the specific resistance of filtration by 76% and enlarged the net sludge solids yield by 138%. Further study of the properties of MCCP&SBB-sludge revealed a loose structure that resembled the structure recovered by the simulation, suggesting that the DPD simulation method simulated the sludge flocculating process successfully. Therefore, the combined application of MCCP and SBB was superior for sludge dewatering because of the synergistic effects of MCCP and SBB.
Collapse
Affiliation(s)
- Zhiying Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Liping Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| | - Quxiu Dai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Ran Ao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Hongpan Liu
- College of Chemistry and Environmental Engineering, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Jie Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| |
Collapse
|
23
|
Gothwal R, Thatikonda S. Modeling transport of antibiotic resistant bacteria in aquatic environment using stochastic differential equations. Sci Rep 2020; 10:15081. [PMID: 32934268 PMCID: PMC7494867 DOI: 10.1038/s41598-020-72106-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/24/2020] [Indexed: 11/09/2022] Open
Abstract
Contaminated sites are recognized as the "hotspot" for the development and spread of antibiotic resistance in environmental bacteria. It is very challenging to understand mechanism of development of antibiotic resistance in polluted environment in the presence of different anthropogenic pollutants. Uncertainties in the environmental processes adds complexity to the development of resistance. This study attempts to develop mathematical model by using stochastic partial differential equations for the transport of fluoroquinolone and its resistant bacteria in riverine environment. Poisson's process is assumed for the diffusion approximation in the stochastic partial differential equations (SPDE). Sensitive analysis is performed to evaluate the parameters and variables for their influence over the model outcome. Based on their sensitivity, the model parameters and variables are chosen and classified into environmental, demographic, and anthropogenic categories to investigate the sources of stochasticity. Stochastic partial differential equations are formulated for the state variables in the model. This SPDE model is then applied to the 100 km stretch of river Musi (South India) and simulations are carried out to assess the impact of stochasticity in model variables on the resistant bacteria population in sediments. By employing the stochasticity in model variables and parameters we came to know that environmental and anthropogenic variations are not able to affect the resistance dynamics at all. Demographic variations are able to affect the distribution of resistant bacteria population uniformly with standard deviation between 0.087 and 0.084, however, is not significant to have any biological relevance to it. The outcome of the present study is helpful in simplifying the model for practical applications. This study is an ongoing effort to improve the model for the transport of antibiotics and transport of antibiotic resistant bacteria in polluted river. There is a wide gap between the knowledge of stochastic resistant bacterial growth dynamics and the knowledge of transport of antibiotic resistance in polluted aquatic environment, this study is one step towards filling up that gap.
Collapse
Affiliation(s)
- Ritu Gothwal
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
24
|
Environmental Dissemination of Selected Antibiotics from Hospital Wastewater to the Aquatic Environment. Antibiotics (Basel) 2020; 9:antibiotics9070431. [PMID: 32708321 PMCID: PMC7400012 DOI: 10.3390/antibiotics9070431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
The environmental dissemination of selected antibiotics from hospital wastewater into municipal wastewater and lastly to a receiving water body was investigated. Selected antibiotics (azithromycin (AZM), ciprofloxacin (CIP), clindamycin (CDM), doxycycline (DXC) and sulfamethoxazole (SMZ)) present in effluents of academic hospital wastewater, influents, sewage sludge, and effluents of municipal wastewater, receiving water, and its benthic sediment samples were quantified using the Acquity® Waters Ultra-Performance Liquid Chromatography System hyphenated with a Waters Synapt G2 coupled to a quadrupole time-of-flight mass spectrometer. The overall results showed that all assessed antibiotics were found in all matrices. For solid matrices, river sediment samples had elevated concentrations with mean concentrations of 34,834, 35,623, 50,913, 55,263, and 41,781 ng/g for AZM, CIP, CDM, DXC, and SMZ, respectively, whereas for liquid samples, hospital wastewater and influent of wastewater had the highest concentrations. The lowest concentrations were observed in river water, with mean concentrations of 11, 97, 15, and 123 ng/L, except for CDM, which was 18 ng/L in the effluent of wastewater. The results showed that the highest percentages of antibiotics removed was SMZ with 90%, followed by DXC, AZM and CIP with a removal efficiency of 85%, 83%, and 83%, respectively. The antibiotic that showed the lowest removal percentage was CDM with 66%. However, the calculated environmental dissemination analysis through the use of mass load calculations revealed daily release of 15,486, 14,934, 1526, 922, and 680 mg/d for SMZ, CIP, AZM, DXC, and CDM, respectively, indicating a substantial release of selected antibiotics from wastewater to the river system, where they are possibly adsorbed in the river sediment. Further research into the efficient removal of antibiotics from wastewater and the identification of antibiotic sources in river sediment is needed.
Collapse
|
25
|
Waste chars from wood gasification and wastewater sludge pyrolysis compared to commercial activated carbon for the removal of cationic and anionic dyes from aqueous solution. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Singh V, Srivastava VC. Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113822. [PMID: 31887588 DOI: 10.1016/j.envpol.2019.113822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
In the present work, low-cost and efficient iron oxide nanoparticle incorporated on mesoporous biochar was prepared from effluent treatment plant (ETP) sludge collected from the textile industry. This sludge contains a higher amount of Fe due to the use of ferric chloride as a coagulant in the treatment of wastewater generated during the process. The raw sludge and prepared biochar was extensively examined by various sophisticated techniques like XRF, XRD, BET, TGA, XPS, RAMAN, FTIR, FESEM, TEM, and VSM. TEM and XRD analysis confirms the presence of iron oxide nanoparticles on mesoporous biochar. The prepared biochar was found to possess BET surface area of 91 m2 g-1. Several parameters like pH, dose, initial concentration, temperature and time were optimized for the adsorptive removal of ofloxacin (OFL) from aqueous solution. Biochar (named as BTSFe) achieved ≈96% removal efficiency of OFL with a maximum adsorption capacity (qm) of 19.74 mg g-1 at optimum condition. π-π electron-donor-acceptor and H bonding were the major mechanisms responsible for the OFL adsorption. Kinetic and equilibrium thermodynamic study of showed that the adsorption of OFL was represented by the pseudo-second-order kinetics model, and the process was exothermic and spontaneous. Additionally, Redlich-Peterson and Freundlich isotherms best fitted the experimental data indicating multilayer adsorption phenomenon. Biochar was magnetically separated and thermally regenerated after each cycle for five times with a nominal overall decrease of ≈8% in removal efficiency. Leaching of iron during the adsorption process was also checked and found to be within the permissible limit. This study provides an alternative application of the textile industry sludge as an efficient, low-cost biochar for the removal of emerging pharmaceutical compounds.
Collapse
Affiliation(s)
- Vikash Singh
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
27
|
Li L, Ai J, Zhang W, Peng S, Dong T, Deng Y, Cui Y, Wang D. Relationship between the physicochemical properties of sludge-based carbons and the adsorption capacity of dissolved organic matter in advanced wastewater treatment: Effects of chemical conditioning. CHEMOSPHERE 2020; 243:125333. [PMID: 31734596 DOI: 10.1016/j.chemosphere.2019.125333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Pyrolysis carbonisation is a promising technology to convert organic waste into valuable carbon-based materials. However, sludge is generally highly compressible and difficult to dewater because of its high concentrations of biopolymers; the bound water of sludge is trapped in a network composed of biopolymers. Therefore, chemical conditioning is an indispensable step for improving sludge dewaterability performance. In the present work, the effects of different chemical conditioning agents (polymeric aluminium chloride (PACl), iron(III) chloride (FeCl3), KMnO4-Fe(II) and Fenton's reagent) on the physicochemical properties of sludge-based carbons (SBCs) were systematically studied and the SBCs were further used in advanced wastewater treatment. The adsorption mechanisms of dissolved organic matters (DOMs) by different SBCs were also investigated. The results showed that conditioning with KMnO4-Fe(II) and Fenton's reagent improved the specific surface area of the SBCs, whereas inorganic salt flocculation conditioning reduced the porosity of the SBCs. In addition, we found that the Fenton-SBC and Mn/Fe-SBC performed better than the other investigated SBCs in the removal of organic compounds from secondary effluent and that the pseudo-second-order kinetic model could better describe the process of DOMs adsorption by all of the investigated SBCs. Moreover, three-dimensional fluorescence excitation-emission matrix spectroscopy in combination with an analysis of the physical and chemical fractionation of DOMs showed that all of the SBCs performed well in the adsorption of aromatic substances, hydrophobic acids and hydrophobic neutrals, whereas the Mn/Fe-SBC and Fenton-SBC performed better than the other SBCs in the removal of weakly hydrophobic acids.
Collapse
Affiliation(s)
- Lanfeng Li
- School of Environment Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Jing Ai
- Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Weijun Zhang
- School of Environment Studies, China University of Geosciences, Wuhan, 430074, Hubei, China.
| | - Sainan Peng
- School of Environment Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Tianyi Dong
- School of Environment Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Yun Deng
- School of Environment Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Yanping Cui
- School of Environment Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Dongsheng Wang
- School of Environment Studies, China University of Geosciences, Wuhan, 430074, Hubei, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
28
|
Ramanayaka S, Sarkar B, Cooray AT, Ok YS, Vithanage M. Halloysite nanoclay supported adsorptive removal of oxytetracycline antibiotic from aqueous media. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121301. [PMID: 31600698 DOI: 10.1016/j.jhazmat.2019.121301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Halloysite nanoclay was utilized to retain aqueous oxytetracycline (OTC) which is extensively used in the veterinary industry. The micro-structure and functionality of the nanoclay were characterized through spectroscopic techniques before and after adsorption. The OTC removal experiments were performed at different pH conditions (pH 3.0-9.0), ionic strengths (0.001, 0.01, 0.1 M NaNO3) and contact time (up to 32 h) at an initial 25 mg/L OTC concentration with 1.0 g/L halloysite. Oxytetracycline adsorption was pH dependent, and the best pH was observed in the range of pH 3.5-5.5 at a 0.001 M ionic strength. At pH 3.5, the maximum OTC adsorption amount was 21 mg/g which translated to 68% removal of the initial OTC loading. Positively charged inner lumen and negatively charged outer lumen of the tubular halloysite structure led to form inner-sphere complexes with the anionic and cationic forms of OTC, respectively. A rapid adsorption of OTC was observed in the kinetic study where 62% OTC was adsorbed in 90 min.. Pseudo-second order equation obeyed by the kinetic data indicated that the adsorption was governed by chemisorption, whereas Hill isotherm equation was the most fitted with a maximum adsorption capacity of 52.4 mg/g indicating a cooperative adsorption phenomenon.
Collapse
Affiliation(s)
- Sammani Ramanayaka
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Binoy Sarkar
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Asitha T Cooray
- Department of Chemistry, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
29
|
Abd Elhaleem MB, Farghali AA, El-Shahawy AAG, Abo El-Ela FI, Eldine ZE, Mahmoud RK. Chemisorption and sustained release of cefotaxime between a layered double hydroxide and polyvinyl alcohol nanofibers for enhanced efficacy against second degree burn wound infection. RSC Adv 2020; 10:13196-13214. [PMID: 35492140 PMCID: PMC9051420 DOI: 10.1039/c9ra08355c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Zn–Al layered double hydroxides (LDHs) were synthesized by a chemical method, while polyvinyl alcohol (PVA) nanofibers were fabricated by an electrospinning approach; we also synthesized Zn–Al LDH/cefotaxime (cefotax), Zn–Al LDH@PVA, and Zn–Al LDH/cefotax@PVA (LCP). Characterizations were performed by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, Brunauer–Emmett–Teller analysis, thermogravimetric-differential thermal analysis techniques, dynamic light scattering, X ray-florescence, and carbon, hydrogen, and nitrogen (CHN) analyses. The adsorption isotherm of cefotax and its entrapment percentage, release, and kinetics were also investigated. The results confirmed the elemental constituents of the mentioned formulas, which exhibited different degrees of crystallinity and different morphologies. Besides, these formulas were tested in vitro as antimicrobial agents and applied in vivo against second-degree wound burns induced in rats' skin. The adsorption of cefotax occurred chemically, and the experimental data were fitted with different isotherm models, where the Freundlich and Toth models gave the best fits. The entrapment percentage in LDH/cefotax was 77.41% and in LDH/cefotax@PVA, it was 67.83%. The sustained release of cefotax from LDH and LCP was attainable; the release percentages were 89.31% and 81.55% in up to 12 h, respectively. The release kinetics of cefotax from LDH fitted well with first-order kinetics, while that for LCP was parabolic. The formulas showed uneven antimicrobial effects against Gram-positive and Gram-negative bacteria; the best effect was exhibited by Zn–Al LDH/cefotax@PVA due to its sustained release. Finally, investigating the possibility of using these formulas in the clinical setting should be considered. This study succeeded to formulate, characterize, and investigate cefotax release and kinetics, and to compare cetofax with other known antibacterial agents.![]()
Collapse
Affiliation(s)
| | - Ahmed A. Farghali
- Materials Science and Nanotechnology Dept
- Faculty of Postgraduate Studies for Advanced Sciences (PSAS)
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Ahmed. A. G. El-Shahawy
- Materials Science and Nanotechnology Dept
- Faculty of Postgraduate Studies for Advanced Sciences (PSAS)
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Fatma I. Abo El-Ela
- Pharmacology Department
- Faculty of Veterinary Medicine
- Beni-Suef University
- 62511 Beni-Suef
- Egypt
| | - Zienab E. Eldine
- Materials Science and Nanotechnology Dept
- Faculty of Postgraduate Studies for Advanced Sciences (PSAS)
- Beni-Suef University
- Beni-Suef
- Egypt
| | | |
Collapse
|
30
|
Kumar KVA, Lakshminarayana B, Suryakala D, Subrahmanyam C. Reduced graphene oxide supported ZnO quantum dots for visible light-induced simultaneous removal of tetracycline and hexavalent chromium. RSC Adv 2020; 10:20494-20503. [PMID: 35517755 PMCID: PMC9054234 DOI: 10.1039/d0ra02062a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/22/2020] [Indexed: 11/21/2022] Open
Abstract
The photocatalytic mechanism explains that electrons and hydroxyl radicals were responsible for reduction of Cr(vi) and oxidation of tetracycline.
Collapse
Affiliation(s)
- K. V. Ashok Kumar
- Department of Chemistry
- Indian Institute of Technology, Hyderabad
- Kandi-502285
- India
| | | | - D. Suryakala
- Department of Chemistry
- GITAM University
- Visakhapatnam-530045
- India
| | - Ch. Subrahmanyam
- Department of Chemistry
- Indian Institute of Technology, Hyderabad
- Kandi-502285
- India
| |
Collapse
|
31
|
Gupta A, Garg A. Adsorption and oxidation of ciprofloxacin in a fixed bed column using activated sludge derived activated carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109474. [PMID: 31505384 DOI: 10.1016/j.jenvman.2019.109474] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
In this study, the performance of activated sludge derived granular activated carbon (SGAC) was investigated for ciprofloxacin (CPX) removal from synthetic and simulated wastewaters in a fixed-bed adsorption column operated in continuous mode. The adsorbent was synthesized using chemical activation using ZnCl2 as activating agent. Its surface area and pore volume were found comparable to that of the commercial granular activated carbon (CGAC). The maximum saturation adsorption capacities for CPX were ~16 mg/g and ~14 mg/g, respectively, with SGAC column under identical operating conditions (CPX concentration = 50 mg/L, bed height = 4 cm and wastewater flow rate = 1.5 mL/min) for synthetic and simulated wastewaters. The presence of other organics reduced CPX adsorption capacity of SGAC. The breakthrough curve data for both wastewaters could be adequately fit in Thomas and Yoon-Nelson kinetic models. The addition of H2O2 in wastewater showed no considerable improvement in CPX removal. However, H2O2 oxidation of spent adsorbent exhibited better results compared to thermal treatment for adsorbent regeneration. The results showed that sewage sludge can be recycled as an efficient adsorbent for the removal of recalcitrant organic pollutants from wastewater.
Collapse
Affiliation(s)
- Anirudh Gupta
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Anurag Garg
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
32
|
Xiang Y, Xu Z, Wei Y, Zhou Y, Yang X, Yang Y, Yang J, Zhang J, Luo L, Zhou Z. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:128-138. [PMID: 30784860 DOI: 10.1016/j.jenvman.2019.02.068] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/30/2019] [Accepted: 02/12/2019] [Indexed: 05/19/2023]
Abstract
With the development of the removal of organic pollutants in the soil and water environment, antibiotics have been considered as emerging pollutants and received considerable attention among the scientific community. Thus, there is a need for an effective, economical, fast, operational feasible and environmental-friendly technology to remove antibiotics. Adsorption technology would be one of the most promising option on the basis that it best meets the criteria we set out above. From the most primitive activated carbon to the most innovative modified biochar, carbon-based materials have played a significant role in the adsorption process of antibiotics all the time. This paper reviews the adsorption behavior of some representative antibiotics (e.g., chloramphenicols, sulfonamides, tetracyclines, flouroquinolones) over various carbonaceous materials (i.e., activated carbon, carbon nanotubes, graphene, and biochar). Nevertheless, in addition to the structural characteristics and adsorption capacities of carbon-based materials, a special emphasis was placed on the underlying adsorption mechanisms and roles of different influencing factors in the adsorption process. Moreover, the knowledge gaps and research challenges have been highlighted, including design and optimization of the carbonaceous materials for antibiotics adsorption.
Collapse
Affiliation(s)
- Yujia Xiang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Zhangyi Xu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Yuyi Wei
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, China.
| | - Xiao Yang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China.
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, Hunan Agricultural University, Changsha, 410028, China
| | - Zhi Zhou
- College of Science, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
33
|
Li N, Zhou L, Jin X, Owens G, Chen Z. Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:563-572. [PMID: 30572296 DOI: 10.1016/j.jhazmat.2018.12.047] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/05/2018] [Accepted: 12/13/2018] [Indexed: 05/18/2023]
Abstract
In this paper, a Zeolite Imidazole Framework-8 (ZIF-8), was investigated for the removal of a mixture of two common antibiotics, tetracycline (TC) and oxytetracycline hydrochloride (OTC). Batch experiments showed that 90.7% of TC and 82.5% of OTC were simultaneously removed using ZIF-8. The maximum adsorption capacities for TC and OTC were 303.0 and 312.5 mg g-1, respectively. For both antibiotics' adsorption followed pseudo-second-order kinetics and best fit the Langmuir adsorption model with R2 of 0.963 and 0.981, for TC and OTC at 303 K, respectively. The relatively large specific surface area of ZIF-8 (1158.2 m2 g-1) combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that both antibiotics were adsorbed on to the surface of ZIF-8. X-ray powder diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy both indicated the presence of benzene ring structures, associated with both pollutants, on ZIF-8 after reaction; which confirmed adsorption was occurring. XPS also showed the presence of CO double bonds on the surface of ZIF-8 indicating the presence of antibiotics. The adsorption mechanism most likely involved π-π interactions between the conjugated groups in TC/OTC and the imidazole rings of ZIF-8.
Collapse
Affiliation(s)
- Na Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Long Zhou
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Xiaoying Jin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
34
|
Junyu Z, Zefeng S, Yuesuo Y. Preparation of low-cost sludge-based mesoporous carbon and its adsorption of tetracycline antibiotics. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:676-687. [PMID: 30975934 DOI: 10.2166/wst.2019.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Preparation of sludge-derived mesoporous carbon materials (SMCs) through pyrolysis of excess activated sludge from urban municipal sewage plants is an effective means of reducing pollution and utilizing a waste resource. This paper presented a method of SMC preparation in which calcium oxide (CaO), polyacrylamide (PAM), and chitosan (CAS) flocculating agents were used as pore-forming additives. Physical and chemical characterizations of the prepared SMCs were conducted by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The prepared SMCs were used to adsorb a tetracycline (TC) antibiotic pollutant. The influences of pH, adsorption time, temperature, and pollutant concentration on TC adsorption capacity were determined. The experiments demonstrated that weakly acidic conditions were conducive to TC adsorption, which mainly occurs via electrostatic and π-π interactions. The TC adsorption process by SMCs conformed better to the pseudo-second-order models, indicating that chemical adsorption was the dominant adsorption process. The isothermal adsorption of TC by the SMCs conformed to the Freundlich model. This implied that TC easily adhered onto the SMC surfaces via multilayer homogeneous adsorption. Thermodynamic studies revealed that the adsorption of TC onto SMCs was spontaneous and endothermic.
Collapse
Affiliation(s)
- Zou Junyu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China E-mail:
| | - Song Zefeng
- Institute of Resource and Environmental Engineering, Hebei GEO University, Shijiazhuang 050031, Hebei, China
| | - Yang Yuesuo
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China E-mail:
| |
Collapse
|
35
|
Martínez-Costa JI, Leyva-Ramos R, Padilla-Ortega E, Aragón-Piña A, Carrales-Alvarado DH. Antagonistic, synergistic and non-interactive competitive sorption of sulfamethoxazole-trimethoprim and sulfamethoxazole‑cadmium (ii) on a hybrid clay nanosorbent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1241-1250. [PMID: 30021289 DOI: 10.1016/j.scitotenv.2018.05.399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/19/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
The competitive sorption of the antibiotics sulfamethoxazole (SMX) and trimethoprim (TMP) and SMX-Cd(II) on a hybrid clay nanosorbent (NanoSorb) was investigated in detail in this work. NanoSorb was synthesized by sorbing a surfactant on bentonite. Besides, the sorption of SMX on the NanoSorb was confirmed by FTIR analysis, and SMX was mainly sorbed on NanoSorb by a partition mechanism due to hydrophobic interactions. Otherwise, the single adsorption of Cd(II) and TMP onto NanoSorb were due to electrostatic interaction and hydrophobic partition, respectively. The capacity of NanoSorb for sorbing single SMX was very similar to that for single Cd(II), but more than 10 times higher than that for single TMP. The competitive sorption of SMX-TMP was antagonistic because the sorption of one antibiotic on NanoSorb was decreased by the presence of the other antibiotic. The uptake of SMX was reduced up to 43.4% by the presence of TMP, whereas the presence of SMX decreased the uptake of TMP up to 29.6%. The non-modified Langmuir multicomponent isotherm (NLMI) interpreted quite well the experimental competitive sorption data of SMX-TMP. On the other hand, the competitive sorption of SMX-Cd(II) on NanoSorb revealed that the sorption of SMX was non-interactive because it was not influenced by the presence of Cd(II). Whereas, the sorption of Cd(II) was synergistic or cooperative since the uptake of Cd(II) sorbed increased considerably with the uptake of SMX sorbed on NanoSorb. The two-site Langmuir model fitted the experimental competitive sorption data of Cd(II) on NanoSorb saturated with SMX. The application of this isotherm was based on the fact that Cd(II) sorbed on two types of sites: a) cationic sites of the NanoSorb and b) Pi-cation interactions between the aromatic ring of the SMX sorbed on NanoSorb and Cd2+.
Collapse
Affiliation(s)
- Jesús I Martínez-Costa
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, UASLP, Av. Dr. Manuel Nava No. 6, San Luis Potosí, SLP 78210, Mexico
| | - Roberto Leyva-Ramos
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, UASLP, Av. Dr. Manuel Nava No. 6, San Luis Potosí, SLP 78210, Mexico.
| | - Erika Padilla-Ortega
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, UASLP, Av. Dr. Manuel Nava No. 6, San Luis Potosí, SLP 78210, Mexico
| | - Antonio Aragón-Piña
- Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Damarys H Carrales-Alvarado
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, UASLP, Av. Dr. Manuel Nava No. 6, San Luis Potosí, SLP 78210, Mexico
| |
Collapse
|
36
|
Recycling of Waste Sludge: Preparation and Application of Sludge-Based Activated Carbon. INT J POLYM SCI 2018. [DOI: 10.1155/2018/8320609] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the rapidly increasing industrial and agricultural development, a large amount of sludge has been produced from much water treatment. Sludge treatment has become one of the most important environmental issues. Resource utilization of sludge is one of the important efficient methods for solving this issue. Sludge-based activated carbon (SBAC) materials have high adsorption performance and can effectively remove environmental pollutants including typical organic matter and heavy metals through physical and chemical processes. Therefore, developing efficient SBAC materials is important and valuable. At present, preparation, modification, and application of SBAC materials have gained widespread attention. This paper provides a review of the research on SBAC preparation and modification and its utilization in removing environmental pollutants. It included the following topics present in this review: conventional and new methods for preparation of SBAC were clearly present; the effective methods for improving SBAC performance via physical and chemical modification were reviewed; and the correlation of their physic-chemical properties of SBAC with pollutants’ removal efficiencies as well as the removal mechanisms was revealed. SBAC has a better adsorption performance than commercial activated carbon in some aspects. Furthermore, it is a cost-effective technique and has a wide range of raw materials. However, there are still some drawbacks to its research; thus, some suggestions for further research were given in this review.
Collapse
|
37
|
Tang J, Zong L, Mu B, Kang Y, Wang A. Attapulgite/carbon composites as a recyclable adsorbent for antibiotics removal. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0066-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Preparation of polydopamine-coated graphene oxide/Fe 3O 4 imprinted nanoparticles for selective removal of fluoroquinolone antibiotics in water. Sci Rep 2017; 7:5735. [PMID: 28720808 PMCID: PMC5515973 DOI: 10.1038/s41598-017-06303-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/08/2017] [Indexed: 11/08/2022] Open
Abstract
Antibiotics in water have recently caused increasing concerns for public health and ecological environments. In this work, we demonstrated polydopamine-coated graphene oxide/Fe3O4 (PDA@GO/Fe3O4) imprinted nanoparticles coupled with magnetic separation for fast and selective removal of fluoroquinolone antibiotics in water. The nanoparticles were prepared by the self-polymerization of dopamine using sarafloxacin as a template. The imprinted PDA film of 10~20 nm uniformly covered the surface of GO/Fe3O4 providing selective binding sites. The nanoparticles showed rapid binding and a large capacity (70.9 mg/g). The adsorption data fitted well the Langmuir and pseudo-second order kinetic equations. The nanoparticles could be easily separated by a magnet following the adsorption and then regenerated by simple washing for repetitive adsorptions. The nanoparticles were successfully used for the removal of fluoroquinolone antibiotics in seawater, with removal efficiencies of more than 95%. The proposed strategy has potentials for efficient removal of antibiotics in environmental water.
Collapse
|
39
|
Devi P, Saroha AK. Utilization of sludge based adsorbents for the removal of various pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 578:16-33. [PMID: 27838056 DOI: 10.1016/j.scitotenv.2016.10.220] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/29/2016] [Accepted: 10/29/2016] [Indexed: 05/13/2023]
Abstract
Sludge based adsorbents are widely used for the removal of various pollutants from water and wastewater systems and the available data is much diversified. The purpose of this review is to organize and critically review the scattered available information on the potential of use of sludge based adsorbents for the removal of various pollutants. It was observed that performance of the sludge based adsorbents varies depending on the type of pollutants, type of precursor sludge, carbonization time-temperature profile and the type of activation conditions used. The variation in pyrolysis and activation conditions found to directly affect the adsorbent properties, adsorption capacity and the mechanism of pollutant removal by sludge based adsorbents. The interaction mechanisms of pollutants with adsorbent surface found to have a detrimental effect on desorption and regeneration of the adsorbents and its recycling potential. Therefore, desorption and regeneration technique used for recycle of the adsorbents is also discussed in detail. Moreover, life cycle and cost analysis of sludge based adsorbents is assessed to ensure the cost effectiveness of their application in water treatment operations.
Collapse
Affiliation(s)
- Parmila Devi
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Anil K Saroha
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
40
|
Ma J, Yang Q, Xu D, Zeng X, Wen Y, Liu W. Efficient removal of antibiotics in a fluidized bed reactor by facile fabricated magnetic powdered activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3820-3828. [PMID: 27900623 DOI: 10.1007/s11356-016-8114-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
Powdered activated carbons (PACs) with micrometer size are showing great potential for enabling and improving technologies in water treatment. The critical problem in achieving practical application of PAC involves simple, effective fabrication of magnetic PAC and the design of a feasible reactor that can remove pollutants and recover the adsorbent efficiently. Herein, we show that such materials can be fabricated by the combination of PAC and magnetic Fe3O4 with chitosan-Fe hydrogel through a simple co-precipitation method. According to the characterization results, CS-Fe/Fe3O4/PAC with different micrometers in size exhibited excellent magnetic properties. The adsorption of tetracycline was fast and efficient, and 99.9% removal was achieved in 30 min. It also possesses good usability and stability to co-existing ions, organics, and different pH values due to its dispersive interaction nature. Finally, the prepared CS-Fe/Fe3O4/PAC also performed well in the fluidized bed reactor with electromagnetic separation function. It could be easily separated by applying a magnetic field and was effectively in situ regenerated, indicating a potential of practical application for the removal of pollutants from water.
Collapse
Affiliation(s)
- Jianqing Ma
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qunfeng Yang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongmei Xu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xiaomei Zeng
- College of Pharmaceutics and Material Engineering, Jinhua Polytechnic, Jinhua, 321007, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
41
|
Wang W, Tian G, Zong L, Zhou Y, Kang Y, Wang Q, Wang A. From illite/smectite clay to mesoporous silicate adsorbent for efficient removal of chlortetracycline from water. J Environ Sci (China) 2017; 51:31-43. [PMID: 28115143 DOI: 10.1016/j.jes.2016.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
A series of mesoporous silicate adsorbents with superior adsorption performance for hazardous chlortetracycline (CTC) were sucessfully prepared via a facile one-pot hydrothermal reaction using low-cost illite/smectite (IS) clay, sodium silicate and magnesium sulfate as the starting materials. In this process, IS clay was "teared up" and then "rebuilt" as new porous silicate adsorbent with high specific surface area of 363.52m2/g (about 8.7 folds higher than that of IS clay) and very negative Zeta potential (-34.5mV). The inert SiOSi (Mg, Al) bonds in crystal framework of IS were broken to form Si(Al) O- groups with good adsorption activity, which greatly increased the adsorption sites served for holding much CTC molecules. Systematic evaluation on adsorption properties reveals the optimal silicate adsorbent can adsorb 408.81mg/g of CTC (only 159.7mg/g for raw IS clay) and remove 99.3% (only 46.5% for raw IS clay) of CTC from 100mg/L initial solution (pH3.51; adsorption temperature 30°C; adsorbent dosage, 3g/L). The adsorption behaviors of CTC onto the adsorbent follows the Langmuir isotherm model, Temkin equation and pseudo second-order kinetic model. The mesopore adsorption, electrostatic attraction and chemical association mainly contribute to the enhanced adsorption properties. As a whole, the high-efficient silicate adsorbent could be candidates to remove CTC from the wastewater with high amounts of CTC.
Collapse
Affiliation(s)
- Wenbo Wang
- Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou 730000, China
| | - Guangyan Tian
- Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zong
- Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou 730000, China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuru Kang
- Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou 730000, China
| | - Qin Wang
- Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou 730000, China
| | - Aiqin Wang
- Center of Eco-materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
42
|
Hu D, Wang L. Adsorption of amoxicillin onto quaternized cellulose from flax noil: Kinetic, equilibrium and thermodynamic study. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.04.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Hu T, Lv H, Shan S, Jia Q, Su H, Tian N, He S. Porous structured MIL-101 synthesized with different mineralizers for adsorptive removal of oxytetracycline from aqueous solution. RSC Adv 2016. [DOI: 10.1039/c6ra11684a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, highly porous MIL-101 materials using hydrochloric acid (HCl) or hydrofluoric acid (HF) as a mineralizer were synthesized.
Collapse
Affiliation(s)
- Tianding Hu
- School of Chemical Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| | - Hongting Lv
- School of Chemical Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| | - Shaoyun Shan
- School of Chemical Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| | - Qingming Jia
- School of Chemical Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| | - Hongying Su
- School of Chemical Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| | - Na Tian
- School of Chemical Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| | - Shanchuan He
- School of Chemical Engineering
- Kunming University of Science and Technology
- Kunming 650093
- China
| |
Collapse
|
44
|
Au-Pd nanoparticles-decorated TiO2 nanobelts for photocatalytic degradation of antibiotic levofloxacin in aqueous solution. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.095] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
dos Reis GS, Adebayo MA, Lima EC, Sampaio CH, Prola LDT. Activated Carbon from Sewage Sludge for Preconcentration of Copper. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1076833] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Xu G, Yang X, Spinosa L. Development of sludge-based adsorbents: preparation, characterization, utilization and its feasibility assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 151:221-32. [PMID: 25577702 DOI: 10.1016/j.jenvman.2014.08.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 05/09/2023]
Abstract
The increasing generation of sludge and its subsequent treatment are very sensitive environmental problems. For a more stable and sustainable treatment of sludge, there have been many studies, including the conversion of sludge into sludge-based adsorbents (SBAs) for pollutants removal. In this review, current SBAs preparation conditions and use as adsorbent for contaminant removal in water treatment are summarized and discussed. Carbonization, physical activation and chemical activation are three common preparation methods. The controlling key parameters include pyrolysis temperature, dwell time, heating rate, activator and feedstock type. The efficacy of SBAs in contaminant adsorption depends on their surface area, pore size distribution, surface functional groups and ion-exchange capacity. It has been demonstrated that SBAs can attain high uptakes of dyes and metal ions due to their high cation exchange capacity; whereas the strong antibiotics adsorption performance of SBAs derives from high degree of mesoporosity. In addition, thermal treatment significantly stabilizes heavy metals contained in sludge. The paper also discusses the economic feasibility and environmental safety of preparation and application of SBAs. Further research will include investigations on the migration and transformation of element in sludge by thermal treatment, more economical and efficient chemical activation reagents, obtaining SBAs for designated application, combination of coagulation and SBAs adsorption, regeneration of SBAs and full-scale tests.
Collapse
Affiliation(s)
- Guoren Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xin Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | | |
Collapse
|
47
|
Huang J, Yang ZH, Zeng GM, Wang HL, Yan JW, Xu HY, Gou CL. A novel approach for improving the drying behavior of sludge by the appropriate foaming pretreatment. WATER RESEARCH 2015; 68:667-669. [PMID: 25462771 DOI: 10.1016/j.watres.2014.10.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 06/04/2023]
Abstract
Foaming pretreatment has long been recognized to promote drying materials with sticky and viscous behaviors. A novel approach, CaO addition followed by appropriate mechanical whipping, was employed for the foaming of dewatered sludge at a moisture content of 80-85%. In the convective drying, the foamed sludge at 0.70 g/mL had the best drying performance at any given temperature, which saved 35-41% drying time for reaching 20% moisture content compared with the non-foamed sludge. Considering the maximum foaming efficiency, the optimal CaO addition was found at 2.0 wt%. For a better understanding of the foaming mechanisms, the foamability of sludge processed with other pretreatment methods, including NaOH addition (0-3.0 wt%) and heating application (60-120 °C), were investigated while continuously whipping. Their recovered supernatant phases were characterized by pH, surface tension, soluble chemical oxygen demand (sCOD), protein concentration, polysaccharide concentration and spectra of excitation-emission matrices (EEM). These comparative studies indicated that the sludge foaming was mainly derived from the decreased surface tension by the surfactants and the promoted foam persistence by the protein derived compounds. Further, a comprehensive analysis of the sludge drying characteristics was performed including the surface moisture evaporation, the effective moisture diffusivity and the micromorphology of dried sludge. The results indicated that the drying advantages of foamed sludge were mainly attributed to the larger evaporation surface in a limited drying area and the more active moisture capillary movement through the liquid films, which resulted in longer constant evaporation rate periods and better effective moisture diffusivity, respectively.
Collapse
Affiliation(s)
- Jing Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Liu Y, Chen J, Chen M, Zhang B, Wu D, Cheng Q. Adsorption characteristics and mechanism of sewage sludge-derived adsorbent for removing sulfonated methyl phenol resin in wastewater. RSC Adv 2015. [DOI: 10.1039/c5ra17125c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sulfonated methyl phenol resin (SMP) is one of the most popular organic additives in drilling fluid.
Collapse
Affiliation(s)
- Yucheng Liu
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu 610500
- China
| | - Ju Chen
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu 610500
- China
| | - Mingyan Chen
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu 610500
- China
| | - Bo Zhang
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu 610500
- China
| | - Danni Wu
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu 610500
- China
| | - Qixuan Cheng
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu 610500
- China
| |
Collapse
|
49
|
He Y, Liao X, Liao L, Shu W. Low-cost adsorbent prepared from sewage sludge and corn stalk for the removal of COD in leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8157-8166. [PMID: 24671396 DOI: 10.1007/s11356-014-2755-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
Sewage sludge (SS) with corn stalk (CS) was used to prepare SS-based activated carbon (SAC) by pyrolysis with ZnCl2. The effects of mixing ratio on surface area and pore size distribution, elemental composition, surface chemistry, and morphology were investigated. The results demonstrated that the addition of CS into SS samples improved the surface area (from 92 to 902 m(2)/g) and the microporosity (from 1.2 to 4.1%) of the adsorbents and, therefore, enhancing the adsorption performance. The removal of leachate chemical oxygen demand (COD) was also determined. It was found that the COD removal rate reached 85% at pH 4 with the SAC (90 wt% CS) dosage of 2% (g/mL) and an adsorption time of 40 min. The adsorption experimental data were fitted by both Langmuir and Freundlich adsorption isotherms. Long-chain alkanes and refractory organics were found in raw leachate, but could be removed by SAC largely.
Collapse
Affiliation(s)
- Ying He
- College of Environmental Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | | | | | | |
Collapse
|
50
|
Baghapour MA, Shirdarreh MR, Derakhshan Z, Faramarzian M. Modeling Amoxicillin Removal From Aquatic Environments in Biofilters. HEALTH SCOPE 2014. [DOI: 10.17795/jhealthscope-14059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|