1
|
Nodehi RN, Hadi M, Hosseinzadeh A, Azizi N. Comprehensive systematic review and meta-analysis of microplastic prevalence and abundance in freshwater fish species: the effect of fish species habitat, feeding behavior, and Fulton's condition factor. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:365-380. [PMID: 39464817 PMCID: PMC11499551 DOI: 10.1007/s40201-024-00907-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/21/2024] [Indexed: 10/29/2024]
Abstract
Microplastics are emerging pollutants that cause health problems for aquatic organisms. Fish is one of the important organisms because of its consumption by humankind. The present study examines the abundance and prevalence of microplastics in freshwater fish species through a systematic review study while considering five important factors, i.e. water resources, habitat, feeding behavior, Fulton's condition factor, and microplastic characteristics. A comprehensive meta-analysis was undertaken to evaluate relevant publications in terms of microplastic abundance. Articles published up to July 30, 2022 were found through Global search engines including, Web of Science, Scopus, and PubMed. In total, 786 articles were found that 53 and 42 articles were used for qualitative review and meta-analysis, respectively. This was carried out by a random-effects model with high heterogeneity (I2 = 99.76%). According to the data, the highest attention in microplastic research in body part and water sources are related to gastrointestinal tract (n = 259 (~ 80%)) and rivers (n = 189 (~ 58%)), respectively. According to the results, the average microplastic prevalence range was 5 -100%, and microplastic abundance was within the 0.04-204 items range per individual. The difference between microplastic prevalence and abundance for the key factors for parametric and nonparametric data were analyzed using Analysis of variance (ANOVA) and the Kruskal-Wallis test, respectively. According to the Baujat plot, two studies (ID: 27 and 25) revealed the minimal influence of microplastics abundance. Conclusively, the average microplastics abundance according to the pooled data, varied between 2.23 and 2.48, with a mean of 2.35 items per individual in the studies overall. It is concluded that the amount of ingested microplastics by fish is related only to physiology (height, weight, and body structure) but not feeding behavior, habitat, and surrounding water. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-024-00907-z.
Collapse
Affiliation(s)
- Ramin Nabizadeh Nodehi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Hadi
- Centre for Water Quality Research, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Hosseinzadeh
- Centre for Technology in Water & Wastewater, Civil & Environmental Engineering School, UTS, Sydney, Australia
| | - Nahid Azizi
- Khomein University of Medical Sciences, Khomein, Iran
| |
Collapse
|
2
|
Rahman RR, Baqee A, Alam M, Khan MW, Muhib MI, Kabir A. Organ-specific bioaccumulation of microplastics in market fish of Dhaka and size-dependent impacts of PVC microplastics on growth of Anabustestudineus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124807. [PMID: 39182814 DOI: 10.1016/j.envpol.2024.124807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Microplastics (MPs), a growing environmental concern with potential ecotoxicological risks, are ubiquitous in aquatic environment. This study investigated the organ-specific distribution and variation of MPs in commercially caught fishes (7 species, 140 individuals) collected from Dhaka's two main fish distribution hubs (Uttara and Jatrabari). Additionally, the impact of different-sized MPs on fish growth (Anabas testudineus) was examined in a control experiment. Results revealed that kidneys of market fish bioaccumulated the highest concentration of MPs (average, 59.1 MPs/g), followed by liver (24.6 MPs/g) and intestine (18.6 MPs/g). On average, fish from Uttara had a higher MPs concentration (36 MPs/g) compared to Jatrabari (25 MPs/g). Among fish species, Glossogobius giuris showed the highest MPs bioaccumulation due to its feeding habits and morphology. Fiber-shaped MPs were most prevalent in all fishes (79-93%) except Glossogobius giuris (fragments, 51%). Fourier-transform infrared spectroscopy (FTIR) analysis identified 19 different polymer types, with high density polyethylene (HDPE), ethylene vinyl acetate (EVA) and polyamide (PA) being commonly found in all organs. The experimental study confirmed that large-sized PVC MPs (1.18 mm-300 μm) had a greater negative impact on fish growth (length) and caused more physical deformities (particularly intestinal injuries) compared to small-sized PVC MPs (150 μm-75 μm). Moreover, fish exposed to larger diameter MPs experienced highest physical weight and depth loss among exposed groups. Large-sized PVC MPs bioaccumulated highest in fish compared to small-sized PVC MPs. Similar to market fish, kidney in the experimental fish had the highest MPs bioaccumulation (6.5 MPs/g), followed by liver (5.2 MPs/g) and intestine (4.8 MPs/g), with a dominance of fibers despite the presence of high concentration of fragments in the food source. Statistical analysis also supported a clear correlation between increasing MPs size and adverse effects on fish growth and health. Urgent action is needed to curb microplastic pollution and protect ecosystems and human health.
Collapse
Affiliation(s)
- R-Rafiul Rahman
- Department of Environmental Science, Bangladesh University of Professional, Dhaka, 1216, Bangladesh
| | - Abdul Baqee
- University of Global Village, Barishal, 8200, Bangladesh
| | - Mahbub Alam
- Department of Environmental Science, Bangladesh University of Professional, Dhaka, 1216, Bangladesh; Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, United States
| | - Mohammad Wahidur Khan
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Ohio, United States
| | - Md Iftakharul Muhib
- Department of General Education Department, City University, Dhaka, 1340, Bangladesh
| | - Alamgir Kabir
- Department of Environmental Science, Bangladesh University of Professional, Dhaka, 1216, Bangladesh.
| |
Collapse
|
3
|
Kazmiruk TN, Alava JJ, Palsson E, Bendell LI. Sorption of trace metals by macro- and microplastics within intertidal sediments: Insights from a long-term field study within Burrard Inlet, British Columbia, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175413. [PMID: 39137846 DOI: 10.1016/j.scitotenv.2024.175413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Plastics are now the dominant fraction of anthropogenic marine debris and as a result of their long residence times, it is important to determine the threats that plastics present to marine ecosystems including their ability to sorb a diversity of environmental pollutants such as trace metals. To address this knowledge gap, this study examined the sorption of cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) by macro- and microplastics of polyethylene terephthalate (PETE) and high-density polyethylene (HDPE) within marine intertidal sediments in a human-impacted area of Burrard Inlet (British Columbia, Canada). Trace metal sorption by macro- and microplastics was dependent on 1) polymer characteristics, notably the aging of the plastic over the duration of the field experiment as shown by the formation of new peaks via FTIR spectra; and 2) amounts of sediment organic matter, where the sorption of trace metals by the plastic particles decreased with increasing organic matter content (from 2.8 % to 15.8 %). Plastic particles play a minor role in trace metals sorption in the presence of organic matter at high concentrations as a result of competitive adsorption. Overall, the interaction of trace metals with sediment plastics was highly dynamic and to understand the key processes controlling this dynamic requires further study. This work contributed to our understanding on metal-plastic interactions in coastal intertidal sediments from urban environments and serve to support plastic pollution risk management and bioremediation studies.
Collapse
Affiliation(s)
- Tamara N Kazmiruk
- Ecotoxicology Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - Juan José Alava
- Ocean Pollution Research Unit (OPRU), Institute for the Oceans and Fisheries, University of British Columbia, AERL 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada; School of Resources and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Eirikur Palsson
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Leah I Bendell
- Ecotoxicology Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
4
|
Hattab S, Boughattas I, Alaya C, Gaaied S, Romdhani I, El Gaied F, Abouda S, Mokni M, Banni M. Assessing the presence of microplastic in agriculture soils irrigated with treated waste waters using Lumbricus sp.: Ecotoxicological effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175096. [PMID: 39079648 DOI: 10.1016/j.scitotenv.2024.175096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024]
Abstract
Global water scarcity entailed the use of treated wastewater (TWW) in agriculture, however, this water can vehiculate numerous pollutants into soil and further crops such as microplastics (MPs). To date, few studies had quantified the accumulation of MPs in soils and earthworms after irrigation with TWW as well as their toxicological effects. Hence, the main objective of the present work is to evaluate the toxicity of MPs using Lumbricus sp. earthworms collected from TWW irrigated soils with an increasing gradient of time (5 years, 16 years and 24 years). MPs determination in soil, as well as in earthworms were performed. The intestinal mucus was quantified, and cytotoxicity (Lysosomal membrane stability (LMS), Catalase (CAT) and glutathione-S-Transferase (GST) activities), neurotoxicity (Acetylcholinesterase activity (AChE)) and genotoxicity (Micronuclei frequency (MNi)) biomarker were assessed. Our results revealed that the use of TWW rendered MPs accumulation in earthworms' tissues and induce alteration on the intestinal mucus. An important cytotoxicity time-depending was observed being associated with an increase on genotoxicity. Overall, the present investigation highlights the ecotoxicological risk associated with the use of TWWs as an important driver of MPs and consequently measures are necessary to reduce MPs in wastewater treatment plans to improve this non-conventional water quality.
Collapse
Affiliation(s)
- Sabrine Hattab
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Mariem, Sousse University, Tunisia; Regional Research Centre in Horticulture and Organic Agriculture, Chott-Mariem, 4042 Sousse, Tunisia
| | - Iteb Boughattas
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Mariem, Sousse University, Tunisia; Regional Field Crops Research Center of Beja, IRESA, Tunisia
| | - Chaima Alaya
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Mariem, Sousse University, Tunisia
| | - Sonia Gaaied
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Mariem, Sousse University, Tunisia
| | - Ilef Romdhani
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Mariem, Sousse University, Tunisia
| | - Farah El Gaied
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Mariem, Sousse University, Tunisia
| | - Siwar Abouda
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Mariem, Sousse University, Tunisia
| | - Moncef Mokni
- Department of Pathology, CHU Farhat Hached, Sousse, Tunisia
| | - Mohamed Banni
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Mariem, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia.
| |
Collapse
|
5
|
Yang H, Lin X, Lu J, Zhao X, Wu D, Kim H, Su L, Cai L. Effect of shape on the transport and retention of nanoplastics in saturated quartz sand. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135766. [PMID: 39244984 DOI: 10.1016/j.jhazmat.2024.135766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Nanoplastics (NPs) pose great challenges to soil-groundwater systems. This study investigated the transport and retention of self-synthesized 0.5-μm polystyrene NPs with different shapes using column experiments. The regular NPs were with spherical shapes, while the irregular NPs were with toroid-like shapes. The toroid-like shapes were the irregular shapes (with low aspect ratio) which have not been studied yet. The explorations were carried out in both 5-25 mM NaNO3 and 1-10 mM Ca(NO3)2 solutions. Both breakthrough curves (BTCs) and retained profiles (RPs) were monitored. Our findings uncovered a clear disparity in the transport of irregular and regular NPs, with irregular particles exhibiting lower transport ability compared to the regular ones. For example, the average breakthrough plateaus of the regular and irregular NPs were ∼0.9 and ∼0.5, respectively, in 10 mM NaNO3. In-depth theoretical analysis indicated that the lower XDLVO interaction energy barrier between the irregular NPs and quartz sand was one factor, and the greater margination of irregular NPs on quartz sand, as verified by the numerical simulation, was another factor leading to the decreased transport and increased retention of the irregular NPs. The obtained results highlighted the significance of considering particle shape in future modelling and predicting the fate of NPs in real environmental circumstances.
Collapse
Affiliation(s)
- Haiyan Yang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Xunyang Lin
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jizhe Lu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoning Zhao
- Beijing Institute of Metrology, Beijing 100029, China
| | - Dan Wu
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Hyunjung Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Lei Su
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Themba NN, Dondofema F, Cuthbert RN, Munyai LF, Dalu T. Abundance and distribution of microplastics in benthic sediments and Cladocera taxa in a subtropical Austral reservoir. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2256-2270. [PMID: 39016676 DOI: 10.1002/ieam.4977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
Pollution of the natural environment by microplastics has become a global issue in ecosystems as it poses a potential long-term threat to biota. Microplastics can accrue in high abundances in sediments of aquatic ecosystems while also contaminating pelagic filter feeders, which could transfer pollutants up trophic webs. We assess the abundance and distribution of microplastics in benthic sediments and Cladocera taxa in a subtropical Austral reservoir using a combination of geospatial techniques, physicochemical analyses, diversity indices, and multivariate statistics between two seasons (i.e., hot-wet and cool-dry). We found particularly high densities of microplastics during the cool-dry season for both sediments (mean 224.1 vs. 189 particles kg-1 dry weight) and Cladocera taxa (0.3 particles per individual). Cladocera microplastic shapes were dominated by fibers with high densities of the transparent color scheme. Pearson correlation results indicated that sediment microplastic abundances were negatively correlated with chlorophyll-a concentration, temperature, and resistivity, whereas they were positively correlated with pH and salinity during the hot-wet season, with no variables significant in the cool-dry season. Cladocera microplastic abundances were positively correlated with conductivity and salinity during the cool-dry season, but no variables in the hot-wet season. These findings provide insights into the role of reservoirs as microplastic retention sites and the potential for uptake and transfer from lower trophic groups. These insights can be used to strengthen future monitoring and intervention strategies. Integr Environ Assess Manag 2024;20:2256-2270. © 2024 SETAC.
Collapse
Affiliation(s)
- Nombuso N Themba
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Farai Dondofema
- Aquatic Systems Research Group, Department of Geography and Environmental Science, University of Venda, Thohoyandou, South Africa
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Linton F Munyai
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, South Africa
| | - Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, South Africa
| |
Collapse
|
7
|
Trusler MM, Moss-Hayes VL, Cook S, Lomax BH, Vane CH. Microplastics pollution in sediments of the Thames and Medway estuaries, UK: Organic matter associations and predominance of polyethylene. MARINE POLLUTION BULLETIN 2024; 208:116971. [PMID: 39278174 DOI: 10.1016/j.marpolbul.2024.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Microplastics at 10 sites along a 77 km transect of the river Thames estuary (UK) and 5 sites along 29 km of the Medway estuary were separated from sediment and analysed by ATR-FTIR spectroscopy. Microplastics were observed at all sites. Highest Thames concentrations were in urban London between Chelsea and West Thurrock (average 170.80 particles kg-1 ± 46.64, 3.36 mg kg-1 ± 1.79 by mass), mid-outer estuary sites were two to three times lower. Microplastics were slightly dominated by particles (54 %) over fibres (45 %), including polymer types ranked: polyethylene > PET > polypropylene > polyamide. Medway microplastics decreased seaward, with one urban-municipal site impacted by a combined-sewer-overflow containing a high proportion of fibres (Rochester, 484 particles kg-1, 7.39 mg kg-1 by mass). Microplastic abundance was correlated to organic carbon (TOC %) (R2 of 0.71 Thames and 0.96 Medway), but not sediment particle size. Sedimentary microplastics accumulation in the Thames was controlled by urbanisation-distance, and site hydrodynamics.
Collapse
Affiliation(s)
- Megan M Trusler
- British Geological Survey, Organic Geochemistry Facility, Keyworth, Nottingham NG12 5GG, United Kingdom; School of Biosciences, University of Nottingham Sutton Bonnington Campus, Loughborough LE12 5RD, United Kingdom
| | - Vicky L Moss-Hayes
- British Geological Survey, Organic Geochemistry Facility, Keyworth, Nottingham NG12 5GG, United Kingdom
| | - Sarah Cook
- Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Barry H Lomax
- School of Biosciences, University of Nottingham Sutton Bonnington Campus, Loughborough LE12 5RD, United Kingdom
| | - Christopher H Vane
- British Geological Survey, Organic Geochemistry Facility, Keyworth, Nottingham NG12 5GG, United Kingdom.
| |
Collapse
|
8
|
Langenfeld D, Bucci K, Veneruzzo C, McNamee R, Gao G, Rochman CM, Rennie MD, Hoffman MJ, Orihel DM, Provencher JF, Higgins SN, Paterson MJ. Microplastics at Environmentally Relevant Concentrations Had Minimal Impacts on Pelagic Zooplankton Communities in a Large In-Lake Mesocosm Experiment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19419-19428. [PMID: 39418533 PMCID: PMC11526364 DOI: 10.1021/acs.est.4c05327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
To assess the potential risks of contemporary levels of plastic pollution in freshwater ecosystems, a large-scale experiment was conducted over 10 weeks in a boreal lake at the IISD-Experimental Lakes Area (Ontario, Canada). Fragments of common polymers (polyethylene, polystyrene, and polyethylene terephthalate), each with distinct colors and buoyancies, were added as a single pulse to seven in-lake mesocosms in equal contributions in a range of environmentally relevant nominal concentrations (6-29,240 particles/L). Two additional mesocosms with no added microplastics were used as controls. Zooplankton ingested low levels of microplastics (mean of 0.06 particles/individual ± SD 0.07) and generally their total abundance and community composition were not negatively impacted. Temporary changes were however observed; total zooplankton abundance and abundance of calanoid copepods were temporarily stimulated by increasing nominal microplastic concentrations, and modest, short-term reductions in egg production of the cyclopoid copepod Tropocyclops extensus and abundance of copepod nauplii occurred. Collectively, these results suggest that microplastics could have complex impacts on zooplankton communities, stimulating some species while negatively impacting others.
Collapse
Affiliation(s)
- Desiree Langenfeld
- International
Institute for Sustainable Development Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
- Department
of Entomology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Kennedy Bucci
- Department
of Ecology and Evolutionary Biology, University
of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Cody Veneruzzo
- Department
of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Rachel McNamee
- Department
of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Gloria Gao
- Department
of Ecology and Evolutionary Biology, University
of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Chelsea M. Rochman
- Department
of Ecology and Evolutionary Biology, University
of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Michael D. Rennie
- Department
of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Matthew J. Hoffman
- School
of
Mathematics and Statistics, Rochester Institute
of Technology, Rochester, New York 14623, United States
| | - Diane M. Orihel
- Department
of Biology and School of Environmental Studies, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Jennifer F. Provencher
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, Ottawa K1S 5B6, Canada
| | - Scott N. Higgins
- International
Institute for Sustainable Development Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
| | - Michael J. Paterson
- International
Institute for Sustainable Development Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
- Department
of Entomology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
9
|
Atuga G, Schulz M. Quantification, characterization, and source identification of macro- and mesoplastics in the water column of Rivers Sabaki and Tana. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1110. [PMID: 39466482 DOI: 10.1007/s10661-024-13244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
Five sampling campaigns were conducted in the water columns of River Sabaki and Tana in Kenya, Between October 2021 and January 2023, covering a 1-year cycle, at four sites in River Sabaki (2.5 km, 3.05 km, 3.51 km, and 4.52 km) and River Tana (1.5 km, 1.8 km, 2.0 km, and 2.5 km) distant from the river mouth. The ebb and flood tides were sampled to calculate net plastic litter fluxes. Two 6350-µm seine nets were deployed in two replicates per sampling point. Factor and cluster analysis were used to investigate plastic litter sources for both rivers. The influences of rainfall on plastic abundance and mass were explored using permutational linear models. A total of 15,318 plastic litter items weighing 1.37 kg were recorded in River Sabaki, and 3741 plastic litter items weighing 0.95 kg in River Tana. The top ten captured plastic litter types sorted by abundance and mass were mostly plastic fragments. The annual net plastic litter flux to the ocean through River Sabaki amounted to 1,277,120.63 items year-1 by abundance and 22.30 kg year-1 by mass. For River Tana, the same fluxes were 207,550.76 items year-1, and 28.09 kg year-1, respectively. In River Sabaki, significant impacts of rainfall on plastic abundance and mass were found. River Sabaki's pollution sources included upstream reaches, fishing activities, and littering by locals and tourists. River Tana's major pollution sources were illegal dumpsites, littering, fishing, and recreational activities. This research can guide combat plastic pollution in the rivers and ultimately the ocean.
Collapse
Affiliation(s)
- Gilbert Atuga
- Department of Oceanography and Hydrography, Kenya Marine and Fisheries Research Institute, P.O. Box 81651, Mombasa, Kenya.
- Institute of Environmental Systems Research, Osnabruck University, Neuer Graben/Schloss 4969, D-49069, Osnabruck, Germany.
| | - Marcus Schulz
- Institute of Environmental Systems Research, Osnabruck University, Neuer Graben/Schloss 4969, D-49069, Osnabruck, Germany
| |
Collapse
|
10
|
Liang L, Tang Z, Jiang Y, Ding C, Tang M, Zhi Y, Xu X, Fang F, Guo J, Zhu D, Yang C. Impacts of the coexistence of polystyrene microplastics and pesticide imidacloprid on soil nitrogen transformations and microbial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123054. [PMID: 39467461 DOI: 10.1016/j.jenvman.2024.123054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/13/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
The pollution of agricultural soils by microplastics (MPs) and pesticides has attracted significant attention. However, the combined impact of MPs and pesticides on soil nitrogen transformation and microbial communities remains unclear. In this study, we conducted a 28-day soil incubation experiment, introducing polystyrene microplastics (PS-MPs) at concentrations of 0.1% and 10% (w/w) and pesticide imidacloprid at concentrations of 0.1 mg/kg and 1.0 mg/kg. Our aim was to investigate the individual and combined effects of these pollutants on nitrogen transformations and microbial communities in agricultural soils. Imidacloprid accelerated the decline in soil pH, while PS-MPs slowed the process. Imidacloprid hindered soil nitrification and denitrification processes, however, the presence of PS-MPs mitigated the inhibitory effects of imidacloprid. Based on microbial community and functional annotation analyses, this is mainly attributed to the different effects of PS-MPs and imidacloprid on soil microbial communities and the expression of key nitrogen transformation-related genes. Variance partitioning analysis and partial least squares path modeling analyses revealed that PS-MPs and imidacloprid indirectly influenced the microbial community structure, primarily through changes in soil pH. This study elucidates the mechanism through which the combined stress of MPs and pesticides in agricultural soils influence soil nitrogen transformation and microbial communities. The findings offer valuable insights for the systematic evaluation of the ecological risks posed by the coexistence of these pollutants.
Collapse
Affiliation(s)
- Luntao Liang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Zichao Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yanxue Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Chen Ding
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Miaoyi Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yue Zhi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xiaowei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Dong Zhu
- A Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Cuilan Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
11
|
Wu Y, Zhu J, Sun Y, Wang S, Wang J, Zhang X, Song J, Wang R, Chen C, Zou J. Effects of the co-exposure of microplastic/nanoplastic and heavy metal on plants: Using CiteSpace, meta-analysis, and machine learning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117237. [PMID: 39447297 DOI: 10.1016/j.ecoenv.2024.117237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Micro/nanoplastics (MNPs) and heavy metals (HMs) coexist worldwide. Existing studies have reported different or even contradictory toxic effects of co-exposure to MNPs and HMs on plants, which may be related to various influencing factors. In this study, existing publications were searched and analyzed using CiteSpace, meta-analysis, and machine learning. CiteSpace analysis showed that this research field was still in the nascent stage, and hotspots in this field included accumulation, cadmium (Cd), growth, and combined toxicity. Meta-analysis revealed the differential association of seven influencing factors (MNP size, pollutant treatment duration, cultivation media, plant species, MNP type, HM concentration, and MNP concentration) and 8 physiological parameters receiving the most attention. Co-exposure of the two contaminants had stronger toxic effects than HM treatment alone, and phytotoxicity was generally enhanced with increasing concentrations and longer exposure durations, especially when using nanoparticles, hydroponic medium, dicotyledons producing stronger toxic effects than microplastics, soil-based medium, and monocotyledons. Dry and fresh weight analysis showed that co-exposure to MNPs and Cd resulted in significant phytotoxicity in all classifications. Concerning the MNP types, polyolefins partially attenuated plant toxicity, but both modified polystyrene (PS) and biodegradable polymers exacerbated joint phytotoxicity. Finally, machine learning was used to fit and predict plant HM concentrations, showing five classifications with an accuracy over 80 %, implying that the polynomial regression model could be used to predict HM content in plants under complex pollution conditions. Overall, this study identifies current knowledge gaps and provides guidance for future research.
Collapse
Affiliation(s)
- Yuyang Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jun Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Yue Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China; State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Siyuan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jun Wang
- Beijing Key Laboratory of Big Data Technology for Food Safety, School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing, China
| | - Xuanyu Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jiayi Song
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Ruoxi Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Chunyuan Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jinhua Zou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
12
|
Dziobak MK, Fahlman A, Wells RS, Takeshita R, Smith C, Gray A, Weinstein J, Hart LB. First evidence of microplastic inhalation among free-ranging small cetaceans. PLoS One 2024; 19:e0309377. [PMID: 39413051 PMCID: PMC11482699 DOI: 10.1371/journal.pone.0309377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/09/2024] [Indexed: 10/18/2024] Open
Abstract
Plastic is a ubiquitous environmental contaminant, resulting in widespread exposure across terrestrial and marine spaces. In the environment, plastics can degrade into microparticles where exposure has been documented in a variety of fauna at all trophic levels. Human epidemiological studies have found relationships between inhaled microplastics and oxidative stress and inflammation. Previous studies of bottlenose dolphins (Tursiops truncatus) have reported prevalent exposure to plasticizing chemicals (e.g., phthalates) as well as particle loads in gastrointestinal tracts, but exposure from inhalation has not yet been studied. The objective of this study was to determine if inhalation is a viable route of microplastic exposure for free-ranging dolphins. Exhalation samples were opportunistically collected from dolphins residing in Sarasota Bay, Florida (n = 5) and Barataria Bay, Louisiana (n = 6) during catch-and-release health assessments to screen for microplastic particles. All dolphin samples contained at least one suspected microplastic particle, and polymer composition was determined for 100% of a subset (n = 17) of samples. Additional studies are warranted to better understand the extent of inhaled microplastics, as well as to explore impacts, given potential risks to lung function and health.
Collapse
Affiliation(s)
- Miranda K. Dziobak
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, United States of America
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States of America
| | - Andreas Fahlman
- Fundacion Oceanografic, Valencia, Spain
- Global Diving Research, Sanlucar de Barrameda, Spain
- IFM, Linkoping University, Linkoping, Sweden
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, ℅ Mote Marine Laboratory, Sarasota, FL, United States of America
| | - Ryan Takeshita
- National Marine Mammal Foundation, San Diego, CA, United States of America
| | - Cynthia Smith
- National Marine Mammal Foundation, San Diego, CA, United States of America
| | - Austin Gray
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - John Weinstein
- Department of Biology, The Citadel, Charleston, SC, United States of America
| | - Leslie B. Hart
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, United States of America
| |
Collapse
|
13
|
Martínez Rodríguez A, Kratina P, Jones JI. Microplastic pollution and nutrient enrichment shift the diet of freshwater macroinvertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124540. [PMID: 39004208 DOI: 10.1016/j.envpol.2024.124540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Microplastic pollution poses a global threat to freshwater ecosystems, with laboratory experiments indicating potential toxic impacts through chemical toxicity, physical abrasion, and false satiation. Bioplastics have emerged as a potential greener alternative to traditional oil-based plastics. Yet, their environmental effects remain unclear, particularly at scales relevant to the natural environment. Additionally, the interactive impacts of microplastics with other environmental stressors, such as nutrient enrichment, are poorly understood and rarely studied. Under natural conditions organisms might be able to mitigate the toxic effects of microplastics by shifting their diet, but this ability may be compromised by other stressors. This study combines an outdoor mesocosm experiment and stable isotope analysis to determine changes in the trophic niches of three freshwater invertebrate species exposed to conventional (HDPE) and bio-based biodegradable (PLA) microplastics at two concentrations, both independently and combined with nutrient enrichment. Exposure to microplastics altered the isotopic niches of two of the invertebrate species, with nutrient enrichment mediating this effect. Moreover, the effects of microplastics were consistent regardless of their type or concentration. Under enriched conditions, two of the species exposed to microplastics shifted to a specialised diet compared with controls, whereas little difference was observed between the isotopic niches of those exposed to microplastic and controls under ambient nutrient conditions. Additionally, PLA was estimated to support 24 % of the diet of one species, highlighting the potential assimilation of bioplastics by biota and possible implications. Overall, these findings suggest that the toxic effects of microplastics suggested from laboratory studies might not manifest under real-world conditions. However, this study does demonstrate that subtle sublethal effects occur even at environmentally realistic microplastic concentrations. The crucial role of nutrient enrichment in mediating microplastic effects underscores the importance of considering microplastic pollution in the context of other environmental stressors.
Collapse
Affiliation(s)
- Ana Martínez Rodríguez
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - J Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
14
|
Hu X, Gao Y, Cheng Y, Li X, Wang L, Zhang X, Wang G. Aged rather than pristine polyvinyl chloride microplastic affect the development and structure of Vallisneria natans population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176841. [PMID: 39393697 DOI: 10.1016/j.scitotenv.2024.176841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
A large number of microplastics have been discharged into freshwater ecosystems, where they age and are deposited in the sediment, posing a risk to primary producers, such as submerged macrophytes. Many macrophytes benefit from clonal integration, which lets the population work as a 'macro' organism. Nonetheless, little is known about the differences in phytotoxicity between aged and pristine microplastics, particularly for clonal populations of macrophytes. In this study, we showed that UV-aging changes the characteristics of polyvinyl chloride microplastics (PVC-MPs). Aged PVC-MPs possessed higher hydrophilicity, less chlorine and crystallinity, and more severe toxicity. The pristine PVC-MPs did not affect Vallisneria natans, while the aged PVC-MPs significantly affected the development and structure of the clonal population. The severely aged PVC-MPs reduced the relative growth rate of V. natans by 26 % at the population level. Furthermore, the mother plant (ortet) and offspring (ramet) responded differently to the aged PVC-MPs. A trade-off was observed between the growth rate and stress resistance in the ortets. The ortets increased investment in the root part to tolerate stress when facing exposure to microplastics. In contrast, the ramets were less resistant, as shown by shorter roots, and lower leaf chlorophyll, carbon, and nitrogen concentrations. Notably, the growth of the ramets was maintained and the investments in stolon structure by the ortets were not lessened. The ortet sacrificed itself for the continuation of the ramet. This clonal integration may safeguard V. natans survival and compensate for vegetative expansion. This study sheds new light on how macrophytes respond to microplastics at the clonal population level and provides direct evidence that existing studies may have underestimated the toxic effect of microplastics in freshwater ecosystems.
Collapse
Affiliation(s)
- Xiaoqing Hu
- School of Environment, Nanjing Normal University, Nanjing, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuxuan Gao
- School of Environment, Nanjing Normal University, Nanjing, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yi Cheng
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Xi Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China.
| | - Xinhou Zhang
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, China
| |
Collapse
|
15
|
Garai S, Bhattacharjee C, Sarkar S, Moulick D, Dey S, Jana S, Dhar A, Roy A, Mondal K, Mondal M, Mukherjee S, Ghosh S, Singh P, Ramteke P, Manna D, Hazra S, Malakar P, Banerjee H, Brahmachari K, Hossain A. Microplastics in the soil-water-food nexus: Inclusive insight into global research findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173891. [PMID: 38885699 DOI: 10.1016/j.scitotenv.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Nuisance imposed by biotic and abiotic stressors on diverse agroecosystems remains an area of focus for the scientific fraternity. However, emerging contaminants such as microplastics (MP) have imposed additional dimension (alone or in combinations with other stressors) in agroecosystems and keep escalating the challenges to achieve sustainability. MP are recognized as persistent anthropogenic contaminants, fetch global attention due to their unique chemical features that keeps themselves unresponsive to the decaying process. This review has been theorized to assess the current research trends (along with possible gap areas), widespread use of MP, enhancement of the harshness of heavy metals (HMs), complex interactions with physico-chemical constituents of arable soil, accumulation in the edible parts of field crops, dairy products, and other sources to penetrate the food web. So far, the available review articles are oriented to a certain aspect of MP and lack a totality when considered from in soil-water-food perspective. In short, a comprehensive perspective of the adverse effects of MP on human health has been assessed. Moreover, an agro-techno-socio-health prospective-oriented critical assessment of policies and remedial measures linked with MP has provided an extra edge over other similar articles in influential future courses of research.
Collapse
Affiliation(s)
- Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Chandrima Bhattacharjee
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal -741235, India
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anannya Dhar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Krishnendu Mondal
- Dhaanyaganga Krishi Vigyan Kendra, Ramakrishna Mission Vivekananda Educational and Research Institute, Sargachhi, West Bengal, India
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, The Neotia University, Sarisha, West Bengal, India
| | - Siddhartha Mukherjee
- Division of Agriculture, Faculty Centre for Agriculture, Rural and Tribal Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Morabadi, Ranchi, Jharkhand, India
| | - Samrat Ghosh
- Emergent Ventures India, Gurugram, Haryana, India
| | - Puja Singh
- Department of Soil Science and Agricultural Chemistry, Natural Resource Management, Horticultural College, Birsa Agricultural University, Khuntpani, Chaibasa, Jharkhand, India
| | - Pratik Ramteke
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS 444104, India
| | - Dipak Manna
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Shreyasee Hazra
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Pushkar Malakar
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Hirak Banerjee
- Regional Research Station (CSZ), Bidhan Chandra Krishi Viswavidyalaya, Kakdwip, West Bengal, India
| | - Koushik Brahmachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
16
|
Guo H, Wang X, Cheng H, Luo Z, Huang J, Chen H, Pang J, Lin K, Huang S, Zhang X, Zhang Y. Deep-sea microplastics aging and migration exerted by seamount topography and biotopes in the subtropic Northwest Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174064. [PMID: 38889812 DOI: 10.1016/j.scitotenv.2024.174064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Microplastics (MPs) have drawn exponential attention as anthropogenic pollutants, which have invaded every corner of planet. Seamounts are prominent features of the deep-sea topography, acting as breeding ground for marine animal calves and hotspots of pelagic biodiversity, yet MPs pollution in seamounts is scarcely studied. We investigated the MPs load in the whole vertical profile of seamount ambient water in the Subtropical Northwest Pacific Ocean. Based on focal plane array Fourier Transform Infrared spectrometry, MPs were detected in all layers, and varied from 0.9 to 3.8 items L-1, PP and PE were dominant, PA and PET tended to gather at the seamount summit. With depth increasing, small MPs (20-50 μm) were dominant, and MPs surface roughness including crack, hole, and biofouling showed an increase. Three plastic-degrading bacteria were noted in the layers around the seamount, indicating that the seamount community may accelerate MPs aging and further migration. Our work first unveiled the MPs occurrence in the whole vertical profile of the seamount. It reveals that ocean MPs migration and degradation are significantly affected by the unique topography and biotopes of the seamount.
Collapse
Affiliation(s)
- Huige Guo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Xiaochen Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hong Cheng
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jieliang Huang
- School of Life Science, Xiamen University, Xiamen 361005, China
| | - Hongzhe Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jinling Pang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Kunning Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Shuyuan Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xuhui Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Yuanbiao Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
17
|
Chen L, Zhou S, Su B, Qiu Y, Li Y. Microplastic pollution in Taihu Lake: Spatial distribution from the lake inlet to the lake centre and vertical stratification in the water column. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125102. [PMID: 39395731 DOI: 10.1016/j.envpol.2024.125102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
The aim of this study was to analyse the distribution characteristics of microplastics in lakes, assess their potential impacts on ecosystems, and explore effective management and control strategies. Despite a wealth of research focused on lake water, the variations in microplastics with offshore distance and their vertical distribution within the water column are not well understood. Here, we investigated the freshwater continuum from the inlet of Taihu Lake to the centre, and vertically from the surface to the bottom water. The results revealed that the distribution of microplastics (<5 mm in size) exhibited a clear spatial gradient. The microplastic abundance at the lake entrance was 2.12 times greater than that at the centre, and on the lake surface, the microplastic abundance was 1.36-1.69 times higher than that estimated from the water column. Notably, the proportion of small-sized microplastics (<0.1 mm) in the bottom water was 1.72 times higher than that in the surface water. The main types of polymers identified were polyamide (PA) and polyvinyl chloride (PVC), and their main sources may be from clothes washing and industrial activities. The Monte Carlo simulation results indicated that the overall risk of microplastics in surface water was higher than that in the water column, and the contributions of PVC and polyurethane (PU) to the ecological risk were 90.10% and 9.57%, respectively. Therefore, PVC and PU should be the priority of microplastic pollution control. This study provides the first comprehensive evaluation of the spatial ecological risk of microplastics in Taihu Lake, which improves our understanding of the distribution and environmental risks of microplastics in lake systems.
Collapse
Affiliation(s)
- Long Chen
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China.
| | - Bo Su
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Yifei Qiu
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Yan Li
- Collaborative Innovation Center of Sustainable Forestry, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Dos Santos Silva J, Cidade MJA, Panero FDS, Ribeiro LB, Campos da Rocha FO. Microplastic pollution in the Amazon Basin: Current scenario, advances and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174150. [PMID: 38909819 DOI: 10.1016/j.scitotenv.2024.174150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
The presence of microplastics (MPs) has been reported in ecosystems in the most different regions of the world and rivers have been identified as one of the main means of transporting this debris to oceans. Recent research shows microplastic deposition and accumulation in the Amazon Basin and, despite being scarce, microplastic pollution is ubiquitous in the region. Of the 9 countries that make up the Amazon Basin, only Brazil, Guyana, Ecuador and Peru have published on the topic, with the main focus on biota (58 %). Several Amazon regions such as Northern Amazon in the Far North of Brazil still have no evidence of microplastic pollution with published data. MP abundance ranges from 5 to 74,500 MPs m-3 for waters, 0 to 8178 MPs kg-1 for sediment and 0.34 to 38.3 MPs individual-1 for biota, with nanoplastic scale (<100 μm) in the sediment. Blue and colorless are the predominant colors, mainly from secondary sources (fibers and fragments). The most commonly found polymers are polyamide, polyethyleneterephthalate and polypropylene. Microplastic abundance in aquatic systems is higher than that found in other rivers, such as the Guayas in Ecuador, the Magdalena, in Colombia and the Surabaya in Indonesia and are similar to regions with intense anthropogenic activity such as the Guanabara Bay - Brazil and the Yellow River in China. The precarious basic sanitation structure, urban planning, waste management, combined with the extensive network of navigable waters, are aggravating factors for the increase in plastic pollution in the region. It is necessary to increase research investment on the topic, considering MP quantification, impacts and the relationship with the hydrosedimentological dynamics of the Amazon Basin. The creation and enforcement of laws that minimize the accumulation of these materials is emerging, besides the development of the bioeconomy and sustainable proposals to minimize plastic pollution in the Amazon.
Collapse
Affiliation(s)
- Jackiely Dos Santos Silva
- Universidade Federal de Roraima, UFRR, Programa de Pós-Graduação em Recursos Naturais (PRONAT), 69301-160 Boa Vista, RR, Brazil
| | - Mirla Janaina Augusta Cidade
- Universidade Federal de Roraima, UFRR, Programa de Pós-Graduação em Recursos Naturais (PRONAT), 69301-160 Boa Vista, RR, Brazil
| | - Francisco Dos Santos Panero
- Universidade Federal de Roraima, UFRR, Programa de Pós-Graduação em Recursos Naturais (PRONAT), 69301-160 Boa Vista, RR, Brazil; Universidade Federal de Roraima, UFRR, Centro de Ciências e Tecnologia, Departamento de Química, 69301-160 Boa Vista, RR, Brazil
| | - Leila Braga Ribeiro
- Universidade Federal de Roraima, UFRR, Programa de Pós-Graduação em Recursos Naturais (PRONAT), 69301-160 Boa Vista, RR, Brazil
| | - Franciele Oliveira Campos da Rocha
- Universidade Federal de Roraima, UFRR, Programa de Pós-Graduação em Recursos Naturais (PRONAT), 69301-160 Boa Vista, RR, Brazil; Universidade Federal de Roraima, UFRR, Centro de Ciências e Tecnologia, Departamento de Química, 69301-160 Boa Vista, RR, Brazil.
| |
Collapse
|
19
|
Chen Y, Wu D, Zhang L, Yang Z, Zhou F, Kortsch S, Pontarp M. Impacts of microplastic ingestion on fish communities in Haizhou Bay, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136067. [PMID: 39388863 DOI: 10.1016/j.jhazmat.2024.136067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Microplastics are pervasive throughout aquatic ecological communities. While their negative impacts on the life history traits of aquatic species are well studied, the effects on community dynamics remain elusive. Consequently, community-level assessments of microplastic effects on marine food webs are largely lacking, creating significant knowledge gaps regarding marine ecosystem structure and dynamics in the context of microplastic contamination. Here we expand a multispecies size-spectrum model by incorporating microplastic impacts on individual life-history traits, ultimately allowing us to study microplastic-mediated structural and functional changes in fish communities. As expected, microplastic ingestion may drive species extinction, but the microplastic-to-food ratio threshold for extinction is species-specific, and not necessarily correlated with species' asymptotic weights. Interestingly, species responses to microplastics also propagate through the community as ingestion triggers both bottom-up and top-down effects on community dynamics. Which specific type of cascading effect is dominating depends on which species is ingesting microplastics as well as its trophic role in the community. Generally, low-trophic-level species ingesting microplastics can exert large detrimental effects on community biomass. Thus, this study highlights the necessity for a comprehensive risk assessment of species-specific responses to microplastic contamination as well as an understanding of individual species' role in their communities.
Collapse
Affiliation(s)
- Yuxin Chen
- School of Mathematical Science, Yangzhou University, Yangzhou 225002 China
| | - Dan Wu
- School of Mathematical Science, Yangzhou University, Yangzhou 225002 China
| | - Lai Zhang
- School of Mathematical Science, Yangzhou University, Yangzhou 225002 China.
| | - Zichun Yang
- School of Mathematical Science, Yangzhou University, Yangzhou 225002 China
| | - Famin Zhou
- School of Mathematical Science, Yangzhou University, Yangzhou 225002 China
| | - Susanne Kortsch
- Tväminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, J.A. Palménin tie 260, 10900 Hanko, Finland
| | | |
Collapse
|
20
|
Khan M, Johnson K. Microplastics alter toxicity of the insecticide Bacillus thuringiensis israelensis to chironomid larvae in different ways depending on particle size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176637. [PMID: 39362536 DOI: 10.1016/j.scitotenv.2024.176637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Microplastics (<5 mm) are emerging freshwater contaminants that can have a wide range of effects on aquatic biota. One concern is that combined effects of microplastics (MPs) with other stressors, such as co-occurring contaminants in urban or agricultural runoff may be significant even when the direct effects of MPs may be modest. Despite the frequent detection of both insecticides and MPs in freshwater ecosystems, there is a lack of co-exposure studies of insecticides (especially Bacillus thuringiensis israelensis (Bti)) and MPs. Here we tested the effects of ingested MPs and Bti individually and in co-exposure using the aquatic midge Chironomus riparius as a model organism. First instar larvae were fed two sizes of white polyethylene particles (34-50 and 125 μm diameter) at 106 mg/L in an artificial diet and simultaneously exposed to increasing concentrations of Bti (7, 13, 27, 53, and 89 ng/L Active Ingredient) in the water column for 21 days. For comparison, a trial was also conducted with naturally occurring kaolin clay particles (1-10 μm diameter) at 106 mg/L in the artificial diet. Bti alone reduced 7-day larval survival at higher concentrations (53, and 89 ng/L). Dietary PE-MPs and kaolin did not affect the survival of C. riparius larvae. However, when exposed in combination, PE-MPs modified the toxicity of Bti. This modification was size-dependent, with smaller particles (34-50 μm) increasing survival of Bti-exposed larvae and larger particles (125 μm) reducing survival. Our results show the potential for microplastics to alter the efficacy of an insecticide widely used to control nuisance midges and mosquitoes and add to a growing body of literature describing how the toxicological effects of microplastics are influenced by the size and shape of particles.
Collapse
Affiliation(s)
- Mohsin Khan
- Department of Biological Sciences, Ohio University, Athens, OH 45701, United States of America
| | - Kelly Johnson
- Department of Biological Sciences, Ohio University, Athens, OH 45701, United States of America; Voinovich School of Leadership and Public Service, Ohio University, Athens, OH 45701, United States of America.
| |
Collapse
|
21
|
Lee JH, Cheon SJ, Kim CS, Joo SH, Choi KI, Jeong DH, Lee SH, Yoon JK. Nationwide evaluation of microplastic properties in municipal wastewater treatment plants in South Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124433. [PMID: 38925216 DOI: 10.1016/j.envpol.2024.124433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Wastewater treatment plants (WWTPs) are considered a significant microplastic discharge source. To evaluate the amount and characteristics of microplastics discharged from WWTPs in South Korea, we selected 22 municipal WWTPs nationally and investigated microplastics at each treatment stage. The mean microplastic removal efficiency by WWTPs was >99%, and most of the microplastics were removed by sedimentation with the second clarifier during wastewater treatment. Consequently, the microplastic removal efficiency of WWTPs did not significantly differ from that of the adopted wastewater treatment technology because a second clarifier was applied in most WWTPs. However, for WWTPs operating a tertiary treatment process, the removal efficiency was enhanced compared with that of WWTPs discharging after a second clarifier. Although the microplastic removal efficiency was high by WWTP, the discharge contribution to the water environment could not be ignored because of the amount of treated wastewater, resulting in an increase of 5.8-270.9 items/m3 of microplastics in the receiving water. The characteristics of microplastics in WWTPs, including their components, shape, and size, were also evaluated. The most detected components included polytetrafluoroethylene and polyester. Most microplastics detected were categorized as fragments and fibers, while other types were hardly detected. The size of more than 70% of the microplastics detected in WWTPs was under 300 μm, implying that the size of microplastics required to control in WWTPs was much smaller than the defined size of microplastics. An evaluation of the correlation between other pollution factors and microplastic abundance did not reveal positive correlations, and microplastic occurrence was not affected by changing seasons, which may need to be evaluated with further studies. Research should also be performed on the effect of influent sources on the level of microplastic abundance and fate of ultrafine plastics in WWTPs.
Collapse
Affiliation(s)
- Jae-Ho Lee
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea.
| | - So-Jeong Cheon
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Chang-Soo Kim
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Soo-Hyun Joo
- Analysis Technical Center, Korea Institute of Ceramic Engineering & Technology, Bucheon, Gyeonggi-do, 14502, Republic of Korea
| | - Ki-In Choi
- Analysis Technical Center, Korea Institute of Ceramic Engineering & Technology, Bucheon, Gyeonggi-do, 14502, Republic of Korea
| | - Dong-Hwan Jeong
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Soo-Hyung Lee
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Jeong-Ki Yoon
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| |
Collapse
|
22
|
Zhu C, Zhou H, Bao M, Tang S, Gu X, Han M, Li P, Jiang Q. Polystyrene microplastics induce molecular toxicity in Simocephalus vetulus: A transcriptome and intestinal microorganism analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107046. [PMID: 39197247 DOI: 10.1016/j.aquatox.2024.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024]
Abstract
The global prevalence and accumulation of plastic waste is leading to pollution levels that cause significant damage to ecosystems and ecological security. Exposure to two concentrations (1 and 5 mg/L) of 500 nm polystyrene (PS)-nanoplastics (NPs) for 14 d was evaluated in Simocephalus vetulus using transcriptome and 16 s rRNA sequencing analyses. PS-NP exposure resulted in stress-induced antioxidant defense, disturbed energy metabolism, and affected the FoxO signaling pathway, causing neurotoxicity. The expression of Cyclin D1 (CCND), glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase (PCK) genes was decreased compared to the control, whereas the expression of caspase3 (CASP3), caspase7 (CASP7), Superoxide dismutase (SOD), Heat shock protein 70 (HSP70), MPV17, and Glutathione S-transferase (GST) genes was increased, thus, suggesting that NP ingestion triggered oxidative stress and disrupted energy metabolism.. PS-NPs were present in the digestive tract of S. vetulus after 14 days of exposure. In addition, the abundance of the Proteobacteria and opportunistic pathogens was elevated after PS-NPs exposure. The diversity and homeostasis of the S. vetulus gut microbiota were disrupted and the stability of intestinal barrier function was impaired. Multiomic analyses highlighted the molecular toxicity and microbial changes in S. vetulus after exposure to NPs, providing an overview of how plastic pollution affects freshwater organisms and ecosystems.
Collapse
Affiliation(s)
- Chenxi Zhu
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China; Geography, School of Humanities, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Hui Zhou
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China
| | - Mengyu Bao
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China; Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Shengkai Tang
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Xiankun Gu
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Mingming Han
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China
| | - Peng Li
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province. 79 Chating East Street, Nanjing 210017, China.
| |
Collapse
|
23
|
Balestra V, Trunfio F, Akyıldız SH, Marini P, Bellopede R. Microparticles of anthropogenic origin (microplastics and microfibers) in sandy sediments: A case study from calabria, italy. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:993. [PMID: 39352543 PMCID: PMC11445366 DOI: 10.1007/s10661-024-13159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Microparticles of anthropogenic origin, such as microplastics and microfibers, are pervasive pollutants in the marine environment of the world. These microparticles pollute water and can be ingested by biota; however, while microplastics are often monitored, very few studies focus on microfibers. Coastal areas, such as beaches, are more vulnerable to pollution due to their location between terrestrial and marine environments and their recreational and touristic functions. In this study, microparticle occurrence frequency was investigated along the Calabria coast, Italy, in one touristic beach in comparison with an unpopular one. High amounts of microparticles of anthropogenic origin were found in all sediment samples, despite the evident different tourist exploitation of the two examined beaches. Sediments of the most touristic beach had values between 729.5 ± 212.3 and 1327 ± 125.8 items/kg, instead, the less popular beach between 606.3 ± 102.8 and 1116.5 ± 226.9 items/kg (average and st. dev). Microparticle abundance varied before and after the touristic summer season, increasing in the most popular beach and decreasing in the unpopular one. Differences in microparticle abundance between foreshore and backshore were present too; however, statistical analyses did not show evident relations between microparticle abundance and the distance from the see. Grain size influenced the abundance of microparticles in sediments. Our results improve knowledge on microparticle pollution in marine environments, highlighting information about micropollution in coastal areas. Future studies are needed to understand better microparticle dynamics and ecological impacts in marine and terrestrial systems, implementing new strategies to monitor pollution state, enhancing the natural intermediate environments, and providing useful and sustainable measure of conservation.
Collapse
Affiliation(s)
- Valentina Balestra
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico Di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, Italy.
| | - Federica Trunfio
- Politecnico Di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, Italy
| | - Sinem Hazal Akyıldız
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico Di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, Italy
| | - Paola Marini
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico Di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, Italy
| | - Rossana Bellopede
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico Di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin, Italy
| |
Collapse
|
24
|
Pizzi F, Rahmani M, Grau J, Capuano F, Jofre L. Microparticle dynamics in upper-ocean turbulence: Dataset for analysis, modeling & prediction. Data Brief 2024; 56:110850. [PMID: 39281015 PMCID: PMC11396055 DOI: 10.1016/j.dib.2024.110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Plastic particle pollution has threatened the well-being of seawater ecosystems over the past decades. Therefore, understanding, modeling and (potentially) predicting the dynamics of microplastics and biogenic particles in ocean turbulence is of utmost importance to help develop mitigation strategies and propose technological solutions ultimately aimed at safeguarding global water systems. This is particularly significant for microplastics in the upper-ocean layer. To that end, this work presents a comprehensive and openly accessible dataset carefully designed to explore the interplay between the flow physics of particle-laden turbulence and the physicochemical effects of biofilm stickiness. The dataset comprises nine point-particle direct numerical simulations of fluid flow featuring microplastic and biogenic debris within a periodic three-dimensional flow domain. In all cases, the chosen turbulent intensity and microparticle properties represent conditions observed in the upper-ocean layer. This data repository aims to facilitate in-depth exploration, modeling and prediction of the intricate flow physics observed in marine microplastics, particularly regarding their distribution and aggregation.
Collapse
Affiliation(s)
- Federico Pizzi
- Department of Fluid Mechanics, Universitat Politècnica de Catalunya · BarcelonaTech (UPC), Barcelona 08019, Spain
| | - Mona Rahmani
- Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Joan Grau
- Department of Fluid Mechanics, Universitat Politècnica de Catalunya · BarcelonaTech (UPC), Barcelona 08019, Spain
| | - Francesco Capuano
- Department of Fluid Mechanics, Universitat Politècnica de Catalunya · BarcelonaTech (UPC), Barcelona 08019, Spain
| | - Lluís Jofre
- Department of Fluid Mechanics, Universitat Politècnica de Catalunya · BarcelonaTech (UPC), Barcelona 08019, Spain
| |
Collapse
|
25
|
Zhou T, Min R, Yang S, Zhang H, Zhang J, Song S, Zhang G. Distribution of microplastics in Lanzhou section of the Yellow River: Characteristics, ecological risk assessment, and factors analysis. MARINE POLLUTION BULLETIN 2024; 207:116900. [PMID: 39241367 DOI: 10.1016/j.marpolbul.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
Microplastic (MP) is an emerging pollutant that has attracted attention in the environmental field, and the research of MPs in freshwater systems needs to be strengthened. To characterize the MPs in surface water and sediments of the western urban river network, water and sediment samples were collected. The results showed that the abundance of MPs in the water body of the river network ranged from 7 to 172 n/L, whereas the abundance of MPs in the sediments ranged from 7 to 144 n/kg, and the average abundance in the dry season was significantly higher than that in the rainy season. The majority of MPs (83.67 %) were < 1 mm and fibrous. The most commonly identified types of MPs were PET and PP, while the color blue was frequently observed. MPs have the potential to vertically migrate in sediments, with size, shape, density, and hydrodynamic forces being the main factors that contribute to this process. Correlation analysis results revealed that anthropogenic and meteorological factors, including precipitation, atmospheric conditions, and population density, had a discernible impact on the abundance, size, and shape of MPs. The ecological risk of MPs was assessed using the Polymer Hazardous Index (PHI), Pollution Load Index (PLI), and Potential Ecological Risk Index (PERI) methods, and the results showed that the overall ecological risk of the Lanzhou section of the Yellow River was low. This study can provide a scientific basis for monitoring and risk assessment of emerging contaminants such as MPs in the river environment.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Rui Min
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Siyi Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hongwei Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiaqian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shangjian Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
26
|
Jabri NA, Abed RMM, Habsi AA, Ansari A, Barry MJ. The impacts of microplastics on zebrafish behavior depend on initial personality state. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104561. [PMID: 39233253 DOI: 10.1016/j.etap.2024.104561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Microplastic pollution is associated with inflammation, gut dysbiosis and behavioral changes in fish. Fish have distinct personality traits but the role of personality in behavioral toxicology is rarely considered. We classified zebrafish on four behavioral axes: boldness, anxiety, sociability and exploration tendency then exposed them to low- or high- concentrations of two types of polyethylene microplastics (low- and high-density) for 28 days. Behaviors, antioxidant enzymes (catalase and superoxide dismutase), and gut microbiome were then measured. There were direct effects of microplastics on boldness, anxiety and sociability. However, fish retained their initial behavioral tendencies. Exposure to all microplastic treatments reduced average swimming speed and decreased the time spent motionless. Microplastic exposure did not affect antioxidant enzymes but did cause significant changes in the composition of the gut microbiome. This study demonstrates that environmentally realistic concentrations of microplastics can alter fish behavior, but much of the variance in response can be explained by personality.
Collapse
Affiliation(s)
- Nawal Al Jabri
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | - Raeid M M Abed
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | - Aziz Al Habsi
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | - Aliya Ansari
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | | |
Collapse
|
27
|
Skalska K, Ockelford A, Ebdon J, Cundy A, Horton AA. Spatio-temporal trends in microplastic presence in the sediments of the River Thames catchment (UK). MARINE POLLUTION BULLETIN 2024; 207:116881. [PMID: 39236492 DOI: 10.1016/j.marpolbul.2024.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
This study investigated the spatio-temporal variability of microplastics (MPs) in the sediments of the River Thames (UK) catchment over 30 months (July 2019 - Dec 2021). The average MP concentration was 61 items kg-1 d.w., with fragments <1 mm being dominant and polyethylene (PE) the most common polymer. Adjacent land use influenced MP concentrations and types, with industrial sites showing particularly high levels and a prevalence of small beads and industrial polymers. MP concentrations generally decreased after higher winter flows, likely due to sediment rearrangement or winnowing. This study describes the seasonal concentrations and characteristics of MPs present in sediment from the River Thames catchment, and attempts to identify their likely origin. Further, the study provides new insights into the mobility and fate of MPs in riverine settings under varying flow conditions, which is vital given the predicted increases in flooding under various global heating scenarios.
Collapse
Affiliation(s)
- Karolina Skalska
- School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, UK; Environment Agency, Guildbourne Centre, Chatsworth Rd, Worthing, UK
| | - Annie Ockelford
- School of Engineering, University of Liverpool, Liverpool, UK
| | - James Ebdon
- School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, UK.
| | - Andrew Cundy
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, UK
| | - Alice A Horton
- National Oceanography Centre, European Way, Southampton, UK
| |
Collapse
|
28
|
Aydin S, Ulvi A, Aydin ME. Occurrence, characteristics, and risk assessment of microplastics and polycyclic aromatic hydrocarbons associated with microplastics in surface water and sediments of the Konya Closed Basin, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57989-58009. [PMID: 39305415 DOI: 10.1007/s11356-024-35029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/15/2024] [Indexed: 10/11/2024]
Abstract
The presence of polycyclic hydrocarbons (PAHs) and microplastics (MPs) in aquatic environments affects the ecosystems and threatens human health. In this study, the abundance, composition, and morphological characteristics of MPs were determined for the first time in the inland freshwater resources of the Konya Closed Basin, Turkey. The abundance of MPs ranged from 1139 to 23,444 particles/m3 and 150 to 3510 particles/kg in the surface water and sediment, respectively. Fragments and fibers were the most abundant MP shapes in the surface waters (51%, 34%) and sediments (29%, 40%), followed by films, pellets, and foams. Transparent and white MPs were present at the highest percentage in surface waters (72%) and sediments (69%), followed by blue, grey, black, brown, and green. In addition, polyethylene, polypropylene, and cellophane were identified as the main polymers in surface waters (34%, 25%, 24%) and sediments (37%, 17%, 31%). In the Konya Closed Basin, 35% of the surface water samples and 54% of the sediment samples were exposed to very high contamination (CF ≥ 6). Surface waters (PLI: 2.51) and sediments (PLI: 1.67) in the basin were contaminated (PLI > 1) with MPs. The 16 PAHs sorbed on MPs in the surface water and sediment ranged from 394 to 24,754 ng/g and from 37 to 18,323 ng/g, respectively. Phenanthrene and fluoranthene were the most abundant PAHs sorbed on MPs in all surface waters and sediments. Two to three-ring PAH compounds sorbed on MPs were also dominantly detected in surface waters and sediments, accounting for 68% and 78% of the total 16 PAHs, respectively. The source of PAHs carried by MPs in the Konya Closed Basin was mainly of petrogenic origin. Incremental lifetime cancer risk (ILCR) results indicated that the maximum ILCR values were higher than the EPA acceptable level (10-6) for child (2.95 × 10-5) and adult (1.46 × 10-4), indicating a potential cancer risk.
Collapse
Affiliation(s)
- Senar Aydin
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey.
| | - Arzu Ulvi
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Emin Aydin
- Department of Civil Engineering, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
29
|
Saha G, Chandrasekaran N. A comprehensive review on the adverse effect of microplastics in the gastrointestinal system of Artemia sp. Heliyon 2024; 10:e37720. [PMID: 39309788 PMCID: PMC11416537 DOI: 10.1016/j.heliyon.2024.e37720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Microplastic waste in aquatic environments can lead to the mortality of large marine creatures, as it increases the risk of entanglement, strangulation, and starvation. Even though micro- and nano-plastics pose a hidden threat, researchers still know little about them. The food source is an essential factor in gut microbial diversity. A well-balanced intestinal microbiome impacts animal development and health. According to research, microplastics (MPs) like polyethylene (PE) and polystyrene (PS) affected the gut microbiota of Artemia sp., increasing their genetic diversity. Therefore, the present study examined the negative impacts of MPs within the gastrointestinal tract of Artemia sp., the primary protein source of fish. A comprehensive literature review showed that microplastic contamination and its additives impair environmental and aquatic health. The findings of this research show that MPs alter the gut microbiota of Artemia, which in turn affects fish and, ultimately, human health via a cascade of impacts.
Collapse
Affiliation(s)
- Guria Saha
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | | |
Collapse
|
30
|
Gouin T, Ellis-Hutchings R, Pemberton M, Wilhelmus B. Addressing the relevance of polystyrene nano- and microplastic particles used to support exposure, toxicity and risk assessment: implications and recommendations. Part Fibre Toxicol 2024; 21:39. [PMID: 39334292 PMCID: PMC11429038 DOI: 10.1186/s12989-024-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND There has been an exponential increase in the number of studies reporting on the toxicological effects associated with exposure to nano and microplastic particles (NMPs). The majority of these studies, however, have used monodispersed polystyrene microspheres (PSMs) as 'model' particles. Here we review the differences between the manufacture and resulting physicochemical properties of polystyrene used in commerce and the PSMs most commonly used in toxicity studies. MAIN BODY In general, we demonstrate that significant complexity exists as to the properties of polystyrene particles. Differences in chemical composition, size, shape, surface functionalities and other aspects raise doubt as to whether PSMs are fit-for-purpose for the study of potential adverse effects of naturally occurring NMPs. A realistic assessment of potential health implications of the exposure to environmental NMPs requires better characterisation of the particles, a robust mechanistic understanding of their interactions and effects in biological systems as well as standardised protocols to generate relevant model particles. It is proposed that multidisciplinary engagement is necessary for the development of a timely and effective strategy towards this end. We suggest a holistic framework, which must be supported by a multidisciplinary group of experts to work towards either providing access to a suite of environmentally relevant NMPs and/or developing guidance with respect to best practices that can be adopted by research groups to generate and reliably use NMPs. It is emphasized that there is a need for this group to agree to a consensus regarding what might best represent a model NMP that is consistent with environmental exposure for human health, and which can be used to support a variety of ongoing research needs, including those associated with exposure and hazard assessment, mechanistic toxicity studies, toxicokinetics and guidance regarding the prioritization of plastic and NMPs that likely represent the greatest risk to human health. It is important to acknowledge, however, that establishing a multidisciplinary group, or an expert community of practice, represents a non-trivial recommendation, and will require significant resources in terms of expertise and funding. CONCLUSION There is currently an opportunity to bring together a multidisciplinary group of experts, including polymer chemists, material scientists, mechanical engineers, exposure and life-cycle assessment scientists, toxicologists, microbiologists and analytical chemists, to provide leadership and guidance regarding a consensus on defining what best represents environmentally relevant NMPs. We suggest that given the various complex issues surrounding the environmental and human health implications that exposure to NMPs represents, that a multidisciplinary group of experts are thus critical towards helping to progress the harmonization and standardization of methods.
Collapse
Affiliation(s)
- Todd Gouin
- TG Environmental Research, 18 Wellpond Close, Sharnbrook, UK.
| | | | | | - Bianca Wilhelmus
- INEOS Styrolution Group GmbH, Mainzer Landstraße 50, 60325, Frankfurt am Main, Germany
| |
Collapse
|
31
|
Dai L, Dou R, Jiang C, Xu Q, Li Y, Tian F, Li J, Li H, Guo Z, Zou X, Chang C, Guo Z. Driving factors of the distribution of microplastics in the surface soil of the typical uninhabited and habited areas in the Qinghai-Tibet plateau, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125033. [PMID: 39341411 DOI: 10.1016/j.envpol.2024.125033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Microplastics (MPs) are widely detected in the soil of the Qinghai-Tibet Plateau with increasing economic activities. However, studies concerning the driving factors affecting the presence of these surface soil MPs for the typical regions with different geographic conditions are still lacking. Here we chose three representative regions (Ali, Yushu, and Haixi) from east to west across the plateau to investigate the distribution and further explore the contributing factors of surface soil MPs. The Spearman rank correlation, Geodetector, Random Forest Regression and Principal Component Analysis were used to unveil how the driving factors influence MPs distribution across the plateau. The results revealed that the MPs abundance, type, size, color and polymer across the Ali, Yushu, and Haixi were different. Microplastic abundance was inversely correlated with the distance from roads and residential areas, but was positively related to precipitation. Moreover, traffic elements were the primary source of MPs pollution in the Ali and Yushu but residential activities were the leading source of MPs contamination in the Haixi. Besides, backward trajectory simulations suggested that atmospheric transport may also contribute to the presence of soil MPs in the representative regions. These results further indicated that different regions may require different measures for controlling MPs pollution in surface soil. This study provides new insights into the distribution and source of MPs and further offers valuable methodology for future research aimed at uncover driving factors contributing MPs pollution across different regions with various geographical conditions.
Collapse
Affiliation(s)
- Linyue Dai
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Ruiqi Dou
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Chunlong Jiang
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Qinghai Xu
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Yuecong Li
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Fang Tian
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 10089, China
| | - Jifeng Li
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Huiru Li
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zixiao Guo
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Xueyong Zou
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Chunping Chang
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhongling Guo
- School of Geographical Sciences/Hebei Key Laboratory of Environmental Change and Ecological Construction/Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| |
Collapse
|
32
|
Shen Y, Tan Q, Sun J, Cai X, Shen L, Lin H, Wei X. Membrane fouling characteristics and mechanisms in coagulation-ultrafiltration process for treating microplastic-containing water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176524. [PMID: 39332724 DOI: 10.1016/j.scitotenv.2024.176524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Microplastics (MPs) are recognized as a significant challenge to water treatment processes due to their ability to adsorb or accumulate alginate foulants, impacting the coagulation-ultrafiltration (CUF) process. In this study, the mechanisms of membrane fouling caused by MPs under varying dosages of polymeric aluminum chloride (PAC) coagulant in the CUF process were investigated. It was revealed that MPs contribute to membrane fouling, which initially intensifies and then alleviates as coagulant concentration increases, with a turning point at 0.05 mM PAC dosage. The most significant alleviation of membrane fouling was observed at 0.2 mM PAC dosage. An in-depth analysis of interfacial interaction energy changes during filtration was conducted using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, demonstrating how MPs alter the interaction forces between foulants and the membrane surface, leading to either the exacerbation or mitigation of fouling. Additionally, it was shown that at optimal coagulant concentrations, the presence of MPs promotes the formation of a loose and porous cake layer, disrupting the original structure and creating a more open block structure, thereby alleviating membrane fouling. These findings provide valuable insights for optimizing the CUF process in microplastic-containing water treatment, presenting a novel approach to enhancing efficiency and reducing membrane fouling.
Collapse
Affiliation(s)
- Yue Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| | - Qiyin Tan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Jiahao Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Xiang Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
33
|
Xiao QH, Xiang H, Tian YN, Huang JL, Li MQ, Wang PQ, Lian K, Yu PX, Xu MY, Zhang RN, Zhang Y, Huang J, Zhang WC, Duan P. Polystyrene microplastics alleviate the developmental toxicity of silver nanoparticles in embryo-larval zebrafish (Danio rerio) at the transcriptomic level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176485. [PMID: 39341243 DOI: 10.1016/j.scitotenv.2024.176485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
Since silver nanoparticles (AgNPs) and polystyrene microplastics (PS-MP) share common environmental niches, their interactions can modulate their hazard impacts. Herein, we assessed the developmental toxicity of 1 mg/L PS-MP, 0.5 mg/L AgNPs and the mixtures of AgNPs and PS-MP on embryo-larval zebrafish. We found that AgNPs co-exposure with PS-MP remarkably decreased mortality rates, malformation rates, heart rates and yolk sac area, while it increased hatching rates and eye size compared to the AgNPs group. These phenomena revealed that the cell cycle, oxidative stress, apoptosis, lipid metabolism, ferroptosis and p53 signalling pathway were obviously affected by single AgNPs exposure at 96 hpf (hours post fertilization). Interestingly, all these effects were effectively ameliorated by co-exposure with PS-MP. The combination of transcriptomic and metabolomic analyses showed that the imbalance of DEGs (differentially expressed genes) and DEMs (differentially expressed metabolites) (PI, phosphatidylinositol and TAG-FA, triacylglycerol-fatty acid) disturbed both the cell cycle and lipid metabolism following single AgNPs exposure and co-exposure with PS-MP. These findings suggest that PS-MP attenuates the developmental toxicity of AgNPs on embryo-larval zebrafish. Overall, this study provides important insight into understanding the transcriptional responses and mechanisms of AgNPs alone or in combination with PS-MPs on embryo-larval zebrafish, providing a reference for ecological risk assessment of combined exposure to PS-MP and metal nanoparticles.
Collapse
Affiliation(s)
- Qiao-Hong Xiao
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Hao Xiang
- Department of Nuclear Medicine, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Ya-Nan Tian
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Jiao-Long Huang
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Ming-Qun Li
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Pu-Qing Wang
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Kai Lian
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Peng-Xia Yu
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Meng-Yao Xu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Ruo-Nan Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Yan Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Jie Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Wei-Cheng Zhang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Peng Duan
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China.
| |
Collapse
|
34
|
Kherdekar RD, Ade AB. Integrated approaches for plastic waste management. Front Microbiol 2024; 15:1426509. [PMID: 39391604 PMCID: PMC11465426 DOI: 10.3389/fmicb.2024.1426509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Plastic pollution is the challenging problem of the world due to usage of plastic in daily life. Plastic is essential for packaging food and other goods and utensils to avoid the risk of microbial attack. Due to its hydrophobic nature, it is used for wrapping as laminates or packaging liquid substances in pouches and sachets. The tensile strength of the plastic is more therefore it is used for manufacturing carrying bags that can bear heavy loads. Plastic is available in various forms as per the requirements in our daily life. Annually millions to trillions of polyethene carry bags are being manufactured and utilized throughout the world. The plastic requires millions of years for natural degradation. The physical and chemical processes are able to degrade plastic material at the meager level by 200 to 500 years in natural conditions. Many industries focus on recycling of plastic. Biodegradation is a comparatively slow and cheaper process that involves microbes. To dispose of plastic completely there is a need of an integrated process in which all the possible methods of disposal are involved and used sustainably so that minimum depletion occurs to the livestock and the environment. In the current review, we could try to emphasize the intricate nature of plastic polymers, pollution caused by it and possible mitigation strategies for plastic waste management.
Collapse
|
35
|
Pham DT, Choi SH, Kwon JH. Year-round spatial and temporal distribution of microplastics in water and sediments of an urban freshwater system (Jungnang Stream, Korea). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124362. [PMID: 38908675 DOI: 10.1016/j.envpol.2024.124362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Streams and tributaries can play a significant role in the transport of inland microplastics to rivers and oceans; however, research on microplastics in these water bodies is limited compared to riverine and marine environments. Analyzing microplastic abundance at higher spatial and temporal resolutions is crucial to comprehend the dynamics of microplastics in these water bodies. Therefore, this study investigated year-round spatiotemporal variations of microplastics monthly in surface waters and sediments along the Jungnang Stream, one of the main tributaries to the Han River in South Korea. The mean concentration of microplastics in the stream was 9.8 ± 7.9 particles L-1 in water and 3640 ± 1620 particles kg-1 in sediment. Microplastic concentrations in surface waters during summer were significantly higher than in other seasons, positively linked to increased precipitation and river discharges. Polymer compositions mainly consisted of polyethylene, polypropylene, and polyethylene terephthalate, with the majority of microplastics detected smaller than 200 μm. Fragment-shaped microplastics were predominant over fibrous ones. The estimated annual input and output of microplastics through surface waters were 1.2-207 kg (2.7-150 billion particles) and 11.3-272 kg (17-769 billion particles), with the summer months contributing more than 70% of the total output. The greater microplastics output in the Jungnang Stream's waters compared to its receiving waters (Han River) indicates microplastics transport from water to other environmental compartments, such as sediments. These findings highlight the importance of investigating microplastic abundances in surface waters and sediments with temporal resolution, at least across different seasons. Such investigations offer valuable insights into the spatiotemporal occurrence and dynamic transport of microplastics, providing essential information for water management and the development of policies in freshwater ecosystems.
Collapse
Affiliation(s)
- Dat Thanh Pham
- BK21 FOUR R&E Center for Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea; Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sang-Hyun Choi
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
36
|
Zhao B, Richardson RE, You F. Microplastics monitoring in freshwater systems: A review of global efforts, knowledge gaps, and research priorities. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135329. [PMID: 39088945 DOI: 10.1016/j.jhazmat.2024.135329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
The escalating production of synthetic plastics and inadequate waste management have led to pervasive microplastic (MP) contamination in aquatic ecosystems. MPs, typically defined as particles smaller than 5 mm, have become an emerging pollutant in freshwater environments. While significant concern about MPs has risen since 2014, research has predominantly concentrated on marine settings, there is an urgent need for a more in-depth critical review to systematically summarize the current global efforts, knowledge gaps, and research priorities for MP monitoring in freshwater systems. This review evaluates the current understanding of MP monitoring in freshwater environments by examining the distribution, characteristics, and sources of MPs, alongside the progression of analytical methods with quantitative evidence. Our findings suggest that MPs are widely distributed in global freshwater systems, with higher abundances found in areas with intense human economic activities, such as the United States, Europe, and China. MP abundance distributions vary across different water bodies (e.g., rivers, lakes, estuaries, and wetlands), with sampling methods and size range selections significantly influencing reported MP abundances. Despite great global efforts, there is still a lack of harmonized analyzing framework and understanding of MP pollution in specific regions and facilities. Future research should prioritize the development of standardized analysis protocols and open-source MP datasets to facilitate data comparison. Additionally, exploring the potential of state-of-the-art artificial intelligence for rapid, accurate, and large-scale modeling and characterization of MPs is crucial to inform effective strategies for managing MP pollution in freshwater ecosystems.
Collapse
Affiliation(s)
- Bu Zhao
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Fengqi You
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Systems Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
37
|
Cui T, Liu K, Zhu L, Wang X, Dong X, Jabeen K, Zong C, Wang X, Wei N, He Y, Li Q, Jiao M, Lu J, Bu X, Li D. Is intravenous infusion an unrecognized route for internal microplastic human exposure? A general assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135769. [PMID: 39288522 DOI: 10.1016/j.jhazmat.2024.135769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
As newly recognized environmental pollutants, microplastics (MPs, ≤5 mm in length) have been reported in various human tissues and fluids, including the spleen, liver, heart, blood and blood clots, raising global concerns about their impact on human health. This study investigated the characteristics of MPs in intravenous infusion and the removal of MPs from infusion products by infusion sets fitted with different filters using micro-Fourier Transform Infrared Spectroscopy. MPs were detected in infusion products, with an average abundance of 1.24 ± 1.44 items/unit (2.91 ± 3.91 items/L). The primary types of MPs identified were fragmented particles of polyethene and polypropylene, ranging in size from 15-100 µm. Internal filters in infusion sets played a crucial role in removing MPs, particularly fibrous ones, resulting in a reduction in both abundance and particle size of MPs in the human body. Moreover, this study conducted a general assessment of intravenous microplastic exposure among hospital patients and estimated the global per-person input of MPs via intravenous administration. It is an opportunity for us to gain a deeper understanding of MPs in intravenous infusion and provides guides selecting infusion devices, increasing awareness of associated health risks.
Collapse
Affiliation(s)
- Tiefeng Cui
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Kai Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Lixin Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Xiaohui Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Xuri Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Khalida Jabeen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Changxing Zong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Xinghuo Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Nian Wei
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Yinan He
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Qingqing Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Meng Jiao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Jungang Lu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Xinyu Bu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai 200062, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Hainan Research Institute of East China Normal University, Sanya 572025, China.
| |
Collapse
|
38
|
Ali MA, Lyu X, Ersan MS, Xiao F. Critical evaluation of hyperspectral imaging technology for detection and quantification of microplastics in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135041. [PMID: 38941829 DOI: 10.1016/j.jhazmat.2024.135041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
In this study, we critically evaluated the performance of an emerging technology, hyperspectral imaging (HSI), for detecting microplastics (MPs) in soil. We examined the technology's robustness against varying environmental conditions in five groups of experiments. Our findings show that near-infrared (NIR) hyperspectral imaging (HSI) effectively detects microplastics (MPs) in soil, though detection efficacy is influenced by factors such as MP concentration, color, and soil moisture. We found a generally linear relationship between the levels of MPs in various soils and their spectral responses in the NIR HSI imaging spectrum. However, effectiveness is reduced for certain MPs, like polyethylene, in kaolinite clay. Furthermore, we showed that soil moisture considerably influenced the detection of MPs, leading to nonlinearities in quantification and adding complexities to spectral analysis. The varied responses of MPs of different sizes and colors to NIR HSI present further challenges in detection and quantification. The research suggests pre-grouping of MPs based on size before analysis and proposes further investigation into the interaction between soil moisture and MP detectability to enhance HSI's application in MP monitoring and quantification. To our knowledge, this study is the first to comprehensively evaluate this technology for detecting and quantifying microplastics.
Collapse
Affiliation(s)
- Mansurat A Ali
- Department of Civil & Environmental Engineering, University of North Dakota, Grand Forks, ND 58202-8115, United States
| | - Xueyan Lyu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mahmut S Ersan
- Department of Civil & Environmental Engineering, University of North Dakota, Grand Forks, ND 58202-8115, United States
| | - Feng Xiao
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, United States; Missouri Water Center, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
39
|
Bruno A, Dovizio M, Milillo C, Aruffo E, Pesce M, Gatta M, Chiacchiaretta P, Di Carlo P, Ballerini P. Orally Ingested Micro- and Nano-Plastics: A Hidden Driver of Inflammatory Bowel Disease and Colorectal Cancer. Cancers (Basel) 2024; 16:3079. [PMID: 39272937 PMCID: PMC11393928 DOI: 10.3390/cancers16173079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Micro- and nano-plastics (MNPLs) can move along the food chain to higher-level organisms including humans. Three significant routes for MNPLs have been reported: ingestion, inhalation, and dermal contact. Accumulating evidence supports the intestinal toxicity of ingested MNPLs and their role as drivers for increased incidence of colorectal cancer (CRC) in high-risk populations such as inflammatory bowel disease (IBD) patients. However, the mechanisms are largely unknown. In this review, by using the leading scientific publication databases (Web of Science, Google Scholar, Scopus, PubMed, and ScienceDirect), we explored the possible effects and related mechanisms of MNPL exposure on the gut epithelium in healthy conditions and IBD patients. The summarized evidence supports the idea that oral MNPL exposure may contribute to intestinal epithelial damage, thus promoting and sustaining the chronic development of intestinal inflammation, mainly in high-risk populations such as IBD patients. Colonic mucus layer disruption may further facilitate MNPL passage into the bloodstream, thus contributing to the toxic effects of MNPLs on different organ systems and platelet activation, which may, in turn, contribute to the chronic development of inflammation and CRC development. Further exploration of this threat to human health is warranted to reduce potential adverse effects and CRC risk.
Collapse
Affiliation(s)
- Annalisa Bruno
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Melania Dovizio
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Eleonora Aruffo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-TechLab, Research Center, "G. d'Annunzio" University of Chieti-Pescara, 66110 Chieti, Italy
| | - Marco Gatta
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Di Carlo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
40
|
Padilla-Jimenez SM, Moncayo-Estrada R, Maruri DT, Álvarez-Bernal D. Microplastic evidence assessment from water and sediment sampling in a shallow tropical lake. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11123. [PMID: 39223713 DOI: 10.1002/wer.11123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Microplastics (MPs) severely threaten inland waterbodies due to the direct impact of human activities. In the present study, spatial and temporal patterns of MPs in a shallow tropical lake were assessed, describing their size, morphology, and polymer types. Water and sediment samples were collected from Lake Chapala during three seasons, and MPs were quantified with a stereomicroscope. The structure, elemental composition, and polymeric composition were determined via environmental scanning electron microscopy and Fourier transform infrared spectroscopy. The highest average concentration of microplastics in Lake Chapala was detected during the low-water period in April 2022 (2.35 items/L), exceeding the July 2022 rainy season concentration (1.8 items/L) by 0.25 items/L, and sediment concentrations were also higher in April 2022 (219 items/kg) compared to July 2022 (210 items/kg). This study highlights the significant pollution of Lake Chapala with microplastics, emphasizing the need for urgent measures to manage plastic waste and mitigate its environmental impact on aquatic ecosystems. PRACTITIONER POINTS: Microplastic contamination was evaluated in Lake Chapala. The distribution profiles of microplastics were different in each area. Heavy metals osmium, tellurium, and rhodium were found associated with the PMs. Polymers were found in this study.
Collapse
Affiliation(s)
| | - Rodrigo Moncayo-Estrada
- Instituto Politécnico Nacional, CICIMAR Centro Interdisciplinario de Ciencias Marinas, Avenida Instituto, La Paz, Baja California Sur, Mexico
| | | | | |
Collapse
|
41
|
Xiang X, Jiang W, Liu Z. Adsorption performance of nanoplastics in carbon filtration column. ENVIRONMENTAL TECHNOLOGY 2024; 45:4715-4724. [PMID: 38350024 DOI: 10.1080/09593330.2023.2283071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/09/2023] [Indexed: 02/15/2024]
Abstract
Nanoplastics (NPs) are usually formed by the decomposition of large plastics, which will cause water pollution after entering the water body. Carbon filter column is used to adsorb and remove polystyrene nanoparticles (PSNPs). The influence of experimental conditions on adsorption was investigated and fitted by kinetic model. The results show that increasing the height of carbon filter column and decreasing the initial concentration of PSNPs and water flow rate can prolong the breakthrough time of carbon filter column. When the initial concentration of PSNPs is 0.8 mg L-1, the influent flow rate is 4 mL min-1 and the height of carbon filter bed is 8.5 cm, the removal effect is the best, and the depletion point of carbon filter column is extended to 48 h. Adams-Bohart model is suitable for describing the initial stage of adsorption. Thomas and Yoon-Nelson models can well describe the whole dynamic adsorption process of PSNPs, and Yoon-Nelson model can accurately predict the time required for 50% PSNPs to penetrate the carbon column. The adsorption mechanism of NPs by carbon filter column is mainly through the attachment sites and pore retention provided by particles on the surface of activated carbon. This study can provide new technical and theoretical support for the removal of NPs.
Collapse
Affiliation(s)
- Xiaofang Xiang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, College of Resources and Environment, Nanchang University, Jiangxi, China
| | - Wen Jiang
- Jiangxi Electric Power Design Institute Co., Ltd, Jiangxi, China
| | - Zhenzhong Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, College of Resources and Environment, Nanchang University, Jiangxi, China
| |
Collapse
|
42
|
Minaz M, Ipek ZZ, Bayçelebi E, Oral M, Mutlu T, Karsli B, Kayis S. Effect of parasitic infection on microplastic ingestion in a native leuciscid hybrid species (Alburnus derjugini x Squalius orientalis) from Kürtün Dam Lake, Türkiye. CHEMOSPHERE 2024; 363:142978. [PMID: 39084304 DOI: 10.1016/j.chemosphere.2024.142978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Microplastic (MP) pollution is currently one of the most serious environmental issues. MPs were investigated in the Kürtün Dam Lake in healthy individuals of the native leuciscid hybrid (Alburnus derjugini x Squalius orientalis) species and individuals infected with the Ligula intestinalis parasite. Although MP abundance appeared to be higher in non-infected fish (NIF) than in L. intestinalis (L) and infected fish (IF), the MP abundance in IF was higher, because the parasite theoretically belongs to IF. In addition to the observation of MPs in the gastrointestinal tract (GIT) of fish, the diffusion of MPs by parasites settled in the body cavity indicates that MPs are not only present in the GIT. Therefore, predation on existing fish by birds causes MP dispersion. In the present study, the most common MP shape was fiber (100% for NIF and IF, 85.7% for L), the MP color was black (57.1% for IF and L) and orange (50% for NIF), and the polymer type was polyamide (57.1% for IF, 50% for NIF) and polyethylene terephthalate (28.5% for L). These MP compositions led us to believe that textile effluents and aquaculture operations in dam lakes could be sources of pollution. Therefore, this study provides insights for future research to elucidate the connection between MP consumption and parasite infection.
Collapse
Affiliation(s)
- Mert Minaz
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey.
| | - Zeynep Zehra Ipek
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| | - Esra Bayçelebi
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| | - Munevver Oral
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| | - Tanju Mutlu
- Vocational School of Technical Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Baris Karsli
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| | - Sevki Kayis
- Faculty of Fisheries, Recep Tayyip Erdoğan University, 53100, Rize, Turkey
| |
Collapse
|
43
|
Aloi N, Calarco A, Curcuruto G, Di Natale M, Augello G, Carroccio SC, Cerruti P, Cervello M, Cuttitta A, Colombo P, Longo V. Photoaging of polystyrene-based microplastics amplifies inflammatory response in macrophages. CHEMOSPHERE 2024; 364:143131. [PMID: 39168382 DOI: 10.1016/j.chemosphere.2024.143131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The continuous release of municipal and industrial products into the environment poses a growing concern for public health. Among environmental pollutants, polystyrene (PS) stands out as a primary constituent of environmental plastic waste, given its widespread use and high production rates owing to its durability and user-friendly properties. The detection of polystyrene microparticles (PS-MPs) in various living organisms has been well-documented, posing a serious threat due to their potential passage into the human ecosystem. In this manuscript, we aimed to study the toxicological effects of low concentrations of pristine and photoaged PS-MPs in a murine macrophage cell line. To this purpose, PS-MPs were photoaged by indoor exposure to visible light to simulate environmental weathering due to solar irradiation (PS-MPs3h). Physical characterization revealed that the irradiation treatment results in particle degradation and the possible release of nanoparticles. Monocultures of the RAW264.7 cell line were then exposed to PS-MPs and PS-MPs3h at concentrations comparable to experimental measurements from biological samples, to assess cytotoxicity, intracellular oxidative stress, primary genotoxicity, and inflammatory effects. Significant toxicity-related outcomes were observed in cells treated with both pristine PS-MPs and PS-MPs3h even at low concentrations (0,10 μg/ml and 1 μg/ml). PS-MPs3h exhibited greater adverse effects compared to PS-MPs, including reduced cell viability, increased ROS production, elevated DNA damage, and upregulation of IL-6 and NOS2 gene expression. Therefore, we can conclude that changes induced by environmental aging in the physicochemical composition of PS microplastics play a crucial role in the adverse health outcomes associated with microplastic exposure.
Collapse
Affiliation(s)
- Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy (IRET-CNR), Via P. Castellino 111, 80131, Napoli, Italy
| | - Giusy Curcuruto
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Via Paolo Gaifami 18, 9, 95126, Catania, Italy
| | - Marilena Di Natale
- Institute for Studies on the Mediterranean, National Research Council of Italy (ISMED-CNR), Via Filippo Parlatore 65, 90145, Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Sabrina Carola Carroccio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Via Paolo Gaifami 18, 9, 95126, Catania, Italy
| | - Pierfrancesco Cerruti
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Angela Cuttitta
- Institute for Studies on the Mediterranean, National Research Council of Italy (ISMED-CNR), Via Filippo Parlatore 65, 90145, Palermo, Italy
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy.
| | - Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| |
Collapse
|
44
|
Debnath R, Prasad GS, Amin A, Malik MM, Ahmad I, Abubakr A, Borah S, Rather MA, Impellitteri F, Tabassum I, Piccione G, Faggio C. Understanding and addressing microplastic pollution: Impacts, mitigation, and future perspectives. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104399. [PMID: 39033703 DOI: 10.1016/j.jconhyd.2024.104399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Improper disposal of household and industrial waste into water bodies has transformed them into de facto dumping grounds. Plastic debris, weathered on beaches degrades into micro-particles and releases chemical additives that enter the water. Microplastic contamination is documented globally in both marine and freshwater environments, posing a significant threat to aquatic ecosystems. The small size of these particles makes them susceptible to ingestion by low trophic fauna, a trend expected to escalate. Ingestion leads to adverse effects like intestinal blockages, alterations in lipid metabolism, histopathological changes in the intestine, contributing to the extinction of vulnerable species and disrupting ecosystem balance. Notably, microplastics (MPs) can act as carriers for pathogens, potentially causing impaired reproductive activity, decreased immunity, and cancer in various organisms. Studies have identified seven principal sources of MPs, including synthetic textiles (35%) and tire abrasion (28%), highlighting the significant human contribution to this pollution. This review covers various aspects of microplastic pollution, including sources, extraction methods, and its profound impact on ecosystems. Additionally, it explores preventive measures, aiming to guide researchers in selecting techniques and inspiring further investigation into the far-reaching impacts of microplastic pollution, fostering effective solutions for this environmental challenge.
Collapse
Affiliation(s)
| | - Gora Shiva Prasad
- Faculty of Fishery Science, WBUAFS, Kolkata -700094, West Bengal, India
| | - Adnan Amin
- Division of Aquatic Environmental Management, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India
| | - Monisa M Malik
- Division of Aquatic Environmental Management, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India
| | - Ishtiyaq Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India.
| | - Adnan Abubakr
- Division of Aquatic Environmental Management, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India
| | - Simanku Borah
- Agricultural Research Service, ICAR-CIFRI Regional Centre, Guwahati, Assam, 781006, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India.
| | | | - Ifra Tabassum
- Division of Aquatic Environmental Management, Faculty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India.
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
45
|
Cordova MR, Kelly MR, Hafizt M, Wibowo SPA, Ulumuddin YI, Purbonegoro T, Yogaswara D, Kaisupy MT, Subandi R, Sani SY, Thompson RC, Jobling S. From riverbank to the sea: An initial assessment of plastic pollution along the Ciliwung River, Indonesia. MARINE POLLUTION BULLETIN 2024; 206:116662. [PMID: 38991608 DOI: 10.1016/j.marpolbul.2024.116662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
This study presents the first comprehensive analysis of anthropogenic debris on the riverbanks of the Ciliwung River, covering upstream to downstream areas. The mean of debris found in each measurement was 32.79 ± 15.38 items/m2 with a weight of 106.00 ± 50.23 g/m2. Plastic debris accounted for over 50 % of all litter items identified and represents 55 % by weight, signifying a significantly high prevalence compared to global studies examining litter along riverbanks. The majority of the plastics found originated from Single-use applications and were predominantly made from Styrofoam. This investigation demonstrated the importance of actions to reduce single use applications and to improve waste management strategies. This can be achieved through proactive initiatives coupled with adaptable approaches, such as implementing effective urban planning and enhancing waste collection capacity.
Collapse
Affiliation(s)
- Muhammad Reza Cordova
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia.
| | - Max R Kelly
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Muhammad Hafizt
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Singgih Prasetyo Adi Wibowo
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Yaya Ihya Ulumuddin
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Triyoni Purbonegoro
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Deny Yogaswara
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Muhammad Taufik Kaisupy
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Riyana Subandi
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Sofia Yuniar Sani
- Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Richard C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Susan Jobling
- Environmental Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom; Partnership for Plastics in Indonesian Societies (PISCES) Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom
| |
Collapse
|
46
|
Wang C, Liu X, Ma Q, Xing S, Yuan L, Ma Y. Distribution and effects of microplastics as carriers of heavy metals in river surface sediments. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104396. [PMID: 39047425 DOI: 10.1016/j.jconhyd.2024.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
There are few studies on microplastics (MPs) in urban river sediments compared to oceans, soils, and even rivers. In this study, the seasonal abundance of MPs, as well as their influencing factors on heavy metal adsorption in river sediments of the Ancient Canal of Zhenjiang City, China, were investigated for the first time. Through on-site sampling, microscopic observation, Raman spectroscopy, scanning electron microscopy, and high-temperature digestion, the abundance, shape, color, particle size, type, and surface characteristics of MPs in Ancient Canal sediments in different seasons, as well as the influencing factors of MPs as heavy metal carriers in different seasons, were analyzed. The results showed that the average abundance of MPs is 2049.09 ± 883.78 and 2216.36 ± 826.21 items kg-1 dry sediments in summer and winter, respectively, and different sites change significantly. In addition, particle sizes, types, colors, and shapes of MPs exhibited seasonal variations. Four MPs shapes were mainly observed: fibers, fragments, particles, and films. Among them, MPs in summer sediments are mainly fiber, and MPs in winter sediments are mainly particles. In the sediment in summer and winter, transparent MPs and small-size (<0.5 mm) MPs are the main ones, where the abundance of MPs decreased with increasing MPs size. The main MPs species are polyvinyl chloride (PVC), polystyrene (PS), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), and polyethylene (PE), with PP being the predominant MPs in the sediments in different seasons. Scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) revealed that the surfaces of the MPs were characterized by rough, porous, cracked, and torn, with the attachment of various heavy metal elements, and all of the heavy metal elements accumulated to different degrees on the MPs. There was a significant positive correlation (p < 0.05) between the Mn content in the MPs and the Mn content in the sediments in winter, suggesting that the Mn in the MPs in winter may be derived from the sediments. In addition, the type, shape, size, and color of MPs affect the adsorption capacity of heavy metals. Most of the adsorption of MPs on Pb showed a significant negative correlation, and the adsorption of MPs on Cr, Zn, Cu, Cd, and Mn showed a significant positive correlation. MPs can be used as carriers of heavy metals, which will further enhance the hazards of living organisms and pose a potential threat to the safety of the urban river environment.
Collapse
Affiliation(s)
- Changyuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province 210014, China; National Agricultural Experiment Station for Agricultural Environment, Luhe, Nanjing 210014, China
| | - Xin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qianqian Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuyu Xing
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lubin Yuan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yan Ma
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu Province 210014, China; National Agricultural Experiment Station for Agricultural Environment, Luhe, Nanjing 210014, China.
| |
Collapse
|
47
|
Priyadharshini S, Jeyavani J, Al-Ghanim KA, Govindarajan M, Karthikeyan S, Vaseeharan B. Eco-toxicity assessment of polypropylene microplastics in juvenile zebrafish (Danio rerio). JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104415. [PMID: 39173506 DOI: 10.1016/j.jconhyd.2024.104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
In recent years, everyone has recognized microplastics as an emerging contaminant in aquatic ecosystems. Polypropylene is one of the dominant pollutants. The purpose of this study was to examine the effects of exposing zebrafish (Danio rerio) to water with various concentrations of polypropylene microplastics (11.86 ± 44.62 μm), including control (0 mg/L), group 1 (1 mg/L), group 2 (10 mg/L), and group 3 (100 mg/L) for up to 28 days (chronic exposure). The bioaccumulation of microplastics in the tract was noted after 28 days. From the experimental groups, blood and detoxifying organs of the liver and brain were collected. Using liver tissues evaluated the toxic effects by crucial biomarkers such as reactive oxygen species, anti-oxidant parameters, oxidative effects in protein & lipids, total protein content and free amino acid level. The study revealed that the bioaccumulation of microplastics in the organisms is a reflection of the oxidative stress and liver tissue damage experienced by the group exposed to microplastics. Also, apoptosis of blood cells was observed in the treated group as well as increased the neurotransmitter enzyme acetylcholine esterase activity based on exposure concentration-dependent manner. The overall results indicated bioaccumulation of microplastics in the gut, which led to increased ROS levels. This consequently affected antioxidant biomarkers, ultimately causing oxidation of biomolecules and liver tissue injury, as evidenced by histological analysis. This study concludes that chronic ingestion of microplastics causes considerable effects on population fitness in the aquatic environment, as well as other ecological complications, and is also critical to understand the magnitude of these contaminants' influence on ichthyofauna.
Collapse
Affiliation(s)
- Suresh Priyadharshini
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Jeyaraj Jeyavani
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Mycology, Parasitology, Tropical Medicine and Ecotoxicology, Department of Zoology, Annamalai University, Annamalainagar 608 002, TamilNadu, India; Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, TamilNadu, India
| | - Sivashanmugam Karthikeyan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tami Nadu 632,014, India
| | - Baskaralingam Vaseeharan
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
48
|
Odora AT, Aysha S, Sultan MB, Bhuiyan MAR. Evaluating the sources of microplastic contamination and quantifying its abundance in the Balu River, Dhaka, Bangladesh. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:867. [PMID: 39215843 DOI: 10.1007/s10661-024-13051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Microplastics (MPs) are prevalent environmental pollutants due to their durable composition, extensive use, and improper disposal. Despite their widespread presence, rivers have received less attention in microplastic research than other water bodies. This study focused on investigating the origins, prevalence, spatial distribution, and physicochemical characteristics of microplastics in the surface waters of the Balu River, located in Dhaka, Bangladesh. Surface water samples were collected at six sampling sites of Balu River (each about 1-5 km apart) adjacent to the footwear industry, jute factory, textile mill, paper mill, agro and beverage factory, and cement plant. The study found that the average concentration of microplastics in the sampled water bodies was 102.5 ± 12.83 (items/l). Samples near the textile mill had the highest microplastic abundance (122 ± 18 items/l), while the cement plant had the lowest (58.5 ± 8 items/l). Analysis using a stereomicroscope revealed that fibers (29%), microplastics smaller than 100 µm (45%), and transparent microplastics (19%) were the most prevalent types observed in terms of shape, size, and color, respectively. Furthermore, scanning electron microscopy (SEM) observation suggested the potential for additional degradation of these microplastics into smaller particles, potentially reaching the nanoplastic scale. Additionally, Fourier transform infrared (FTIR) analysis identified 07 distinct polymer types among the microplastics: nylon (24%), polyvinyl chloride (19%), high-density polyethylene (17%), low-density polyethylene (14%), polystyrene (12%), polypropylene (7%), and nitrile (7%). The findings of this study serve as a crucial indicator of microplastic contamination, providing valuable insights into the sources and magnitude of microplastic pollution within the significant freshwater ecosystem of Balu River, Bangladesh, particularly focusing on its river systems.
Collapse
Affiliation(s)
- Anika Tasnim Odora
- Department of Environmental Science, Faculty of Science and Technology, Bangladesh University of Professionals (BUP), Mirpur Cantonment, Dhaka, 1216, Bangladesh
| | - Sifat Aysha
- Department of Environmental Science, Faculty of Science and Technology, Bangladesh University of Professionals (BUP), Mirpur Cantonment, Dhaka, 1216, Bangladesh
| | - Maisha Binte Sultan
- Department of Environmental Science, Faculty of Science and Technology, Bangladesh University of Professionals (BUP), Mirpur Cantonment, Dhaka, 1216, Bangladesh
| | - Md Arifur Rahman Bhuiyan
- Department of Environmental Science, Faculty of Science and Technology, Bangladesh University of Professionals (BUP), Mirpur Cantonment, Dhaka, 1216, Bangladesh.
| |
Collapse
|
49
|
Chang M, Sun P, Zhang L, Liu Y, Chen L, Ren H, Wu B. Changes in characteristics and risk of freshwater microplastics under global warming. WATER RESEARCH 2024; 260:121960. [PMID: 38908311 DOI: 10.1016/j.watres.2024.121960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Microplastics present a significant threat to freshwater ecosystems. However, the impact of global warming on their characteristics and associated risks remains uncertain. This study collected 2793 sample sites from literature and datasets to create a new risk assessment and rank methodology, known as the Multi-characteristics Potential Ecological Risk Index (MPERI), which incorporates various microplastic characteristics, such as concentration, size distribution, color, shape, and polymer diversity. Using regression random forest models (RRF), this study predicted that a 10 °C increase would raise microplastic concentration from 12,465.34 ± 68,603.87 to 13,387.17 ± 60,692.96 particles/m3. The percentage of small-size microplastics initially decreased (from 69.10 % to 68.72 %) and then increased (from 68.72 % to 68.78 %), while the diversity of color, shape, and polymer decreased by 0.29 %, 3.24 %, and 0.17 %, respectively. Furthermore, global warming could increase the rank of microplastic risks from high (405.25 ± 528.9) to dangerous (535.37 ± 582.03) based on the MPERI method. Most countries would experience an increase in risk values, with Indonesia and Vietnam transitioning from low to medium risk, and China and Malaysia transitioning from high to dangerous risk. The feature importance assessment of the RRF model indicated that concentration was the most influential variable in determining the change in risk values. While other microplastic characteristics had a lesser impact compared to concentration, they still influenced the risk ranking. This study highlights the role of global warming in shaping microplastic risks.
Collapse
Affiliation(s)
- Mengjie Chang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peipei Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Linyu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuxuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
50
|
Schwarzfischer M, Ruoss TS, Niechcial A, Lee SS, Wawrzyniak M, Laimbacher A, Atrott K, Manzini R, Wilmink M, Linzmeier L, Morsy Y, Lang S, Rogler G, Kaegi R, Scharl M, Spalinger MR. Impact of Nanoplastic Particles on Macrophage Inflammation and Intestinal Health in a Mouse Model of Inflammatory Bowel Disease. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1350. [PMID: 39195388 DOI: 10.3390/nano14161350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND The increasing presence of plastics in the human diet is raising public concern about the potential risks posed by nanoplastic (NP) particles, which can emerge from the degradation of plastic debris. NP ingestion poses particular risks to individuals with inflammatory bowel disease (IBD), as compromised epithelial barriers may facilitate NP translocation. METHODS In vitro, bone-marrow-derived macrophages (BMDMs) were exposed to 25 nm polymethacrylate (PMMA) or 50 nm polystyrene (PS) particles to assess morphological changes and alterations in pro- and anti-inflammatory gene expression. In vivo, mice received PMMA NP particles for 6 months before acute dextran sodium sulfate (DSS) colitis was induced to investigate NP impacts on intestinal health and inflammation. RESULTS PMMA and PS NP exposure in BMDMs induced morphological changes indicative of a proinflammatory phenotype characterized by enlarged amoeboid cell shapes. It also triggered an inflammatory response, indicated by increased expression of proinflammatory cytokines such as Tnfa and Il6. Unexpectedly, long-term PMMA NP administration did not affect the intestinal epithelial barrier or exacerbate acute DSS-induced colitis in mice. Colonoscopy and histological analysis revealed no NP-related changes, suggesting adverse effects on intestinal health or inflammation. CONCLUSION Our findings from animal models offer some reassurance to IBD patients regarding the effects of NP ingestion. However, variations in lifestyle and dietary habits may lead to significantly higher plastic intake in certain individuals, raising concerns about potential long-term gastrointestinal effects of lifelong plastic consumption.
Collapse
Affiliation(s)
- Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Tano S Ruoss
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Anna Niechcial
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Sung Sik Lee
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, 8093 Zurich, Switzerland
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Andrea Laimbacher
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Roberto Manzini
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Marijn Wilmink
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Luise Linzmeier
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Ralf Kaegi
- Department Process Engineering, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|