1
|
Wang H, Li H, Zhang Q, Wu Y, Wang Y. Revealing the effect of Al 2O 3 on sulfur transformation in anaerobic sludge process. ENVIRONMENTAL RESEARCH 2025; 277:121592. [PMID: 40233844 DOI: 10.1016/j.envres.2025.121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/16/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Al2O3, one multifunctional adsorbent and dehydrator, was widely recognized as a practical and environmentally friendly additive that enhances fermentation efficiency and facilitates the recovery of resources from waste-activated sludge (WAS). However, its potential harmful effects on WAS fermentation, such as the generation of hydrogen sulfide (H2S), have been previously overlooked. This study found that with the increase of Al2O3 dosage from 0 to 60 mg/g VSS, the maximum production of H2S decreased from 371.60 ± 3.72 × 10-4 to 303.36 ± 3.03 × 10-4 mg/g VSS. The study on the transformation of sulfur-containing compounds has identified that the primary cause for lowering the formation of hydrogen sulfide (H2S) is the inhibitory effect of aluminium oxide (Al2O3) on sulfate reduction. The mechanism analysis discovered that Al2O3 initially stimulated the functional groups and hydrogen bonding networks present in sludge EPS. This resulted in a 2.04 % rise in the content of C-C groups, a 7.78 % increase in the content of C-O-C groups, and a 4.24 % increase in the content of β-turn and α-Helix structures. This resulted in the fracturing of sludge EPS and the release of soluble metal ions such as aluminium, magnesium, and iron. The liberated metal ions facilitated the conversion of H2S gas and dissolved sulfide into metal sulfide, hence contributing significantly to the reduction of H2S gas emissions. Microbial community research revealed that the inclusion of Al2O3 enhanced the performance of methanogens (e.g., Methanothrix), but inhibited sulfate reducing bacteria (e.g., unclassified_c__Deltaproteobacteria). Additional examination of functional genes demonstrated that Al2O3 decreases the amount of functional genes involved in the hydrolysis of organic sulfur (such as MetQ, pepD, CDO1, yhdR, etc.). and sulfate reduction processes (sat, cysC, aprAB, dsrAB, etc.). These findings offer novel perspectives on the treatment of sludge using Al2O3 and could have substantial consequences for sludge treatment.
Collapse
Affiliation(s)
- Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Hang Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Qiushuo Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Yutong Wu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Yali Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
2
|
Xiao K, Horn H, Abbt-Braun G. A review on the recovery of humic substances from anaerobic digestate of sludge as a potential fertilizer: Quantification, efficiency and interaction with pollutants. ENVIRONMENTAL RESEARCH 2025; 267:120710. [PMID: 39733983 DOI: 10.1016/j.envres.2024.120710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
This study reviewed the recovery of humic substances (HS) from anaerobic digestate of sludge as a potential fertilizer, focusing on the quantification of HS, the efficiency of HS recovery, and its interaction with pollutants. The potential pitfalls of current misunderstanding for HS quantification in sludge were pointed out. HS present in sludge showed potential to be used as a fertilizer, which solubilized insoluble phosphates for enhanced soil fertility. Pretreatment prior to anaerobic sludge digestion and composting of anaerobic digestate of sludge (ADS) improved the amount of HS in anaerobic digestate. But the amount of HS extracted from the retentate of ADS was much lower than the level required for the common HS fertilizer. Therefore, an additional concentration was required to process the retentate of ADS into HS liquid fertilizer. The quinone moieties in HS accepted electrons from anaerobic microbial respiration and their role in the degradation of organic pollutants were summarized. By binding with HS, the speciation of metals in sludge was changed from water-soluble and exchangeable to organic- and sulfide-bound fractions. Future research should focus on the novel application of machine learning for quantifying HS within sludge, offering a practical approach to interpret complex fluorescence data and enhance understanding of HS characteristics and distribution. Further studies should explore the application of hydrothermal humification to enhance HS content in ADS, offering an energy-efficient method for rapid fertilization in sustainable agriculture. This study offers a window into HS recovery from ADS.
Collapse
Affiliation(s)
- Keke Xiao
- Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, 515063, Shantou, Guangdong, China; Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, 515063, China.
| | - Harald Horn
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany; DVGW Research Laboratories, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany
| | - Gudrun Abbt-Braun
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131, Karlsruhe, Germany
| |
Collapse
|
3
|
Chen J, Sun Y, Chen H. Enhancing methane production in anaerobic digestion of waste activated sludge by combined thermal hydrolysis and photocatalysis pretreatment. BIORESOURCE TECHNOLOGY 2024; 411:131353. [PMID: 39186988 DOI: 10.1016/j.biortech.2024.131353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Thermal hydrolysis (TH) is promising for sludge pretreatment, but the refractory substances generated at high temperatures inhibit anaerobic digestion. In this study, a novel combined TH and photocatalytic pretreatment method was proposed to improve the anaerobic digestion performance of waste activated sludge. The results showed that the combined pretreatment (170 °C, 0.5 g/L TiO2) increased methane yield by 66 % from 111 ± 5 m L/g VS to 185 ± 5 m L/g VS. After TH pretreatment, photocatalysis further promoted sludge solubilization by destroying extracellular polymeric substances, resulting in an increase in released soluble organic matter from 292 ± 16 mg/L to 4,091 ± 85 mg/L. In addition, photocatalysis improved the biodegradability of sludge by reducing the melanoidin and humic acid contents by 26 % and 20 %, respectively. The proposed novel pretreatment method effectively overcomes the bottleneck of TH technology and provides an alternative pretreatment technology for improving sludge resource recovery.
Collapse
Affiliation(s)
- Jian Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yihu Sun
- Hunan Diya Environmental Engineering Co., Ltd., Changsha 410007, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
4
|
Guo B, Zeng J, Hao Y, Hu J, Li Z. Enhanced methane production from waste activated sludge by potassium ferrate combined with thermal hydrolysis pretreatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45862-45874. [PMID: 38980478 DOI: 10.1007/s11356-024-34281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Anaerobic digestion of waste activated sludge (WAS) was one of the directions of sludge treatment, but how to effectively improve the production of methane as a resource product of anaerobic digestion of sludge still needs further research. The study examined how the combination of potassium ferrate (PF) and thermal hydrolysis (TH) pretreatment affected methane production from sludge. The results demonstrated a positive synergistic effect on methane production with PF-TH pretreatment. Specifically, by employing a 0.05 g/g TSS (total suspended solids) PF in conjunction with TH at 80 °C for 30 min, the methane yield increased from 170.66 ± 0.92 to 232.73 ± 2.21 mL/g VSS (volatile suspended solids). The co-pretreatment of PF and TH has been substantiated by mechanism studies to effectively enhance the disintegration and biodegradability of sludge. Additionally, the variation of microbial community revealed an enrichment of active microorganisms associated with anaerobic digestion after treated with PF + TH, resulting in a total abundance increase from 11.87 to 20.45% in the PF + TH group.
Collapse
Affiliation(s)
- Bing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- CCCC National Engineering Research Center of Dredging Technology and Equipment Co., Ltd., Shanghai, 200082, China
| | - Jiachen Zeng
- CCCC National Engineering Research Center of Dredging Technology and Equipment Co., Ltd., Shanghai, 200082, China
| | - Yuchi Hao
- CCCC National Engineering Research Center of Dredging Technology and Equipment Co., Ltd., Shanghai, 200082, China
| | - Jiawei Hu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
5
|
Zhang B, Tang X, Xu Q, Fan C, Gao Y, Li S, Wang M, Li C. Anionic polyacrylamide alleviates cadmium inhibition on anaerobic digestion of waste activated sludge. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100306. [PMID: 37701857 PMCID: PMC10494310 DOI: 10.1016/j.ese.2023.100306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 09/14/2023]
Abstract
The uncontrolled discharge of industrial wastewater leads to a significant cadmium (Cd) accumulation in waste activated sludge (WAS), posing a serious threat to the steady operation of the anaerobic digestion (AD) system in wastewater treatment plants (WWTPs). Therefore, developing a viable approach to cope with the adverse effects of high-concentration Cd on the AD system is urgently required. This study aims to investigate the potential of using anionic polyacrylamide (APAM), a commonly used agent in WWTPs, to mitigate the adverse effects of Cd in a toxic amount (i.e., 5.0 mg per g total suspended solids (TSS)) on AD of WAS. The results showed that the effectiveness of higher APAM on Cd toxicity alleviation was less than that of lower APAM at the studied level (i.e., the effectiveness order was 1.5 mg APAM per g TSS > 3.0 mg APAM per g TSS > 6.0 mg APAM per g TSS). The moderate supplement of APAM (i.e., 1.5 mg per g TSS) recovered the accumulative methane yield from 190.5 ± 3.6 to 228.9 ± 4.1 mL per g volatile solids by promoting solubilization, hydrolysis, and acidification processes related to methane production. The application of APAM also increased the abundance of key microbes in the AD system, especially Methanolinea among methanogens and Caldilineaceae among hydrolyzers. Furthermore, APAM facilitated the key enzyme activities involved in AD processes and reduced reactive oxygen species (induced by Cd) production via adsorption/enmeshment of Cd by APAM. These findings demonstrate the feasibility of using moderate APAM to mitigate Cd toxicity during AD, providing a promising solution for controlling Cd or other heavy metal toxicity in WWTPs.
Collapse
Affiliation(s)
- Baowei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuying Gao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Shuang Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Mier Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Chao Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
- College of Mechanical & Electrical Engineering, Hunan Agricultural University, Changsha, 410128, PR China
| |
Collapse
|
6
|
Li Y, Yu S, Yang X, Feng Y, Dong L, Zhang Y, Feng L, Mazarji M, Pan J. From feedstock to digestion: Unraveling the impact of humic acid composition on anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166495. [PMID: 37611725 DOI: 10.1016/j.scitotenv.2023.166495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
In the anaerobic digestion (AD) process, the effects of humic acid (HA) derived from different feedstocks on AD are influenced by the variations in their structural composition and oxygen-containing functional groups. Thus, clarifying the structural differences of HA obtained from different feedstocks is crucial for understanding their impact on AD. In this study, the structure of five humic acids (HAs) derived from liquid digestate, food waste, silage corn straw, lignite and commercial HA, and their effects on AD were investigated. The study found that HA from food waste had more carboxyl groups, while straw-derived HA had more phenolic hydroxyl groups. Both types of HA had higher aromaticity and humification degree and showed significant inhibition effect on AD. HA from food waste had an average methanogenic inhibition rate of 43.5 % with 1 g/L HA added. In addition, commercial HA and HA derived from lignite had similar functional group types and aromaticity, with an average methanogenic inhibition rate of about 20 %. The study revealed that HAs with more carboxyl groups exhibited greater effectiveness in inhibiting AD, thereby confirming the influence of HA structures derived from different feedstocks on AD. In conclusion, this study provides valuable insights into the mechanism of HA effect on AD and offers guidance for future research focused on enhancing AD efficiency.
Collapse
Affiliation(s)
- Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Shasha Yu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Xingru Yang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Yijing Feng
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Liming Dong
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yi Zhang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Lu Feng
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, N-1431 Ås, Norway
| | - Mahmoud Mazarji
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
7
|
Gao P, Ming X, Wang X, Chen Z, Liu Y, Li X, Zhang D. Effects of ozone on activated sludge: performance of anaerobic digestion and structure of the microbial community. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2826-2836. [PMID: 38096071 PMCID: wst_2023_378 DOI: 10.2166/wst.2023.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The treatment and disposal of activated sludge are currently challenging tasks in the world. As a common biological engineering technology, biological fermentation exists with disadvantages such as low efficiency and complex process. Ozone pretreatments are commonly applied to improve this problem due to their high efficiency and low cost. In this study, the significant function of ozone in anaerobic fermentation gas production was verified with excess sludge. Compared with other untreated sludge, ozone pretreatment can effectively degrade activated sludge. After ozone treatment and mixing with primary sludge, the methane production of excess sludge increased by 49.30 and 50.78%, and the methanogenic activity increased by 69.99 and 73.83%, respectively. The results indicated that the mixing of primary sludge with excess sludge possessed synergistic effects, which contributed to the anaerobic fermentation of excess sludge. The results of microbial community structure exhibited that methanogenic processes mainly involve hydrogenogens, acidogens and methanogens. The relative abundance of both bacteria and microorganisms changed significantly in the early stage of hydraulic retention time, which coincided exactly with the gas production stage. This study provided a feasible pretreatment strategy to improve sludge biodegradability and revealed the role of microorganisms during anaerobic digestion.
Collapse
Affiliation(s)
- Pei Gao
- P.G. and X.M. contributed equally to this work. E-mail:
| | - Xujia Ming
- P.G. and X.M. contributed equally to this work
| | | | | | | | | | | |
Collapse
|
8
|
Dong SY, Luo JC, Chen G, Tian S, Sun H, Xiao XZ, Zhu YC. Enhancement of volatile fatty acids production through anaerobic co-digestion of navel orange residue and waste activated sludge: Effect of pre-treatment and substrate proportions. Heliyon 2023; 9:e19777. [PMID: 37809971 PMCID: PMC10559115 DOI: 10.1016/j.heliyon.2023.e19777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
In this study, the co-digestion system with Navel orange residues (NOR) and Waste activated sludge (WAS) was established, by pre-treating the NOR and setting different volatile solids (VS) ratios of NOR to WAS to motivate the production of volatile fatty acids (VFA). The pre-treatment method (pH 7 and temperature 70 °C) promoted the release of dissolved organic matter, and the concentration of soluble chemical oxygen demand (SCOD) increased by 45.56% compared with the untreated group (pH 3 and temperature 20 °C). In the co-digestion system, the highest VFA yield (5716.69 mg/L) was obtained at VS ratio of 2. When the VS ratio was increased to 4, the imbalance in proportions of carbon and nitrogen affected VFA production, and the high concentration of essential oils (EO) present in the NOR inhibited the methane production; the cumulative yield of methane gas decreased by 24.10% compared with the yield obtained when the VS ratio was 2. Analysis of microbial community revealed that an increase in the number of VFA-producing microbial populations and the abundance of Methanobacteria resulted in the accumulation of acetic acid. This study demonstrated that co-digestion of NOR with WAS improve VFA production, thus realizing the utilization of solid wastes and reducing environmental pollution.
Collapse
Affiliation(s)
- Shan-Yan Dong
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
- Jiangxi Province Ganzhou key laboratory of Basin pollution simulation and Control, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Jin-Cai Luo
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Gang Chen
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Shuai Tian
- School of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Hong Sun
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Xiang-Zhe Xiao
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Yi-Chun Zhu
- Jiangxi Province Ganzhou key laboratory of Basin pollution simulation and Control, Jiangxi University of Science and Technology, Ganzhou, 341000, China
- Jiangxi provincial key laboratory of environmental geo-technology and engineering disaster Control, Ganzhou, 341000, China
| |
Collapse
|
9
|
Wang X, Jiang C, Wang H, Xu S, Zhuang X. Strategies for energy conversion from sludge to methane through pretreatment coupled anaerobic digestion: Potential energy loss or gain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117033. [PMID: 36603247 DOI: 10.1016/j.jenvman.2022.117033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion (AD) of wasted activated sludge from wastewater plants is recognized as an effective method to reclaim energy in the form of methane. AD performance has been enhanced by coupling various pretreatments that impact energy conversion from sludge. This paper mainly reviewed the development of pretreatments based on different technologies reported in recent years and evaluated their energy benefit. Significant increases in methane yield are generally obtained in AD with pretreatments demanding energy input, including thermal- and ultrasound-based methods. However, these energy-intense pretreatments usually gained negative energy benefit that the increase in methane yield consumed extra energy input. The unbalanced relationship counts against the goal of energy reclamation from sludge. Combined pretreatment consisting of multiple technologies normally outcompetes the single pretreatment, and the combination of energy-intense methods and chemicals potentially reduces energy input and simultaneously ensure high methane yield. For determining whether the energy reclamation from sludge via AD contribute to mitigating global warming, integrating greenhouse gas emission into the evaluation system of pretreated AD is further warranted.
Collapse
Affiliation(s)
- Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huacai Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; The Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Guan Q, Qu Y, Zhai Y, Shi W, Zhao M, Huang Z, Ruan W. Enhancement of methane production in anaerobic digestion of high salinity organic wastewater: The synergistic effect of nano-magnetite and potassium ions. CHEMOSPHERE 2023; 318:137974. [PMID: 36708783 DOI: 10.1016/j.chemosphere.2023.137974] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
During high salinity organic wastewater (HSOW) anaerobic digestion treatment, the process of methanogenesis can be severely inhibited in the high salinity environment, and the accumulation of volatile organic acids (VFAs) leads to failure of the anaerobic reaction. In this study, nano-magnetite and KCl were adopted to alleviate the inhibitory effect of high salinity and enhance the HSOW anaerobic digestion performance. The result showed that, under the optimal dosage of 200 mg/L, nano-magnetite addition promoted the anaerobic digestion performance, and the methane production increased by 11.06%. When KCl was added with a dosage of 0.174%, the methane production increased by 98.37%. The simultaneous addition of nano-magnetite (200 mg/L) and KCl showed a synergistic effect on enhancing HSOW anaerobic digestion performance, and the methane production increased by 124.85%. The addition of nano-magnetite and KCl promoted the conversion of VFAs, especially accelerated the degradation of propionic acid and butyric acid, also it promoted the activity of acetate kinase, dehydrogenase and F420, and thereby enhanced the methanogenesis process. This study could provide a new method for enhancing the anaerobic digestion of HSOW.
Collapse
Affiliation(s)
- Qiuyue Guan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yunhe Qu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yujia Zhai
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
11
|
Zhao J, Wang Y, Guan D, Fu Z, Zhang Q, Guo L, Sun Y, Zhang Q, Wang D. Calcium hypochlorite-coupled aged refuse promotes hydrogen production from sludge anaerobic fermentation. BIORESOURCE TECHNOLOGY 2023; 370:128534. [PMID: 36574889 DOI: 10.1016/j.biortech.2022.128534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
This work investigated the effect of calcium hypochlorite (CH) coupled aged refuse (AR) treatment on the enhanced hydrogen generation from sludge anaerobic dark fermentation (SADF). The enhanced mechanism was systematically revealed through sludge disintegration, organic matter biotransformation, and microbial community characteristics, etc. The experimental data showed that CH coupled AR increased the hydrogen yield to 18.1 mL/g, significantly higher than that in the AR or CH group alone. Mechanistic analysis showed that CH-coupled AR significantly promoted sludge disintegration and hydrolysis processes, providing sufficient material for hydrogen-producing bacteria. Microbiological analysis showed that CH-coupled AR increased the relative abundance of responsible hydrogen-producing microorganisms. In addition, CH-coupled AR was very effective in reducing phosphate content in the fermentation liquid and fecal coliforms in the digestate, thus facilitating the subsequent treatment of fermentation broth and digestate. CH coupled AR is an alternative strategy to increase hydrogen production from sludge.
Collapse
Affiliation(s)
- Jianwei Zhao
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Yuxin Wang
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dezheng Guan
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zhou Fu
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qi Zhang
- Qingdao Jiebao Ecological Technology Co., Ltd, Qingdao 266113, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qiuzhuo Zhang
- School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
12
|
Wang Q, Fu H, Zhang G, Wu Y, Ma W, Fu C, Cai Y, Zhong L, Zhao Y, Wang X, Zhang P. Efficient chain elongation synthesis of n-caproate from shunting fermentation of food waste. BIORESOURCE TECHNOLOGY 2023; 370:128569. [PMID: 36592865 DOI: 10.1016/j.biortech.2022.128569] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Food waste was used to produce ethanol by yeast fermentation and volatile fatty acids (VFAs) by hydrolytic acidogenesis for chain elongation. Effectiveness of mole ratio of ethanol in yeast fermentation effluent (YFE) to VFAs in hydrolytic acidification effluent (HAE) on chain elongation was examined. The ideal YFE to HAE ratio for chain elongation was 2:1, the highest n-caproate production was 169.76 mg COD/g vS and the food waste utilization was 65.43 %. Electron transfer and carbon distribution did not completely correspond to n-caproate production, suggesting timely product extraction. The abundance of Romboutsia and Clostridium_sensu_stricto_12 increased as chain elongation progressed, which was critical for the chain elongation to n-caproate. The food waste shunting ratio of yeast fermentation to hydrolytic acidogenesis was 6:5, and 572.6 CNY can be created through chain elongation from shunting fermentation of 1 t food waste. This study proposed a new approach for efficient producing n-caproate from food waste.
Collapse
Affiliation(s)
- Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hao Fu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yan Wu
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China
| | - Weifang Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chuan Fu
- School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China
| | - Yajing Cai
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Lihui Zhong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yiwei Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xinyi Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404632, China.
| |
Collapse
|
13
|
Zhang Q, Liu Z, Meng H, Meng G, Cao W, Cao J, Luo J, Wu Y, Zheng J. Re-circulation of Fe/persulfate regulated sludge fermentation products for sewage treatment: Focus on pollutant removal efficiency, microbial community and metabolic activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160128. [PMID: 36370789 DOI: 10.1016/j.scitotenv.2022.160128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Persulfate (PS)-based technologies have been demonstrated as efficient methods for enhancing the performance of waste activated sludge (WAS) anaerobic fermentation. Except for volatile fatty acids (VFAs), however, some exogenous substances would be also released during this process, which might affect its application as a carbon source for sewage treatment. To fill this knowledge gap, the feasibility of sludge fermentation liquid regulated by Fe/persulfate (PS) (PS-FL) as a carbon source for sewage treatment was investigated in this study. Results indicated that PS-FL exhibits distinct effects on the pollutants removal compared with commercial sodium acetate. It facilitates PO43--P removal but slightly inhibited COD removal & denitrification, and sludge settleability was also decreased. The mechanistic analysis demonstrated that PS-FL could stimulate the enrichment of phosphorus-accumulating bacteria (i.e. Candidatus Accumulibacter) and the enhancement of their metabolic activities (i.e. PKK), thereby enhancing the biological PO43--P removal. Moreover, Fe ions in PS-FL could combine with PO43--P to form a precipitate and thus further contributed to PO43--P removal. Conversely, the sulfate reduction process induced by SO42- in PS-FL inhibits denitrification by reducing the abundance of denitrifying bacteria (i.e. Dechloromonas) and metabolic activities (i.e. narG). Additionally, PS-FL also decreased the abundance of flocculation bacteria (i.e. Flavobacterium) and down-regulated the expression of functional genes responsible for COD removal, by which it exhibited certain negative effects on COD removal and sludge settleability. Overall, this work demonstrated that PS-FL can re-circulation as a carbon source for sewage treatment, which provides a new approach to recovering valuable carbon sources from WAS.
Collapse
Affiliation(s)
- Qin Zhang
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Zailiang Liu
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Hailing Meng
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Guanhua Meng
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China
| | - Wangbei Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, PR China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, PR China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, PR China.
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jun Zheng
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China.
| |
Collapse
|
14
|
Zhu M, He L, Liu J, Long Y, Shentu J, Lu L, Shen D. Dynamic processes in conjunction with microbial response to unveil the attenuation mechanisms of tris (2-chloroethyl) phosphate (TCEP) in non-sanitary landfill soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120666. [PMID: 36403879 DOI: 10.1016/j.envpol.2022.120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Although the environmental and health risks of chlorinated organophosphate esters (OPEs-Cl) have drawn much attention, its environmental behaviors have been insufficiently characterized. As a notable sink of this emerging contaminant, non-sanitary landfills, which may decompose/accumulate OPEs-Cl, is of particular concern. In the present study, the dynamic processes of the typical OPEs-Cl, tris(2-chloroethyl) phosphate (TCEP), in non-sanitary landfill soils were analyzed under anaerobic condition, and the microbial taxa involved in these processes were explored. Our results showed that TCEP could be simultaneously reduced by abiotic and biotic processes, as it was reduced by 73.9% and 65.5% over the 120-day experiment in landfill humus and subsoil, respectively. Notably, the degradation of TCEP was significantly (p < 0.05) enhanced under the stress of a high TCEP concentration (10 μg g-1), while its ecological consequences were found insignificant regarding the microbial diversity and community structure and the typical soil redox processes, including Fe(III)/SO42- reduction and methanogenesis, in both soils. The microbial diversity of subsoil was significantly lower, and acetate was an important factor in changing microbial communities in landfill soils. The microbes in the family Nocardioidaceae and genus Pseudomonas might contribute to in the degradation of TCEP in landfill humus and subsoil, respectively. The metabolism related to sulfur and sulfate respiration were significantly (p < 0.05) correlated with TCEP reduction, and Desulfosporosinus were found as a potentially functional microbial taxon in TCEP degradation in both soils. The results could advance our understanding of the environmental behavior of OPEs-Cl in landfill-like complex environments.
Collapse
Affiliation(s)
- Min Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou, 310012, PR China
| | - Lisha He
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China
| | - Jiayi Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Jiali Shentu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Li Lu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, PR China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China.
| |
Collapse
|
15
|
Li X, Wang B, Ma Y, Jiang T, Peng Y. Enhanced mesophilic fermentation of waste activated sludge by integration with in-situ nitrate reduction. BIORESOURCE TECHNOLOGY 2023; 368:128317. [PMID: 36375702 DOI: 10.1016/j.biortech.2022.128317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the reduction of nitrate in a mesophilic waste activated sludge (WAS) fermentation system and determined the effect of nitrate reduction on the hydrolysis, acidogenesis and acetogenesis. Experimental results showed that the initial nitrate concentrations of 100, 200 and 400 mg/L were completely reduced in 1, 2 and 7 days, respectively. The destruction of volatile suspended solids was 1.2, 1.8 and 2.8 times, respectively, that without nitrate, demonstrating nitrate promoted the release of organic matter in sludge and enhanced the biodegradability of sludge organics. Moreover, batch tests using model substrates illustrated nitrate reduction promoted sludge hydrolysis and acetogenesis, but slightly inhibited acidogenesis. This study offers a feasible method to address two major problems currently faced by biological wastewater treatment plants, i.e. the overabundance of WAS and the lack of carbon sources for the denitrification process.
Collapse
Affiliation(s)
- Xiaodi Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Yuqing Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tan Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
16
|
Wu Y, Yue X, Zhou A, Song X, Su B, Cao F, Ding J. Simultaneous recovery of short-chain fatty acids and phosphorus during lipid-rich anaerobic fermentation with sodium hydroxide conditioning. CHEMOSPHERE 2023; 312:137227. [PMID: 36379433 DOI: 10.1016/j.chemosphere.2022.137227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic fermentation (AF) could achieve simultaneous recovery of short-chain fatty acids (SCFAs) and phosphorus (P) when waste activated sludge (WAS) and meat processing waste (MPW) act as co-substrate. However, long-chain fatty acids, the degradation intermediates of lipids, always inhibit anaerobic microbial activity. Therefore, sodium hydroxide (NaOH) conditioning was applied to improve the lipid-rich AF performance in this study. The results demonstrated that 96% WAS (v/v) with NaOH addition that remaining at pH 7.5 could achieve the maximum SCFAs yield (1180.05 mg/g VSfed) at 12 d, and ortho-P content in the AF liquor (AFL) was much more than that of without NaOH addition. Anaerovibrio and Aminobacterium, one kind of lipolytic and proteolytic bacteria, respectively, became the major genus in the lipid-rich AF system. 86% of P in the AFL from 96% WAS + pH 7.5 reactor was recovered through vivianite crystallization method, with 91% of SCFAs remaining in the post-AFL. Meanwhile, analysis results verified vivianite formation in the P precipitate products. Overall, this study provided a new idea to achieve SCFAs and P simultaneous recovery from WAS and MPW through AF with NaOH conditioning and vivianite crystallization.
Collapse
Affiliation(s)
- Yuqi Wu
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China.
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Xiulan Song
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Bingqin Su
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Fang Cao
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Jianzhi Ding
- Taiyuan Design Research Institute for Coal Industry, 18 Qingnian Road, Taiyuan, 030001, PR China
| |
Collapse
|
17
|
Mu S, Chen X, Song B, Wu C, Li Q. Enhanced performance and mechanism of the combined process of ozonation and a semiaerobic aged refuse biofilter for mature landfill leachate treatment. CHEMOSPHERE 2022; 308:136432. [PMID: 36115471 DOI: 10.1016/j.chemosphere.2022.136432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
A semiaerobic aged refuse biofilter (SAARB) can effectively treat mature landfill leachate (ML), but prolonged operation can lead to the enrichment of pollutants in the biofilter, resulting in severely degraded treatment performance. In this study, we constructed a combination process of ozonation and a SAARB to treat ML based on the principles of selective oxidation of aromatic organics by ozone and the preference of microorganisms for ozonation products. The results showed that the removal of organic and nitrogen pollutants became extremely poor after long-term treatment of ML using the SAARB alone. The decrease of chemical oxygen demand (COD), light absorbance at 254 nm (UV254), NH4+, and total nitrogen (TN) improved significantly after recirculating the ozonated ML effluent (OLE) into the SAARB, and the removal extents increased significantly to 63.59% (COD), 26.14% (UV254), 92.85% (NH4+), and 52.04% (TN), respectively. In addition, the recirculation of OLE enhanced the complete denitrification and tolerance to high NH4+ loading by the SAARB. An analysis of the community composition of 16S_bacteria and ammonia oxidation bacteria (AOB) showed that long-term treatment of ML using the SAARB alone had difficulty enriching the dominant functional bacteria. In the OLE recirculation stage, environmental factors-such as influent organic matter species and concentration, nitrogen pollutant concentration, and pH-were changed to influence the community composition of 16S_bacteria and AOB and enrich functional bacteria (e.g., Truepera, Luteibacter, and Nitrosospira). Therefore, ozonation combined with a SAARB can remove organic and nitrogen pollutants more effectively. In particular, this can be used to solve the problem of inefficient total nitrogen removal using the SAARB alone. This study provides a theoretical reference for the efficient and stable operation of biological processes when treating ML.
Collapse
Affiliation(s)
- Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xinglong Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Bowen Song
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chuanwei Wu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
18
|
Tian M, Liu F, Guo J, Li W, Zhang M, Li X. Effect of Different Acid and Base Potassium Ferrate Pretreatment on Organic Acid Recovery by Anaerobic Digestion of Sludge. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15093. [PMID: 36429813 PMCID: PMC9689993 DOI: 10.3390/ijerph192215093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Potassium ferrate has strong oxidation in both acid and alkali environments, which has attracted extensive attention. However, the impact of the pH environment on this coupling process with the goal of resource recovery has not received attention. Under the goal of the efficient recovery of organic acid, the changes of solid-liquid characteristics of sludge after acid and alkaline ferrate pretreatment and during anaerobic digestion were discussed. The results showed that compared with blank control groups, after alkaline ferrate pretreatment, the volatile suspended solids (VSSs) decreased the most, reaching 28.19%. After being pretreated with alkaline ferrate, the sludge showed the maximum VFA accumulation (408.21 COD/g VSS) on the third day of digestion, which was 1.34 times higher than that of the acid ferrate pretreatment. Especially in an alkaline environment, there is no need to add additional alkaline substances to adjust the pH value, and the effect of sludge reduction and acid production is the best.
Collapse
Affiliation(s)
- Mengjia Tian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Feng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiawen Guo
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wei Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mao Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
19
|
Yue L, Chuan S, Yuanyuan W, Han D, Li K, Jinyuan M, Kaijun W. Effect of pH dynamic control on ethanol-lactic type fermentation (ELTF) performance of glucose. ENVIRONMENTAL TECHNOLOGY 2022; 43:4102-4114. [PMID: 34134601 DOI: 10.1080/09593330.2021.1942560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
This study proposed a new ethanol-lactic type fermentation (ELTF) and explored the optimal control strategy. Using batch experiments, the effects of pH, temperature and organic loading (OL) on ELTF were investigated. The sum of ethanol and lactic acid yield was highest at whole-control pH value of 4.0, 35°C temperature and OL of 33 gCOD/L. To improve ELTF, the dynamic pH control in the long-term CSTR was adjusted at 4.0 (1-28 days), 5.0 (29-44 days) and 4.0 (46-62 days) successively. The high concentration of ethanol and lactic acid was 8190.5 mg/L at 16th day of pH 4.0. At pH of 5.0, the average acidogenesis rate and total concentration of fermentation products increased 111.0% and 128.0%, respectively. Organisms of Lactobacillus and Bifidobacterium were the predominant bacteria in reactor. It can achieve the directional regulation of ELTF and provides parameter support for the application of two-phase anaerobic digestion.
Collapse
Affiliation(s)
- Liu Yue
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Shi Chuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Wu Yuanyuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Dan Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Kun Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Ma Jinyuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Wang Kaijun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
20
|
Gao M, Yang J, Liu Y, Zhang J, Li J, Liu Y, Wu B, Gu L. Deep insights into the anaerobic co-digestion of waste activated sludge with concentrated leachate under different salinity stresses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155922. [PMID: 35577084 DOI: 10.1016/j.scitotenv.2022.155922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Treatment of high-salinity organic wastewater (e.g., concentrated leachate) is a major challenge. Anaerobic co-digestion can effectively treat high-salinity organic wastewater and recover energy. In this study, the concentrated landfill leachate and waste activated sludge (WAS) were anaerobic co-digested in the lab-scale continuous stirred tank reactors (CSTR) to understand their co-digestion performance under different salinity stresses. As revealed by the results, when the salinity was low (<10 g/L), the removal ratio of organic matter in the digester was kept at a high level (>91.3%), and the concentration of total volatile fatty acids (TVFAs) was low (<100 mg COD/L), indicating that the digester could operate efficiently and stably. However, when the salinity level was elevated from 10 g/L to 30 g/L, the removal ratio of organic matter in the digester decreased from ~91.3% to ~64.5%, the TVFAs continued to accumulate, the yields of biogas and methane also dropped sharply, and the performance of the digester decreased gradually. The results of microbial community and diversity analysis showed that there is limited adaptability of microbial community to high salinity in such process. Salinity could cause significant changes in the microbial community and diversity, thereby affecting the digestive performance. Metagenomic analysis showed that under high salinity conditions, the content of genes encoding hydrolase and methanogenic enzyme decreased, whereas the pathway of acetotrophic methanogenesis was weakened. Mechanism study showed that with the increase of salinity, the activity of microbial cells decreased, the structure of sludge flocs was damaged more significantly, and the extracellular polymeric substances (EPS) secreted by microbe increased continuously, which was used to resist the toxic effects of salinity stresses on microorganisms. The results of this study could provide certain theoretical guidance for anaerobic digestion under salinity stresses.
Collapse
Affiliation(s)
- Meng Gao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Jiahui Yang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Yang Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Junjie Zhang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Jianhao Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Yongli Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Baocun Wu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China.
| |
Collapse
|
21
|
Huang J, Pan Y, Liu L, Liang J, Wu L, Zhu H, Zhang P. High salinity slowed organic acid production from acidogenic fermentation of kitchen wastewater by shaping functional bacterial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114765. [PMID: 35202951 DOI: 10.1016/j.jenvman.2022.114765] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The high salinity of kitchen wastewater might have adverse effects on the production of short-chain fatty acids (SCFAs) in anaerobic fermentation. The effects and mechanisms of salinity on SCFA production in the anaerobic fermentation of kitchen wastewater were studied by varying the salt concentration, as follows: 0 g/L (S0), 2 g/L (S2), 6 g/L (S6), 10 g/L (S10), 15 g/L (S15), and 20 g/L (S20). Experimental results showed that hypersaline conditions (>10 g NaCl/L) accelerated the release of soluble proteins at the initial stage of anaerobic fermentation. They also significantly prohibited the hydrolysis and degradation of soluble proteins and carbohydrates. Compared with low salinity tests, the SCFA concentrations under hypersaline conditions (>10 g NaCl/L) only reached approximately 43% of the highest concentration on day 10, although the SCFA concentrations in all tests were very close on day 10 (14 g COD/L). High salinity delayed the production of n-butyric acid but did not change the composition of the total SCFAs. High salinity enriched Enterococcus and Bifidobacterium, the relative abundance levels of which reached 27.57% and 49.71%, respectively, before the depletion of substrate. High salinity showed a negative correlation with the relative abundance of the genera Clostridium_sensu_stricto_1, Prevotella and unclassified_f_Oscillospiraceae which are responsible for SCFA production. This study provided a theoretical basis for the fficient utilization of kitchen wastewater.
Collapse
Affiliation(s)
- Jianghao Huang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yu Pan
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Linyu Wu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
22
|
Li J, Li L, Suvarna M, Pan L, Tabatabaei M, Ok YS, Wang X. Wet wastes to bioenergy and biochar: A critical review with future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152921. [PMID: 35007594 DOI: 10.1016/j.scitotenv.2022.152921] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
The ever-increasing rise in the global population coupled with rapid urbanization demands considerable consumption of fossil fuel, food, and water. This in turn leads to energy depletion, greenhouse gas emissions and wet wastes generation (including food waste, animal manure, and sewage sludge). Conversion of the wet wastes to bioenergy and biochar is a promising approach to mitigate wastes, emissions and energy depletion, and simultaneously promotes sustainability and circular economy. In this study, various conversion technologies for transformation of wet wastes to bioenergy and biochar, including anaerobic digestion, gasification, incineration, hydrothermal carbonization, hydrothermal liquefaction, slow and fast pyrolysis, are comprehensively reviewed. The technological challenges impeding the widespread adoption of these wet waste conversion technologies are critically examined. Eventually, the study presents insightful recommendations for the technological advancements and wider acceptance of these processes by establishing a hierarchy of factors dictating their performance. These include: i) life-cycle assessment of these conversion technologies with the consideration of reactor design and catalyst utilization from lab to plant level; ii) process intensification by integrating one or more of the wet waste conversion technologies for improved performance and sustainability; and iii) emerging machine learning modeling is a promising strategy to aid the product characterization and optimization of system design for the specific to the bioenergy or biochar application.
Collapse
Affiliation(s)
- Jie Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Lanyu Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Manu Suvarna
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Lanjia Pan
- Xiamen Municipal Environment Technology Co.,Ltd, Xiamen 361021, China
| | - Meisam Tabatabaei
- Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Extension, And Education Organization (AREEO), Karaj, Iran
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program, Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| | - Xiaonan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore; Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
23
|
Jiao Y, Zou M, Yang X, Tsang YF, Chen H. Perfluorooctanoic acid triggers oxidative stress in anaerobic digestion of sewage sludge. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127418. [PMID: 34879508 DOI: 10.1016/j.jhazmat.2021.127418] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA), as a recalcitrant organic pollutant, inevitably enters wastewater treatment facilities and is enriched in settled sludge. However, the potential impact of PFOA on sludge treatment has never been documented. In this study, the effect of PFOA on anaerobic digestion of sewage sludge and its underlying mechanism were investigated through batch and long-term experiments. The presence of PFOA was found to be deleterious for methane production from sewage sludge. 170 mg/kg total solids PFOA reduced the cumulative methane production from 197.1 ± 1.92-159.9 ± 3.10 mL/g volatile solids. PFOA induces the production of reactive oxygen species, which directly leads to cell inactivation and interferes with methane production. PFOA stimulates microorganisms to secrete more extracellular polymeric substances (mainly proteins), which not only hinders the solubilization of organic matter but also down-regulate enzyme activities to inhibit acidification and methanogenesis. In addition, PFOA reduces the diversity of microorganisms, especially the abundance of acid-producing bacteria and methanogens, making the microbial community unfavorable for methane production.
Collapse
Affiliation(s)
- Yimeng Jiao
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mei Zou
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
24
|
Liu J, Qiu S, Zhang L, He Q, Li X, Zhang Q, Peng Y. Intermittent pH control strategy in sludge anaerobic fermentation: Higher short-chain fatty acids production, lower alkali consumption, and simpler control. BIORESOURCE TECHNOLOGY 2022; 345:126517. [PMID: 34920083 DOI: 10.1016/j.biortech.2021.126517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The pH control to promote short-chain fatty acids (SCFAs) production during anaerobic alkaline fermentation basically focused on constant pH control. In this study, a simple and consumption-reducing intermittent pH control strategy at moderate temperature (23 ± 2 °C) was investigated with adjusting pH to 10 when naturally reduced to 8. The intermittent pH control strategy could alleviate the inhibition of acid-producing bacteria by strong alkaline and high FA concentration. Meanwhile, microbial diversity promoted by 6% and 69% while the relative abundance of acid-producing bacteria increased by 36% and 61% compared to blank and constant pH fermenters. The relative genes abundance related to amino acid metabolism and fatty acid production were mostly promoted and led to enhanced SCFAs production. In the long-term fermenter, the intermittent pH control strategy could result in a 68% reduction in alkali consumption and a 37% increase in SCFAs production compared to that of the constant pH at 10.
Collapse
Affiliation(s)
- Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shengjie Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiang He
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
25
|
Sun C, Guo L, Zheng Y, Yu D, Jin C, Zhao Y, Yao Z, Gao M, She Z. Effect of mixed primary and secondary sludge for two-stage anaerobic digestion (AD). BIORESOURCE TECHNOLOGY 2022; 343:126160. [PMID: 34678447 DOI: 10.1016/j.biortech.2021.126160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
As an energy-efficient and eco-friendly sludge treatment process, two-stage anaerobic digestion (AD) is widely employed to recovery biomass energy from waste sludge. However, the effect of primary and secondary sludge for two-stage AD was not clear. In this study, two-stage AD of mixed sludge in different volume ratio was investigated. The maximum cumulative H2 yield (100.5 ml) and CH4 yield (2643.6 ml) were obtained in volume ratio of 1:3 (primary sludge: secondary sludge). In two-phase AD, mixed sludge could induce positive effect on both organics releasing in extracellular polymeric substances (EPS) and the utilization of volatile fatty acids (VFAs). By investigating the compositional characteristics of dissolved organic matters (DOM) through excitation-emission matrix (EEM) coupling with fluorescence regional integration (FRI), it revealed more degradable substances utilization in mixture of sludge. Results from this work suggest that two-phase AD with mixed sludge is efficient for renewable energy recovery.
Collapse
Affiliation(s)
- Cheng Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China.
| | - Yongkang Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Dan Yu
- QingDao Municipal Engineering Design Research Institute, Qingdao 266100, PR China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Zhiwen Yao
- QingDao Municipal Engineering Design Research Institute, Qingdao 266100, PR China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
26
|
Zhou W, Chen X, Wang Y, Tuersun N, Ismail M, Cheng C, Li Z, Song Q, Wang Y, Ma C. Anaerobic co-digestion of textile dyeing sludge: Digestion efficiency and heavy metal stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149722. [PMID: 34425439 DOI: 10.1016/j.scitotenv.2021.149722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 05/21/2023]
Abstract
Anaerobic co-digestion (AcoD) has become an important mean for the stabilization and recycling of textile dyeing sludge (TDS). Using the soybean okara byproduct (SOB) as a co-digestion substrate, the effects on AcoD performance and heavy metal stability were studied. The results indicated that the optimal mixing ratio was 1:1 (calculated by total sloid). Under this condition, the SCOD removal efficiency was 64% (that of TDS alone and SOB alone were 47% and 48%, respectively) and the cumulative methane production field was 503 L CH4/kg VS (that of TDS alone and SOB alone were 435 L CH4/kg VS and 408 L CH4/kg VS, respectively). At the same time, the addition of SOB could also enhance the stability of heavy metals (Zn, Cu, Cr and Ni) in TDS. Remarkably, that could increase the steady state content nickel from 47.98% to 57.21%, while anaerobic digestion of TDS caused no increase but a decrease (only 42.13%). According to the risk assessment code analyses, the AcoD of TDS by SOB can significantly reduce the ecotoxicity risk caused by Ni, Zn and Cr.
Collapse
Affiliation(s)
- Weizhu Zhou
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Xiaoguang Chen
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China,.
| | - Yu Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Nurmangul Tuersun
- Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, Kashgar University, Kashgar 844006, China
| | - Muhammad Ismail
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Chen Cheng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Zenan Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Qi Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Yiqi Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Chengyu Ma
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China,; Xinjiang Biomass Solid Waste Resources Technology and Engineering Center, Kashgar University, Kashgar 844006, China
| |
Collapse
|
27
|
Yang Z, Li J, Chen F, Xu L, Jin Y, Xu S, Wang J, Shen X, Zhang L, Song Y. Bioelectrochemical process for simultaneous removal of copper, ammonium and organic matter using an algae-assisted triple-chamber microbial fuel cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149327. [PMID: 34332380 DOI: 10.1016/j.scitotenv.2021.149327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/02/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Considering the adverse effect of heavy metals (such as Cu2+) on biological wastewater treatment processes, an algae-assisted triple-chamber microbial fuel cell (MFC) was established to remove Cu2+, COD and nitrogen sequentially, and also generate electricity. About 86.2% of the Cu2+ was removed in the first cathodic chamber, and the remaining Cu2+ was largely eliminated by algal uptake, contributing to an overall Cu2+ removal rate of 99.9% across the whole system. The nitrogen removal rate reached 79% in the system. The majority of the ammonium was assimilated by algae, and nitrogen oxides formed during the light period were denitrified at the cathode in the dark period. The variation in electrode potentials indicated that the cathode and anode potentials not only depended on the respective substrate concentrations, but also affected each other. The influence of algae on the microbial communities was greater than that of Cu2+ or the system structure. Devosia, Thauera, Pseudomonas, Acinetobacter and Flavobacterium may influence nitrogen removal, while Delftia, Thauera and Pseudomonas may play an important role in power generation. The present study has developed a practical method for removing pollutants from the wastewater containing heavy metals.
Collapse
Affiliation(s)
- Zhigang Yang
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Jiaze Li
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Linxu Xu
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Yan Jin
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Sisi Xu
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Jin Wang
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Xue Shen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Lijie Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Yang Song
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China.
| |
Collapse
|
28
|
Wang C, Wu L, Zhang YT, Wei W, Ni BJ. Unravelling the impacts of perfluorooctanoic acid on anaerobic sludge digestion process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149057. [PMID: 34328882 DOI: 10.1016/j.scitotenv.2021.149057] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a type of persistent organic pollutant that has been detected in wastewater treatment systems, subsequently entering the waste activated sludge (WAS) anaerobic digesters. Nevertheless, how PFOA affects the anaerobic digestion of WAS has never been reported till now. In this study, a series of batch digesters were set up to assess the performance of the anaerobic sludge digestion processes with exposures to different levels of PFOA. Experimental results revealed that the increased PFOA concentration (3-60 μg/g-TS) caused the 11.1-19.2% decrease in methane production than the control. Correspondingly, the relative abundances of several key microbes related to acidification (e.g., Longilinea sp.) and methanation (e.g., Methanosaeta sp.) decreased when exposed to PFOA, as demonstrated by microbial community analysis. Further investigations based on modelling and intermediate metabolites analysis confirmed the inhibition of acidification and methanation caused by PFOA, thus decreasing the methane production potential of WAS in anaerobic digestion.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yu-Ting Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
29
|
Song K, Li Z, Zhou X, Xie G, Li L, Pu S. Improving methane production from algal sludge anaerobic fermentation by peroxydisulfate (PDS) pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148710. [PMID: 34214803 DOI: 10.1016/j.scitotenv.2021.148710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the potential of improving methane production from algal sludge anaerobic digestion by peroxydisulfate (PDS) pretreatment. The results show that with PDS dosage at 0.02 g PDS/g algal sludge TSS, PDS added system has highest accumulative methane production after 60 days fermentation. The accumulative methane production was 1.08, 1.15, 1.14, 1.13, 1.08, 0.76, and 0.15 times as compared with control, at 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1 g PDS/g algal sludge TSS added, respectively. The SCOD in the system was keep increasing with the increment of PDS dosage after 120 min pretreatment. The algal sludge dewatering rate was increased with adding of PDS as pretreatment. The addition of PDS has inhibited the activities of microbes involved in digestion, while the short chain fatty acids production was improved after 3 days digestion. One-substrate model can be used to simulate the methane yield. The hydrolysis rate was decreased after dosing with PDS, while highest actual and predicted accumulative methane yield was occurred at 0.02 g PDS/g algal sludge TSS. Proteobacteria has higher percentage when the PDS was not higher than 0.1 g PDS/g algal sludge TSS, Acetothermia has higher percentage at 0.01 g PDS/g algal sludge TSS. The microcystin-LR (MC-LR) in algal sludge was largely removed after digestion, including the intracellular MC-LR. The higher PDS dosage could cause heavy metal release from algae cell to the digestate during fermentation. The addition of PDS to algal sludge can improve the accumulative methane production and mitigate microcystin concentration.
Collapse
Affiliation(s)
- Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhouyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| |
Collapse
|
30
|
Guo Z, Usman M, Alsareii SA, Harraz FA, Al-Assiri MS, Jalalah M, Li X, Salama ES. Synergistic ammonia and fatty acids inhibition of microbial communities during slaughterhouse waste digestion for biogas production. BIORESOURCE TECHNOLOGY 2021; 337:125383. [PMID: 34126358 DOI: 10.1016/j.biortech.2021.125383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
The slaughterhouse waste (SHW) contains high organics which makes SHW a feasible feedstock for anaerobic digestion (AD). The present study systematically assessed the microbiome response and biomethanation along with the production of volatile fatty acids (VFAs) and ammonia under 2%, 4%, 6%, and 8% (w v-1) loadings of SHW in AD. The optimum loading was 2% SHW which resulted in maximum biomethane production and VFAs consumption. A higher SHW concentration (4% and 6%) resulted in a prolonged lag-phase and decreased biomethane production. High VFAs (28.88 g L-1) and ammonia nitrogen (>4 g L-1) accumulation were observed at 8% SHW leading to permanent inhibition of biomethane and methanogenic archaea. An increase in ammonia and VFAs concentration, at 4% and 6% SHW loadings, shifted the methanogenic pathway from acetoclastic to hydrogenotrophic lead by Methanoculleus. Acetoclastic Methanosaeta (77.15%) dominated the reactors loaded with 2% SHW resulting in the highest biomethane production.
Collapse
Affiliation(s)
- Zhaodi Guo
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Muhammad Usman
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Saeed A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia; Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia; Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. 87, Helwan, Cairo 11421, Egypt
| | - M S Al-Assiri
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia; Department of Electrical Engineering, Faculty of Engineering, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
31
|
Gao M, Li S, Zou H, Wen F, Cai A, Zhu R, Tian W, Shi D, Chai H, Gu L. Aged landfill leachate enhances anaerobic digestion of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112853. [PMID: 34044237 DOI: 10.1016/j.jenvman.2021.112853] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is considered as a sustainable pathway to recover energy from organic wastes, but the digestive efficiency for waste activated sludge (WAS) is not as expected due to the limitations in WAS hydrolysis. This study proposes an effective strategy to simultaneously treat WAS and landfill leachate, aiming to promote WAS hydrolysis and enhance organics converting to methane. The effects of landfill leachate on the four stages (i.e., solubilization, hydrolysis, acidogenesis, and methanogenesis) of AD of WAS, as well as the effect mechanisms were investigated. Results showed that adding appropriate amounts of landfill leachate could promote the steps of solubilization, hydrolysis and acidogenesis of WAS, but had no-effect on methanogenesis. The hydrolysis and acidogenesis efficiency in the leachate added digesters were 2.0%-8.4% and 35.2%-72.7% higher than the control digester. Mechanism studies indicated that humic acid (HA) contained in the leachate was conducive to the processes of both hydrolysis and acidogenesis, but detrimental to the methanogenesis. Effects of heavy metals (HMs) on AD of WAS was also dose-dependent. Digestive performance was inhibited by excessive HMs but promoted by moderate dosages. Humic acid and metal ions tend to interact to form complexes, and thus relieve their each inhibition effects. It is also found that the stability of sludge flocs was reduced by the leachate through reducing both apparent activation energy (AAE) and median particle size (MPS) of the sludge. Microbial community and diversity results revealed that the relative abundance of microbes responsible for hydrolysis and acidogenesis increased when landfill leachate was present. This research provides a more technically and economically feasible approach to co-treating and co-utilizing WAS and landfill leachate.
Collapse
Affiliation(s)
- Meng Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Siqi Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Huijing Zou
- Hunan Architectural Design Institute Co., Ltd, Hunan, 410125, PR China
| | - Fushan Wen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Anrong Cai
- Chongqing Yuxi Water Co., Ltd, Chongqing, 400045, PR China
| | - Ruilin Zhu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Wenjing Tian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Dezhi Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| |
Collapse
|
32
|
Zhao L, Wang XT, Chen KY, Wang ZH, Xu XJ, Zhou X, Xing DF, Ren NQ, Lee DJ, Chen C. The underlying mechanism of enhanced methane production using microbial electrolysis cell assisted anaerobic digestion (MEC-AD) of proteins. WATER RESEARCH 2021; 201:117325. [PMID: 34144484 DOI: 10.1016/j.watres.2021.117325] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/10/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is a promising technology capable of converting waste matter into bio-energy. Recent studies have reported that microbial electrolysis cell assisted anaerobic digestion (MEC-AD) is an effective system for methane production from organic waste, via enhanced electron transfer. However, little is known about the effects of applied voltage on the AD of proteins. Herein, the mechanism of MEC-AD on protein digestion was investigated using varying concentrations of bovine serum albumin (BSA) as the protein substrate (500 mg/L, 4 g/L, and 20 g/L BSA). Experimental results showed that the applied voltage can not only enhance the methane production rate from 23.8% to 45.6% at low and medium organic loading (BSA concentration of 500 mg/L and 4 g/L), but also improve the methanogenesis efficiency increased by 225.4% at high BSA concentration (20 g/L) with the applied voltage of 0.6 V compared to that with open circuit. Mechanism explorations revealed that the applied voltage significantly enhanced the acidogenesis and methanogenesis processes in the AD of proteins. Microbial community characterization showed that with the applied voltage, the abundance of fermentative bacteria increased by 46.7 % at the anode, while, the abundance of Methanobacterium at the cathode increased from 10.4 to 84.3%, indicating the methanogenesis pathway transformed from acetoclastic to hydrogenotrophic. External circuit electron transfer calculations demonstrated that only 10% of the produced methane could be attributed to direct interspecies electron transfer (DIET). From a thermodynamic perspective, the applied external voltage led to a reduction in the cathodic potential to -0.9 V, which is beneficial for enhanced methane production via mediated interspecies electron transfer (MIET) by enrichment of hydrogenotrophic methanogens. The findings reported here reveal the previously unrecognized contribution of proteins to MEC-AD, while also furthering our understanding of the role of applied voltage in the MEC-AD process.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xue-Ting Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ke-Yang Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zi-Han Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xi-Jun Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xu Zhou
- Engineering Laboratory of Microalgal Bioenergy, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
33
|
Zhang J, Zhao J, Sun Y, Xin M, Zhang D, Bian R. Mechanisms of emerging pollutant Dechlorane Plus on the production of short-chain fatty acids from sludge anaerobic fermentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34902-34912. [PMID: 33660181 DOI: 10.1007/s11356-021-13101-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
The effect of emerging pollutant Dechlorane Plus (DPs), an organochlorine aliphatic flame retardant, on waste-activated sludge anaerobic fermentation was investigated, and the related mechanisms were revealed for the first time. The results of this experiment suggested that the presence of DPs had a significant inhibitory effect on sludge anaerobic fermentation to generate the intermediate valuable product short-chain fatty acids (SCFA), and when the DP content was 3034.1±101.7 mg/kg total suspended solids (TSS), the maximal output of SCFA was only 215.04 mg/g, which was 0.47 times of that in the blank. The underlying mechanism investigation indicated DPs promoted the disintegration of sludge, but inhibited the process of hydrolysis and acidification. DPs inhibited the release of soluble bound extracellular polymers (SB-EPS) in sludge. The analysis of microbial community characteristics indicated that DPs reduced the level of Firmicutes and Actinobacteriathe, which were the key acid producing bacteria. At the genus level, DPs reduced the relative abundance of Proteiniclasticum and Mycobacteriumwas.
Collapse
Affiliation(s)
- Jing Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China.
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Mingxue Xin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Dalei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Rongxing Bian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| |
Collapse
|
34
|
Yu P, Tu W, Wu M, Zhang Z, Wang H. Pilot-scale fermentation of urban food waste for volatile fatty acids production: The importance of pH. BIORESOURCE TECHNOLOGY 2021; 332:125116. [PMID: 33857863 DOI: 10.1016/j.biortech.2021.125116] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Here, a pilot-scale volatile fatty acids (VFAs) production system was established using food waste (FW) as feedstock under acidic conditions. The effects of pH (uncontrolled, 4.5, 5.5, and 6.5) on the FW acidification system were investigated. The results showed that VFAs concentration increased from 8419 to 15048 mg COD/L with pH level increasing from 4.5 to 6.5, and the highest VFA production yield (0.79 mgCOD/mgCOD) was obtained at a pH of 6.5. A larger proportion of butyric acid (52.9%) was observed, accompanied by a 23% decrease of acetic acid when pH was elevated to 6.5. Microbial analysis showed that Clostridium sensu stricto 1, Sporanaerobacter, and Proteiniphilum were dominant, which not only positively influence the hydrolysis and acidogenesis processes but also play an essential role in the conversion of acetic acid to butyric acid. In summary, this study provides a valuable reference for large-scale FW treatment to recover valuable resources.
Collapse
Affiliation(s)
- Peng Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weiming Tu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Menghan Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
35
|
Lu M. Advanced treatment of aged landfill leachate through the combination of aged-refuse bioreactor and three-dimensional electrode electro-Fenton process. ENVIRONMENTAL TECHNOLOGY 2021; 42:1669-1678. [PMID: 31590611 DOI: 10.1080/09593330.2019.1677781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
A combined process of the aged-refuse bioreactor (ARB)/three-dimensional electrode electro-Fenton (3D-EF) system was developed at lab-scale to treat aged landfill leachate. The optimum operating conditions were found to be 15 L/m3•d hydraulic loading rate for ARB; Fe2+ concentration 1.0 mM, initial pH 3.0, current density 30 mA/cm2 and electrode distance 6 cm for 3D-EF. Under these conditions, the total removal ratios of chemical oxygen demand, NH3-N, total phosphorus and colour were 96.2%, 94.3%, 99.2% and 93.6%, respectively. The microtoxicity of the leachate was substantially reduced after undergoing the hybrid treatment. The ARB process removed a considerable proportion of organic matter, while the 3D-EF system played an important role in removing the residue of recalcitrant substances and post-polish of final effluent. The combined process showed a promising potential for treatment of aged landfill leachate.
Collapse
Affiliation(s)
- Mang Lu
- Department of Chemistry, Nanchang Normal University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
36
|
Cai Y, Zheng Z, Wang X. Obstacles faced by methanogenic archaea originating from substrate-driven toxicants in anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123938. [PMID: 33264986 DOI: 10.1016/j.jhazmat.2020.123938] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is used to treat waste and produce bioenergy. However, toxicants, which originate from the substrate, can inhibit or damage the digestion process. Methanogenic archaea (MA), which are the executor in the methanogenesis stage, are more sensitive than bacteria to these toxicants. This review discusses the effects of substrate-driven toxicants, namely, antibiotics, H2S and sulfate, heavy metals (HMs), long-chain fatty acids (LCFAs), and ammonia nitrogen, on the activity of MAs, methanogenic pathways, and the inter-genus succession of MAs. The adverse effects of these five toxicants on MA include effects on pH, damages to cell membranes, the prevention of protein synthesis, changes in hydrogen partial pressure, a reduction in the bioavailability of trace elements, and hindrance of mass transfer. These effects cause a reduction in MA activity and the succession of MAs and methanogenic pathways, which affect AD performance. Under the stress of these toxicants, succession occurs among HA (hydrogenotrophic methanogen), AA (acetoclastic methanogen), and MM (methylotrophic methanogen), especially HA gradually replaces AA as the dominant MA. Simultaneously, the dominant methanogenic pathway also changes from the aceticlastic pathway to other methanogenic pathways. A comprehensive understanding of the impact of toxicants on MA permits more specific targeting when developing strategies to mitigate or eliminate the effects of these toxicants.
Collapse
Affiliation(s)
- Yafan Cai
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China; Department of Biochemical conversion, Deutsches Biomassforschungszentrum gemeinnütziges GmbH, Torgauer Straße116, 04347 Leipzig, Germany
| | - Zehui Zheng
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China
| | - Xiaofen Wang
- College of Agronomy and Biotechnology/Biomass Engineering Center, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
37
|
Zou M, Yin M, Yuan Y, Wang D, Xiong W, Yang X, Zhou Y, Chen H. Triclosan facilitates the recovery of volatile fatty acids from waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142336. [PMID: 33254905 DOI: 10.1016/j.scitotenv.2020.142336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
The emergence of triclosan (TCS) in the environment has caused extensive concern, but its role in waste activated sludge (WAS) anaerobic fermentation (AF) is still uncertain. This work investigated the impact of TCS on volatile fatty acids (VFAs) recycling from WAS. The results showed that TCS of 200 mg/kg TSS increased the maximum VFA accumulation from 7284 to 15,083 mg COD/L. The increase in total VFA production is attributed to the massive increase in acetic acid. Mechanism exploration showed that TCS promotes WAS solubilization by facilitating cell breakage and extracellular polymeric substances disruption, and stimulates AF by enhancing the activity of key enzymes among all stages. TCS promotes acidification stronger than methanogenesis, which makes VFA production faster than consumption, leading to increased VFA accumulation. These findings provide novel insights for revealing the role of TCS in WAS resource recovery, and offer thoughts for the selective production of final recycling products of TCS-containing WAS.
Collapse
Affiliation(s)
- Mei Zou
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Mengyu Yin
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yayi Yuan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
38
|
Kovačić Đ, Rupčić S, Kralik D, Jovičić D, Spajić R, Tišma M. Pulsed electric field: An emerging pretreatment technology in a biogas production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:467-483. [PMID: 33139189 DOI: 10.1016/j.wasman.2020.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
This review focuses on current status of pulsed electric field (PEF) technology and its implementation in biogas production. First, basic principles of PEF and a schematic overview of typical PEF processing system were provided. Thereafter, lab- and pilot-scale PEF pretreatments of sludge with subsequent anaerobic digestion (AD) were provided. Furthermore, PEF technology, as an emerging technology for the lignocellulose (LC) pretreatment in biogas production which is still predominantly used at lab-scale, was outlined. Eventually, conclusion together with future perspectives and challenges were outlined.
Collapse
Affiliation(s)
- Đurđica Kovačić
- J. J. Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Vladimira Preloga 1, HR - 31000 Osijek, Croatia.
| | - Slavko Rupčić
- J. J. Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Kneza Trpimira 2B, HR - 31000 Osijek, Croatia
| | - Davor Kralik
- J. J. Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Vladimira Preloga 1, HR - 31000 Osijek, Croatia
| | - Daria Jovičić
- J. J. Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Vladimira Preloga 1, HR - 31000 Osijek, Croatia
| | - Robert Spajić
- J. J. Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Vladimira Preloga 1, HR - 31000 Osijek, Croatia
| | - Marina Tišma
- J. J. Strossmayer University of Osijek, Faculty of Food Technology Osijek, F. Kuhača 18, HR - 31000 Osijek, Croatia
| |
Collapse
|
39
|
Zhao J, Zhang J, Zhang D, Hu Z, Sun Y. Effect of emerging pollutant fluoxetine on the excess sludge anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141932. [PMID: 32892053 DOI: 10.1016/j.scitotenv.2020.141932] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Fluoxetine (FLX), an emerging pollutant, has been detected in the sewage and excess sludge (ES) at substantial levels. So far, however, the impacts of FLX on the ES anaerobic digestion and the related mechanisms have never been investigated. In this work, the effects of FLX on the ES anaerobic digestion were explored by the batch test under moderate temperature condition. The results indicated the effect of FLX on ES digestion was dose-dependent. When FLX was at a low dose (0.1 mg/kg), FLX had no significant impact on the methane generation from the ES digestion. However,when FLX was 2.0 mg/kg, the cumulative methane production was only 91.2 ± 4.3 mL/g volatile suspended solids (VSS), which was about 59.9 ± 3.4% of the blank (without FLX). Mechanisms revealed that the presence of FLX has inhibited hydrolysis, acidification and methanogenesis. Enzyme activity analysis showed that FLX inhibited the activities of key enzymes in the process of hydrolysis, acidification and methanogenesis. The results of this work are of great significance to explain the role of FLX in the process of ES fermentation, and provide some reference for the subsequent utilization of ES.
Collapse
Affiliation(s)
- Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao 266033, PR China.
| | - Jing Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao 266033, PR China
| | - Dalei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao 266033, PR China
| | - Zhanbo Hu
- Guangxi Yijiang Environmetal Protection Technology Co., Ltd., Nanning 530007, PR China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China; Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao 266033, PR China
| |
Collapse
|
40
|
Zhang B, Zhao Z, Chen N, Feng C, Lei Z, Zhang Z. Insight into efficient phosphorus removal/recovery from enhanced methane production of waste activated sludge with chitosan-Fe supplementation. WATER RESEARCH 2020; 187:116427. [PMID: 32980603 DOI: 10.1016/j.watres.2020.116427] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Fe(III)-loaded chitosan (CTS-Fe) composite was used for the first time to remove and recover phosphorus (P) from waste activated sludge (WAS) via anaerobic digestion (AD). The P transformation pathway and the effect of CTS-Fe addition on the AD process were investigated using batch experiments. The P fractionation results indicate that non-apatite inorganic phosphorus (NAIP) reduction in the solid phase of sludge at 20 g/L of CTS-Fe addition (6.72 mg/g-SS) was 2.4 times higher than that in the control (2.77 mg/g-SS, no CTS-Fe addition). This is probably brought about by the added CTS-Fe enhanced the reduction of Fe(III)-P compounds in the sludge with phosphate released into the liquid phase. CTS-Fe can efficiently recover 95% of P from the liquid digestate of WAS. Notably, partial Fe(III) on the CTS-Fe was reduced and effectively combined with P to form vivianite crystals on the CTS-Fe surface during the AD process. Characterization analysis demonstrated that ligand exchange and chemical precipitation were the dominant mechanisms for P removal/recovery. Furthermore, the addition of CTS-Fe increased methane production by 11.9 - 32.2% under the tested conditions, likely attributable to the enhanced hydrolysis of WAS under CTS-Fe supplementation. As the P-loaded CTS-Fe particles can be easily separated and recovered from the AD system and further reutilized in agriculture, this study could provide a new approach for simultaneous P removal/recovery and enhanced methane production from AD of WAS.
Collapse
Affiliation(s)
- Boaiqi Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Ziwen Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Nan Chen
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
41
|
Kuang Y, Gao Y, Zhang J, Zhao J, Luo S, Zhang D, Lu C, Sun Y. Effect of initial pH on the sludge fermentation performance enhanced by aged refuse at low temperature of 10 °C. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31468-31476. [PMID: 32488705 DOI: 10.1007/s11356-020-09306-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
The efficiency of anaerobic fermentation of waste activated sludge (WAS) under low-temperature condition is usually low. This work reported a new strategy to enhance the low-temperature fermentation of WAS by using aged refuse (AR), and explored the effect of initial pH 4 till pH 12 on the production of short-chain fatty acid (SCFA) from AR-enhanced sludge fermentation. The results showed that AR improved WAS fermentation under low-temperature condition (10 °C), and the maximum accumulation of SCFA was 75.6 ± 3.5 mg/g, which was significantly higher than that of the blank (without AR). In addition, when the initial pH was 7, the maximum yield of methane was 102.2 ± 4.8 mL/g, whereas when the initial pH was 11, the maximum yield of SCFA was 85.6 ± 2.8 mg/g. Weak acid or alkali pH benefited hydrolysis and acidification of WAS, but inhibited methanogenesis. The release of NH4+-N and phosphate in a strong alkaline environment (pH 11 and 12) was lower than that in other alkaline environments (pH 10).
Collapse
Affiliation(s)
- Yan Kuang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China
| | - Ying Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China
| | - Jing Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China.
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China.
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Dalei Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China
| | - Chenggang Lu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, Qingdao, 266033, People's Republic of China
| |
Collapse
|
42
|
Wang Y, Wei W, Wu SL, Ni BJ. Zerovalent Iron Effectively Enhances Medium-Chain Fatty Acids Production from Waste Activated Sludge through Improving Sludge Biodegradability and Electron Transfer Efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10904-10915. [PMID: 32867479 DOI: 10.1021/acs.est.0c03029] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel zerovalent iron (ZVI) technique to simultaneously improve the production of medium-chain fatty acids (MCFAs) from waste activated sludge (WAS) and enhance WAS degradation during anaerobic WAS fermentation was proposed in this study. Experimental results showed that the production and selectivity of MCFAs were effectively promoted when ZVI was added at 1-20 g/L. The maximum MCFAs production of 15.4 g COD (Chemical Oxygen Demand)/L and MCFAs selectivity of 71.7% were both achieved at 20 g/L ZVI, being 5.3 and 4.8 times that without ZVI (2.9 g COD/L and 14.9%). Additionally, ZVI also promoted WAS degradation, which increased from 0.61 to 0.96 g COD/g VS when ZVI increased from 0 to 20 g/L. The microbial community analysis revealed that the ZVI increased the populations of key anaerobes related to hydrolysis, acidification, and chain elongation. Correspondingly, the solubilization, hydrolysis, and acidification processes of WAS were revealed to be improved by ZVI, thereby providing more substrates (short-chain fatty acids (SCFAs)) for producing MCFAs. The mechanism studies showed that ZVI declined the oxidation-reduction potential (ORP), creating a more favorable environment for the anaerobic biological processes. More importantly, ZVI with strong conductivity could act as an electron shuttle, contributing to increasing electron transfer efficiency from electron donor to acceptor. This strategy provides a new paradigm of transforming waste sludge into assets by a low-cost waste to bring significant economic benefits to sludge disposal and wastewater treatment.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Lin Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| |
Collapse
|
43
|
Wang G, Wang D, Huang L, Song Y, Chen Z, Du M. Enhanced production of volatile fatty acids by adding a kind of sulfate reducing bacteria under alkaline pH. Colloids Surf B Biointerfaces 2020; 195:111249. [PMID: 32682275 DOI: 10.1016/j.colsurfb.2020.111249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022]
Abstract
Anaerobic digestion could make sludge stable and harmless, and the volatile fatty acids (VFAs) produced from it. The objective of this study was to reduced sludge production and realize the resource utilization of VFAs through enhance anaerobic sludge fermentation by adding sulfate reducing bacteria (SRB) under alkaline pH. Under the neutral and alkaline pH, SRB was added into the sludge fermentation liquid with sole stock solution and sterilization treatment respectively, while the liquid without any additives was used as control. The results indicated that obvious increase of the production of VFAs was observed after adding SRB under alkaline pH. And, more protein and polysaccharide were obtained which were the main substrates for the production of VFAs. The concentration of ammonia nitrogen (NH4+-N) and phosphate (PO43--P) were also increased with the addition of SRB. So, a high yield production of VFAs could be achieved through the addition of SRB + alkaline pH.
Collapse
Affiliation(s)
- Guangzhi Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China.
| | - Dongdong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| | - Likun Huang
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yanmei Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| | - Maoan Du
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, China
| |
Collapse
|
44
|
Zhang X, Chen J, Li J. The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to pollutants association. CHEMOSPHERE 2020; 251:126360. [PMID: 32155494 DOI: 10.1016/j.chemosphere.2020.126360] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/28/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Microplastics are abundant in municipal wastewater which is mainly from personal care products and laundry. In recent years, great attention has been given to microplastics removal in wastewater treatment. In this article, the study focusing on microplastics in wastewater has been evaluated with VOSviewer. It was found that the major interest was in identification, quantification and pollution of the microplastics in the wastewater, and their transportation and final destination during wastewater treatment processes. The major microplastics and their shapes in wastewater were reviewed. Our evaluation results were consistent with other reported that fibers and fragment were the majority in terms of shape and polyethylene terephthalare (PET), polyethylene (PE), polypropylene (PP), and polystyrene (PS) are the most presented microplastics in wastewater. During wastewater treatment, the removal route of microplastics from wastewater includes settling, adsorption, entrapment, interception, etc. It confirms that microplastics are just simply transferred from wastewater to sludge. It could then bring problems to anaerobic digestion as microplastics are great vector for toxic substances such as antibiotics and persistence organic pollutants. The key to determine the microplastics effect on anaerobic digestion is the desorption behavior of the toxic substances such as antibiotics, persistent organic pollutants and heavy metals from microplastics in digestion condition. Toxic compounds which are commonly presenting in sludge have shown the tendency to release from microplastics. It indicates that microplastics in sludge have great possibility to impact on methane production.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Jiaxin Chen
- Department of Civil and Environmental Engineering, Shantou University, 243, Daxue Road, Shantou, Guangdong, 515063, PR China
| | - Ji Li
- Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
45
|
Wu Y, Cao J, Zhang T, Zhao J, Xu R, Zhang Q, Fang F, Luo J. A novel approach of synchronously recovering phosphorus as vivianite and volatile fatty acids during waste activated sludge and food waste co-fermentation: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2020; 305:123078. [PMID: 32135351 DOI: 10.1016/j.biortech.2020.123078] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
This research proposed an innovative approach to synchronously enhance the recovery of phosphorus (P) as vivianite and volatile fatty acids (VFAs) during waste activated sludge (WAS) and food waste (FW) co-fermentation. A high performance was achieved under 30% FW addition and pH uncontrolled, which gained 83.09% of TP recovery as high-purity vivianite (93.90%), together with efficient VFAs production (7671 mg COD/L). The FW supplement could enhance VFAs production and subsequently lower pH to contribute to the release of Fe2+ and PO43-. Also, it could dampen disrupting effects of strong acidic pH on microbial cells (lowering LDH release). Moreover, the flexible pH variation caused by biological acidification could maintain relatively higher microbial activities (increasing enzymes' activities), which was advantageous to the biological effects involved in Fe2+ and PO43 release and VFAs generation. Therefore, this research provide a promising and economic alternative to dispose of WAS and FW simultaneously for valuable resource recovery.
Collapse
Affiliation(s)
- Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Teng Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianan Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co., Ltd, Nanjing 211599, China.
| |
Collapse
|
46
|
Zhang Y, Liang Z, Tang C, Liao W, Yu Y, Li G, Yang Y, An T. Malodorous gases production from food wastes decomposition by indigenous microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137175. [PMID: 32062272 DOI: 10.1016/j.scitotenv.2020.137175] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Volatile organic compounds (VOCs) produced during the degradation of food wastes may harm to the health of people and create annoyance in adjacent communities. In this work, the VOCs emitted from the decomposition food wastes including fruit, meat and vegetable, and their microbial communities were measured in three individual 57-L reactors for 61 days. Total of 232.8, 373.5, and 191.1 μg·kg-1·h-1 VOCs with oxygenated VOCs (57.6%), volatile organic sulfur compounds (VOSCs, 58.6%) and VOSCs (54.9%) as the main group were detected during fruit, meat and vegetable fermentation, respectively. 2-Butanone (55.1%) and ethyl acetate (13.8%) were the two most abundant VOCs from fruit wastes, while dimethyl sulfide (68.0 and 26.6%) and dimethyl disulfide (89.2 and 10.1%) were in vegetable and meat wastes. The predominant Firmicutes represented 93.0-99.9% of the bacterial communities of meat decomposition, while Firmicutes and Proteobacteria were the dominant phyla throughout the fruit digestion process. Proteobacteria (16.9%-83.6%) was the dominant phylum in vegetable wastes, followed by Bacteroidetes, Firmicutes, and Actinobacteria. Malodorous VOCs emissions were highly affected by microbial activity, the abundant Weissella, Leuconostoc and Enterobacteriaceae in vegetable wastes showed correlation with carbon disulfide and dimethyl sulfide, while dominant Peptococcus, Bacteroides, Lactobacillales and Peptoniphilus in meat wastes was related to dimethyl disulfide. Overall, significant differences and correlation between VOCs emission profiles and bacterial communities among different food wastes decomposition were observed. These data contribute to a more comprehensive understanding the relationship between microbial community dynamics and malodorous VOCs emission.
Collapse
Affiliation(s)
- Yuna Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Changcheng Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yun Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515100, China.
| | - Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
47
|
Hassan A, Pariatamby A, Ossai IC, Hamid FS. Bioaugmentation assisted mycoremediation of heavy metal and/metalloid landfill contaminated soil using consortia of filamentous fungi. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107550] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Luo J, Zhang Q, Zhao J, Wu Y, Wu L, Li H, Tang M, Sun Y, Guo W, Feng Q, Cao J, Wang D. Potential influences of exogenous pollutants occurred in waste activated sludge on anaerobic digestion: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121176. [PMID: 31525683 DOI: 10.1016/j.jhazmat.2019.121176] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 05/22/2023]
Abstract
Anaerobic digestion is a promising approach for waste activated sludge (WAS) disposal. However, a wide range of exogenous pollutants (e.g. heavy metals, nanoparticles) exists in WAS and their influences on anaerobic digestion are neglected. This study investigates the correlations between exogenous pollutants and anaerobic digestion performance. The results indicate that exogenous pollutants exhibit dose-dependent influences on WAS digestion. Most of the pollutants improve the performance of anaerobic digestion by partially or wholly promoting the hydrolysis, acidification and methanogenesis processes at low dose, but exhibit negative effects at high levels due to their toxicity. Generally, methanogens are more vulnerable than those hydrolytic and acidogenic bacteria. Poly-aluminum chloride and polyacrylamide show strong inhibition on WAS digestion, which are primarily attributed to their physical enmeshments of organic matters in WAS. The synergistic effects of different mixed pollutants and the mitigating strategies for typical pollutants inhibition deserve more attention in light of WAS anaerobic digestion.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianan Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Lijuan Wu
- Jiangsu Provincial Academy of Environmental Science, Nanjing 210098, China
| | - Han Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yaqing Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wen Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
49
|
Yuan Y, Hu X, Chen H, Zhou Y, Zhou Y, Wang D. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133741. [PMID: 31756829 DOI: 10.1016/j.scitotenv.2019.133741] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Low acid production and acid-forming process instability are becoming the major issues to limit the popularization of anaerobic fermentation to produce volatile fatty acid. Considerable research efforts have been made to address these problems, from studying the microorganisms that are primarily responsible for or detrimental to this process, to determining their biochemical pathways and developing mathematical models that facilitate better prediction of process performance to identify the mechanism and optimization of process control. A limited understanding of the complex microbiology and biochemistry of anaerobic fermentation is the primary cause of acid production upset or failure. This review critically assesses the recent advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge from micro to macro scale, particularly relating to the microbiology, biochemistry, impact factors, and enhancement methods. Previous results suggest that further studies are necessary to substantially promote the efficiency and stability of acid production. One of the promising directions appears to be integrating the existing and growing pretreatment technologies and fermentation processes to enhance metabolic pathways of acetogens but inhibit activities of methanogens, which this study hopes to partially achieve.
Collapse
Affiliation(s)
- Yayi Yuan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xiayi Hu
- College of Chemical Engineering, Xiangtan University 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Yaoyu Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yefeng Zhou
- College of Chemical Engineering, Xiangtan University 411105, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
50
|
Wu B, Yang Q, Yao F, Chen S, He L, Hou K, Pi Z, Yin H, Fu J, Wang D, Li X. Evaluating the effect of biochar on mesophilic anaerobic digestion of waste activated sludge and microbial diversity. BIORESOURCE TECHNOLOGY 2019; 294:122235. [PMID: 31610493 DOI: 10.1016/j.biortech.2019.122235] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
This study compared the effects of sewage sludge-derived pyrochar (PC300, PC500, and PC700) and hydrochar (HC180, HC240, and HC300) on mesophilic anaerobic digestion of waste activated sludge (WAS). It was demonstrated that hydrochar can better promote the methane production compared with pyrochar. The highest accumulative methane yield of 132.04 ± 4.41 mL/g VSadded was obtained with HC180 addition. In contrast, the PC500 and PC700 showed a slightly negative effect on methane production. Sludge-derived HC not only accelerated the solubilization and hydrolysis of sludge floc, but also improved the production of acetic acid and propionate, further resulting in improved methane production. Simultaneously, the syntrophic microbes facilitating direct interspecies electron transfer (DIET) such as Syntrophomonas, Peptococcaceae, Methanosaeta and Methanobacterium bred rapidly with the addition of HCs. These results indicated that the hydrochar is more ideal as the accelerant to promote the methane production from mesophilic anaerobic digestion of WAS than the pyrochar.
Collapse
Affiliation(s)
- Bo Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Fubing Yao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shengjie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Li He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kunjie Hou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhoujie Pi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Huanyu Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jing Fu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|