1
|
You N, Deng SH, He H, Hu J. Ferromanganese oxide-functionalized TiO 2 for rapid catalytic ozonation of PPCPs through a coordinated oxidation process with adjusted composition and strengthened generation of reactive oxygen species. WATER RESEARCH 2024; 258:121813. [PMID: 38820991 DOI: 10.1016/j.watres.2024.121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
Ferromanganese oxide (MFOx) was first utilized to functionalize TiO2 and an MFOx@TiO2 catalyst was developed for catalytic ozonation for rapid attack of pharmaceutical and personal care products (PPCPs) with adjusted reactive oxygen species (ROSs) composition and strengthened ROSs generation. Unlike Al2O3, which strongly relied on adsorption and was significantly influenced by MFOx loading, synergistic catalytical effects of MFOx and TiO2 were observed, and optimal MFOx doping of 2 wt% and MFOx@TiO2 dosage of 500 ppm were obtained for catalyzing ozonation. In ibuprofen (IBP) degradation, MFOx@TiO2-catalyzed ozonation (MFOx@TiO2/O3) obtained 2.0-, 4.7- and 6.9-folds the kobs of TiO2/O3, MFOx/O3 and bare ozonation (B/O3). Stronger O3 decomposition was observed by MFOx@TiO2 over bare TiO2 with the participation of redox pairs Fe(II)/Fe(III) and Mn(II)/Mn(III)/Mn(IV) and increased surface oxygen vacancies (SOVs) from 9.8 % to 33.7 % was detected. The results revealed that Fe(II), Mn(II) and Mn(III) with low valance accelerated Ti(III) generation from Ti(VI), obtaining an unprecedented high Ti(III) composition occupying 35.3 % of the total Ti atoms. Ti(III) catalyzed the direct reduction of SOVs-O2 to •O2-, and it accelerated the formation of Ti(VI)-OH and Ti(VI)-O which catalyzed O3 decomposition into •O2-. •O2- was found to primarily initiate IBP degradation with nucleophilic addition and dominated over 66 % IBP removal. The enhanced •O2- generation further strengthened •OH and 1O2 production. MFOx@TiO2/O3 obtained 17 %, 21 % and 30 % higher TOC removal over TiO2/O3, MFOx/O3 and B/O3, respectively. Acute toxicity tests confirmed the effective toxicity control of organics by MFOx@TiO2/O3 process (inhibition rate: 10.9 %). Degradation test of atenolol and sulfamethoxazole confirmed the catalytic effects of MFOx@TiO2. MFOx@TiO2 performed strong resistance to water matrix in application test and showed good stability and reusability. The study proposed an effective catalyst for strengthening the ozonation process on PPCPs degradation and provided an in-depth understanding of the mechanisms and characteristics of the MFOx@TiO2 catalyst and MFOx@TiO2/O3 process.
Collapse
Affiliation(s)
- Na You
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Shi-Hai Deng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Haiyang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| |
Collapse
|
2
|
Huang X, Li C, Wei T, Liu N, Yao Y, Wang Z, Hu Y, Fang Q, Guan S, Xue Y, Wu T, Zhang T, Tang M. Oropharyngeal aspirated Ag/TiO 2 nanohybrids: Transformation, distribution and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168309. [PMID: 37944607 DOI: 10.1016/j.scitotenv.2023.168309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
The wide application of Ag-loaded TiO2 nanohybrids photocatalysts on environment and energy increases the lung exposure risk to humans. Ag/TiO2 nanohybrids inhalation can cause pulmonary toxicity, and there are concerns about whether the loaded silver can be released and cause toxic effects on extrapulmonary organs. Therefore, in this study, the possible biotransformation, biodistribution, and toxicity of oropharyngeal aspirated Ag/TiO2 nanohybrids were investigated first time in vitro and in vivo to answer this question. Firstly, the results of biotransformation showed that the ultrafine silver nanoparticles (~3.5 nm, 2 w/w%) loaded on the surface of nano-TiO2 (~25 nm) could agglomerate and release in Gamble's solution, and the hydrodynamic diameter of the nanohybrids agglomerates increased from about 200 nm to 1 μm. Furthermore, after exposure 10 mg/kg Ag/TiO2 nanohybrids to C57BL/6 J male mice by oropharyngeal aspiration weekly, the biodistribution results showed that the released silver could result in blood, liver, and brain distribution within 28 d. Finally, body weight, organ coefficient, blood biochemical indicators of liver and kidney function, and pathological images demonstrated that although silver could release and lead to extrapulmonary organ distribution, it did not cause obvious extrapulmonary organ damage. The original lung was still the main toxicity and accumulation target organ of Ag/TiO2 nanohybrids, which mainly manifested as the pro-inflammatory and pro-fibrotic effects that should be focused on in the future. Therefore, this study is of great significance in evaluating the safety of Ag-loaded TiO2 nanoparticles and predicting their toxic mechanisms.
Collapse
Affiliation(s)
- Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Congcong Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yuanyuan Hu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Qing Fang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Shujing Guan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
3
|
Rahmati S, Karimi H, Alizadeh M, Khazaei AH, Paiva-Santos AC, Rezakhani L, Sharifi E. Prospects of plant-derived exosome-like nanocarriers in oncology and tissue engineering. Hum Cell 2024; 37:121-138. [PMID: 37878214 DOI: 10.1007/s13577-023-00994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Almost all cell types, either in vivo or in vitro, create extracellular vesicles (EVs). Among them are exosomes (EXOs), i.e., tiny nanovesicles containing a lipid bilayer, proteins, and RNAs that are actively involved in cellular communication, indicating that they may be exploited as both diagnostics and therapeutics for conditions like cancer. These nanoparticles can also be used as nanocarriers in many types of research to carry agents such as drugs. Plant-derived exosome-like nanoparticles (PENs) are currently under investigation as a substitute for EXOs formed from mammalian cells, allowing researchers to get beyond the technical constraints of mammalian vesicles. Because of their physiological, chemical, and biological properties, PENs have a lot of promise for use as nanocarriers in drug delivery systems that can deliver various dosages, especially when it comes to large-scale repeatability. The present study has looked at the origins and isolation techniques of PENs, their anticancer properties, their usage as nanocarriers in the treatment of different illnesses, and their antioxidant properties. These nanoparticles can aid in the achievement of therapeutic objectives, as they have benign, non-immunogenic side effects and can pass biological barriers. Time-consuming and perhaps damaging PEN separation techniques is used. For the current PEN separation techniques to be used in commercial and therapeutic settings, they must be altered. In this regard, the concurrent application of biological sciences can be beneficial for improving PEN separation techniques. PENs' innate metabolic properties provide them a great deal of promise for application in drug delivery systems. However, there could be a risk to both the loaded medications and the intrinsic bioactive components if these particles are heavily armed with drugs. Therefore, to prevent these side effects, more studies are needed to devise sophisticated drug-loading procedures and to learn more about the physiology of PENs.
Collapse
Affiliation(s)
- Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hafez Karimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Hossein Khazaei
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran.
| |
Collapse
|
4
|
Calaixo MRC, Ribeirinho-Soares S, Madeira LM, Nunes OC, Rodrigues CSD. Catalyst-free persulfate activation by UV/visible radiation for secondary urban wastewater disinfection. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119486. [PMID: 37925988 DOI: 10.1016/j.jenvman.2023.119486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
This study focuses on the treatment of secondary urban wastewater (W) to improve the effluent quality aiming at the reduction of pathogenic microorganisms for the safe reuse of the treated wastewater (TW). Catalyst-free persulfate activation by radiation-based oxidation was applied as a treatment technology. A parametric study was carried out to select the best operating conditions. Total enterobacteria inactivation (quantified by the log reduction (CFU/100 mL)) was achieved when using [S2O82-] = 1 mM, pH = 8.5 (natural pH of W), T = 25 °C, and I = 500 W/m2. However, storing TW for 3 days promoted the regrowth of bacteria, risking its reutilization. Therefore, in this study, and for the first time, the potential beneficial role of inoculation of wastewater treated by the radiation-activated persulfate process with a diverse bacterial community was evaluated in order to control the regrowth of potentially harmful microorganisms through bacterial competition. For this, TW was diluted with river water (R) in the volume percentages of 5, 25, and 50 (percentages refer to R content), and enterobacteria and total heterotrophs were enumerated before and after storage for 72 h. The results showed total heterotrophs and enterobacteria regrowth for TW and R + TW diluted 5 and 25% after storage. However, for R + TW diluted 50%, only the total heterotrophs regrew. Hence, the treated wastewater generated by the oxidative process diluted with 50% river water complies with the legislated limits for reuse in urban uses or irrigation.
Collapse
Affiliation(s)
- Mário R C Calaixo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Sara Ribeirinho-Soares
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Luis M Madeira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Carmen S D Rodrigues
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
5
|
Solvothermal Synthesis of g-C3N4/TiO2 Hybrid Photocatalyst with a Broaden Activation Spectrum. Catalysts 2022. [DOI: 10.3390/catal13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A solvothermal self-made composite of graphitic carbon nitride (g-C3N4) and commercially available titanium dioxide (TiO2) demonstrated the removal of commercial acid green-25 (AG-25) textile dye in a saline water matrix when activated by ultraviolet (UV) and visible light. The g-C3N4-TiO2 composite was characterized by X-ray diffraction (XRD), Nitrogen sorption–desorption recording and modeling by the Brunauer–Emmett–Teller (BET) theory, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and electron spin resonance (ESR). The solvothermal process did not modify the crystalline structure of the g-C3N4 and TiO2 but enhanced the surface area by interlayer delamination of g-C3N4. Under a simulated solar spectrum (including UVA/B and vis wavelengths), the degradation rate of AG-25 by the composite was two and four times higher than that of TiO2 and pure g-C3N4, respectively (0.04, 0.02, and 0.01 min−1). Unlike TiO2, the g-C3N4-TiO2 composite was activated with visible light (the UV portion of the solar spectrum was filtered out). This work provides insight into the contribution of various reactive oxidative species (ROS) to the degradation of AG-25 by the composite.
Collapse
|
6
|
Sudarsh A, Remya N, Swain A. Recent research advancements in microwave photocatalytic treatment of aqueous solutions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:142. [PMID: 36418594 DOI: 10.1007/s10661-022-10604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
In recent years, microwave (MW) photocatalytic treatment was used for the removal of several pollutants from wastewater to overcome the disadvantages of conventional photocatalytic treatment. MW irradiation significantly enhanced the photocatalytic degradation pollutants and is considered an innovative treatment approach. This enhancement in photoactivity was mainly attributed to thermal and non-thermal effects of the MW irradiation. Even though the thermal effects of MW irradiation have been conclusively studied, there are many conflicting results regarding the non-thermal effects in catalysts. In general, it has been verified that the non-thermal effects are due to the electrical and magnetic properties of MW. In this article, a detailed review of the recent advancements in MW-assisted photocatalysis has been done, emphasizing the non-thermal effects of MW radiation on the surface of the catalysts. Also, the evolution of external ultraviolet (UV) sources from the conventional Hg lamp to the latest microwave-driven electrodeless lamps (MDEL) has been discussed. MW photocatalytic treatment using MDELs showed complete removal of lignin, dimethyl phthalate (DMP), and azo dye reactive brilliant red X-3B (BR) and more than 90% removal for cimetidine (CMT), rhodamine B (RB), and methylene blue (MB). A brief comparison regarding the removal efficiencies of pollutants by various AOPs and MW photocatalysis has been made to understand the enhanced photoactivity. In addition, various operating parameters that affect the MW photocatalysis like MW intensity, pH, dissolved oxygen, and catalyst dosage; the degradation pathways of various pollutants; and the cost assessment of MW photocatalysis are discussed in detail. This paper will deliver a scientific and technical overview and useful information to scientists and engineers working in this field.
Collapse
Affiliation(s)
- Arjun Sudarsh
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Argul, Khordha, 752050, Odisha, India
| | - Neelancherry Remya
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Argul, Khordha, 752050, Odisha, India.
| | - Anil Swain
- School of Infrastructure, Indian Institute of Technology Bhubaneswar, Argul, Khordha, 752050, Odisha, India
| |
Collapse
|
7
|
Sun G, Zhang Q, Dong Z, Dong D, Fang H, Wang C, Dong Y, Wu J, Tan X, Zhu P, Wan Y. Antibiotic resistant bacteria: A bibliometric review of literature. Front Public Health 2022; 10:1002015. [PMID: 36466520 PMCID: PMC9713414 DOI: 10.3389/fpubh.2022.1002015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant bacteria (ARB) are a serious threat to the health of people and the ecological environment. With this problem becoming more and more serious, more countries made research on the ARB, and the research number has been sharply increased particularly over the past decade. Therefore, it is quite necessary to globally retrace relevant researches on the ARB published from 2010 to 2020. This will help researchers to understand the current research situation, research trends and research hotspots in this field. This paper uses bibliometrics to examine publications in the field of ARB from 2010 to 2020 that were retrieved from the Web of Science (WOS). Our study performed a statistical analysis of the countries, institutions, journals, authors, research areas, author keywords, Essential Science Indicators (ESI) highly cited papers, and ESI hotspots papers to provide an overview of the ARB field as well as research trends, research hotspots, and future research directions in the field. The results showed that the number of related studies is increasing year by year; the USA is most published in the field of ARB; China is the most active in this field in the recent years; the Chinese Acad Sci published the most articles; Sci. Total Environ. published the greatest number of articles; CM Manaia has the most contributions; Environmental Sciences and Ecology is the most popular research area; and "antibiotic resistance," "antibiotics," and "antibiotic resistance genes" were the most frequently occurring author keywords. A citation analysis showed that aquatic environment-related antibiotic resistance is a key research area in this field, while antimicrobial nanomaterial-related research is a recent popular topic.
Collapse
Affiliation(s)
- Guojun Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Yichen Dong
- Department of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Jiezhou Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuanzhe Tan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Peiyao Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
8
|
Luan J, Niu B, Ma B, Yang G, Liu W. Preparation and Property Characterization of In 2YSbO 7/BiSnSbO 6 Heterojunction Photocatalyst toward Photocatalytic Degradation of Indigo Carmine within Dye Wastewater under Visible-Light Irradiation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6648. [PMID: 36233988 PMCID: PMC9571768 DOI: 10.3390/ma15196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In2YSbO7 and In2YSbO7/BiSnSbO6 heterojunction photocatalyst were prepared by a solvothermal method for the first time. The structural characteristics of In2YSbO7 had been represented. The outcomes showed that In2YSbO7 crystallized well and possessed pyrochlore constitution, a stable cubic crystal system and space group Fd3m. The lattice parameter of In2YSbO7 was discovered to be a = 11.102698 Å and the band gap energy of In2YSbO7 was discovered to be 2.68 eV, separately. After visible-light irradiation of 120 minutes (VLGI-120M), the removal rate (ROR) of indigo carmine (IC) reached 99.42% with In2YSbO7/BiSnSbO6 heterojunction (IBH) as a photocatalyst. The ROR of total organic carbon (TOC) reached 93.10% with IBH as a photocatalyst after VLGI-120M. Additionally, the dynamics constant k which was taken from the dynamic curve toward (DCT) IC density and VLGI time with IBH as a catalyst reached 0.02950 min-1. The dynamics constant k which came from the DCT TOC density and VLGI time with IBH as a photocatalyst reached 0.01783 min-1. The photocatalytic degradation of IC in dye wastewater (DW) with IBH as a photocatalyst under VLGI was in accordance with the first-order kinetic curves. IBH was used to degrade IC in DW for three cycles of experiments under VLGI, and the ROR of IC reached 98.74%, 96.89% and 94.88%, respectively, after VLGI-120M, indicating that IBH had high stability. Compared with superoxide anions or holes, hydroxyl radicals possessed the largest oxidative ability for removing IC in DW, as demonstrated by experiments with the addition of trapping agents. Lastly, the probable degradation mechanism and degradation pathway of IC were revealed in detail. The results showed that a visible-light-responsive heterojunction photocatalyst which possessed high catalytic activity and a photocatalytic reaction system which could effectively remove IC in DW were obtained. This work provided a fresh scientific research idea for improving the performance of a single catalyst.
Collapse
Affiliation(s)
- Jingfei Luan
- School of Physics, Changchun Normal University, Changchun 130032, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Bowen Niu
- School of Physics, Changchun Normal University, Changchun 130032, China
| | - Bingbing Ma
- School of Physics, Changchun Normal University, Changchun 130032, China
| | - Guangmin Yang
- School of Physics, Changchun Normal University, Changchun 130032, China
| | - Wenlu Liu
- School of Physics, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
9
|
Kerek Á, Sasvári M, Jerzsele Á, Somogyi Z, Janovák L, Abonyi-Tóth Z, Dékány I. Photoreactive Coating Material as an Effective and Durable Antimicrobial Composite in Reducing Bacterial Load on Surfaces in Livestock. Biomedicines 2022; 10:biomedicines10092312. [PMID: 36140413 PMCID: PMC9496029 DOI: 10.3390/biomedicines10092312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
Titanium dioxide (TiO2) is a well-known photocatalytic compound that can be used to effectively reduce the presence of pathogens in human and animal hospitals via ROS release. The aim of this study was to investigate the efficacy of a polymer-based composite layer containing TiO2 and zinc oxide (ZnO) against Escherichia coli (E. coli) of animal origin. We showed that the photocatalyst coating caused a significant (p < 0.001) reduction in pathogen numbers compared to the control with an average reduction of 94% over 30 min. We used six light sources of different wattages (4 W, 7 W, 9 W, 12 W, 18 W, 36 W) at six distances (35 cm, 100 cm, 150 cm, 200 cm, 250 cm, 300 cm). Samples (n = 2160) were taken in the 36 settings and showed no significant difference in efficacy between light intensity and distance. We also investigated the influence of organic contaminant that resulted in lower activity as well as the effect of a water jet and a high-pressure device on the antibacterial activity. We found that the latter completely removed the coating from the surface, which significantly (p < 0.0001) reduced its antibacterial potential. As a conclusion, light intensity and distance does not reduce the efficacy of the polymer, but the presence of organic contaminants does.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
- Correspondence: (Á.K.); (I.D.)
| | - Mátyás Sasvári
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
| | - Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Zsolt Abonyi-Tóth
- Department of Biomathematics and Informatics, University of Veterinary Medicine, István Street 2, H-1078 Budapest, Hungary
| | - Imre Dékány
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
- Correspondence: (Á.K.); (I.D.)
| |
Collapse
|
10
|
Felis E, Buta-Hubeny M, Zieliński W, Hubeny J, Harnisz M, Bajkacz S, Korzeniewska E. Solar-light driven photodegradation of antimicrobials, their transformation by-products and antibiotic resistance determinants in treated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155447. [PMID: 35469868 DOI: 10.1016/j.scitotenv.2022.155447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/29/2022] [Accepted: 04/18/2022] [Indexed: 05/23/2023]
Abstract
This study aimed to assess the possibility of using solar light-driven photolysis and TiO2-based photocatalysis to remove (1) antibiotic residues, (2) their transformation products (TPs), (3) antibiotic resistance determinants, and (4) genes identifying the indicator bacteria in a treated wastewater (secondary effluent). 16 antimicrobials belonging to the different classes and 45 their transformation by-products were selected for the study. The most susceptible to photochemical decomposition was tetracycline, which was completely removed in the photocatalysis process and in more than 80% in the solar light-driven photolysis. 83.8% removal (on average) was observed using photolysis and 89.9% using photocatalysis in the case of the tested genes, among which the genes sul1, uidA, and intI1 showed the highest degree of removal by both methods. The study revealed that applied methods promisingly remove the tested antibiotics, their TPs and genes even in such a complex matrix including treated wastewater and photocatalysis process had a higher removal efficiency of antibiotics, TPs and genes tested. Moreover, the high percentage removal of the intI1 gene (>93%) indicates the possibilities of use of the solar light-driven photolysis and TiO2-based photocatalysis in minimizing the antibiotic resistance genes transfer by mobile genetic elements.
Collapse
Affiliation(s)
- Ewa Felis
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland; Silesian University of Technology, Centre for Biotechnology, ul. B. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Martyna Buta-Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Jakub Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| | - Sylwia Bajkacz
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland; Silesian University of Technology, Centre for Biotechnology, ul. B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-719 Olsztyn, Poland
| |
Collapse
|
11
|
Degradation of Diazepam with Gamma Radiation, High Frequency Ultrasound and UV Radiation Intensified with H2O2 and Fenton Reagent. Processes (Basel) 2022. [DOI: 10.3390/pr10071263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A degradation study of diazepam (DZP) in aqueous media by gamma radiation, high frequency ultrasound, and UV radiation (artificial-solar), as well with each process intensified with oxidizing agents (H2O2 and Fenton reagent) was performed. The parameters that influence the degradation of diazepam such as potency and frequency, irradiation dose, pH and concentration of the oxidizing agents used were studied. Gamma radiation was performed in a 60Co source irradiator; an 11 W lamp was used for artificial UV radiation, and sonification was performed at frequency values of 580 and 862 kHz with varying power values. In the radiolysis a 100% degradation was obtained at 2500 Gy. For the sonolysis, 28.3% degradation was achieved after 180 min at 862 kHz frequency and 30 W power. In artificial photolysis, a 38.2% degradation was obtained after 300 min of UV exposure. The intensification of each process with H2O2 increased the degradation of the drug. However, the best results were obtained by combining the processes with the Fenton reagent for optimum H2O2 and Fe2+ concentrations, respectively, of 2.95 mmol L−1 and of 0.06 mmol L−1, achieving a 100% degradation in a shorter treatment time, with a dose value of 750 Gy in the case of gamma radiation thanks to increasing in the amount of free radicals in water. The optimized processes were evaluated in a real wastewater, with a total degradation at 10 min of reaction.
Collapse
|
12
|
Gmurek M, Borowska E, Schwartz T, Horn H. Does light-based tertiary treatment prevent the spread of antibiotic resistance genes? Performance, regrowth and future direction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153001. [PMID: 35031375 DOI: 10.1016/j.scitotenv.2022.153001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The common occurrence of antibiotic-resistance genes (ARGs) originating from pathogenic and facultative pathogenic bacteria pose a high risk to aquatic environments. Low removal of ARGs in conventional wastewater treatment processes and horizontal dissemination of resistance genes between environmental bacteria and human pathogens have made antibiotic resistance evolution a complex global health issue. The phenomenon of regrowth of bacteria after disinfection raised some concerns regarding the long-lasting safety of treated waters. Despite the inactivation of living antibiotic-resistant bacteria (ARB), the possibility of transferring intact and liberated DNA containing ARGs remains. A step in this direction would be to apply new types of disinfection methods addressing this issue in detail, such as light-based advanced oxidation, that potentially enhance the effect of direct light interaction with DNA. This study is devoted to comprehensively and critically review the current state-of-art for light-driven disinfection. The main focus of the article is to provide an insight into the different photochemical disinfection methods currently being studied worldwide with respect to ARGs removal as an alternative to conventional methods. The systematic comparison of UV/chlorination, UV/H2O2, sulfate radical based-AOPs, photocatalytic processes and photoFenton considering their mode of action on molecular level, operational parameters of the processes, and overall efficiency of removal of ARGs is presented. An in-depth discussion of different light-dependent inactivation pathways, influence of DBP and DOM on ARG removal and the potential bacterial regrowth after treatment is presented. Based on presented revision the risk of ARG transfer from reactivated bacteria has been evaluated, leading to a future direction for research addressing the challenges of light-based disinfection technologies.
Collapse
Affiliation(s)
- M Gmurek
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 90-924 Lodz, Poland; Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany; Karlsruhe Institute of Technology, Institute of Functional Interfaces, Microbiology/Molecular Biology Department, Eggenstein-Leopoldshafen, Germany.
| | - E Borowska
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany
| | - T Schwartz
- Karlsruhe Institute of Technology, Institute of Functional Interfaces, Microbiology/Molecular Biology Department, Eggenstein-Leopoldshafen, Germany
| | - H Horn
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany; DVGW German Technical and Scientific Association for Gas and Water Research Laboratories, Water Chemistry and Water Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
13
|
Liu Y, Gao J, Wang Y, Duan W, Liu J, Zhang Y, Zhang H, Zhao M. The removal of antibiotic resistant bacteria and genes and inhibition of the horizontal gene transfer by contrastive research on sulfidated nanoscale zerovalent iron activating peroxymonosulfate or peroxydisulfate. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126866. [PMID: 34482079 DOI: 10.1016/j.jhazmat.2021.126866] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistant bacteria (ARB) and the antibiotic resistance genes (ARGs) dissemination via plasmid-mediated conjugation have attracted considerable attentions. In this research, sulfidated nanoscale zerovalent iron (S-nZVI)/peroxymonosulfate (PMS) and S-nZVI/peroxydisulfate (PDS) process were investigated to inactivate ARB (Escherichia coli DH5α with RP4 plasmid, Pseudomonas. HLS-6 contains sul1 and intI1 on genome DNA sequence). S-nZVI/PMS system showed higher efficiency than S-nZVI/PDS on ARB inactivation. Thus, the optimal condition 28 mg/L S-nZVI coupled with 153.7 mg/L (0.5 mM) PMS was applied to remove both intracellular ARGs (iARGs) and ARB. The oxidative damage of ARB cell was systemically studied by cell viability, intracellular Mg2+ levels, the changes of extracellular and internal structure, integrity of cell walls and membranes and enzymatic activities. S-nZVI/PMS effectively inactivated ARB (~7.32 log) within 15 min. These effects were greatly higher than those achieved individually. Moreover, removal efficiencies of iARGs sul1, intI1 and tetA were 1.52, 1.79 and 1.56 log, respectively. These results revealed that S-nZVI and PMS have a synergistic effect against ARB and iARGs. The regrowth assays illustrated that the ARB were effectively inactivated. By verifying the inhibitory impacts of S-nZVI/PMS treatment on conjugation transfer, this work highlights a promising alternative technique for inhibiting the horizontal gene transfer.
Collapse
Affiliation(s)
- Ying Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China.
| | - Yuwei Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Wanjun Duan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Jie Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Haoran Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Mingyan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
14
|
Preparation, Property Characterization of Gd2YSbO7/ZnBiNbO5 Heterojunction Photocatalyst for Photocatalytic Degradation of Benzotriazole under Visible Light Irradiation. Catalysts 2022. [DOI: 10.3390/catal12020159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The Gd2YSbO7/ZnBiNbO5 heterojunction photocatalyst was synthesized for the first time by the facile in situ precipitation method. The structural properties of a Gd2YSbO7/ZnBiNbO5 heterojunction photocatalyst were characterized by X-ray diffractometer, scanning electron microscope-X ray energy dispersive spectra, X-ray photoelectron spectrograph and UV-Vis diffuse reflectance spectrophotometer. The band gap energy (BGE) of Gd2YSbO7 or ZnBiNbO5 was found to be 2.396 eV or 2.696 eV, respectively. The photocatalytic property of Gd2YSbO7 or ZnBiNbO5 or Gd2YSbO7/ZnBiNbO5 heterojunction photocatalyst (GZHP) was reported. After a visible-light irradiation of 145 minutes (VLI-145 min), the removal rate (RER) of benzotriazole reached 99.05%, 82.45%, 78.23% or 47.30% with Gd2YSbO7/ZnBiNbO5 heterojunction (GZH), Gd2YSbO7, ZnBiNbO5 or N-doped TiO2 (NTO) as photocatalyst. In addition, the kinetic constant k, derived from the dynamic curve toward benzotriazole concentration and visible light irradiation time with GZH as a photocatalyst, reached 0.0213 min−1. Compared with Gd2YSbO7 or ZnBiNbO5 or NTO, GZHP showed maximal photocatalytic activity (PHA) for the photocatalytic degradation of benzotriazole under visible-light irradiation. The RER of total organic carbon during the photocatalytic degradation of benzotriazole reached 90.18%, 74.35%, 70.73% or 42.15% with GZH as a photocatalyst or with Gd2YSbO7, ZnBiNbO5 or NTO as a photocatalyst after VLI-145 min. Moreover, the kinetic constant k, which came from the dynamic curve toward total organic carbon concentration and visible light irradiation time with GZH as a photocatalyst, reached 0.0110 min−1. Based on above results, GZHP showed the maximal mineralization percentage ratio when GZHP degraded benzotriazole. The results showed that hydroxyl radicals was the main oxidation radical during the degradation of benzotriazole. The photocatalytic degradation of benzotriazole with GZH as a photocatalyst conformed to the first-order reaction kinetics. Our research aimed to improve the photocatalytic properties of the single photocatalyst.
Collapse
|
15
|
Yang H, He D, Liu C, Zhang T, Qu J, Jin D, Zhang K, Lv Y, Zhang Z, Zhang YN. Visible-light-driven photocatalytic disinfection by S-scheme α-Fe 2O 3/g-C 3N 4 heterojunction: Bactericidal performance and mechanism insight. CHEMOSPHERE 2022; 287:132072. [PMID: 34481174 DOI: 10.1016/j.chemosphere.2021.132072] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
High-performance photocatalytic applications require to develop heterostructures between two semiconductors with matched band energy levels to facilitate charge-carrier separation. The S-scheme photocatalytic system has great potential to be explored, in terms of the improvement of charge separation, however, small efforts have been made in photocatalytic disinfection application. In this study, a non-toxic and low-cost S-scheme photocatalytic system composed of α-Fe2O3 and g-C3N4 was fabricated by in-suit production of g-C3N4 and firstly applied into water disinfection. The α-Fe2O3/g-C3N4 junction demonstrated an enhanced activity for photocatalytic bacterial inactivation, with the complete inactivation of 7 log10 cfu·mL-1 of Escherichia coli K-12 cells within 120 min under visible light irradiation. Its logarithmic bacterial inactivation efficiency was nearly 7 times better than that of single g-C3N4. The experimental results suggested that the effective prevention of charge-carrier recombination led to an improved generation of reactive oxygen species (ROSs), resulting in impressive disinfection performance. Moreover, the DNA gel electrophoresis experiments validated the reason for the irreversible death of bacteria, which was the leakage and destruction of chromosomal DNA. In addition, this S-scheme heterojunction also showed excellent photocatalytic disinfection performance in authentic water matrices (including tap water, secondary treated sewage effluent, and surface water) under visible light irradiation. Hence, the α-Fe2O3/g-C3N4 composite has great potential for sustainable and efficient photocatalytic disinfection applications.
Collapse
Affiliation(s)
- Hao Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Dongyang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Chuanhao Liu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Tingting Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Dexin Jin
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Kangning Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Yihan Lv
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Zhaocheng Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| |
Collapse
|
16
|
Synthesis, Property Characterization and Photocatalytic Activity of the Ag3PO4/Gd2BiTaO7 Heterojunction Catalyst under Visible Light Irradiation. Catalysts 2021. [DOI: 10.3390/catal12010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new type of Gd2BiTaO7 nanocatalyst (GBT) was synthesized by a high-temperature solid-phase method, and a heterojunction photocatalyst, which was composed of GBT and silver phosphate (AP), was prepared by the facile in-situ precipitation method for the first time. The photocatalytic property of GBT or the Ag3PO4/Gd2BiTaO7 heterojunction photocatalyst (AGHP) was reported. The structural properties of GBT and AGHP were characterized by an X-ray diffractometer, scanning electron microscope–X-ray energy dispersive spectra, an X-ray photoelectron spectrograph, a synchrotron-based ultraviolet photoelectron spectroscope, a Fourier transform infrared spectrometer, an UV-Vis diffuse reflectance spectrophotometer and an electron paramagnetic resonance spectrometer. The results displayed that GBT was well crystallized with a stable cubic crystal system and space group Fd3m. The lattice parameter or band gap energy of GBT was found to be a = 10.740051 Å or 2.35 eV, respectively. After visible light irradiation of 30 min, the removal rate of bisphenol A (BPA) reached 99.52%, 95.53% or 37.00% with AGHP as the photocatalyst, with Ag3PO4 and potassium persulfate (AP-PS) as photocatalysts or with N-doped TiO2 (NT) as a photocatalyst, respectively. According to the experimental data, it could be found that the removal rate of BPA with AGHP as a photocatalyst was 2.69 times higher than that with NT as a photocatalyst. AGHP showed higher photocatalytic activity for photocatalytic degradation of BPA under visible light irradiation compared with GBT or AP-PS or NT. The removal rate of total organic carbon (TOC) was 96.21%, 88.10% or 30.55% with AGHP as a photocatalyst, with AP-PS as photocatalysts or with NT as a photocatalyst after visible light irradiation of 30 min. The above results indicated that AGHP possessed the maximal mineralization percentage ratio during the process of degrading BPA compared with GBT or AP-PS or NT. The results indicated that the main oxidation radical was •OH during the process of degrading BPA. The photocatalytic degradation of BPA with AGHP as a photocatalyst conformed to the first-order reaction kinetics. This study provided inspiration for obtaining visible light-responsive heterojunction photocatalysts with high catalytic activity and efficient removal technologies for organic pollutants and toxic pollutants, and as a result, the potential practical applications of visible light-responsive heterojunction photocatalysts were widened. The subsequent research of thin-film plating of the heterojunction catalysts and the construction of complete photoluminescent thin-film catalytic reaction systems, which utilized visible light irradiation, could provide new technologies and perspectives for the pharmaceutical wastewater treatment industry.
Collapse
|
17
|
Cationic Dye Degradation and Real Textile Wastewater Treatment by Heterogeneous Photo-Fenton, Using a Novel Natural Catalyst. Catalysts 2021. [DOI: 10.3390/catal11111358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A photo-Fenton process using a local iron oxide as a natural catalyst was compared to Fenton and UV/H2O2 advanced oxidation processes for degrading crystal violet (CV) dye in aqueous solutions. The catalyst was characterized by transmission electron microscopy (TEM), energy dispersive X-ray microanalysis (EDX), Fourier transform infrared spectroscopy (FT-IR), Raman spectrum, X-ray diffraction (XRD), UV-vis spectroscopy, and Brunauer–Emmett–Teller (BET) analysis. The optical properties proved that the catalyst represents a good candidate for photocatalytic activity. The impact of different parameters (catalyst dose, initial CV concentration, initial H2O2 concentration, pH) on the photo-Fenton efficiency was evaluated. A photo-Fenton process operated under UVC light irradiation, at spontaneous pH, with 1.0 g/L of catalyst and 30 mg/L of H2O2 was the most effective process, resulting in 98% CV dye removal within 3 h. LC-MS and ion-chromatography techniques were used to identify demethylated organic intermediates during the process. Furthermore, a regeneration study of the catalyst showed its stability and reusability (after three treatment cycles, CV dye degradation decreased from 94% to 83%). Finally, the photo-Fenton process was tested in the treatment of real textile wastewater, and the effluent was found to be in compliance with standards for industrial wastewater disposal into sewerage.
Collapse
|
18
|
Zieliński W, Korzeniewska E, Harnisz M, Drzymała J, Felis E, Bajkacz S. Wastewater treatment plants as a reservoir of integrase and antibiotic resistance genes - An epidemiological threat to workers and environment. ENVIRONMENT INTERNATIONAL 2021; 156:106641. [PMID: 34015664 DOI: 10.1016/j.envint.2021.106641] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 05/23/2023]
Abstract
Conventional mechanical and biological wastewater treatment is unable to completely eliminate all pollutants, which can therefore enter surface water bodies together with treated wastewater. In addition, bioaerosols produced during wastewater treatment can pose a threat to the health of the wastewater treatment plant staff. In order to control the impact of a wastewater treatment plant (WWTP) on the surrounding environment, including its employees, samples of wastewater and water from a river which received treated wastewater were analysed in terms of their content of antibiotics and heavy metals, levels of selected physiochemical parameters, concentrations of antibiotic-resistance genes (ARGs) and genes of integrases. Furthermore, a quantitative analysis of ARGs in the metagenomic DNA from nasal and throat swabs collected from the WWPT employees was made. Both untreated and treated wastewater samples were dominated by genes of resistance to sulphonamides (sul1, sul2), MLS group of drugs (ermF, ermB) and beta-lactams (blaOXA). A significant increase in the quantities of ARGs and concentrations of antibiotics was observed in the river following the discharge of treated wastewater in comparison to their amounts in the river water upstream from the point of discharge. Moreover, a higher concentration of ARGs was detected in the DNA from swabs obtained from the wastewater treatment plant employees than from ones collected from the control group. Many statistically significant (p < 0.05) correlations between the concentration of the gene of resistance to heavy metals cnrA versus ARGs, and between the ARGs content and the concentrations of heavy metals in both wastewater and river water samples were observed. The study has demonstrated that the mechanical and biological methods of wastewater treatment are not efficient and may affect the transmission of hazardous pollutants to the aquatic environment and to the atmospheric air. It has been shown that an activated sludge bioreactor can be a potential source of the presence of multi-drug resistant microorganisms in the air, which is a health risk to persons working in WWTPs. It has also been found that an environment polluted with heavy metals is where co-selection of antibiotic resistance may occur, in the development of which integrase genes play an essential role.
Collapse
Affiliation(s)
- Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland.
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Justyna Drzymała
- The Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland
| | - Ewa Felis
- The Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland; Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2 Str., 44-100 Gliwice, Poland
| | - Sylwia Bajkacz
- The Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland; Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6 Str., 44-100 Gliwice, Poland
| |
Collapse
|
19
|
Bayarri B, Giménez J, Curcó D, Esplugas S. Absorbed radiation and kinetic model in photocatalysis by TiO2. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2021-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The current work studies a novel and affordable methodology to estimate and quantify the photon flux absorbed and the amount of light that leaves from an illuminated photocatalytic system with TiO2 suspended in water. To achieve it, a new parameter
B
F
S
λ
w
a
t
$BF{S}_{\lambda }^{wat}$
is defined and presented. It indicates, for every wavelength, the fraction of the incoming radiation which is not absorbed by the system.
B
F
S
λ
w
a
t
$BF{S}_{\lambda }^{wat}$
was estimated by means of actinometric experiments in a jacketed reactor and a model based on Beer–Lambert law. For wavelengths below 388 nm and TiO2 concentrations between 0.05 and 2 g L−1, experimental values of
B
F
S
λ
w
a
t
$BF{S}_{\lambda }^{wat}$
were between 0.77 and 0.27. In the second part of the work, a simple kinetic model, which breaks down the effect of incident radiation and kinetic constant, is developed. For this, the photon flux absorbed by TiO2, previously determined, was included in the model. This new model was tested in the photocatalytic degradation of 2,4-dichlorophenol under different TiO2 concentrations. The kinetic model fits satisfactorily the experimental values and a new kinetic constant
kʹ
ap
[mol·L−1 Einstein−1] was obtained, which is independent of the amount of catalyst loaded to the system. This achievement may be very useful for an easy initial comparison, design or scaling up of different photocatalytic reactors with similar geometry.
Collapse
Affiliation(s)
- Bernardí Bayarri
- Departament d’Enginyeria Química i Química Analítica, Facultat de Química , Universitat de Barcelona , C/ Martí i Franquès, 1, 08028 , Barcelona , Spain
| | - Jaime Giménez
- Departament d’Enginyeria Química i Química Analítica, Facultat de Química , Universitat de Barcelona , C/ Martí i Franquès, 1, 08028 , Barcelona , Spain
| | - David Curcó
- Departament d’Enginyeria Química i Química Analítica, Facultat de Química , Universitat de Barcelona , C/ Martí i Franquès, 1, 08028 , Barcelona , Spain
| | - Santiago Esplugas
- Departament d’Enginyeria Química i Química Analítica, Facultat de Química , Universitat de Barcelona , C/ Martí i Franquès, 1, 08028 , Barcelona , Spain
| |
Collapse
|
20
|
Martínez-Pachón D, Echeverry-Gallego RA, Serna-Galvis EA, Villarreal JM, Botero-Coy AM, Hernández F, Torres-Palma RA, Moncayo-Lasso A. Treatment of wastewater effluents from Bogotá - Colombia by the photo-electro-Fenton process: Elimination of bacteria and pharmaceutical. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144890. [PMID: 33578165 DOI: 10.1016/j.scitotenv.2020.144890] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 05/07/2023]
Abstract
In this work, the occurrences of bacteria families and relevant pharmaceuticals in municipal wastewater effluents from Bogotá (Colombia), and their treatment by the photo-electro-Fenton process were studied. Twenty-five representative pharmaceuticals (azithromycin, carbamazepine, ciprofloxacin, clarithromycin, diclofenac, enalapril, gabapentin, iopromide, metoprolol, sulfamethoxazole, trimethoprim, valsartan, clindamycin, erythromycin, levamisole, lincomycin, norfloxacin, oxolinic acid, phenazone, primidone, salbutamol, sulfadiazine, tetracycline, tramadol, and venlafaxine) were quantified in the effluent by LC-MS/MS analysis. Four of these target compounds (azithromycin, diclofenac, trimethoprim, norfloxacin) were found at concentrations that represent an environmental risk. In addition, several bacteria families related to water and foodborne diseases were identified in such effluents (e.g., Pseudomonadaceae, Campylobacteraceae, Aeromonadaceae, Enterobacteriaceae, and Bacteroidaceae), via shotgun-metagenomic technique. Then, a bench-scale photo-electro-Fenton (PEF) system equipped with a DSA anode (Ti/IrO2-SnO2) and a GDE cathode was applied to treat such effluents. After 60 min, this treatment led to a decrease in the ratio of the bacterial content in the original samples, ~150 thousand times, and a pondered removal of 66.12% for the pharmaceuticals. The study of the process pathways indicated that the bacteria and pharmaceuticals elimination mainly occurred through attacks of hydroxyl and chlorine radicals. Interestingly, in the case of pharmaceuticals, their environmental risk quotients were diminished after the PEF application. Furthermore, the prolonged action of this electrochemical process induced ~15% of mineralization and a significant reduction of the total DNA (removal >85%). Hence, the photo-electro-Fenton process showed to be a promising alternative to deal with municipal effluents for limiting the waterborne diseases, pollution by pharmaceuticals, and mobility/availability of genetic material coming from microorganisms.
Collapse
Affiliation(s)
- Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas y Químicas (GIBIQS), Facultad de Ciencias, Universidad Antonio Nariño (UAN), Bogotá, Colombia
| | - Rodrigo A Echeverry-Gallego
- Grupo de Investigación en Ciencias Biológicas y Químicas (GIBIQS), Facultad de Ciencias, Universidad Antonio Nariño (UAN), Bogotá, Colombia
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia
| | - José Miguel Villarreal
- Universidad Nacional de Colombia - Sede Bogotá, Facultad de Ciencias, Departamento de Química, Carrera 30 # 45-03, Edificio 451 Oficina 101, Bogotá, Colombia
| | - Ana María Botero-Coy
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Castellón, Spain
| | - Félix Hernández
- Research Institute for Pesticides and Water (IUPA), University Jaume I, Castellón, Spain
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas y Químicas (GIBIQS), Facultad de Ciencias, Universidad Antonio Nariño (UAN), Bogotá, Colombia.
| |
Collapse
|
21
|
Potential Environmental and Human Health Risks Caused by Antibiotic-Resistant Bacteria (ARB), Antibiotic Resistance Genes (ARGs) and Emerging Contaminants (ECs) from Municipal Solid Waste (MSW) Landfill. Antibiotics (Basel) 2021; 10:antibiotics10040374. [PMID: 33915892 PMCID: PMC8065726 DOI: 10.3390/antibiotics10040374] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
The disposal of municipal solid waste (MSW) directly at landfills or open dump areas, without segregation and treatment, is a significant concern due to its hazardous contents of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and metal resistance genes (MGEs). The released leachate from landfills greatly effects the soil physicochemical, biological, and groundwater properties associated with agricultural activity and human health. The abundance of ARB, ARGs, and MGEs have been reported worldwide, including MSW landfill sites, animal husbandry, wastewater, groundwater, soil, and aerosol. This review elucidates the occurrence and abundance of ARB, ARGs, and MRGs, which are regarded as emerging contaminants (ECs). Recently, ECs have received global attention because of their prevalence in leachate as a substantial threat to environmental and public health, including an economic burden for developing nations. The present review exclusively discusses the demands to develop a novel eco-friendly management strategy to combat these global issues. This review also gives an intrinsic discussion about the insights of different aspects of environmental and public health concerns caused due to massive leachate generation, the abundance of antibiotics resistance (AR), and the effects of released leachate on the various environmental reservoirs and human health. Furthermore, the current review throws light on the source and fate of different ECs of landfill leachate and their possible impact on the nearby environments (groundwater, surface water, and soil) affecting human health. The present review strongly suggests the demand for future research focuses on the advancement of the removal efficiency of contaminants with the improvement of relevant landfill management to reduce the potential effects of disposable waste. We propose the necessity of the identification and monitoring of potential environmental and human health risks associated with landfill leachate contaminants.
Collapse
|
22
|
Solar Photocatalysis for Emerging Micro-Pollutants Abatement and Water Disinfection: A Mini-Review. SUSTAINABILITY 2020. [DOI: 10.3390/su122310047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This mini-review article discusses the critical factors that are likely to affect the performance of solar photocatalysis for environmental applications and, in particular, for the simultaneous degradation of emerging micro-pollutants and the inactivation of microbial pathogens in aqueous matrices. Special emphasis is placed on the control of specific operating factors like the type and the form of catalysts used throughout those processes, the intriguing role of the water matrix, and the composition of the microbial load of the sample in each case. The interplay among the visible responsive catalyst, the target pollutants/pathogens, including various types of microorganisms and the non-target water matrix species, dictates performance in an unpredictable and case-specific way. Case studies referring to lab and pilot-scale applications are presented to highlight such peculiarities. Moreover, current trends regarding the elimination of antibiotic-resistant bacteria and resistance genes by means of solar photocatalysis are discussed. The antibiotic resistance dispersion into the aquatic environment and how advanced photocatalytic processes can eliminate antibiotic resistance genes in microbial populations are documented, with a view to investigate the prospect of using those purification methods for the control-resistant microbial populations found in the environment. Understanding the interactions of the various water components (both inherent and target species) is key to the successful operation of a treatment process and its scaling up.
Collapse
|
23
|
Ojemaye MO, Adefisoye MA, Okoh AI. Nanotechnology as a viable alternative for the removal of antimicrobial resistance determinants from discharged municipal effluents and associated watersheds: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111234. [PMID: 32866924 DOI: 10.1016/j.jenvman.2020.111234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/25/2020] [Accepted: 08/12/2020] [Indexed: 05/20/2023]
Abstract
Effective and efficient utilization of antimicrobial drugs has been one of the important cornerstone of modern medicine. However, since antibiotics were first discovered by Alexander Fleming about a century ago, the time clock of antimicrobial resistance (AMR) started ticking somewhat leading to a global fear of a possible "post-antimicrobial era". Antibiotic resistance (AR) remains a serious challenge causing global outcry in both the clinical setting and the environment. The huge influence of municipal wastewater effluent discharges on the aquatic environment has made the niche a hotspot of research interest in the study of emergence and spread of AMR microbes and their resistance determinants/genes. The current review adopted a holistic approach in studying the proliferation of antibiotic resistance determinants (ARDs) as well as their impacts and fate in municipal wastewater effluents and the receiving aquatic environments. The various strategies deployed hitherto for the removal of resistance determinants in municipal effluents were carefully reviewed, while the potential for the use of nanotechnology as a viable alternative is explicitly explored. Also, highlighted in this review are the knowledge gaps to be filled in order to curtail the spread of AMR in aquatic environment and lastly, suggestions on the applicability of nanotechnology in eliminating AMR determinants in municipal wastewater treatment facilities are proffered.
Collapse
Affiliation(s)
- Mike O Ojemaye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, South Africa.
| | - Martins A Adefisoye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, South Africa.
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, South Africa.
| |
Collapse
|
24
|
Abstract
Pathogenic microorganisms can spread throughout the world population, as the current COVID-19 pandemic has dramatically demonstrated. In this scenario, a protection against pathogens and other microorganisms can come from the use of photoactive materials as antimicrobial agents able to hinder, or at least limit, their spreading by means of photocatalytically assisted processes activated by light—possibly sunlight—promoting the formation of reactive oxygen species (ROS) that can kill microorganisms in different matrices such as water or different surfaces without affecting human health. In this review, we focus the attention on TiO2 nanoparticle-based antimicrobial materials, intending to provide an overview of the most promising synthetic techniques, toward possible large-scale production, critically review the capability of such materials to promote pathogen (i.e., bacteria, virus, and fungi) inactivation, and, finally, take a look at selected technological applications.
Collapse
|
25
|
Lee GY, Cho EC, Lo PY, Zheng JH, Huang JH, Chen YL, Lee KC. Simultaneous formation of Bi 2O 2(OH)(NO 3)/BiOBr ultrathin hierarchical microspheres for effectively promoting visible-light-driven photocatalytic activity in environmental remediation. CHEMOSPHERE 2020; 258:127384. [PMID: 32947660 DOI: 10.1016/j.chemosphere.2020.127384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
As a two-dimensional nanomaterial, bismuth oxybromide (BiOBr) have attracted tremendous interest in the area of visible-light photocatalysis since it can provide the internal electric field (IEF) through z-axis through its unique electronic band structure. However, the insufficient active sites and rapid recombination rate of charged carriers hamper the efficiency of the photocatalysis. To address these two major obstacles, an enticing strategy of constructing heterojunction was established by introducing Bi2O2(OH)(NO3) (BiON) in BiOBr with the same precursor. Through a facile one-pot hydrothermal synthesis, two Sillén-type layered photocatalysts, with intimately constructed ultrathin heterostructure, was synthesized by the co-precipitation method. In this work, the formation of Bismuth-based heterojunction for charge separation is established by the excessive bismuth nitrate, which subsequently participates with the in situ growth of ultrathin hierarchical microspheres. By attenuating the thickness of BiOBr from 20 nm to 8 nm with the aid of BiON, the photogenerated charges could migrate to the active sites through shorter charge diffusion pathway. Also, the BiOBr and BiON act as an active bridge to promote the separation of electron-hole pairs, which also brings out more active sites due to its increased specific surface area. BiON/BiOBr ultrathin hierarchical microspheres exhibited enhanced visible-light photocatalytic activity for decontaminating several types of pollutants. Besides, the activity of as-prepared BiON/BiOBr was further evaluated by inhibiting the growth of kanamycin-resistant bacteria strains. This study presents a novel strategy to incorporate the crystalline bismuth hydrate nitrate into BiOBr to form ultrathin hierarchical microspheres with high surface area for environmental remediation.
Collapse
Affiliation(s)
- Guang-Yu Lee
- Department of Science Education, National Taipei University of Education, No.134, Sec. 2, Heping E. Rd., Da-an District, Taipei City, 106, Taiwan
| | - Er-Chieh Cho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City, 110, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City, 110, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taiwan
| | - Pei-Ying Lo
- Department of Science Education, National Taipei University of Education, No.134, Sec. 2, Heping E. Rd., Da-an District, Taipei City, 106, Taiwan
| | - Jia-Huei Zheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City, 110, Taiwan
| | - Jen-Hsien Huang
- Department of Green Material Technology, Green Technology Research Institute, CPC Corporation, Kaohsiung, 81126, Taiwan
| | - Yi-Lun Chen
- Department of Science Education, National Taipei University of Education, No.134, Sec. 2, Heping E. Rd., Da-an District, Taipei City, 106, Taiwan
| | - Kuen-Chan Lee
- Department of Science Education, National Taipei University of Education, No.134, Sec. 2, Heping E. Rd., Da-an District, Taipei City, 106, Taiwan; PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City, 110, Taiwan.
| |
Collapse
|
26
|
Triggiano F, Calia C, Diella G, Montagna MT, De Giglio O, Caggiano G. The Role of Urban Wastewater in the Environmental Transmission of Antimicrobial Resistance: The Current Situation in Italy (2010-2019). Microorganisms 2020; 8:E1567. [PMID: 33053645 PMCID: PMC7600224 DOI: 10.3390/microorganisms8101567] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Scientific studies show that urban wastewater treatment plants (UWWTP) are among the main sources of release of antibiotics, antibiotic resistance genes (ARG) and antibiotic-resistant bacteria (ARB) into the environment, representing a risk to human health. This review summarizes selected publications from 1 January 2010 to 31 December 2019, with particular attention to the presence and treatment of ARG and ARB in UWWTPs in Italy. Following a brief introduction, the review is divided into three sections: (i) phenotypic assessment (ARB) and (ii) genotypic assessment (ARG) of resistant microorganisms, and (iii) wastewater treatment processes. Each article was read entirely to extract the year of publication, the geographical area of the UWWTP, the ARB and ARG found, and the type of disinfection treatment used. Among the ARB, we focused on the antibiotic resistance of Escherichia coli, Klebsiella pneumoniae, and Enterococci in UWWTP. The results show that the information presented in the literature to date is not exhaustive; therefore, future scientific studies at the national level are needed to better understand the spread of ARB and ARG, and also to develop new treatment methods to reduce this spread.
Collapse
Affiliation(s)
| | | | | | | | - Osvalda De Giglio
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.T.); (C.C.); (G.D.); (M.T.M.); (G.C.)
| | | |
Collapse
|
27
|
Zhang G, Li W, Chen S, Zhou W, Chen J. Problems of conventional disinfection and new sterilization methods for antibiotic resistance control. CHEMOSPHERE 2020; 254:126831. [PMID: 32957272 DOI: 10.1016/j.chemosphere.2020.126831] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 05/20/2023]
Abstract
The problem of bacterial antibiotic resistance has attracted considerable research attention, and the effects of water treatment on antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are being increasingly investigated. As an indispensable part of the water treatment process, disinfection plays an important role in controlling antibiotic resistance. At present, there were many studies on the effects of conventional and new sterilization methods on ARB and ARGs. However, there is a lack of literature relating to the limitations of conventional methods and analysis of new techniques. Therefore, this review focuses on analyzing the deficiencies of conventional disinfection and the development of new methods for antibiotic resistance control to guide future research. Firstly, we analyzed the effects and drawbacks of conventional disinfection methods, such as chlorine (Cl), ultraviolet (UV) and ozone on antibiotic resistance control. Secondly, we discuss the research progress and shortcomings of new sterilization methods in antibiotic resistance. Finally, we propose suggestions for future research directions. There is an urgent need for new effective and low-cost sterilization methods. Disinfection via UV and chlorine in combination, UV/chlorine showed greater potential for controlling ARGs.
Collapse
Affiliation(s)
- Guosheng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Weiying Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China.
| | - Sheng Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Wei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| | - Jiping Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092, Shanghai, China
| |
Collapse
|
28
|
Ahmed Y, Lu J, Yuan Z, Bond PL, Guo J. Efficient inactivation of antibiotic resistant bacteria and antibiotic resistance genes by photo-Fenton process under visible LED light and neutral pH. WATER RESEARCH 2020; 179:115878. [PMID: 32417561 DOI: 10.1016/j.watres.2020.115878] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance has been recognized as a major threat to public health worldwide. Inactivation of antibiotic resistant bacteria (ARB) and degradation of antibiotic resistance genes (ARGs) are critical to prevent the spread of antibiotic resistance in the environment. Conventional disinfection processes are effective to inactivate water-borne pathogens, yet they are unable to completely eliminate the antibiotic resistance risk. This study explored the potential of the photo-Fenton process to inactivate ARB, and to degrade both extracellular and intracellular ARGs (e-ARGs and i-ARGs, respectively). Using Escherichia coli DH5α with two plasmid-encoded ARGs (tetA and blaTEM-1) as a model ARB, a 6.17 log ARB removal was achieved within 30 min of applying photo-Fenton under visible LED and neutral pH conditions. In addition, no ARB regrowth occurred after 48-h, demonstrating that this process is very effective to induce permanent disinfection on ARB. The photo-Fenton process was validated under various water matrices, including ultrapure water (UPW), simulated wastewater (SWW) and phosphate buffer (PBS). The higher inactivation efficiency was observed in SWW as compared to other matrices. The photo-Fenton process also caused a 6.75 to 8.56-log reduction in eARGs based on quantitative real-time PCR of both short- and long amplicons. Atomic force microscopy (AFM) further confirmed that the extracellular DNA was sheared into short DNA fragments, thus eliminating the risk of the transmission of antibiotic resistance. As compared with e-ARGs, a higher dosage of Fenton reagent was required to damage i-ARGs. In addition, the tetA gene was more easily degraded than the blaTEM-1 gene. Collectively, our results demonstrate the photo-Fenton process is a promising technology for disinfecting water to prevent the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Yunus Ahmed
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia; Department of Chemistry, Chittagong University of Engineering & Technology, Chittagong, 4349, Bangladesh
| | - Ji Lu
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
29
|
Zhou CS, Wu JW, Dong LL, Liu BF, Xing DF, Yang SS, Wu XK, Wang Q, Fan JN, Feng LP, Cao GL. Removal of antibiotic resistant bacteria and antibiotic resistance genes in wastewater effluent by UV-activated persulfate. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122070. [PMID: 31954307 DOI: 10.1016/j.jhazmat.2020.122070] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 05/21/2023]
Abstract
The emerging antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are increasingly appreciated to be as important as microbial contaminants. This paper focused on UV-activated persulfate (UV/PS), an advanced oxidation process, in removing ARB and ARGs from secondary wastewater effluent. Results showed that the inactivation efficiency of macrolides-resistant bacteria (MRB), sulfonamides-resistant bacteria (SRB), tetracyclines-resistant bacteria (TRB) and quinolones-resistant bacteria (QRB) by UV/PS reached 96.6 %, 94.7 %, 98.0 % and 99.9 % in 10 min, respectively. UV/PS also showed significant removal efficiency on ARGs. The reduction of total ARGs reached 3.84 orders of magnitude in UV/PS which is more than that in UV by 0.56 log. Particularly, the removal of mobile genetic elements (MGE) which might favor the horizontal gene transfer of ARGs among different microbial achieved 76.09 % by UV/PS. High-throughput sequencing revealed that UV/PS changed the microbial community. The proportions of Proteobacteria and Actinobacteria that pose human health risks were 4.25 % and 1.6 % less than UV, respectively. Co-occurrence analyzes indicated that ARGs were differentially contributed by bacterial taxa. In UV/PS system, hydroxyl radical and sulfate radical contributed to the removal of bacteria and ARGs. Our study provided a new method of UV/PS to remove ARGs and ARB for wastewater treatment.
Collapse
Affiliation(s)
- Chun-Shuang Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wen Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Li Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiu-Kun Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia-Ning Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Ping Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guang-Li Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
30
|
Insights into the Photocatalytic Bacterial Inactivation by Flower-Like Bi2WO6 under Solar or Visible Light, Through in Situ Monitoring and Determination of Reactive Oxygen Species (ROS). WATER 2020. [DOI: 10.3390/w12041099] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study addresses the visible light-induced bacterial inactivation kinetics over a Bi2WO6 synthesized catalyst. The systematic investigation was undertaken with Bi2WO6 prepared by the complexation of Bi with acetic acid (carboxylate) leading to a flower-like morphology. The characterization of the as-prepared Bi2WO6 was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), specific surface area (SSA), and photoluminescence (PL). Under low intensity solar light (<48 mW/cm2), complete bacterial inactivation was achieved within two hours in the presence of the flower-like Bi2WO6, while under visible light, the synthesized catalyst performed better than commercial TiO2. The in situ interfacial charge transfer and local pH changes between Bi2WO6 and bacteria were monitored during the bacterial inactivation. Furthermore, the reactive oxygen species (ROS) were identified during Escherichia coli inactivation mediated by appropriate scavengers. The ROS tests alongside the morphological characteristics allowed the proposition of the mechanism for bacterial inactivation. Finally, recycling of the catalyst confirmed the stable nature of the catalyst presented in this study.
Collapse
|
31
|
Wei T, Yao H, Sun P, Cai W, Li X, Fan L, Wei Q, Lai C, Guo J. Mitigation of antibiotic resistance in a pilot-scale system treating wastewater from high-speed railway trains. CHEMOSPHERE 2020; 245:125484. [PMID: 31864053 DOI: 10.1016/j.chemosphere.2019.125484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Wastewater from high-speed railway trains represents a mobile reservoir of microorganisms with antibiotic resistance. It harbors abundant and diverse antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study investigated the removal of ARB and ARGs in a pilot-scale reactor, which consisted of an anaerobic/anoxic/oxic process, anaerobic/anoxic/aerobic process, and ozone-based disinfection to treat 1 m3/day wastewater from an electric multiple unit high-speed train. Further, the high prevalence of two mobile genetic elements (intI1 and Tn916/615) and five ARGs (tetA, tetG, qnrA, qnrS, blaNDM-1, and ermF) was investigated using quantitative PCR. Significant positive correlations between ARGs (tetA, blaNDM-1, and qnrA) and intI1 were identified (R2 of 0.94, 0.85, and 0.70, respectively, P < 0.01). Biological treatment could significantly reduce Tn916/1545 (2.57 logs reduction) and Enterococci (2.56 logs reduction of colony forming unit (CFU)/mL), but the qnrS abundance increased (1.19 logs increase). Ozonation disinfection could further significantly decrease ARGs and Enterococci in wastewater, with a reduction of 1.67-2.49 logs and 3.16 logs CFU/mL, respectively. Moreover, food-related bacteria families which may contain opportunistic or parasitic pathogens (e.g., Moraxellaceae, Carnobacteriaceae, and Ruminococcaceae) were detected frequently. Enterococci filtered in this study shows multi-antibiotic resistance. Our study highlights the significance to mitigate antibiotic resistance from wastewater generated from high-speed railway trains, as a mobile source.
Collapse
Affiliation(s)
- Ting Wei
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Hong Yao
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China.
| | - Peizhe Sun
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China; School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Weiwei Cai
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Xinyang Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Liru Fan
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Qingchao Wei
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Cai Lai
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
32
|
Li M, Sun M, Dong H, Zhang J, Su Y, Qiang Z. Enhancement of micropollutant degradation in UV/H 2O 2 process via iron-containing coagulants. WATER RESEARCH 2020; 172:115497. [PMID: 31986395 DOI: 10.1016/j.watres.2020.115497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/04/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
The low molar absorption coefficient of H2O2 limits the ultraviolet (UV)/H2O2 process, making it a desirable target to enhance the UV/H2O2 process for organic micropollutant degradation. Therefore, this study investigated the impact of iron-containing coagulants (Fe-coagulants) on micropollutant degradation by UV/H2O2 process. Three typical Fe-coagulants (i.e., polymeric ferric sulfate, polymeric aluminum ferric sulfate, and FeCl3) exhibited the enhancement of sulfamethazine degradation during the UV/H2O2 process. The maximum increasing ratio of the degradation rate constant reached 40%. The pH and Fe-coagulant concentration effects, as well as residual H2O2 were examined. The principal mechanism of micropollutant degradation enhancement via the Fe-coagulants was the photo-Fenton-like reaction between Fe(III) on the Fe-coagulant surface and H2O2 under UV irradiation. Then the influence of Fe-coagulant particle size was discussed. Smaller particles (<0.22 μm), with a lower iron content, a larger specific surface area, and a stronger optical scattering effect, exhibited a greater enhancement on the UV/H2O2 process as compared with larger particles (>0.22 μm). Finally, the enhancement effect of the Fe-coagulants was verified on two water samples from a water treatment plant, which were either pre-coagulation or sand filtered samples. This study explored an existing heterogeneous catalysis process in drinking water treatment, which provides additional information for coagulant selection and improvements to the treatment process for micropollutant removal.
Collapse
Affiliation(s)
- Mengkai Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Mengdi Sun
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Jun Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; School of Architectural, Surveying and Mapping Engineering, Jiangxi University of Science and Technology, 86 Hong-qi Road, Ganzhou 341000, Jiangxi, China
| | - Yingjia Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; College of Earth and Environmental Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; School of Architectural, Surveying and Mapping Engineering, Jiangxi University of Science and Technology, 86 Hong-qi Road, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
33
|
Rizzo L, Gernjak W, Krzeminski P, Malato S, McArdell CS, Perez JAS, Schaar H, Fatta-Kassinos D. Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136312. [PMID: 32050367 DOI: 10.1016/j.scitotenv.2019.136312] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 05/09/2023]
Abstract
Conventional urban wastewater treatment plants (UWTPs) are poorly effective in the removal of most contaminants of emerging concern (CECs), including antibiotics, antibiotic resistant bacteria and antibiotic resistance genes (ARB&ARGs). These contaminants result in some concern for the environment and human health, in particular if UWTPs effluents are reused for crop irrigation. Recently, stakeholders' interest further increased in Europe, because the European Commission is currently developing a regulation on water reuse. Likely, conventional UWTPs will require additional advanced treatment steps to meet water quality limits yet to be officially established for wastewater reuse. Even though it seems that CECs will not be included in the proposed regulation, the aim of this paper is to provide a technical contribution to this discussion as well as to support stakeholders by recommending possible advanced treatment options, in particular with regard to the removal of CECs and ARB&ARGs. Taking into account the current knowledge and the precautionary principle, any new or revised water-related Directive should address such contaminants. Hence, this review paper gathers the efforts of a group of international experts, members of the NEREUS COST Action ES1403, who for three years have been constructively discussing the efficiency of the best available technologies (BATs) for urban wastewater treatment to abate CECs and ARB&ARGs. In particular, ozonation, activated carbon adsorption, chemical disinfectants, UV radiation, advanced oxidation processes (AOPs) and membrane filtration are discussed with regard to their capability to effectively remove CECs and ARB&ARGs, as well as their advantages and drawbacks. Moreover, a comparison among the above-mentioned processes is performed for CECs relevant for crop uptake. Finally, possible treatment trains including the above-discussed BATs are discussed, issuing end-use specific recommendations which will be useful to UWTPs managers to select the most suitable options to be implemented at their own facilities to successfully address wastewater reuse challenges.
Collapse
Affiliation(s)
- Luigi Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Catalan Institute for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Pawel Krzeminski
- Section of Systems Engineering and Technology, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| | - Sixto Malato
- Plataforma Solar de Almería (CIEMAT), Carretera de Senés, km. 4, Tabernas, Almería 04200, Spain; Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Universitiy of Almeria, Ctra. Sacramento s/n, ES04120 Almería, Spain
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Jose Antonio Sanchez Perez
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Universitiy of Almeria, Ctra. Sacramento s/n, ES04120 Almería, Spain; Department of Chemical Engineering, University of Almeria, Ctra. Sacramento s/n, ES04120 Almería, Spain
| | - Heidemarie Schaar
- Technische Universität Wien, Institute for Water Quality and Resource Management, Karlsplatz 13/2261, 1040 Vienna, Austria
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas, International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus.
| |
Collapse
|
34
|
Ekundayo TC, Okoh AI. Antimicrobial resistance in freshwater Plesiomonas shigelloides isolates: Implications for environmental pollution and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113493. [PMID: 31753632 DOI: 10.1016/j.envpol.2019.113493] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Antibiotic resistance is known to impact treatment efficiency of Plesiomonas infections negatively with fatal outcomes. This study investigated antibiogram fingerprint of P. shigelloides (n = 182) isolated from three South Africa rivers using the disc diffusion technique. Environmental pollution and analogous health risk (given infections) that could associate with the freshwaters and empirical treatment of Plesiomonas were assessed using Antibiotic Resistance Index (ARI) and Multiple Antibiotic Resistance Indices (MARI), respectively. Thirteen EUCAST recommended (ERAs) and eleven non-recommended antibiotics (NAs) used as first line agents in the treatment of gastroenteritis and extraintestinal infections were tested. Resistance against ERAs decreased from cefoxitin (37.91%), cefuroxime (35.17%), cefepime (31.87%), ceftriaxone (29.67%), ciprofloxacin (18.13%), trimethoprim-sulfamethoxazole (10.44%), piperacillin/tazobactam (8.79%), ertapenem (4.95%), norfloxacin (4.40%), levofloxacin (2.75%), meropenem (1.10%) to imipenem (0.55%). The isolates had higher resistance (≥36.07%) against NAs but were susceptible to amikacin (67.58%), gentamycin (73.08%), and tetracycline (80.77%). MARI of the isolates were significantly different between ERAs and NAs (P-value < 0.05) and had an average of 0.17 ± 0.18 and 0.45 ± 0.13, respectively. About 33.87% and 95.63% of the isolates had MARI value from 0.23 to 0.62 and 0.27-0.82 to ERAs and NAs, respectively. Also, ERAs-based and NAs-based ARI across sampling units showed significantly different (P-value < 0.05) means of 0.18 ± 0.09 and 0.46 ± 0.05, respectively. MARI attributed low risk of empirical treatment to recommended antibiotics but higher risk to non-recommended antibiotics. Model estimated successful and unsuccessful empirical treatment of infections risks due to resistance in the isolates using recommended antibiotics as 65.93% and 34.07%, respectively; 1.65% and 98.35% in the case of non-recommended antibiotics, respectively. ARI based on recommended antibiotics identified potential environmental pollutions in a number of sites. Resistance in freshwater P. shigelloides especially against cephalosporin, quinolones and fluoroquinolones is distressing and might suggests high pollution of the freshwaters in the Eastern Cape Province.
Collapse
Affiliation(s)
- Temitope Cyrus Ekundayo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa; Department of Biological Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria.
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa
| |
Collapse
|
35
|
Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review. Top Curr Chem (Cham) 2019; 378:7. [DOI: 10.1007/s41061-019-0272-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/26/2019] [Indexed: 11/26/2022]
|
36
|
|
37
|
Umar M, Roddick F, Fan L. Moving from the traditional paradigm of pathogen inactivation to controlling antibiotic resistance in water - Role of ultraviolet irradiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:923-939. [PMID: 30795480 DOI: 10.1016/j.scitotenv.2019.01.289] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Ultraviolet (UV) irradiation has proven an effective tool for inactivating microorganisms in water. There is, however, a need to look at disinfection from a different perspective because microbial inactivation alone may not be sufficient to ensure the microbiological safety of the treated water since pathogenic genes may still be present, even after disinfection. Antibiotic resistance genes (ARGs) are of a particular concern since they enable microorganisms to become resistant to antibiotics. UV irradiation has been widely used for disinfection and more recently for destroying ARGs. While UV lamps remain the principal technology to achieve this objective, UV light emitting diodes (UV-LEDs) are novel sources of UV irradiation and have increasingly been reported in lab-scale investigations as a potential alternative. This review discusses the current state of the applications of UV technology for controlling antibiotic resistance during water and wastewater treatment. Since UV-LEDs possess several attractive advantages over conventional UV lamps, the impact of UV-LED characteristics (single vs combined wavelengths, and operational parameters such as periodic or pulsed and continuous irradiation, pulse repetition frequencies, duty cycle), type of organism, and fluence response, are critically reviewed with a view to highlighting the research needs for addressing future disinfection challenges. The energy efficiency of the reported UV processes is also evaluated with a focus on relating the findings to disinfection efficacy. The greater experience with UV lamps could be useful for investigating UV-LEDs for similar applications (i.e., antibiotic resistance control), and hence identification of future research directions.
Collapse
Affiliation(s)
- Muhammad Umar
- Norwegian Institute for Water Research (NIVA), Gaustadallèen 21, NO-0349 Oslo, Norway.
| | - Felicity Roddick
- Department of Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne 3001, Australia
| | - Linhua Fan
- Department of Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne 3001, Australia
| |
Collapse
|
38
|
Immobilised Cerium-Doped Zinc Oxide as a Photocatalyst for the Degradation of Antibiotics and the Inactivation of Antibiotic-Resistant Bacteria. Catalysts 2019. [DOI: 10.3390/catal9030222] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The threat of antibiotic resistance to the wellbeing of societies is well established. Urban wastewater treatment plants (UWTPs) are recognised sources for antibiotic resistance dissemination in the environment. Herein a novel cerium-doped zinc oxide (Ce-ZnO) photocatalyst is compared to ZnO and the benchmark TiO2-P25 in the immobilised form on a metallic support, to evaluate a photocatalytic process as a possible tertiary treatment in UWTPs. The catalysts were compared for the removal of two antibiotics, trimethoprim (TMP) and sulfamethoxazole (SMX), and for the inactivation of Escherichia coli (E. coli) strain DH5-Alpha in isotonic sodium chloride solution and of autochthonous bacteria in real secondary wastewater. In real wastewater, E. coli and other coliforms were monitored, as well as the respective fractions resistant to ofloxacin and azithromycin. In parallel, Pseudomonas aeruginosa and the respective sub-population resistant to ofloxacin or ciprofloxacin were also monitored. Photocatalysis with both ZnO and Ce-ZnO was faster than using TiO2-P25 at degrading the antibiotics, with Ce-ZnO the fastest against SMX but slower than undoped ZnO in the removal of TMP. Ce-ZnO catalyst reuse in the immobilised form produced somewhat slower kinetics maintained >50% of the initial activity, even after five cycles of use. Approximately 3 log10 inactivation of E. coli in isotonic sodium chloride water was recorded with reproducible results. In the removal of autochthonous bacteria in real wastewater, Ce-ZnO performed better (more than 2 log values higher) than TiO2-P25. In all cases, E. coli and other coliforms, including their resistant subpopulations, were inactivated at a higher rate than P. aeruginosa. With short reaction times no evidence for enrichment of resistance was observed, yet with extended reaction times low levels of bacterial loads were not further inactivated. Overall, Ce-ZnO is an easy and cheap photocatalyst to produce and immobilise and the one that showed higher activity than the industry standard TiO2-P25 against the tested antibiotics and bacteria, including antibiotic-resistant bacteria.
Collapse
|
39
|
Rizzo L, Agovino T, Nahim-Granados S, Castro-Alférez M, Fernández-Ibáñez P, Polo-López MI. Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: Effect on contaminants of emerging concern and antibiotic resistance. WATER RESEARCH 2019; 149:272-281. [PMID: 30465985 DOI: 10.1016/j.watres.2018.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 05/17/2023]
Abstract
Photo-driven advanced oxidation process (AOP) with peracetic acid (PAA) has been poorly investigated in water and wastewater treatment so far. In the present work its possible use as tertiary treatment of urban wastewater to effectively minimize the release into the environment of contaminants of emerging concern (CECs) and antibiotic-resistant bacteria was investigated. Different initial PAA concentrations, two light sources (sunlight and UV-C) and two different water matrices (groundwater (GW) and wastewater (WW)) were studied. Low PAA doses were found to be effective in the inactivation of antibiotic resistant Escherichia coli (AR E. coli) in GW, with the UV-C process being faster (limit of detection (LOD) achieved for a cumulative energy (QUV) of 0.3 kJL-1 with 0.2 mg PAA L-1) than solar driven one (LOD achieved at QUV = 4.4 kJL-1 with 0.2 mg PAA L-1). Really fast inactivation rates of indigenous AR E. coli were also observed in WW. Higher QUV and PAA initial doses were necessary to effectively remove the three target CECs (carbamazepine (CBZ), diclofenac and sulfamethoxazole), with CBZ being the more refractory one. In conclusion, photo-driven AOP with PAA can be effectively used as tertiary treatment of urban wastewater but initial PAA dose should be optimized to find the best compromise between target bacteria inactivation and CECs removal as well as to prevent scavenging effect of PAA on hydroxyl radicals because of high PAA concentration.
Collapse
Affiliation(s)
- Luigi Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Teresa Agovino
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | | | | | - Pilar Fernández-Ibáñez
- CIEMAT-Plataforma Solar de Almeria, P.O. Box 22, Tabernas, Almería, Spain; Nanotechnology and Integrated BioEngineering Centre, School of Engineering, University of Ulster, Newtownabbey, Northern Ireland, United Kingdom
| | | |
Collapse
|
40
|
Brown PC, Borowska E, Schwartz T, Horn H. Impact of the particulate matter from wastewater discharge on the abundance of antibiotic resistance genes and facultative pathogenic bacteria in downstream river sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1171-1178. [PMID: 30308888 DOI: 10.1016/j.scitotenv.2018.08.394] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Wastewater treatment plants (WWTPs) are point sources for both, the release of antibiotic resistance genes (ARGs) and the discharge of antibiotics (ABs) into the environment. While it is well established that ARGs emission by WWTPs leads to an ARGs increase in receiving rivers, also the role of sub-inhibitory AB concentrations in this context is being discussed. However, the results obtained in this study suggest that, at environmental concentrations, ABs do not have an effect on resistance selection. Instead, we emphasize the significance of ARG transport and, in that respect, highlight the relevance of wastewater particles and associated microorganisms. We can show that ARGs (ermB, blaTEM,tetM, qnrS) as well as facultative pathogenic bacteria (FPB) (enterococci, Pseudomonas aeruginosa, Acinetobacter baumannii) inside the particulate fraction of WWTP effluent are very likely to remain in the riverbed of the receiving water due to sedimentation. Moreover, ARG and FPB abundances measured in the particulate fraction strongly correlated with the delta ARG and FPB abundances measured in the receiving river sediment (downstream compared to upstream) (R2 = 0.93, p < 0.05). Apparently, the sheer amount of settleable ARGs and FPB from WWTP effluent is sufficient, to increase abundances in the receiving riverbed by 0.5 to 2 log units.
Collapse
Affiliation(s)
- Philip C Brown
- Karlsruhe Institute of Technology, Engler-Bunte Institute, Water Chemistry and Water Technology, Karlsruhe, Germany
| | - Ewa Borowska
- Karlsruhe Institute of Technology, Engler-Bunte Institute, Water Chemistry and Water Technology, Karlsruhe, Germany
| | - Thomas Schwartz
- Karlsruhe Institute of Technology, Institute of Functional Interfaces, Microbiology/Molecular Biology Department, Eggenstein-Leopoldshafen, Germany
| | - Harald Horn
- Karlsruhe Institute of Technology, Engler-Bunte Institute, Water Chemistry and Water Technology, Karlsruhe, Germany; DVGW Research Laboratories for Water Chemistry and Water Technology, Karlsruhe, Germany.
| |
Collapse
|
41
|
Shen H, López-Guerra EA, Zhu R, Diba T, Zheng Q, Solares SD, Zara JM, Shuai D, Shen Y. Visible-Light-Responsive Photocatalyst of Graphitic Carbon Nitride for Pathogenic Biofilm Control. ACS APPLIED MATERIALS & INTERFACES 2019; 11:373-384. [PMID: 30525377 DOI: 10.1021/acsami.8b18543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pathogenic biofilms raise significant health and economic concerns, because these bacteria are persistent and can lead to long-term infections in vivo and surface contamination in healthcare and industrial facilities or devices. Compared with conventional antimicrobial strategies, photocatalysis holds promise for biofilm control because of its broad-spectrum effectiveness under ambient conditions, low cost, easy operation, and reduced maintenance. In this study, we investigated the performance and mechanism of Staphylococcus epidermidis biofilm control and eradication on the surface of an innovative photocatalyst, graphitic carbon nitride (g-C3N4), under visible-light irradiation, which overcame the need for ultraviolet light for many current photocatalysts (e.g., titanium dioxide (TiO2)). Optical coherence tomography and confocal laser scanning microscopy (CLSM) suggested that g-C3N4 coupons inhibited biofilm development and eradicated mature biofilms under the irradiation of white light-emitting diodes. Biofilm inactivation was observed occurring from the surface toward the center of the biofilms, suggesting that the diffusion of reactive species into the biofilms played a key role. By taking advantage of scanning electron microscopy, CLSM, and atomic force microscopy for biofilm morphology, composition, and mechanical property characterization, we demonstrated that photocatalysis destroyed the integrated and cohesive structure of biofilms and facilitated biofilm eradication by removing the extracellular polymeric substances. Moreover, reactive oxygen species generated during g-C3N4 photocatalysis were quantified via reactions with radical probes and 1O2 was believed to be responsible for biofilm control and removal. Our work highlights the promise of using g-C3N4 for a broad range of antimicrobial applications, especially for the eradication of persistent biofilms under visible-light irradiation, including photodynamic therapy, environmental remediation, food-industry applications, and self-cleaning surface development.
Collapse
|
42
|
Jiménez-Tototzintle M, Ferreira IJ, da Silva Duque S, Guimarães Barrocas PR, Saggioro EM. Removal of contaminants of emerging concern (CECs) and antibiotic resistant bacteria in urban wastewater using UVA/TiO 2/H 2O 2 photocatalysis. CHEMOSPHERE 2018; 210:449-457. [PMID: 30025362 DOI: 10.1016/j.chemosphere.2018.07.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/17/2018] [Accepted: 07/08/2018] [Indexed: 05/10/2023]
Abstract
The dispersion of pollutants and proliferation of antibiotic resistant bacteria in the aquatic environment are an emerging health concern worldwide. In this sense, it is essential to develop new technologies to increase the quality of wastewater treatment, which is spread throughout the environment. The present study has demonstrated evidence of the existence of antibiotic and mercury-resistant bacteria in the aquatic environment. The application of heterogeneous photocatalysis with UVA/TiO2 P25 slurry (200 mg L-1), UVA/TiO2-immobilized, and UVA/TiO2-immobilized/H2O2 were evaluated for the simultaneous elimination of a mixture of contaminants of emerging concern (acetamiprid (ACP), imazalil (IMZ) and bisphenol A (BPA)) and inactivation of antibiotic and mercury-resistant bacteria (Pseudomonas aeruginosa and Bacillus subtilis). UVA/TiO2-immobilized/H2O2 increased the inactivation and elimination of the contaminants. After the combined treatment, the mixture of BPA, IMZ and ACP decreased 62%, 21% and <5%, respectively, after 300 min at 13.10 kJ L-1 of accumulated UV energy. The Pseudomonas aeruginosa strain was inactivated after 120 min using 5.24 kJ L-1 of accumulated UV energy, whereas the Bacillus subtilis strain was shown to be extremely resistant, with a capacity to develop mechanisms to avoid the oxidation process.
Collapse
Affiliation(s)
- Margarita Jiménez-Tototzintle
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil
| | - Izabel Jales Ferreira
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil
| | - Sheila da Silva Duque
- Bacteriology Department, Oswaldo Cruz Institute, Av. Brasil 4365, 21045-900, Rio de Janeiro, RJ, Brazil
| | - Paulo Rubens Guimarães Barrocas
- Sanitation and Environment Health Department, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil
| | - Enrico Mendes Saggioro
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil; Sanitation and Environment Health Department, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões 1480, 21041-210, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
43
|
Uyguner Demirel CS, Birben NC, Bekbolet M. A comprehensive review on the use of second generation TiO 2 photocatalysts: Microorganism inactivation. CHEMOSPHERE 2018; 211:420-448. [PMID: 30077938 DOI: 10.1016/j.chemosphere.2018.07.121] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/04/2018] [Accepted: 07/21/2018] [Indexed: 05/12/2023]
Abstract
Photocatalytic disinfection practices have been applied for decades and attract current interest along with the developments in synthesis of novel photocatalysts. A survey based investigation was performed for elucidation of photocatalytic treatment details as well as disinfection mechanism of microorganisms. The present work brings significant information on the utilization of second generation TiO2 photocatalysts for inactivation of microorganisms typically using E. coli as the model microorganism. Special interest was devoted to the role of organic matrix either generated during treatment or as a natural component. Studies on photocatalytic disinfection were extensively reviewed and evaluated with respect to basic operational parameters related to photocatalysis, and types and properties of microorganisms investigated. Degradation mechanism and behavior of microorganisms towards reactive oxygen species during disinfection and organic matrix effects were also addressed. For successful utilization and effective assessment of visible light active photocatalysts, standard protocols for disinfection activity testing have to be set. Further improvement of the efficiency of these materials would be promising for future applications in water treatment processes.
Collapse
Affiliation(s)
| | - Nazmiye Cemre Birben
- Bogazici University, Institute of Environmental Sciences, 34342, Bebek, Istanbul, Turkey.
| | - Miray Bekbolet
- Bogazici University, Institute of Environmental Sciences, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
44
|
Núñez-Núñez CM, Chairez-Hernández I, García-Roig M, García-Prieto JC, Melgoza-Alemán RM, Proal-Nájera JB. UV-C/H2O2 heterogeneous photocatalytic inactivation of coliforms in municipal wastewater in a TiO2/SiO2 fixed bed reactor: a kinetic and statistical approach. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1473-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Giannakis S, Watts S, Rtimi S, Pulgarin C. Solar light and the photo-Fenton process against antibiotic resistant bacteria in wastewater: A kinetic study with a Streptomycin-resistant strain. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.10.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Ahmed SN, Haider W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review. NANOTECHNOLOGY 2018; 29:342001. [PMID: 29786601 DOI: 10.1088/1361-6528/aac6ea] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
There has been a considerable amount of research in the development of sustainable water treatment techniques capable of improving the quality of water. Unavailability of drinkable water is a crucial issue especially in regions where conventional drinking water treatment systems fail to eradicate aquatic pathogens, toxic metal ions and industrial waste. The research and development in this area have given rise to a new class of processes called advanced oxidation processes, particularly in the form of heterogeneous photocatalysis, which converts photon energy into chemical energy. Advances in nanotechnology have improved the ability to develop and specifically tailor the properties of photocatalytic materials used in this area. This paper discusses many of those photocatalytic nanomaterials, both metal-based and metal-free, which have been studied for water and waste water purification and treatment in recent years. It also discusses the design and performance of the recently studied photocatalytic reactors, along with the recent advancements in the visible-light photocatalysis. Additionally, the effects of the fundamental parameters such as temperature, pH, catalyst-loading and reaction time have also been reviewed. Moreover, different techniques that can increase the photocatalytic efficiency as well as recyclability have been systematically presented, followed by a discussion on the photocatalytic treatment of actual wastewater samples and the future challenges associated with it.
Collapse
Affiliation(s)
- Syed Nabeel Ahmed
- School of Engineering & Technology, Central Michigan University, Mt. Pleasant, MI 48859, United States of America
| | | |
Collapse
|
47
|
Wang D, Zhu B, He X, Zhu Z, Hutchins G, Xu P, Wang WN. Iron Oxide Nanowire-Based Filter for Inactivation of Airborne Bacteria. ENVIRONMENTAL SCIENCE. NANO 2018; 5:1096-1106. [PMID: 30345060 PMCID: PMC6193566 DOI: 10.1039/c8en00133b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Heating, ventilation, and air conditioning (HVAC) systems are among the most common methods to improve indoor air quality. However, after long-term operation, the HVAC filter can result in a proliferation of bacteria, which may release into the filtered air subsequently. This issue can be addressed by designing antibacterial filters. In this study, we report an iron oxide nanowires-based filter fabricated from commercially available iron mesh through a thermal treatment. At optimal conditions, the filter demonstrated a log inactivation efficiency of > 7 within 10 seconds towards S. epidermidis (Gram-positive), a common bacterial species of indoor bioaerosol. 52 % of bioaerosol cells can be captured by a single filter, which can be further improved to 98.7 % by connecting five filters in-tandem. The capture and inactivation capacity of the reported filter did not degrade over long-term use. The inactivation of bacteria is attributed to the synergic effects of the hydroxyl radicals, electroporation, and Joule heating, which disrupted the cell wall and nucleoid of S. epidermidis, as verified by the model simulations, fluorescence microscopy, electron microscopy, and infrared spectroscopy. The relative humidity plays an important role in the inactivation process. The filter also exhibited a satisfactory inactivation efficiency towards E. coli (Gram-negative). The robust synthesis, low cost, and satisfactory inactivation performance towards both Gram-positive and Gram-negative bacteria make the filter demonstrated here suitable to be assembled into HVAC filters as an antibacterial layer for efficient control of indoor bioaerosols.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | - Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | - Xiang He
- Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | - Zan Zhu
- Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | - Grant Hutchins
- Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| | - Wei-Ning Wang
- Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, USA
| |
Collapse
|
48
|
Wang T, Jiang Z, An T, Li G, Zhao H, Wong PK. Enhanced Visible-Light-Driven Photocatalytic Bacterial Inactivation by Ultrathin Carbon-Coated Magnetic Cobalt Ferrite Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4774-4784. [PMID: 29578698 DOI: 10.1021/acs.est.7b06537] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrathin hydrothermal carbonation carbon (HTCC)-coated cobalt ferrite (CoFe2O4) composites with HTCC coating thicknesses between 0.62 and 4.38 nm were fabricated as novel, efficient, and magnetically recyclable photocatalysts via a facile, green approach. The CoFe2O4/HTCC composites showed high magnetization and low coercivity, which favored magnetic separation for reuse. The results show that the close coating of HTCC on CoFe2O4 nanoparticles enhanced electron transfer and charge separation, leading to a significant improvement in photocatalytic efficiency. The composites exhibited superior photocatalytic inactivation toward Escherichia coli K-12 under visible-light irradiation, with the complete inactivation of 7 log10 cfu·mL-1 of bacterial cells within 60 min. The destruction of bacterial cell membranes was monitored by field-effect scanning electron microscopy analysis and fluorescence microscopic images. The bacterial inactivation mechanism was investigated in a scavenger study, and •O2, H2O2, and h+ were identified as the major reactive species for bacterial inactivation. Multiple cycle runs revealed that these composites had excellent stability and reusability. In addition, the composites showed good photocatalytic bacterial inactivation performance in authentic water matrices such as surface water samples and secondarily treated sewage effluents. The results of this work indicate that CoFe2O4/HTCC composites have great potential in large-scale photocatalytic disinfection operations.
Collapse
Affiliation(s)
- Tianqi Wang
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, NT, Hong Kong SAR , China
| | - Zhifeng Jiang
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, NT, Hong Kong SAR , China
- Institute for Energy Research, School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering , Guangdong University of Technology , Guangzhou , Guangdong 510006 , China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering , Guangdong University of Technology , Guangzhou , Guangdong 510006 , China
| | - Huijun Zhao
- Centre for Clean Environment and Energy, Griffith Scholl of Environment , Griffith University , Southport , Queensland 4222 , Australia
| | - Po Keung Wong
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, NT, Hong Kong SAR , China
| |
Collapse
|
49
|
Michael-Kordatou I, Karaolia P, Fatta-Kassinos D. The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater. WATER RESEARCH 2018; 129:208-230. [PMID: 29153875 DOI: 10.1016/j.watres.2017.10.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 05/26/2023]
Abstract
An upsurge in the study of antibiotic resistance in the environment has been observed in the last decade. Nowadays, it is becoming increasingly clear that urban wastewater is a key source of antibiotic resistance determinants, i.e. antibiotic-resistant bacteria and antibiotic resistance genes (ARB&ARGs). Urban wastewater reuse has arisen as an important component of water resources management in the European Union and worldwide to address prolonged water scarcity issues. Especially, biological wastewater treatment processes (i.e. conventional activated sludge), which are widely applied in urban wastewater treatment plants, have been shown to provide an ideal environment for the evolution and spread of antibiotic resistance. The ability of advanced chemical oxidation processes (AOPs), e.g. light-driven oxidation in the presence of H2O2, ozonation, homogeneous and heterogeneous photocatalysis, to inactivate ARB and remove ARGs in wastewater effluents has not been yet evaluated through a systematic and integrated approach. Consequently, this review seeks to provide an extensive and critical appraisal on the assessment of the efficiency of these processes in inactivating ARB and removing ARGs in wastewater effluents, based on recent available scientific literature. It tries to elucidate how the key operating conditions may affect the process efficiency, while pinpointing potential areas for further research and major knowledge gaps which need to be addressed. Also, this review aims at shedding light on the main oxidative damage pathways involved in the inactivation of ARB and removal of ARGs by these processes. In general, the lack and/or heterogeneity of the available scientific data, as well as the different methodological approaches applied in the various studies, make difficult the accurate evaluation of the efficiency of the processes applied. Besides the operating conditions, the variable behavior observed by the various examined genetic constituents of the microbial community, may be directed by the process distinct oxidative damage mechanisms in place during the application of each treatment technology. For example, it was shown in various studies that the majority of cellular damage by advanced chemical oxidation may be on cell wall and membrane structures of the targeted bacteria, leaving the internal components of the cells relatively intact/able to repair damage. As a result, further in-depth mechanistic studies are required, to establish the optimum operating conditions under which oxidative mechanisms target internal cell components such as genetic material and ribosomal structures more intensively, thus conferring permanent damage and/or death and preventing potential post-treatment re-growth.
Collapse
Affiliation(s)
- I Michael-Kordatou
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| | - P Karaolia
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus; Department of Civil and Environmental Engineering University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| | - D Fatta-Kassinos
- Nireas-International Water Research Centre, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus; Department of Civil and Environmental Engineering University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus.
| |
Collapse
|
50
|
Zammit I, Vaiano V, Iervolino G, Rizzo L. Inactivation of an urban wastewater indigenousEscherichia colistrain by cerium doped zinc oxide photocatalysis. RSC Adv 2018; 8:26124-26132. [PMID: 35541927 PMCID: PMC9082927 DOI: 10.1039/c8ra05020a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/16/2018] [Indexed: 11/21/2022] Open
Abstract
Heterogeneous photocatalysis (HPC) is a subset of Advanced Oxidation Processes (AOPs) with potential future applications in water disinfection. Herein, a zinc oxide photocatalyst was doped with cerium at various atomic ratios ranging from 0 to 0.1 Ce : Zn. Keeping in mind that the application of HPC is often limited by its cost of use, a simple and easy to upscale method, that is the hydroxide induced hydrolysis of zinc nitrate in the presence of Ce3+ followed by calcination at 300 °C, was used to synthesise the catalysts. The catalysts have been characterized by different techniques such as X-ray diffraction (XRD), UV-vis diffuse reflectance (UV-vis DRS) and Raman spectroscopy. XRD results showed that Ce3+ ions were successfully incorporated into the ZnO lattice. UV-vis DRS spectra evidenced that Ce–ZnO samples present band-gap values of about 2.97 eV, lower than those of undoped ZnO (3.21 eV). These various photocatalysts, at 0.1 g L−1 in saline 0.85%, were used to inactivate Escherichia coli previously isolated from an urban wastewater treatment plant. Higher atomic ratios of Ce in the ZnO lattice, as confirmed by XRD and Raman spectroscopy, showed significant improvements to the inactivation rate; the resulting recommended optimum cerium loading of 0.04 : 1 Ce : Zn gave multiple orders of magnitude higher rate of inactivation after 60 min of treatment when compared to un-doped ZnO. This optimum loading of cerium was faster than the de facto literature standard TiO2-P25 tested under identical conditions. Doping of ZnO with cerium at 0.04 : 1 Ce : Zn at/at gives substantial improvements in rate of photocatalytic inactivation of E. coli over undoped ZnO.![]()
Collapse
Affiliation(s)
- Ian Zammit
- Department of Civil Engineering
- University of Salerno
- Italy
| | - Vincenzo Vaiano
- Department of Industrial Engineering
- University of Salerno
- Italy
| | | | - Luigi Rizzo
- Department of Civil Engineering
- University of Salerno
- Italy
| |
Collapse
|