1
|
Dong H, Nordhorn ID, Lamann K, Westerman DC, Liberatore HK, Forster ALB, Aziz MT, Richardson SD. Overlooked Iodo-Disinfection Byproduct Formation When Cooking Pasta with Iodized Table Salt. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3538-3548. [PMID: 36802504 DOI: 10.1021/acs.est.2c05234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Iodized table salt provides iodide that is essential for health. However, during cooking, we found that chloramine residuals in tap water can react with iodide in table salt and organic matter in pasta to form iodinated disinfection byproducts (I-DBPs). While naturally occurring iodide in source waters is known to react with chloramine and dissolved organic carbon (e.g., humic acid) during the treatment of drinking water, this is the first study to investigate I-DBP formation from cooking real food with iodized table salt and chloraminated tap water. Matrix effects from the pasta posed an analytical challenge, necessitating the development of a new method for sensitive and reproducible measurements. The optimized method utilized sample cleanup with Captiva EMR-Lipid sorbent, extraction with ethyl acetate, standard addition calibration, and analysis using gas chromatography (GC)-mass spectrometry (MS)/MS. Using this method, seven I-DBPs, including six iodo-trihalomethanes (I-THMs) and iodoacetonitrile, were detected when iodized table salt was used to cook pasta, while no I-DBPs were formed with Kosher or Himalayan salts. Total I-THM levels of 11.1 ng/g in pasta combined with cooking water were measured, with triiodomethane and chlorodiiodomethane dominant, at 6.7 and 1.3 ng/g, respectively. Calculated cytotoxicity and genotoxicity of I-THMs for the pasta with cooking water were 126- and 18-fold, respectively, compared to the corresponding chloraminated tap water. However, when the cooked pasta was separated (strained) from the pasta water, chlorodiiodomethane was the dominant I-THM, and lower levels of total I-THMs (retaining 30% of the I-THMs) and calculated toxicity were observed. This study highlights an overlooked source of exposure to toxic I-DBPs. At the same time, the formation of I-DBPs can be avoided by boiling the pasta without a lid and adding iodized salt after cooking.
Collapse
Affiliation(s)
- Huiyu Dong
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ilona D Nordhorn
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Institute of Inorganic and Analytical Chemistry, University of Muenster, Muenster D-48149, Germany
| | - Karsten Lamann
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Institute of Inorganic and Analytical Chemistry, University of Muenster, Muenster D-48149, Germany
| | - Danielle C Westerman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Hannah K Liberatore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Currently at Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park North Carolina 27711, United States
| | - Alexandria L B Forster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Md Tareq Aziz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
2
|
Wu M, Ding S, Cao Z, Du Z, Tang Y, Chen X, Chu W. Insights into the formation and mitigation of iodinated disinfection by-products during household cooking with Laminaria japonica (Haidai). WATER RESEARCH 2022; 225:119177. [PMID: 36206687 DOI: 10.1016/j.watres.2022.119177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Iodinated disinfection by-products (I-DBPs) have attracted extensive interests because of their higher cytotoxicity and genotoxicity than their chlorinated and brominated analogues. Our recent studies have firstly demonstrated that cooking with seaweed salt could enhance the formation of I-DBPs with several tens of μg/L level. Here, I-DBP formation and mitigation from the reaction of disinfectant with Laminaria japonica (Haidai), an edible seaweed with highest iodine content, upon simulated household cooking process was systematically investigated. The total iodine content in Haidai ranged from 4.6 mg-I/g-Haidai to 10.0 mg-I/g-Haidai, and more than 90% of iodine is soluble iodide. During simulated cooking, the presence of disinfectant simultaneously decreased iodide by 15.0-32.8% to 2.7-5.8 mg/L and increased total organic iodine by 1.3-10.9 times to 0.5-1.8 mg/L in Haidai soup, proving I-DBP formation. The concentrations of iodinated trihalomethanes and haloacetic acids were at the levels of several hundreds of μg/L and several μg/L, respectively, which are 2-3 orders and 1-2 orders of magnitude more than those in drinking water. Effects of key factors including disinfectant specie, disinfectant dose, temperature and time on I-DBP formation were also ascertained, and temperature and disinfectant specie played a decisive role in the formation and speciation of I-DBPs. In order to avoid the potential health risk from the exposure of I-DBPs in Haidai soup, it is prerequisite to soak and wash dry Haidai sample over 30.0 min before cooking, which could effectively remove major soluble iodide. In general, this study provided the new insight into I-DBP formation from daily household cooking with Haidai and the corresponding enlightenment for inhabitants to eat Haidai in daily life.
Collapse
Affiliation(s)
- Menglin Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhongqi Cao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuyang Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaoyan Chen
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
MacKeown H, von Gunten U, Criquet J. Iodide sources in the aquatic environment and its fate during oxidative water treatment - A critical review. WATER RESEARCH 2022; 217:118417. [PMID: 35452971 DOI: 10.1016/j.watres.2022.118417] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Iodine is a naturally-occurring halogen in natural waters generally present in concentrations between 0.5 and 100 µg L-1. During oxidative drinking water treatment, iodine-containing disinfection by-products (I-DBPs) can be formed. The formation of I-DBPs was mostly associated to taste and odor issues in the produced tap water but has become a potential health problem more recently due to the generally more toxic character of I-DBPs compared to their chlorinated and brominated analogues. This paper is a systematic and critical review on the reactivity of iodide and on the most common intermediate reactive iodine species HOI. The first step of oxidation of I- to HOI is rapid for most oxidants (apparent second-order rate constant, kapp > 103 M-1s-1 at pH 7). The reactivity of hypoiodous acid with inorganic and organic compounds appears to be intermediate between chlorine and bromine. The life times of HOI during oxidative treatment determines the extent of the formation of I-DBPs. Based on this assessment, chloramine, chlorine dioxide and permanganate are of the highest concern when treating iodide-containing waters. The conditions for the formation of iodo-organic compounds are also critically reviewed. From an evaluation of I-DBPs in more than 650 drinking waters, it can be concluded that one third show low levels of I-THMs (<1 µg L-1), and 18% exhibit concentrations > 10 µg L-1. The most frequently detected I-THM is CHCl2I followed by CHBrClI. More polar I-DBPs, iodoacetic acid in particular, have been reviewed as well. Finally, the transformation of iodide to iodate, a safe iodine-derived end-product, has been proposed to mitigate the formation of I-DBPs in drinking water processes. For this purpose a pre-oxidation step with either ozone or ferrate(VI) to completely oxidize iodide to iodate is an efficient process. Activated carbon has also been shown to be efficient in reducing I-DBPs during drinking water oxidation.
Collapse
Affiliation(s)
- Henry MacKeown
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratory of Advanced Spectroscopy for Interactions, Reactivity and Environment, Lille F-59000, France
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, Duebendorf 8600, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich 8092, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Justine Criquet
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratory of Advanced Spectroscopy for Interactions, Reactivity and Environment, Lille F-59000, France.
| |
Collapse
|
4
|
Dehghani M, Shahsavani S, Mohammadpour A, Jafarian A, Arjmand S, Rasekhi MA, Dehghani S, Zaravar F, Derakhshan Z, Ferrante M, Oliveri Conti G. Determination of chloroform concentration and human exposure assessment in the swimming pool. ENVIRONMENTAL RESEARCH 2022; 203:111883. [PMID: 34391733 DOI: 10.1016/j.envres.2021.111883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
This cross-sectional study aimed to examine the concentration of the by-products of chlorination in the swimming pool and estimate human health risk for the swimmers of Shiraz University of Medical Sciences. In this study, the chloroform concentrations of 16 samples were measured using Gas Chromatography (GC). All the measured concentrations were less than the allowed amount announced by the World Health Organization (WHO). The results of the cancer risk (CR) and hazard index (HI) showed that the major exposure routes were found to be dermal during swimming and the 95 percentile of estimated CR and HI for the male group were 1.38 × 10-10 and 1.82 × 10-5 respectively, which is higher than the values of 5.48 × 10-10 and 2.25 × 10-5 respectively, for the women group. Sensitivity analyses indicated that the swimming exposure time (ET), and chloroform concentration were the most relevant variables in the health risk model. Therefore, knowledge about the sources of micro-pollutants in swimming pools might help promote the health methods of the pool environment.
Collapse
Affiliation(s)
- Mansooreh Dehghani
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Shahsavani
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Mohammadpour
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arian Jafarian
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Arjmand
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Rasekhi
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Dehghani
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Foroozandeh Zaravar
- School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Derakhshan
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratories (LIAA) of Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Italy
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA) of Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Italy
| |
Collapse
|
5
|
Ye T, Zhang TY, Tian FX, Xu B. The fate and transformation of iodine species in UV irradiation and UV-based advanced oxidation processes. WATER RESEARCH 2021; 206:117755. [PMID: 34695669 DOI: 10.1016/j.watres.2021.117755] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Iodinated disinfection byproducts (I-DBPs) formed in water treatment are of emerging concern due to their high toxicity and the tase-and-odor problems associated with iodinated trihalomethanes (I-THMs). Iodoacetic acid and dichloroiodomethane are currently regulated in Shenzhen, China and the Ministry of Health of the People's Republic of China has also been considering regulating I-DBPs. Iodide (I-), organoiodine compounds (e.g., iodinated X-ray contrast media [ICM]), and iodate (IO3-) are the three common iodine sources in aquatic environment that lead to I-DBP formation. While UV irradiation effectively inactivate a wide range of microorganisms in water, it induces the transformation of these iodine sources, enabling the formation of I-DBPs. This review focuses on the fate and transformation of these iodine sources in UV-based water treatment (i.e., UV irradiation and UV-based advanced oxidation processes [UV-AOPs]) and the formation of I-DBPs in post-disinfection. I- released in UV-based treatments of ICM and can be oxidized in subsequent disinfection to hypoiodous acid (HOI), which reacts with natural organic matter (NOM) to produce I-DBPs. Both UV and UV-AOPs are not able to fully mineralize ICM and completely oxidize the released I- to (except UV/O3). Results reveal that UV and UV-AOPs are adequate for I-DBP degradation but require high UV doses. While the ideal I-DBP mitigation strategy awaits to be developed, understanding their sources and formation pathways aids in informed selections of water treatment processes, empowers water suppliers to meet drinking water standards, and minimizes consumers' exposure to I-DBPs.
Collapse
Affiliation(s)
- Tao Ye
- Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA.
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Fu-Xiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
6
|
Sriboonnak S, Induvesa P, Wattanachira S, Rakruam P, Siyasukh A, Pumas C, Wongrueng A, Khan E. Trihalomethanes in Water Supply System and Water Distribution Networks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179066. [PMID: 34501655 PMCID: PMC8430772 DOI: 10.3390/ijerph18179066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
The formation of trihalomethanes (THMs) in natural and treated water from water supply systems is an urgent research area due to the carcinogenic risk they pose. Seasonal effects and pH have captured interest as potential factors affecting THM formation in the water supply and distribution systems. We investigated THM occurrence in the water supply chain, including raw and treated water from water treatment plants (coagulation, sedimentation, sand filtration, ClO2-disinfection processes, and distribution pipelines) in the Chiang Mai municipality, particularly the educational institute area. The effects of two seasons, rainy (September–November 2019) and dry (December 2019–February 2020), acted as surrogates for the water quality profile and THM occurrence. The results showed that humic acid was the main aromatic and organic compound in all the water samples. In the raw water sample, we found a correlation between surrogate organic compounds, including SUVA and dissolved organic carbon (DOC) (R2 = 0.9878). Four species of THMs were detected, including chloroform, bromodichloromethane, dibromochloromethane, and bromoform. Chloroform was the dominant species among the THMs. The highest concentration of total THMs was 189.52 μg/L. The concentration of THMs tended to increase after chlorination when chlorine dioxide and organic compounds reacted in water. The effect of pH on the formation of TTHMs was also indicated during the study. TTHM concentrations trended lower with a pH ≤ 7 than with a pH ≥ 8 during the sampling periods. Finally, in terms of health concerns, the concentration of TTHMs was considered safe for consumption because it was below the standard (<1.0) of WHO’s Guideline Values (GVs).
Collapse
Affiliation(s)
- Sornsiri Sriboonnak
- Ph.D.’s Degree Program in Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phacharapol Induvesa
- Bodhivijjalaya College, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| | - Suraphong Wattanachira
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.W.); (P.R.)
| | - Pharkphum Rakruam
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.W.); (P.R.)
| | - Adisak Siyasukh
- Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aunnop Wongrueng
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand; (S.W.); (P.R.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Program in Control of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-53-94-4101-3
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154, USA;
| |
Collapse
|
7
|
Emerging Contaminants: An Overview of Recent Trends for Their Treatment and Management Using Light-Driven Processes. WATER 2021. [DOI: 10.3390/w13172340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The management of contaminants of emerging concern (CECs) in water bodies is particularly challenging due to the difficulty in detection and their recalcitrant degradation by conventional means. In this review, CECs are characterized to give insights into the potential degradation performance of similar compounds. A two-pronged approach was then proposed for the overall management of CECs. Light-driven oxidation processes, namely photo/Fenton, photocatalysis, photolysis, UV/Ozone were discussed. Advances to overcome current limitations in these light-driven processes were proposed, focusing on recent trends and innovations. Light-based detection methodology was also discussed for the management of CECs. Lastly, a cost–benefit analysis on various light-based processes was conducted to access the suitability for CECs degradation. It was found that the UV/Ozone process might not be suitable due to the complication with pH adjustments and limited light wavelength. It was found that EEO values were in this sequence: UV only > UV/combination > photocatalyst > UV/O3 > UV/Fenton > solar/Fenton. The solar/Fenton process has the least computed EEO < 5 kWh m−3 and great potential for further development. Newer innovations such as solar/catalyst can also be explored with potentially lower EEO values.
Collapse
|
8
|
Verwold C, Ortega-Hernandez A, Murakami J, Patterson-Fortin L, Boutros J, Smith R, Kimura SY. New iodine-based electrochemical advanced oxidation system for water disinfection: Are disinfection by-products a concern? WATER RESEARCH 2021; 201:117340. [PMID: 34174732 DOI: 10.1016/j.watres.2021.117340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
A novel electrochemical Advanced Oxidation System (AOS) has been recently developed for water disinfection where iodide is used to generate active iodine species in-situ. However, the presence of iodide during water disinfection can lead to the formation of iodinated disinfection byproducts (I-DBPs), which have been shown to be more cyto- and genotoxic than their chlorinated and brominated analogs. In this study, the formation of DBPs was assessed in ultrapure water, river water and secondary wastewater effluents treated by the AOS. A comprehensive total organic halogen and target DBP analysis was used that included 25 unregulated DBPs, and the total organic halogen (TOX) quantified as total organic chlorine (TOCl), total organic bromine (TOBr), and total organic iodine (TOI). Ultrapure water disinfection only quantified iodoform (TIM) at a maximum concentration of 0.90 ± 0.05 µg/L. River water results show that TOI increase from 1.3 ± 0.3 µg/L before disinfection (t = 0) to a maximum of 3.5 ± 1.1 µg/L. TIM and bromodiiodomethane (BDIM) were the only targeted iodo-trihalomethanes (I-THMs) that were quantified with a maximum total I-THM concentration of 0.44 µg/L. Secondary wastewater effluent disinfection results show that TOI increased from 1.8 ± 0.3 µg/L (t = 0) to a maximum concentration of 35.3 ± 0.3 µg/L. Iodide and iodate were the main iodinated species exiting the AOS system with a iodine recovery of 94-101%. The results from this study show that the AOS formed low levels of iodinated DBPs in treated water sources that are comparable to the levels found in disinfected drinking water and wastewater.
Collapse
Affiliation(s)
- Chad Verwold
- University of Calgary, Department of Chemistry, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | | | - Jillian Murakami
- University of Calgary, Department of Chemistry, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | | | - Jenny Boutros
- BioLargo Water Inc, Agrifood Discovery Place, Edmonton, AB T6H 2V8, Canada
| | - Richard Smith
- BioLargo Water Inc, Agrifood Discovery Place, Edmonton, AB T6H 2V8, Canada
| | - Susana Y Kimura
- University of Calgary, Department of Chemistry, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
9
|
Sengar A, Vijayanandan A. Comprehensive review on iodinated X-ray contrast media: Complete fate, occurrence, and formation of disinfection byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144846. [PMID: 33736235 DOI: 10.1016/j.scitotenv.2020.144846] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 05/22/2023]
Abstract
Iodinated contrast media (ICM) are drugs which are used in medical examinations for organ imaging purposes. Wastewater treatment plants (WWTPs) have shown incapability to remove ICM, and as a consequence, ICM and their transformation products (TPs) have been detected in environmental waters. ICM show limited biotransformation and low sorption potential. ICM can act as iodine source and can react with commonly used disinfectants such as chlorine in presence of organic matter to yield iodinated disinfection byproducts (IDBPs) which are more cytotoxic and genotoxic than conventionally known disinfection byproducts (DBPs). Even highly efficient advanced treatment systems have failed to completely mineralize ICM, and TPs that are more toxic than parent ICM are produced. This raises issues regarding the efficacy of existing treatment technologies and serious concern over disinfection of ICM containing waters. Realizing this, the current review aims to capture the attention of scientific community on areas of less focus. The review features in depth knowledge regarding complete environmental fate of ICM along with their existing treatment options.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
10
|
Sayess R, Eyring AM, Reckhow DA. Source and drinking water organic and total iodine and correlation with water quality parameters. WATER RESEARCH 2021; 190:116686. [PMID: 33285455 DOI: 10.1016/j.watres.2020.116686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Iodinated disinfection by-products (I-DBPs) have recently emerged as part of the pool of DBPs of public health concern. Due to limitations in measuring individual I-DBPs in a water sample, the surrogate measure of total organic iodine (TOI) is often used to account for the sum of all I-DBPs. In this study, TOI and total iodine (TI) are quantified in raw and treated waters in treatment trains at three sites in the Northeast United States. The occurrence, magnitude, and seasonality of these species was investigated within each sampling train and across the different sites. A regression model was developed to explore how TOI occurrence varies with routinely measured physical and chemical parameters in a water sample. The TOI and TI concentration at the three sites ranged from below the method detection limit to 18 µg/L and from 3 and 18.9 µg/L, respectively. There was substantial inter-monthly variability in TOI without a clear seasonal signal, and the concentration of TOI did not increase upon treatment. The results of the multivariate regression model showed that dissolved organic carbon (DOC), specific UV254 absorbance (SUVA), combined chlorine residual (TCl2), and pH were all significantly related to TOI concentration to varying degrees. A Tobit model was fit to show TOI predictions against observed (measured) TOI values. The model could explain approximately 46% of the variance of TOI concentrations in the treated waters.
Collapse
Affiliation(s)
- Rassil Sayess
- New York State Water Resources Institute, Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States.
| | - Adam M Eyring
- Philadelphia Water Department, Philadelphia, PA 19124, United States
| | - David A Reckhow
- Department of Environmental and Water Resources Engineering, University of Massachusetts, Amherst 01003, United States
| |
Collapse
|
11
|
Induvesa P, Ratanatawanate C, Wongrueng A, Punyapalakul P. Adsorption of iodinated trihalomethanes onto thiol functionalized ZIF-8s: Active adsorption sites, adsorptive mechanisms, and dehalogenation by-products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142376. [PMID: 33254906 DOI: 10.1016/j.scitotenv.2020.142376] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 06/12/2023]
Abstract
The adsorptive mechanisms operating in, and the effect of two different thiol modification methods on, the removal of five iodinated trihalomethanes (I-THMs) by the zeolite imidazolate framework (ZIF-8) were investigated in single and mixed solutions. The direct postgrafting of dithioglycol to the zinc complex node of ZIF-8 (ZF-SH) can increase the mesopore structures that enhance inner pore accessibility; this increase is a critical property required for excellent adsorption of I-THMs. The synergetic adsorptive interactions consist of Lewis acid-base interactions via the Zn-Zn complex, ion-dipole interactions involving the protonated hydroxyl and thiol groups, and hydrophobic interactions at the imidazole ring. In contrast to ZF-SH, the (3-mercaptopropyl)-trimethoxy functionalized silica coating on ZIF-8 (ZF-Si-SH) causes a lower thiol moiety and a steric effect that is reflected in its lower adsorption capacity. In both single and mixed solutions, the small molecular size and hydrophobic nature of I-THMs can promote better adsorption capacity on all thiol-modified ZIF-8, while the minus dipole charge distribution of the I-THMs structure plays a more critical role in selective adsorption on pristine ZIF-8. Interestingly, the dehalogenation of triiodomethane to diiodomethane due to a nucleophilic substitution (SN2) reaction can be accelerated by the thiol functionalized silica layer on ZIF-8.
Collapse
Affiliation(s)
- Phacharapol Induvesa
- International Postgraduate Programs in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chalita Ratanatawanate
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; Research Network of NANOTEC, CU on Environment, Bangkok 10330, Thailand
| | - Aunnop Wongrueng
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patiparn Punyapalakul
- Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok 10330, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok 10330, Thailand; Research Network of NANOTEC, CU on Environment, Bangkok 10330, Thailand.
| |
Collapse
|
12
|
Bibliometric review of research trends on disinfection by-products in drinking water during 1975–2018. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116741] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
MacKeown H, Adusei Gyamfi J, Schoutteten KVKM, Dumoulin D, Verdickt L, Ouddane B, Criquet J. Formation and removal of disinfection by-products in a full scale drinking water treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135280. [PMID: 31896211 DOI: 10.1016/j.scitotenv.2019.135280] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
In this case study, high sensitivity simple methods for the analysis of trihalomethanes (THM4), iodinated-trihalomethanes (I-THMs), haloacetic acids (HAAs), bromide, iodide and iodate have been developed. A one-step procedure for the analysis of haloacetic acids by head-space GC-MS provides good reproducibility and low limits of quantification (≤50 ng L-1). These methods were applied to characterize the formation of disinfection by-products (DBPs) in a full scale drinking water treatment plant. In this treatment plant, the incorporation of bromine into THMs increases throughout the water treatment line, due to the formation of bromine reactive species favored by the decrease of competition between dissolved organic carbon (DOC) and bromide towards chlorine. A linear correlation has been observed between the bromine incorporation factor and the Br-/DOC mass ratio. The conversion of iodine to iodate by chlorination occurs in this water due to the relatively high bromide concentration. Moreover, a higher formation of iodate compared to iodide levels in the raw water is observed indicating a degradation of organic iodinated compounds. The formation of I-THMs was constant in terms of quantity and speciation between campaigns despite fluctuating concentrations of DOC and total iodine in the raw water. A preferential removal of DBPs formed by the intermediate chlorination in the order I-DBPs > Br-DBPs > Cl-DBPs occurs during the subsequent activated carbon filtration. The removal rates range from 25 to 36% for the regulated THM4, from 82 to 93% for the ∑I-THMs and 95% for haloacetic acids. The assessment of the relative toxicity shows that despite a much lower concentration of HAAs (<10% of the total mass of measured DBPs) compared to THMs, these compounds are responsible for 75% of the relative cytotoxicity of the treated water. Bromoacetic acid on its own accounts for more than 60% of the overall toxicity of the 17 compounds included in this study.
Collapse
Affiliation(s)
- Henry MacKeown
- Univ. Lille CNRS, UMR 8516 - LASIR, Equipe Physico-Chimie de l'Environnement, Lille F-59000, France
| | - Junias Adusei Gyamfi
- Univ. Lille CNRS, UMR 8516 - LASIR, Equipe Physico-Chimie de l'Environnement, Lille F-59000, France; Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Water Management, PO Box 5048, GA Delft 2600, The Netherlands
| | - Klaas Vital Kaat Marnix Schoutteten
- Ghent University, Faculty of Bioscience Engineering, Department of Green Chemistry and Technology, Coupure Links 653, Gent 9000, Belgium; De Watergroep, Vooruitgangstraat 189, Brussels 1030, Belgium
| | - David Dumoulin
- Univ. Lille CNRS, UMR 8516 - LASIR, Equipe Physico-Chimie de l'Environnement, Lille F-59000, France
| | | | - Baghdad Ouddane
- Univ. Lille CNRS, UMR 8516 - LASIR, Equipe Physico-Chimie de l'Environnement, Lille F-59000, France
| | - Justine Criquet
- Univ. Lille CNRS, UMR 8516 - LASIR, Equipe Physico-Chimie de l'Environnement, Lille F-59000, France.
| |
Collapse
|
14
|
Affiliation(s)
- Susan D. Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29205, United States
| | - Susana Y. Kimura
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
15
|
Dorji P, Kim DI, Jiang J, Choi J, Phuntsho S, Hong S, Shon HK. Bromide and iodide selectivity in membrane capacitive deionisation, and its potential application to reduce the formation of disinfection by-products in water treatment. CHEMOSPHERE 2019; 234:536-544. [PMID: 31229715 DOI: 10.1016/j.chemosphere.2019.05.266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
The formation of toxic disinfection by-products during water disinfection due to the presence of bromide and iodide is a major concern. Current treatment technologies such as membrane, adsorption and electrochemical processes have been known to have limitations such as high energy demand and excessive chemical use. In this study, the selectivity between bromide and iodide, and their removal in membrane capacitive deionisation (MCDI) was evaluated. The results showed that iodide was more selectively removed over bromide from several binary feed waters containing bromide and iodide under various initial concentrations and applied voltages. Even in the presence of significant background concentration of sodium chloride, definite selectivity of iodide over bromide was observed. The high partial-charge transfer coefficient of iodide compared to bromide could be a feasible explanation for high iodide selectivity since both bromide and iodide have similar ionic charge and hydrated radius. The result also shows that MCDI can be a potential alternative for the removal of bromide and iodide during water treatment.
Collapse
Affiliation(s)
- Pema Dorji
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia
| | - David Inhyuk Kim
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia; School of Civil, Environmental and Architectural Engineering, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Jiaxi Jiang
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia
| | - Jongmoon Choi
- School of Civil, Environmental and Architectural Engineering, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Sherub Phuntsho
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia
| | - Seungkwan Hong
- School of Civil, Environmental and Architectural Engineering, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), City Campus, Broadway, NSW, 2007, Australia.
| |
Collapse
|
16
|
Cuthbertson AA, Kimura SY, Liberatore HK, Summers RS, Knappe DRU, Stanford BD, Maness JC, Mulhern RE, Selbes M, Richardson SD. Does Granular Activated Carbon with Chlorination Produce Safer Drinking Water? From Disinfection Byproducts and Total Organic Halogen to Calculated Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5987-5999. [PMID: 31038939 DOI: 10.1021/acs.est.9b00023] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Granular activated carbon (GAC) adsorption is well-established for controlling regulated disinfection byproducts (DBPs), but its effectiveness for unregulated DBPs and DBP-associated toxicity is unclear. In this study, GAC treatment was evaluated at three full-scale chlorination drinking water treatment plants over different GAC service lives for controlling 61 unregulated DBPs, 9 regulated DBPs, and speciated total organic halogen (total organic chlorine, bromine, and iodine). The plants represented a range of impacts, including algal, agricultural, and industrial wastewater. This study represents the most extensive full-scale study of its kind and seeks to address the question of whether GAC can make drinking water safer from a DBP perspective. Overall, GAC was effective for removing DBP precursors and reducing DBP formation and total organic halogen, even after >22 000 bed volumes of treated water. GAC also effectively removed preformed DBPs at plants using prechlorination, including highly toxic iodoacetic acids and haloacetonitriles. However, 7 DBPs (mostly brominated and nitrogenous) increased in formation after GAC treatment. In one plant, an increase in tribromonitromethane had significant impacts on calculated cytotoxicity, which only had 7-17% reduction following GAC. While these DBPs are highly toxic, the total calculated cytotoxicity and genotoxicity for the GAC treated waters for the other two plants was reduced 32-83% (across young-middle-old GAC). Overall, calculated toxicity was reduced post-GAC, with preoxidation allowing further reductions.
Collapse
Affiliation(s)
- Amy A Cuthbertson
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Susana Y Kimura
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
- Department of Chemistry , University of Calgary , 2500 University Drive , NW Calgary , Alberta T2N 1N4 , Canada
| | - Hannah K Liberatore
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - R Scott Summers
- Department of Civil, Environmental and Architectural Engineering , University of Colorado , Boulder , Colorado 80309-0428 , United States
| | - Detlef R U Knappe
- Department of Civil, Construction, and Environmental Engineering , North Carolina State University , Campus Box 7908, Raleigh , North Carolina 27695-7908 , United States
| | - Benjamin D Stanford
- Hazen and Sawyer , 143 S. Union Blvd., Suite 200 , Lakewood , Colorado 80228 , United States
| | - J Clark Maness
- Department of Civil, Construction, and Environmental Engineering , North Carolina State University , Campus Box 7908, Raleigh , North Carolina 27695-7908 , United States
| | - Riley E Mulhern
- Department of Civil, Environmental and Architectural Engineering , University of Colorado , Boulder , Colorado 80309-0428 , United States
| | - Meric Selbes
- Hazen and Sawyer , 4035 Ridge Top Road, Suite 400 , Fairfax , Virginia 22030 , United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| |
Collapse
|
17
|
Dong H, Qiang Z, Richardson SD. Formation of Iodinated Disinfection Byproducts (I-DBPs) in Drinking Water: Emerging Concerns and Current Issues. Acc Chem Res 2019; 52:896-905. [PMID: 30919613 DOI: 10.1021/acs.accounts.8b00641] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Formation of iodinated disinfection byproducts (I-DBPs) in drinking water has become an emerging concern. Compared to chlorine- and bromine-containing DBPs, I-DBPs are more toxic, have different precursors and formation mechanisms, and are unregulated. In this Account, we focus on recent research in the formation of known and unknown I-DBPs in drinking water. We present the state-of-the-art understanding of known I-DBPs for the six groups reported to date, including iodinated methanes, acids, acetamides, acetonitriles, acetaldehyde, and phenols. I-DBP concentrations in drinking water generally range from ng L-1 to low-μg L-1. The toxicological effects of I-DBPs are summarized and compared with those of chlorinated and brominated DBPs. I-DBPs are almost always more cytotoxic and genotoxic than their chlorinated and brominated analogues. Iodoacetic acid is the most genotoxic of all DBPs studied to date, and diiodoacetamide and iodoacetamide are the most cytotoxic. We discuss I-DBP formation mechanisms during oxidation, disinfection, and distribution of drinking water, focusing on inorganic and organic iodine sources, oxidation kinetics of iodide, and formation pathways. Naturally occurring iodide, iodate, and iodinated organic compounds are regarded as important sources of I-DBPs. The apparent second-order rate constant and half-lives for oxidation of iodide or hypoiodous acid by various oxidants are highly variable, which is a key factor governing the iodine fate during drinking water treatment. In distribution systems, residual iodide and disinfectants can participate in reactions involving heterogeneous chemical oxidation, reduction, adsorption, and catalysis, which may eventually affect I-DBP levels in finished drinking water. The identification of unknown I-DBPs and total organic iodine analysis is also summarized in this Account, which provides a more complete picture of I-DBP formation in drinking water. As organic DBP precursors are difficult to completely remove during the drinking water treatment process, the removal of iodide provides a cost-effective solution for the control of I-DBP formation. This Account not only serves as a reference for future epidemiological studies to better assess human health risks due to exposure to I-DBPs in drinking water but also helps drinking water utilities, researchers, regulators, and the general public understand the formed species, levels, and formation mechanisms of I-DBPs in drinking water.
Collapse
Affiliation(s)
- Huiyu Dong
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Susan D. Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
18
|
Phatthalung WN, Musikavong C. Emerging disinfection by-products' formation potential in raw water, wastewater, and treated wastewater in Thailand. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:745-758. [PMID: 31038002 DOI: 10.1080/10934529.2019.1592532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Raw water (RW) from the Bangkok and Sing Buri water treatment plants located on the Chao Phraya River, river water, domestic wastewater (WW), and treated wastewater (TWW) from two wastewater treatment plants in Thailand were collected three times to investigate disinfection by-products' (DBPs) formation potential (FP) including trihalomethane FP (THMFP), iodo-THMFP (I-THMFP), haloacetonitriles FP (HANFP), and trichloronitromethane FP (TCNMFP). High THMFP levels were observed in river water, WW, and TWW. Considering average value, the THMFP of TWW was about two times higher than that of RW. Relatively high levels of I-THMFP were found in WW and TWW. The I-THMFP of TWW was three to seven times higher than that of RW. The HANFP of TWW was one to three times higher than that of RW. High levels of TCNMFP were found in WW and TWW. TCNMFP of TWW was six to thirteen times higher than that of RW. The discharge of TWW to RW must be prevented and controlled. The moderately positive linear relationship was obtained between dissolved organic carbon and TCNMFP in TWW. Considering measured weight concentration, THMFP was found as the highest DBPs. The highest lethal concentration 50-weighted and lowest cytotoxicity-weighted concentrations of DBPs were determined for HANFP.
Collapse
Affiliation(s)
- Warangkana Na Phatthalung
- a Department of Civil Engineering, Faculty of Engineering , Environmental Assessment and Technology for Hazardous Waste Management Research Center, Prince of Songkla University , Kho Hong, Hatyai , Songkhla , Thailand
- b Center of Excellence on Hazardous Substance Management (HSM) , Bangkok , Thailand
| | - Charongpun Musikavong
- a Department of Civil Engineering, Faculty of Engineering , Environmental Assessment and Technology for Hazardous Waste Management Research Center, Prince of Songkla University , Kho Hong, Hatyai , Songkhla , Thailand
- b Center of Excellence on Hazardous Substance Management (HSM) , Bangkok , Thailand
| |
Collapse
|