1
|
Wang Y, Peng F, Zhao R, Dong X, Yang Z, Li H. Removal and transformation of disinfection by-products in water during boiling treatment. CHEMOSPHERE 2023; 326:138426. [PMID: 36931400 DOI: 10.1016/j.chemosphere.2023.138426] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Disinfection by-products (DBPs) remain an ongoing issue because of their widespread occurrence and toxicity. Boiling is the most popular household water treatment method and can effectively remove some DBPs. However, the transformation behavior of DBPs during boiling is still unclear, and the key contributors to toxicity have not been identified. In this study, the changes in the concentrations of DBPs in the single-DBP systems and the multi-DBP systems during boiling were monitored, and in-depth discussions on the removal and transformation of DBPs in both systems were carried out. The results showed that boiling was effective in removing volatile DBPs (over 90% for TCAL, TCAN, and DCAN, and over 60% for TCM), but ineffective for non-volatile DBPs (around 20% for TCAA and below 10% for DCAA and MCAA). By hydrolysis and decarboxylation, the transformation occurred among DBPs, i.e., 55% TCAL to TCM, followed by 23% DCAN to DCAA, 22% TCAN to TCAA, and 10% TCAA to TCM. The transformations were found to be significantly influenced by other co-existing DBPs. In multi-DBP systems, the transformations of DCAN to DCAA and TCAN to TCAA were both promoted, while the transformation of TCAN to TCAA was inhibited. Transformation and volatilization are the two processes responsible for DBP removal. Toxicity estimates indicated that boiling was effective in reducing the toxicity of DBPs and improving the safety of the water, despite the interconversion of DBPs in drinking water during boiling. This study emphasized the importance of studying the interconversion behaviors of DBPs in drinking water during boiling and provided practical information for end-use drinking water safety.
Collapse
Affiliation(s)
- Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Ruiyang Zhao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Xuelian Dong
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| |
Collapse
|
2
|
Li Y, Niu Z, Wang Y, Zhang L, Zhang Y. The convergence of 2,6-dichloro-1,4-benzoquinone in the whole process of lignin phenol precursor chlorination. CHEMOSPHERE 2023; 312:137290. [PMID: 36403808 DOI: 10.1016/j.chemosphere.2022.137290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The formation and decomposition of 2,6-dichloro-1,4-benzoquinone, an emerging disinfection byproduct (DBP), was studied in the chlorination of lignin phenol precursors. The results show that DCBQ and the related hydroxyl DCBQ (DCBQ-OH) acts as the intermediate products of the chlorination process of the three typical lignin phenol precursors (p-hydroxybenzoic acid, protocatechuic acid, and gallic acid). The contributions of lignin phenol precursors to the overall formation of the targeted DBPs were determined based on the observed abundances of individual lignin phenols and their DBP yields. DCBQ and DCBQ-OH were generated within 2-6 h, the relative abundance of the yields of mol carbon atoms in DCBQ corresponding to the mol carbon atoms in the three model precursors (DCBQ-C) was about 0.01%-14.37% under different pH conditions. With the chlorination reaction time increased (after two or four h), the concentrations of DCBQ and DCBQ-OH entirely decreased, and the decomposition of DCBQ do not follow a pseudo-first-order kinetics during chlorination. Conversely, the decomposition of DCBQ generated from p-hydroxybenzoic acid followed a pseudo-second-order kinetics. Moreover, the formation of trichloromethane (TCM), dichloroacetic acid (DCAA), and trichloroacetic acid (TCAA) was also detected during the chlorination. The contribution of the decomposed DCBQ was mainly to TCAA and the unknown DBPs within 2-12 h, and DCBQ decomposition pathway was affected by pH. Moreover, except for DCBQ/DCBQ-OH and TCM/HAAs, there were still 73.6%-92.41% unknown products (including non-halogenated aromatic DBPs and chlorine-substituted DBPs) needing to identify during the chlorination process for lignin phenols. Overall, revealing the formation and decomposition of DCBQ during the chlorination of lignin phenol precursors would contribute to the effective development of drinking water treatment processes for the removal of highly toxic intermediates generated during disinfection.
Collapse
Affiliation(s)
- Yuna Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhiguang Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; The International Joint Institute of Tianjin University, Fuzhou, 350207, China
| | - Yuqi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lifen Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Pérez-Lucas G, Martínez-Menchón M, Vela N, Navarro S. Removal assessment of disinfection by-products (DBPs) from drinking water supplies by solar heterogeneous photocatalysis: A case study of trihalomethanes (THMs). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115936. [PMID: 35981503 DOI: 10.1016/j.jenvman.2022.115936] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Solar heterogeneous photocatalysis was used to remove trihalomethanes (THMs) from drinking water. THMs, mainly trichloromethane (TCM), tribromomethane (TBM), bromodichloromethane (BDCM) and dibromochloromethane (DBCM) are one of the main class of disinfection by-products (DBPs). THMs were determined by HSGC-MS with detection limits (LODs) ranging from 0.5 μg L-1 to 0.9 μg L-1 for TCM and BDCM, respectively. Results show that a great proportion of THMs present in water are finally transferred to air as a result of their high volatility in the order TCM > BDCM > DBCM > TBM. The use of band-gap semiconductor materials (TiO2 and mainly ZnO) used as photocatalysts in combination with Na2S2O8 as electron acceptor and sulfate radical anion (SO4•-) generator enhanced the photooxidation of all THMs as compared to photolytic test. The time required for 50% of THMs to disappear (DT50) from water calculated for the most effective treatment (ZnO/Na2S2O8) were 12, 42, 57 and 61 min for TCM, TBM, BDCM, and DBCM, respectively. Therefore, solar heterogeneous photocatalysis can be considered as an interesting strategy for THMs removal, especially in sunny areas like Mediterranean basin.
Collapse
Affiliation(s)
- Gabriel Pérez-Lucas
- Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, University of Murcia, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Marina Martínez-Menchón
- Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, University of Murcia, Campus Universitario de Espinardo, 30100, Murcia, Spain
| | - Nuria Vela
- Applied Technology Group to Environmental Health. Faculty of Health Science, Catholic University of Murcia, Campus de Los Jerónimos, s/n. Guadalupe, 30107, Murcia, Spain
| | - Simón Navarro
- Department of Agricultural Chemistry, Geology and Pedology, Faculty of Chemistry, University of Murcia, Campus Universitario de Espinardo, 30100, Murcia, Spain.
| |
Collapse
|
4
|
Wu M, Ding S, Cao Z, Du Z, Tang Y, Chen X, Chu W. Insights into the formation and mitigation of iodinated disinfection by-products during household cooking with Laminaria japonica (Haidai). WATER RESEARCH 2022; 225:119177. [PMID: 36206687 DOI: 10.1016/j.watres.2022.119177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Iodinated disinfection by-products (I-DBPs) have attracted extensive interests because of their higher cytotoxicity and genotoxicity than their chlorinated and brominated analogues. Our recent studies have firstly demonstrated that cooking with seaweed salt could enhance the formation of I-DBPs with several tens of μg/L level. Here, I-DBP formation and mitigation from the reaction of disinfectant with Laminaria japonica (Haidai), an edible seaweed with highest iodine content, upon simulated household cooking process was systematically investigated. The total iodine content in Haidai ranged from 4.6 mg-I/g-Haidai to 10.0 mg-I/g-Haidai, and more than 90% of iodine is soluble iodide. During simulated cooking, the presence of disinfectant simultaneously decreased iodide by 15.0-32.8% to 2.7-5.8 mg/L and increased total organic iodine by 1.3-10.9 times to 0.5-1.8 mg/L in Haidai soup, proving I-DBP formation. The concentrations of iodinated trihalomethanes and haloacetic acids were at the levels of several hundreds of μg/L and several μg/L, respectively, which are 2-3 orders and 1-2 orders of magnitude more than those in drinking water. Effects of key factors including disinfectant specie, disinfectant dose, temperature and time on I-DBP formation were also ascertained, and temperature and disinfectant specie played a decisive role in the formation and speciation of I-DBPs. In order to avoid the potential health risk from the exposure of I-DBPs in Haidai soup, it is prerequisite to soak and wash dry Haidai sample over 30.0 min before cooking, which could effectively remove major soluble iodide. In general, this study provided the new insight into I-DBP formation from daily household cooking with Haidai and the corresponding enlightenment for inhabitants to eat Haidai in daily life.
Collapse
Affiliation(s)
- Menglin Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhongqi Cao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuyang Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaoyan Chen
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Zuo P, Metz J, Yu P, Alvarez PJJ. Biofilm-responsive encapsulated-phage coating for autonomous biofouling mitigation in water storage systems. WATER RESEARCH 2022; 224:119070. [PMID: 36096027 DOI: 10.1016/j.watres.2022.119070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Biofilms in water storage systems may harbor pathogens that threaten public health. Chemical disinfectants are marginally effective in eradicating biofilms due to limited penetration, and often generate harmful disinfection byproducts. To enhance biofouling mitigation in household water storage tanks, we encapsulated bacteriophages (phages) in chitosan crosslinked with tri-polyphosphate and 3-glycidoxypropyltrimethoxysilane. Phages served as self-propagating green biocides that exclusively infect bacteria. This pH-responsive encapsulation (244 ± 11 nm) enabled autonomous release of phages in response to acidic pH associated with biofilms (corroborated by confocal microscopy with pH-indicator dye SNARF-4F), but otherwise remained stable in pH-neutral tap water for one month. Encapsulated phages instantly bind to plasma-treated plastic and fiberglass surfaces, providing a facile coating method that protects surfaces highly vulnerable to biofouling. Biofilm formation assays were conducted in tap water amended with 200 mg/L glucose to accelerate growth and attachment of Pseudomonas aeruginosa, an opportunistic pathogen commonly associated with biofilms in drinking water distribution and storage systems. Biofilms formation on plastic surfaces coated with encapsulated phages decreased to only 6.7 ± 0.2% (on a biomass basis) relative to the uncoated controls. Likewise, biofilm surface area coverage (4.8 ± 0.2 log CFU/mm2) and live/dead fluorescence ratio (1.80) were also lower than the controls (6.6 ± 0.2 log CFU/mm2 and live/dead ratio of 11.05). Overall, this study offers proof-of-concept of a chemical-free, easily implementable approach to control problematic biofilm-dwelling bacteria and highlights benefits of this bottom-up biofouling control approach that obviates the challenge of poor biofilm penetration by biocides.
Collapse
Affiliation(s)
- Pengxiao Zuo
- Department of Civil and Environmental Engineering, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA
| | - Jordin Metz
- Department of Chemistry, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, USA; Department of Chemistry, Rice University, Houston, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, USA.
| |
Collapse
|
6
|
Jin B, Zhang J, Xu W, Rolle M, Liu J, Zhang G. Simultaneous determination of stable chlorine and bromine isotopic ratios for bromochlorinated trihalomethanes using GC-qMS. CHEMOSPHERE 2021; 264:128529. [PMID: 33038736 DOI: 10.1016/j.chemosphere.2020.128529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Bromochlorinated compounds are organic contaminants originating from different natural and anthropic sources and increasingly found in different environmental compartments. This work presents an online approach for compound specific stable isotope analysis of chlorine and bromine isotope ratios for bromochlorinated trihalomethanes using gas chromatography coupled to quadrupole mass spectrometry (GC-qMS). An evaluation scheme was developed to simultaneously determine stable chlorine and bromine isotope ratios based on the mass spectral data of two target compounds: dibromochloromethane and dichlorobromomethane. The analytical technique was optimized by assessing the impact of different instrumental parameters, including dwell time, split ratios, and ionization energy. Successively, static headspace samples containing the two target compounds at aqueous concentrations ranging from 0.1 mg/L to 5 mg/L were analyzed in order to test the precision and reproducibility of the proposed approach. The results showed a good precision under the optimized instrumental conditions, with relative standard deviations ranging between 0.05% and 0.5% for chlorine and bromine isotope analysis. Finally, the method was tested in a source identification problem in which the simultaneous determination of chlorine and bromine stable isotope ratios allowed the clear distinction of dibromochloromethane from three different manufacturers.
Collapse
Affiliation(s)
- Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Key Laboratory of Environmental Protection and Resources Utilization, China; University of Chinese Academy of Sciences, Beijing, 10069, China.
| | - Jiyun Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 10069, China
| | - Wenli Xu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 10069, China
| | - Massimo Rolle
- DTU Environment, Department of Environmental Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Jinzhong Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
7
|
Srivastav AL, Patel N, Chaudhary VK. Disinfection by-products in drinking water: Occurrence, toxicity and abatement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115474. [PMID: 32889516 DOI: 10.1016/j.envpol.2020.115474] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 05/05/2023]
Abstract
Disinfection means the killing of pathogenic organisms (e.g. bacteria and its spores, viruses, protozoa and their cysts, worms, and larvae) present in water to make it potable for other domestic works. The substances used in the disinfection of water are known as disinfectants. At municipal level, chlorine (Cl2), chloramines (NH2Cl, NHCl2), chlorine dioxide (ClO2), ozone (O3) and ultraviolet (UV) radiations, are the most commonly used disinfectants. Chlorination, because of its removal efficiency and cost effectiveness, has been widely used as method of disinfection of water. But, disinfection process may add several kinds of disinfection by-products (DBPs) (∼600-700 in numbers) in the treated water such as Trihalomethanes (THM), Haloacetic acids (HAA) etc. which are detrimental to the human beings in terms of cytotoxicity, mutagenicity, teratogenicity and carcinogenicity. In water, THMs and HAAs were observed in the range from 0.138 to 458 μg/L and 0.16-136 μg/L, respectively. Thus, several regulations have been specified by world authorities like WHO, USEPA and Bureau of Indian Standard to protect human health. Some techniques have also been developed to remove the DBPs as well as their precursors from the water. The popular techniques of DBPs removals are adsorption, advance oxidation process, coagulation, membrane based filtration, combined approaches etc. The efficiency of adsorption technique was found up to 90% for DBP removal from the water.
Collapse
Affiliation(s)
- Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Naveen Patel
- Department of Civil Engineering, Institute of Engineering & Technology, Dr. Ram Manohar Lohia Awadh University, Ayodhya, Uttar Pradesh, India
| | - Vinod Kumar Chaudhary
- Department of Environmental Sciences, Dr. Ram Manohar Lohia Awadh University, Ayodhya, Uttar Pradesh, India
| |
Collapse
|
8
|
Zhang D, Wang F, Duan Y, Chen S, Zhang A, Chu W. Removal of trihalomethanes and haloacetamides from drinking water during tea brewing: Removal mechanism and kinetic analysis. WATER RESEARCH 2020; 184:116148. [PMID: 32698091 DOI: 10.1016/j.watres.2020.116148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/07/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Disinfection by-products (DBPs) are associated with various adverse health effects. Diversiform advanced treatment processes have been applied for the control of DBPs, but DBPs can still be frequently detected in tap water. Tea-leaves can be made into popular beverage and is itself a porous bio-adsorbent. By simulating tea brewing process, this study evaluated the removal of DBPs from drinking water during the tea brewing process. Removal of four trihalomethanes (THMs) and four haloacetamides (HAMs) by different fermentation degree tea-leaves was investigated. Little DBPs were removed by unfermented and semi-fermented tea-leaves (i.e., Meitan turquoise bud and Dahongpao tea) with less than 5% removal of HAMs, whereas 40% HAMs can be removed by fermented tea (i.e., Jinjunmei tea and Shuixian tea). Tea soup is neutral and slightly acidic, so little DBP hydrolysis was observed under typical tea-leaf brewing process. DBPs were mainly removed by volatilization and adsorption during tea brewing. Removal difference caused by DBP volatilization is very small. The DBP removal difference of four kinds of tea-leaves may be caused by fermentation degree. The surface of unfermented Meitan turquoise bud had a smooth and regular morphology, whereas a rough, irregular, hollow and spongy surface of fermented tea (i.e., Jinjunmei and Shuixian tea) was observed. Generally, the higher the degree of tea fermentation, the more adsorption sites, and the more removal of DBPs. Finally, the model, which takes the DBP initial concentration, tea-leaf dose and brewing time into account, was established under the experimental conditions to predict the variation of DBP concentration during tea brewing, and suggestions for DBP removal were provided to reduce DBP exposure risk. The integrated toxic risk during tea brewing was also investigated, and about 30% integrated cytotoxicity and 26% genotoxicity was reduced during Jinjunmei and Shuixian tea-leaf brewing.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Youli Duan
- Shanghai Leeya Ecological Engineering Co., Ltd, Shanghai, 201108, PR China
| | - Shenghua Chen
- Shanghai Investigation, Design &Research Institute Co. Ltd, Shanghai, 200092, PR China
| | - Aihong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
9
|
Zhai Y, Yang J, Zhu Y, Du Q, Yuan W, Lu H. Quality change mechanism and drinking safety of repeatedly-boiled water and prolonged-boil water: a comparative study. JOURNAL OF WATER AND HEALTH 2020; 18:631-653. [PMID: 33095189 DOI: 10.2166/wh.2020.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quality, safety and potability of repeatedly-boiled water (RBW) and prolonged-boil water (PBW) lead to concern and even misgivings in the public from time to time, especially in China, and other societies have a habit of drinking boiled water, with improvements of living standards and owing to increasing concerns for human health. This phenomenon is mainly attributed to the fact that the conclusions drawn from existing scientific experiments could not respond well to the concerns. In order to make up for this deficiency, tap water was selected to carry out RBW and PBW experiments independently. The quality changes of RBW and PBW show very similar trends that are not as great as might be imagined, and both are impacted by the tap water quality and the physiochemical effects. The dominating physiochemical effects are the water evaporation and the resulting concentration of unreactive components (most dissolved components), which can be easily explained by the existing evaporation-concentration theory. The results show that tap water will be still safe and potable after being frequently boiled or after having undergone prolonged boiling, as long as it satisfies the sanitary standards of drinking water prior to heating. Therefore, there is no need to worry about drinking RBW or PBW in daily life.
Collapse
Affiliation(s)
- Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China E-mail:
| | - Jingwen Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China E-mail:
| | - Yaguang Zhu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China E-mail:
| | - Qingqing Du
- College of Water Sciences, Beijing Normal University, Beijing 100875, China E-mail:
| | - Wenzhen Yuan
- Chinese Academy of Geological Sciences, Beijing 100037, China
| | - Hong Lu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China E-mail:
| |
Collapse
|
10
|
Wang L, Chen Y, Chen S, Long L, Bu Y, Xu H, Chen B, Krasner S. A one-year long survey of temporal disinfection byproducts variations in a consumer's tap and their removals by a point-of-use facility. WATER RESEARCH 2019; 159:203-213. [PMID: 31096067 DOI: 10.1016/j.watres.2019.04.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
In order to better understand the occurrence of disinfection byproducts (DBPs) in tap water and their real impacts on consumers, this study made a one-year long survey of the temporal variations of a series of DBPs before and after a point-of-use (POU) treatment facility installed in a building serving for ∼300 people. Water samples were collected every week at a fixed location and time for 1 year, and frequent samplings were carried out every 6 h a day for 1 month at selected seasons, which ultimately amounted to 322 samples. The results show that the concentrations of DBPs were higher in the summer than other seasons, with the lowest DBP levels being observed in spring. Within one week, higher levels of haloacetic acids (HAAs) were identified on weekdays than those on weekends. Diurnally, trihalomethanes, HAAs, and haloacetaldehydes were found to be higher at noon but lower in the evening. Consistent with other studies, the variations of most DBPs were somewhat positively related to the changes of temperature and organic matter, but negatively related to the quantity of free chlorine. With the use of a POU facility, which equips with two activated carbon cartridges and a boiler in sequence, most of DBPs were dramatically reduced, leading to 62-100% lower cytotoxicity for the measured DBPs. The study hence provides a real-water evidence about the DBP occurrences in a typical distribution system endpoint and the efficiency of a typical POU on mitigating DBP risks.
Collapse
Affiliation(s)
- Lei Wang
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), 518055, China
| | - Yi Chen
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), 518055, China
| | - Shuwei Chen
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), 518055, China
| | - Liangchen Long
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), 518055, China
| | - Yinan Bu
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), 518055, China
| | - Haoyu Xu
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), 518055, China
| | - Baiyang Chen
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), 518055, China.
| | | |
Collapse
|
11
|
Sun X, Chen M, Wei D, Du Y. Research progress of disinfection and disinfection by-products in China. J Environ Sci (China) 2019; 81:52-67. [PMID: 30975330 DOI: 10.1016/j.jes.2019.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Disinfection is an indispensable water treatment process for killing harmful pathogens and protecting human health. However, the disinfection has caused significant public concern due to the formation of toxic disinfection by-products (DBPs). Lots of studies on disinfection and DBPs have been performed in the world since 1974. Although related studies in China started in 1980s, a great progress has been achieved during the last three decades. Therefore, this review summarized the main achievements on disinfection and DPBs studies in China, which included: (1) the occurrence of DBPs in water of China, (2) the identification and detection methods of DBPs, (3) the formation mechanisms of DBPs during disinfection process, (4) the toxicological effects and epidemiological surveys of DBPs, (5) the control and management countermeasures of DBPs in water disinfection, and (6) the challenges and chances of DBPs studies in future. It is expected that this review would provide useful information and reference for optimizing disinfection process, reducing DBPs formation and protecting human health.
Collapse
Affiliation(s)
- Xuefeng Sun
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Chen
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Padhi RK, Subramanian S, Mohanty AK, Satpathy KK. Monitoring chlorine residual and trihalomethanes in the chlorinated seawater effluent of a nuclear power plant. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:471. [PMID: 31250220 DOI: 10.1007/s10661-019-7611-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/18/2019] [Indexed: 05/28/2023]
Abstract
Periodic sampling of the discharged seawater effluent from Madras Atomic Power Station (Kalpakkam, Tamil Nadu, India) was carried out during 2013-2017 to assess the residual chlorine and trihalomethanes content in the outfall discharge water. The variations in dissolved oxygen, temperature, and pH were correlated with the residual chlorine and trihalomethanes content in the discharged effluent. The difference in temperature (ΔT) between influent and effluent seawater samples ranged from 1.95 to 11.0 °C (6.47 ± 1.87). More than 95% of the ΔT values were within the guideline value of 7 °C. The discharge water was associated with a marginal reduction in dissolved oxygen and a marginal increase in conductivity values. The total residual chlorine content in the discharged seawater at outfall ranged from 0.06 to 0.42 (0.16 ± 0.08) mg/L, which was within the stipulated values of 0.5 mg/L. Trihalomethanes values ranged from 0.04 to 65.03 (13.06 ± 14.38) μg/L. In addition to bromoform as the major constituent, occurrence of significant amount chloroform of was occasionally observed in the discharge water.
Collapse
Affiliation(s)
- R K Padhi
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India.
- Safety Quality & Resource Management Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India.
| | - Suja Subramanian
- Safety Quality & Resource Management Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India
| | - A K Mohanty
- Safety Quality & Resource Management Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India
| | - K K Satpathy
- Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India.
- Safety Quality & Resource Management Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India.
| |
Collapse
|
13
|
Legay C, Leduc S, Dubé J, Levallois P, Rodriguez MJ. Chlorination by-product levels in hot tap water: Significance and variability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1735-1741. [PMID: 30316091 DOI: 10.1016/j.scitotenv.2018.10.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
People are exposed to chlorinated by-products (CBPs) through the consumption of cold tap water (CTW) (ingestion, inhalation, dermal contact) but also through the use of hot tap water (HTW) in such activities as showering and bathing (inhalation, dermal contact). This study focuses on the impact of residential water heating on CBP levels in tap water. Trihalomethane (THM) and haloacetic acid (HAA) levels were measured in the CTW and HTW of 50 residences located in two distribution systems supplied by chlorinated surface water during summer and winter. Results show important differences between CBP levels measured in cold and hot tap water. However, the magnitude of changes differs according to the specific species of THMs and HAAs, the season, the distribution system and the location within the same distribution system. Residential water heating led to an increase in average THM levels for the two distribution systems studied, which tended to be greater in winter. Residential water heating affected the two main HAA species found in the area studied (dichloroacetic (DCAA) and trichloroacetic (TCAA) acids) differently. In fact, the average DCAA levels increased due to water residential heating while a small change in average levels was observed for TCAA. However, the water heating impact on HAAs (in terms of importance and sometimes of tendency (increase vs. decrease)) may also differed between residences. The influence of seasons on the change in the average DCAA and TCAA levels (in μg/L) from residential water heating was not statistically significant except for TCAA levels in one distribution system. Results show the importance of considering site-specific characteristics of CTW (CBP level, temperature, residual chlorine, etc.) to estimate the levels of CBPs in HTW in CBP exposure assessment studies (and not to generalize for an entire population). The reported data can thus be useful in assessing for exposure to DBPs in epidemiological studies.
Collapse
Affiliation(s)
- Christelle Legay
- NSERC Industrial Research Chair on Drinking Water Quality, Université Laval, QC, Canada
| | - Sylvie Leduc
- Canada Research Chair on Water Quality Modeling, Université Laval, QC, Canada
| | - Jean Dubé
- School of Urban and Regional Planning, Université Laval, QC, Canada
| | | | - Manuel J Rodriguez
- NSERC Industrial Research Chair on Drinking Water Quality, Université Laval, QC, Canada.
| |
Collapse
|
14
|
Chhipi-Shrestha G, Rodriguez M, Sadiq R. Unregulated disinfection By-products in drinking water in Quebec: A meta analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:984-1000. [PMID: 30096751 DOI: 10.1016/j.jenvman.2018.06.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Disinfection by-products (DBPs) are formed primarily by the reaction of natural organic matter and disinfectants. DBPs that are not regulated are referred to as unregulated DBPs (U-DBPs) and they are in majority in total DBPs. U-DBPs can be more toxic than regulated DBPs. U-DBPs such as haloacetonitriles (HANs), haloacetonitriles (HKs) and halonitromethanes (HNMs) are widely present in drinking water supplies in different regions of the world. This study investigated the occurrence of U-DBPs and their variability in drinking water in the Province of Quebec (Canada), using the water quality database of 40 municipal water systems generated by our research group. The concentrations of HANs, HKs, and their compounds, including chloropicrin (CPK), were highly variable in different water systems in Quebec. The concentration range of these U-DBPs is in line with drinking water concentration ranges in different regions of the world. Factors such as system size, water source, season, pH, total organic carbon content, free residual chlorine and disinfectant types cause significant variations in the concentrations of HANs, HKs and their constituent compounds, including CPK, in drinking water in Quebec. This information is valuable for decision making concerning source water selection, water distribution planning, water treatment plant design including disinfection, and overall drinking water quality management related to U-DBPs. Moreover, U-DBPs and regulated DBPs are strongly correlated, although the degree of correlation can vary with water source, system size and season, indicating that regulated DBPs can be used as surrogates of U-DBPs.
Collapse
Affiliation(s)
- Gyan Chhipi-Shrestha
- École Supérieure d'Aménagement du Territoire, Université Laval, 1628 Pavillon Savard, Université Laval, Québec City, QC, G1K 7P4, Canada.
| | - Manuel Rodriguez
- École Supérieure d'Aménagement du Territoire, Université Laval, 1628 Pavillon Savard, Université Laval, Québec City, QC, G1K 7P4, Canada.
| | - Rehan Sadiq
- School of Engineering, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
15
|
Fakour H, Lo SL. Formation and risk assessment of trihalomethanes through different tea brewing habits. Int J Hyg Environ Health 2018; 222:117-124. [PMID: 30181027 DOI: 10.1016/j.ijheh.2018.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/03/2018] [Accepted: 08/21/2018] [Indexed: 11/26/2022]
Abstract
Trihalomethanes (THMs) are suspected carcinogens and reproductive toxicants commonly found in chlorinated drinking water. This study investigates the formation of THMs and their associated risks during different tea brewing habits. Three main categories of tea (black, oolong, and green) under various brewing conditions and drinking water sources were tested. Tea samples prepared in ordinary thermos flask formed significant levels of total THM (TTHM). The highest TTHM formation came from black tea made with tap water, plausibly due to higher concentrations of reactive THM precursors. Compared with tap water, when the background solution is bottled water or distilled water, less TTHM was observed in prepared tea infusions. The results also revealed that unlike the traditional teapot-based tea serving habit, the removal of THMs is significantly reduced when tea infusion is stored in enclosed containers. Risk assessment analysis based on the survey among tea shop costumers also revealed that cancer risks induced by ingestion of THMs through drinking tea infusions prepared in thermos flask exceeded the tolerable level. Data obtained in this research demonstrated that drinking tea infusions directly from enclosed containers can be a significant source of exposure to THMs.
Collapse
Affiliation(s)
- Hoda Fakour
- Graduate Institute of Environmental Engineering National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.
| |
Collapse
|
16
|
Mohd Zainudin F, Abu Hasan H, Sheikh Abdullah SR. An overview of the technology used to remove trihalomethane (THM), trihalomethane precursors, and trihalomethane formation potential (THMFP) from water and wastewater. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.08.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Abusallout I, Rahman S, Hua G. Effect of temperature and pH on dehalogenation of total organic chlorine, bromine and iodine in drinking water. CHEMOSPHERE 2017; 187:11-18. [PMID: 28787638 DOI: 10.1016/j.chemosphere.2017.07.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Disinfection byproduct (DBP) concentrations in drinking water distribution systems and indoor water uses depend on competitive formation and degradation reactions. This study investigated the dehalogenation kinetics of total organic chlorine (TOCl), bromine (TOBr) and iodine (TOI) produced by fulvic acid under different pH and temperature conditions, and total organic halogen (TOX) variations in a treated drinking water under simulated distribution system and heating scenarios. TOX dehalogenation rates were generally in the order of TOI ≅ TOCl(NH2Cl) > TOBr > TOCl(Cl2). The half-lives of different groups of TOX compounds formed by fulvic acid varied between 27 and 139 days during incubation at 20 °C and 0.98-2.17 days during heating at 55 °C. Base-catalyzed reactions played a major role in TOX degradation as evidenced by enhanced dehalogenation under high pH conditions. The results of heating of a treated water in the presence of residuals showed that TOX concentrations of chlorinated samples increased rapidly when chlorine residuals were present and then gradually decreased after chlorine residuals were exhausted. The final TOX concentrations of chlorinated samples after heating showed moderate decreases with increasing ambient water ages. Chloraminated samples with different ambient water ages exhibited similar final TOX concentrations during simulated distribution system and heating experiments. This study reinforces the importance of understanding DBP variations in indoor water uses as wells as in distribution systems to provide more accurate DBP information for exposure assessment and regulatory determination.
Collapse
Affiliation(s)
- Ibrahim Abusallout
- Department of Civil and Environmental Engineering, South Dakota State University, Brookings, SD, 57007, USA
| | - Shamimur Rahman
- Department of Civil and Environmental Engineering, South Dakota State University, Brookings, SD, 57007, USA
| | - Guanghui Hua
- Department of Civil and Environmental Engineering, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
18
|
Shen Y, Zhao W, Zhang C, Shan Y, Shi J. Degradation of streptomycin in aquatic environment: kinetics, pathway, and antibacterial activity analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14337-14345. [PMID: 28429270 DOI: 10.1007/s11356-017-8978-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Streptomycin used in human and veterinary medicine is released into the environment mainly through excretions. As such, its elimination in water should be investigated to control pollution. In this study, the degradation of streptomycin in water was studied, and the influence of variables, including light exposure, solution pH, temperature, ionic strength, dissolved organic matter (DOM), and coexisting surfactants, on degradation was investigated. Streptomycin degradation was consistent with the first-order model in aquatic environments. Its degradation rate under light exposure was 2.6-fold faster than that in the dark. Streptomycin was stable under neutral conditions, but it was easily decomposed in acidic and basic environments. Streptomycin degradation was enhanced by high temperature, and its half-life decreased from 103.4 days at 15 °C to 30.9 days at 40 °C. This process was also accelerated by the presence of Ca2+ and slightly improved by the addition of HA. Streptomycin degradation was suppressed by high levels of the cationic surfactant cetyltri- methylammonium bromide (CTAB), but was promoted by the anionic surfactant sodium dodecyl benzene sulfonate (SDBS). The main degradation intermediates/products were identified through liquid chromatography-mass spectrometry, and the possible degradation pathway was proposed. The antibacterial activity of streptomycin solution was also determined during degradation. Results showed that STR degradation generated intermediates/products with weaker antibacterial activity than the parent compound.
Collapse
Affiliation(s)
- Yanru Shen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Wenyan Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Chunling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yujie Shan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Junxian Shi
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
19
|
Ma S, Gan Y, Chen B, Tang Z, Krasner S. Understanding and exploring the potentials of household water treatment methods for volatile disinfection by-products control: Kinetics, mechanisms, and influencing factors. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:509-516. [PMID: 27669392 DOI: 10.1016/j.jhazmat.2016.08.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/17/2016] [Accepted: 08/21/2016] [Indexed: 06/06/2023]
Abstract
This study systematically evaluates the capabilities of five types of household water treatment (HWT) methods (including boiler heating, microwave irradiation, pouring, stirring, and shaking) on the removals of four regulated trihalomethanes (THM4) and three iodinated halomethanes (IHMs) under a variety of conditions simulative of residential uses. Overall, the results clearly showed promising capabilities of all five HWT methods in controlling volatile disinfection by-products (DBPs), and heating with a boiler was the most effective approach among all methods due to the synergistic effects of water turbulence and bubbling phenomena. A contemporary boiler equipped with an automatic switch-off function reduced on average 92% of seven halomethanes (HM7) at favourable conditions. The removal increased significantly with increasing initial concentrations and the rates correlated well with the logarithmic Henry's law constants and molecular weights of compounds, with triiodomethane being the most refractory species. Meanwhile, the importance of water handling habits was revealed, including power input, operation time, volume, heating/cooling speed, cooling method, and capping conditions. The findings hence explored the potentials of HWTs on DBP control and pointed out a potential limit to DBP epidemiology studies that do not consider water handling habits.
Collapse
Affiliation(s)
- Shengcun Ma
- Harbin Institute of Technology (Shenzhen), Shenzhen Key Laboratory of Organic Pollution Prevention and Control, 518055 China
| | - Yiqun Gan
- Harbin Institute of Technology (Shenzhen), Shenzhen Key Laboratory of Organic Pollution Prevention and Control, 518055 China
| | - Baiyang Chen
- Harbin Institute of Technology (Shenzhen), Shenzhen Key Laboratory of Organic Pollution Prevention and Control, 518055 China.
| | - Zhong Tang
- Harbin Institute of Technology (Shenzhen), Shenzhen Key Laboratory of Organic Pollution Prevention and Control, 518055 China
| | - Stuart Krasner
- Metropolitan Water District of Southern California, Water Quality Laboratory, 700 Moreno Avenue, La Verne, CA, USA
| |
Collapse
|
20
|
Ma S, Guo X, Chen B. Toward better understanding of chloral hydrate stability in water: Kinetics, pathways, and influencing factors. CHEMOSPHERE 2016; 157:18-24. [PMID: 27206269 DOI: 10.1016/j.chemosphere.2016.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/05/2016] [Accepted: 05/08/2016] [Indexed: 05/28/2023]
Abstract
Chloral hydrate (CH) is a disinfection byproduct commonly found in disinfected water, and once formed, CH may undergo several transformation processes in water distribution system. In order to understand its fate and occurrence in water, this study examined several factors that may affect the stability of CH in water, including pH, temperature, initial CH concentration, typical anions, and the presence of free chlorine and monochloramine. The results indicated that CH was a relatively stable compound (half-life ∼7 d for 20 μg/L) in ambient pH (7) and temperature (20 °C) conditions. However, the hydrolysis rate can be greatly facilitated by increasing pH (from 7 to 12) and temperature (from 20 to 60 °C) or decreasing initial CH concentration (from 10 mg/L to 20 μg/L). To quantify the influences of these factors on the CH hydrolysis rate constant (k, 1/h), which spans five orders of magnitude, this study developed a multivariate model that predicts literature and this study's data well (R(2) = 0.90). In contrast, the presence of chloride, nitrate, monochloramine, and free chlorine exhibited no significant impacts on the degradation of CH, while the CH loss in non-buffered waters spiked with sodium hypochlorite was driven by alkaline hydrolysis. In terms of reaction products, CH hydrolysis yielded mostly chloroform and formic acid and a few chloride, which confirmed decarburization as a dominant pathway and dehalogenation as a noticeable coexisting reaction.
Collapse
Affiliation(s)
- Shengcun Ma
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Xiaoqi Guo
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Baiyang Chen
- Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.
| |
Collapse
|