1
|
Wu G, Wan Q, Lu J, Wen G. Impact of metal ions on PMS/Cl - disinfection efficacy: Enhancing or impeding microbial inactivation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176087. [PMID: 39255943 DOI: 10.1016/j.scitotenv.2024.176087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Peroxymonosulfate (PMS) is an eco-friendly disinfectant gaining attention. This study examined the influence of metal ions (Co(II), Cu(II), Fe(II)) on PMS disinfection with chloride ions (Cl-) against waterborne microorganisms, encompassing both bacteria and fungal spores. The findings elucidated that metal ions augment the inactivation of bacteria in the PMS/Cl- system while concurrently impeding the inactivation of fungal spores. Specifically, the PMS/Co(II)/Cl- process increased E. coli inactivation rates by 2.25 and 2.75 times compared to PMS/Co(II) and PMS/Cl-, respectively. Conversely, PMS/Me(II)/Cl- generally exhibited a diminished inactivation capacity against the three fungal spores compared to PMS/Cl-, albeit surpassing the efficacy of PMS/Me(II). For instance, the inactivation levels of A. niger by PMS/Cl-, PMS/Cu(II)/Cl-, and PMS/Cu(II) are 4.47-log, 1.92-log, and 0.11-log, respectively. Notably, fungal spores demonstrated a substantially higher resistance to disinfectants compared to bacteria. Differences in microbial susceptibility were linked to cell wall structure, composition, antioxidant defenses, and reactive species generation, such as hydroxyl radicals (•OH), sulfate radicals (SO4•-), and reactive chlorine species (RCS). This study demonstrated the novel and unique phenomenon of metal ions' dual role in modulating the PMS/Cl- disinfection process, which has not been reported before and has important implications for the field of water treatment.
Collapse
Affiliation(s)
- Gehui Wu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiqi Wan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jinsuo Lu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
2
|
Xiao S, Liu T, Li N, Ding J, Chen J, Xu Y, Zhang L, Yang L, Zhou X, Ren N, Zhang Y. Chloride-mediated enhancement in Cu(II)-catalyzed Fenton-like reaction: The overlooked reactive chlorine species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124586. [PMID: 39033841 DOI: 10.1016/j.envpol.2024.124586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/27/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
The practical application of Cu(II)-catalyzed Fenton-like reaction (Cu(II)/H2O2) exhibits a low efficiency in the degradation of refractory compounds of wastewater. The impact of chloride ions (Cl-) on Fenton-like reactions have been investigated, but the influence mechanism is still unclear. Herein, the presence of Cl- (5 mM) significantly accelerated the degradation of benzoic acid (BA) under neutral conditions. The degradation of BA follows pseudo-first-order kinetics, with a degradation rate 7.3 times higher than the Cu(II)/H2O2 system. Multiple evidences strongly demonstrated that this reaction enables the production of reactive chlorine species (RCS) rather than HO• and high-valent copper (Cu(III)). The kinetic model revealed that Cl- could shift reactive species from the key intermediate (Cu(III)-chloro complexes) to RCS. Dichlorine radicals (Cl2•-) was discovered to play a crucial role in BA degradation, which was largely overlooked in previous reports. Although the reaction rate of Cl2•- with BA (k = 2.0 × 106 M-1 s-1) is lower than that of other species, its concentration is 10 orders of magnitude higher than that of Cu(III) and HO•. Furthermore, the exceptional efficacy of the Cu(II)/H2O2 system in BA degradation was observed in saline aquatic environments. This work sheds light on the previously unrecognized role of the metal-chloro complexes in production the RCS and water purification.
Collapse
Affiliation(s)
- Shaoze Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Longlong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
3
|
Dong ZJ, Jiang CC, Zhou Y, Duan JB, Wang LH, Pang SY, Jiang J, Sun XH. Transformation of hydroxylamine to nitrosated and nitrated products during advanced oxidation process. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130537. [PMID: 36493640 DOI: 10.1016/j.jhazmat.2022.130537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Recently, hydroxylamine (HAm) was introduced to drive advanced oxidation processes (AOPs) for removing organic contaminants. However, we found that HAm-driven Cu(II)/peroxymonosulfate oxidation of phenol produced p-nitrosophenol, 2-nitrophenol and 4-nitrophenol. The total nitro(so) products accounted for approximately 25.0 % of the phenol transformation at certain condition. SO4•- and •OH were identified as the primary and second significant oxidants, respectively. Reactive nitrogen species (RNS) were involved in phenol transformation. The pathway and mechanism of HAm transformation in HAm-driven transition metal ion-catalyzed AOPs were proposed for the first time in this study. The product of HAm via twice single-electron oxidation by Cu(II) is nitroxyl (HNO/NO-), which is a critical oxidation intermediate of HAm. Further oxidation of HNO by SO4•- or •OH is the initial step in propagating radical chain reactions, leading to nitric oxide radical (•NO) and nitrogen dioxide radical (•NO2) as the primary RNS. HAm is a critical intermediate in natural nitrogen cycle, suggesting that HAm can drive the oxidation processes of pollutants in natural environments. Nitro(so) products will be readily produced when AOPs are applied for ecological remediation. This study highlights the formation of toxic nitrosated and nitrated products in HAm-driven AOPs, and the requirement of risk assessments to evaluate the possible health and ecological impacts.
Collapse
Affiliation(s)
- Zi-Jun Dong
- College of Civil and Transportation Engineering, the Underground Polis Academy, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Key Laboratory of Green, Efficient and Intelligent Construction of Underground Metro Station, Shenzhen, Guangdong 518060, China
| | - Cheng-Chun Jiang
- School of Material and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Yue Zhou
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Jie-Bin Duan
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li-Hong Wang
- Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing 100085, China
| | - Su-Yan Pang
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Jin Jiang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Hui Sun
- College of Civil and Transportation Engineering, the Underground Polis Academy, Shenzhen University, Shenzhen, Guangdong 518060, China; Shenzhen Key Laboratory of Green, Efficient and Intelligent Construction of Underground Metro Station, Shenzhen, Guangdong 518060, China
| |
Collapse
|
4
|
Liu G, Liu Y, Chen D, Wang C, Guan W. Activation of peroxymonosulfate by Co-Mg-Fe layered doubled hydroxide for efficient degradation of Rhodamine B. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37634-37645. [PMID: 36574127 DOI: 10.1007/s11356-022-24983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Reactive species serve as a key to remediate the contamination of refractory organic contaminants in advanced oxidation processes. In this study, a novel heterogeneous catalyst, CoMgFe-LDH layered doubled hydroxide (CoMgFe-LDH), was prepared for an efficient activation of peroxymonosulfate (PMS) to oxidize Rhodamine B (RhB). The characterization results showed that CoMgFe-LDH had a good crystallographic structure. Correspondingly, the CoMgFe-LDH/PMS process exhibited good capacity to remove RhB, which was equivalent to degradation performance as homogeneous Co(II)/PMS process. The RhB oxidation in the CoMgFe-LDH/PMS process was well described with pseudo-first-order kinetic model. Additionally, the oxidation process presented an excellent stability, and only 0.9% leaching rate was detected after six sequential reaction cycles at pH 5.0. The effects of initial pH, CoMgFe-LDH dosage, PMS concentration, RhB concentration, and inorganic anions on the RhB degradation were discussed in detail. Quenching experiments showed that sulfate radicals (SO4•-) acted as the dominant reactive species. Further, the removal of RhB from simulated wastewater was explored. The removal efficiency of RhB (90 μM) could reach 94.3% with 0.8 g/L of catalyst and 1.2 mM of PMS addition at pH 5.0, which indicated the CoMgFe-LDH/PMS process was also effective in degrading RhB in wastewater.
Collapse
Affiliation(s)
- Guifang Liu
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, China.
| | - Yuhan Liu
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Dongliang Chen
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Chunli Wang
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Weiting Guan
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
5
|
Bai X, Shi J, Xu L, Jin X, Shi X, Jin P. Fe-g-C 3N 4/reduced graphene oxide lightless application for efficient peroxymonosulfate activation and pollutant mineralization: Comprehensive exploration of reactive sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158799. [PMID: 36113786 DOI: 10.1016/j.scitotenv.2022.158799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
To overcome the shortcomings of homogeneous Fe ion activating peroxymonosulfate (PMS), such as high pH-dependence, limited cycling of Fe(III)/Fe(II) and sludge production, graphite carbon nitride (g-C3N4) is chosen as a support for Fe ions, and reduced graphene oxide (rGO) is employed to facilitate the electron transfer process, thereby enhancing catalysis. Herein, a ternary catalyst, Fe-g-C3N4/rGO, is first applied under lightless condition for PMS activation, which exhibits ideal performance for contaminant mineralization. 82.5 % of the total organic carbon (TOC) in 100 mL of 5 mg/L bis-phenol A (BPA) was removed within 20 min by the optimal catalyst named 30%rFe0.2CN, which shows a strong pH adaptability over the range of 3-11 compared with a common Fenton-like system. Moreover, the highly stable Fe-g-C3N4/rGO/PMS catalytic system resists complex water matrices, especially those with high turbidity. To unveil the mechanism of PMS activation and pollutant degradation, the physicochemical properties of the as-prepared catalysts are comprehensively characterized by multiple techniques. The Fe(III) contained in both the Fe-N group and α-Fe2O3 component of 30%rFe0.2CN not only directly reacts with PMS to produce sulfate radicals (SO4-) and hydroxyl radicals (OH), but also combines with PMS to form the essential [Fe(III)OOSO3]+ active complex, thereby generating superoxide radicals (O2-) and singlet oxygen (1O2). Among the various reactive oxidizing species, 1O2 plays an important role in pollutant removal, which is additionally generated by the CO moiety of the catalyst activating PMS as well as PMS self-oxidation, indicating the dominance of the non-radical pathway in the pollutant degradation process. Due to the advantages of high efficiency, wide pH adaptability and stability, the proposed lightless Fe-g-C3N4/rGO/PMS catalytic system represents a promising avenue for practical wastewater purification.
Collapse
Affiliation(s)
- Xue Bai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Juan Shi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Lu Xu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Xin Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Xuan Shi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Pengkang Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China.
| |
Collapse
|
6
|
Yang F, Zhang X, Zhao Z, Guo W, Ngo HH. Fate of typical organic halogen compounds in the coexistence of endogenic chlorine atoms and exogenic X . CHEMOSPHERE 2022; 309:136761. [PMID: 36220428 DOI: 10.1016/j.chemosphere.2022.136761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The transformation of halogenated organics in advanced oxidation processes (AOPs) has been extensively investigated. However, we currently know little about the fate of halogenated pollutants in the presence of exogenic halides (Cl- or Br-). Herein, the degradability, mineralization rate, and accumulation capacity of adsorbable organic halogen (AOX) for chlorophenols (2-chlorophenol (2-CP), 3-chlorophenol (3-CP), 4-chlorophenol (4-CP), and 2,4,6-trichlorophenol (TCP)) were compared in the Fe2+/persulfate (PS) process with the addition of exogenic halides. Results indicate that exogenic X- can lead to a decrease in chlorophenols degradation and mineralization rate, undesirable accumulation of AOX, and generation of halogenated by-products which are more toxic than precursor chlorophenols. Results of kinetics modeling show that Cl2•- plays more important role than SO4•- with an addition of Cl-, while SO4•-, Br2•-, and Br2 are responsible for the effect of Br-. As well, the effect of endogenic chlorine atoms on chlorophenols reveals that the degradability and AOX formation potential of 3-CP are highest while that of TCP are the lowest. This study demonstrates the significant influence of endogenic chlorine atoms and exogenic X- on the fate of typical organic halogen compounds. Consequently, the X- level and position/number of halogen atoms should be considered simultaneously when treating organohalogen compounds.
Collapse
Affiliation(s)
- Fei Yang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China.
| | - Zixuan Zhao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
7
|
Can-Güven E, Yazici Guvenc S, Ilhan F, Varank G. Application of combined EO/PMS/Me 2+ process in organic matter and true color removal from paint manufacturing industry wastewater. ENVIRONMENTAL RESEARCH 2022; 212:113451. [PMID: 35537495 DOI: 10.1016/j.envres.2022.113451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Treatment of paint manufacturing industry wastewater by electrooxidation (EO) process in which peroxymonosulfate (PMS) and transition metals are added was investigated. In the EO/PMS process, graphite was the cathode while different anode materials (Ti/IrO2, Ti/RuO2, and Ti/SnO2) were used. The anode with the highest chemical oxygen demand (COD) and true color removal efficiency was selected. To determine the catalyst effect on the process, different transition metals (Fe2+, Cu2+, Zn2+) were added and Fe2+ was chosen as the catalyst which provided higher removal efficiency and lower cost. The central composite design was applied for the optimization of the process variables of the EO/PMS/Fe2+ process. Current density, PMS dose, Fe2+ dose, and reaction time were process variables whereas COD and true color removal efficiency were system responses. Under optimum conditions (200 A/m2 current density, 14 mM PMS dose, 2.5 mM Fe2+ dose, 60 min reaction time), the estimated COD and true color removal efficiency by the model were 74.89% and 99.86%, respectively. The experimentally obtained COD and true color removal efficiencies as a result of validation studies were 74.28% and 99.03%, respectively. Quenching experiments showed that hydroxyl and sulfate radicals were both involved in the process.
Collapse
Affiliation(s)
- Emine Can-Güven
- Yıldız Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220, Istanbul, Turkey.
| | - Senem Yazici Guvenc
- Yıldız Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220, Istanbul, Turkey
| | - Fatih Ilhan
- Yıldız Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220, Istanbul, Turkey
| | - Gamze Varank
- Yıldız Technical University, Faculty of Civil Engineering, Department of Environmental Engineering, 34220, Istanbul, Turkey
| |
Collapse
|
8
|
Lai X, Huang N, Pillai SC, Sarmah AK, Li Y, Wang G, Wang H. Formation and transformation of reactive species in the Fe 2+/peroxydisulfate/Cl - system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115219. [PMID: 35537272 DOI: 10.1016/j.jenvman.2022.115219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The influence of Cl- on the formation mechanism of active components is often neglected in the Fe2+/peroxydisulfate (PDS) system containing a large amount of ferryl ion reactive specie (Fe(Ⅳ)). In the current investigation, the effects of Cl- concentration on the removal of methyl phenyl sulfoxide (PMSO), the formation of methyl phenyl sulfone (PMSO2), the transformation of reactive species and oxidation products were investigated under different reaction conditions that included Fe2+ dosage, PDS dosage, and pH0. The results showed that Cl- complexing Fe2+ increased the formation path of sulfate radical (SO4·-) in the Fe2+/PDS system. Fe2+ dosage and pH0 value affected the content and morphology of Fe2+-Cl- complex, thus affecting the composition of reactive species. According to the experiment of free radical steady-state concentration, it was found that low concentration of Cl- reacted with SO4·- and increased the steady-state concentration of chlorine radicals (8.09 × 10-13 M [·Cl]ss at 1.41 mM Cl-), while at high concentration of Cl-, the contents of SO4·-, hydroxyl radical (·OH) and dichloride anion radicals (Cl2·-) increased and the contents of Fe(Ⅳ) and ·Cl decreased. ·Cl had strong reactivity with PMSO, and PMSO and its oxidation products were chlorinated under the combined action of ·Cl and Cl2·-. This work reveals the reaction mechanism and environmental application risks of Fe2+/PDS technology and lays the groundwork for subsequent industrial application of Fe2+/PDS system.
Collapse
Affiliation(s)
- Xiaojun Lai
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Nuoyi Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group and the Health and Biomedical (HEAL) Research Centre, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Yang Li
- College of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Guangwen Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
9
|
You W, Li Y, He D, Zeng Y, Zhu J, You X, Wang K, Zhou G, Peng G. Activation of peroxymonosulfate by pyrophosphate for the degradation of AO7 at neutral pH. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47549-47560. [PMID: 35184240 DOI: 10.1007/s11356-021-15391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/07/2021] [Indexed: 06/14/2023]
Abstract
In the present study, pyrophosphate (PP) was used to activate peroxymonosulfate (PMS) for acid orange 7 (AO7) removal under neutral pH conditions. The removal rate of AO7 (20 mg/L) was 84% within the reaction time with a rate constant value of 0.0165 min-1 under optimum conditions. Additionally, the effects of the concentrations of PMS and PP in solutions with various pH values and the coexisting inorganic anions on AO7 removal were measured. In addition, the performance of phosphate (P(V)) on PMS activation was compared with that of phosphite (P(III)) species. In contrast to P(III), the concentration of P(V) showed a positive correlation with the efficiency of AO7 decolorization. PMS activation in different types of buffer solutions was also examined, and the results indicated that the decolorization efficiency of AO7 induced by PP addition, and the buffer solution also contributed to PMS self-decomposition. Singlet oxygen (1O2) might be the primary reactive oxygen species (ROS) in the PP/PMS system in which AO7 is decolorized at an initial pH of 7.06, as indicated by quenching experiments and electron spin resonance (ESR) tests. Therefore, PP/PMS systems may be promising technologies for removing organic contaminants, particularly for PP-rich electroplating wastewater.
Collapse
Affiliation(s)
- Wenqiao You
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Youlin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Dandan He
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Youmei Zeng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaofeng You
- Fuling People's Hospital of Chongqing, Chongqing, 408099, China
| | - Kang Wang
- Fuling Central Hospital of Chongqing City, Chongqing, 408099, China
| | - Guangming Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Guilong Peng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
10
|
Huang Y, Jiang M, Gao S, Wang W, Liu Z, Yuan R. Non-radical pathway dominated by singlet oxygen under high salinity condition towards efficient degradation of organic pollutants and inhibition of AOX formation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Chang F, Wang X, Zhao S, Zhang X, Hu X. Fabrication of Bi12GeO20/Bi2S3 hybrids with surface oxygen vacancies by a facile CS2-mediated manner and enhanced photocatalytic performance in water and saline water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120532] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Tan J, Li Z, Li J, Meng Y, Yao X, Wang Y, Lu Y, Zhang T. Visible-light-assisted peroxymonosulfate activation by metal-free bifunctional oxygen-doped graphitic carbon nitride for enhanced degradation of imidacloprid: Role of non-photochemical and photocatalytic activation pathway. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127048. [PMID: 34537642 DOI: 10.1016/j.jhazmat.2021.127048] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Bifunctional oxygen-doped graphitic carbon nitride (OCN) was fabricated to activate peroxymonosulfate (PMS) for degrading imidacloprid (IMD). The modulated electronic structure of OCN promoted the adsorption, electron transfer, and formation of the redox site of PMS. The light absorption capacity, and the separation and migration speed of photogenerated carriers of OCN were increased. Consequently, 94.5% of IMD (3.0 mg/L) was removed by OCN-10/PMS process in 2.0 h. Compared with g-C3N4/PMS (0.048 h-1), the IMD degradation rate constant of OCN-10/Vis/PMS system (1.501 h-1) was increased by 30.3 times. The PMS oxidation on electron-deficient C atoms and holes, the PMS reduction around electron-rich O atoms and photogenerated electrons, and the multiple reactions of superoxide radical were the sources of the main active species singlet oxygen. Moreover, even under different pH conditions, coexisting anions, humic acid, and other neonicotinoid pesticides, the OCN-10/Vis/PMS system still showed acceptable applicability. Finally, mass spectrometry identified that hydroxylation and N-dealkylation of amines were the primary degradation pathways of IMD. This paper demonstrates an environmental-friendly combined activation strategy of PMS that can be operated day and night with low energy consumption, aiming to pave the way for developing metal-free photocatalysts for high-efficient environmental purification based on advanced oxidation coupling technology.
Collapse
Affiliation(s)
- Jie Tan
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhifeng Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Meng
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolong Yao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuhui Wang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong Lu
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
13
|
Peng J, Chang Y, Wang Z, Liu J, Wang S, Zhang Y, Shao S, Liu D, Zhang Y, Shi J, Liu H, Yan G, Cao Z, Gao S. Amlodipine removal via peroxymonosulfate activated by carbon nanotubes/cobalt oxide (CNTs/Co 3O 4) in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11091-11100. [PMID: 34532799 DOI: 10.1007/s11356-021-16399-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Amlodipine (AML) is an effective drug that has been widely used for hypertension and angina. However, AML is frequently detected in aqueous environments, posing potential risks to human and ecological health. In this study, the degradation of AML via peroxymonosulfate (PMS) activated by CNTs/Co3O4 was investigated. CNTs/Co3O4 was prepared via a facile method, and multiple characterizations suggested that Co3O4 were uniformly dispersed on the surface of MWCNTs-COOH. Experimental results indicated that complete removal of 10 μM AML was achieved within 30 min by using 2 mg/L CNTs/Co3O4 and 4 μM PMS at 25 °C in PBS buffered solution (pH 7.0). The observed pseudo-first-order rate constant was calculated to be 0.1369 min-1. Interestingly, the presence of 100 mM Cl- resulted in a slight enhancement of AML removal rate from 0.0528 to 0.0642 min-1. The addition of 100 mM HCO3-, 5 mg/L Pony Lake fulvic acid (PLFA), or Suwannee River humic acid (SRHA) retarded AML degradation by 15.5, 0.7, and 1.6 times, respectively. As per the quenching experiments, SO4⦁- rather than ⦁OH were verified to be the dominant reactive oxygen species (ROS). Additionally, ten major intermediates were identified using TOF-LC-MS and three associated reaction pathways including ether bond broken, H-abstraction, and hydroxylation were proposed. We outlook these findings to advance the feasibility of organic contaminants removal via CNTs/Co3O4 + PMS systems that have extremely low-level PMS.
Collapse
Affiliation(s)
- Jianbiao Peng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China.
| | - Yu Chang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Zhexi Wang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Jin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Shiyin Wang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Ya Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, 210042, People's Republic of China.
| | - Shuai Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Dexin Liu
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yakun Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Jialu Shi
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Haijin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Guangxuan Yan
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Zhiguo Cao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
14
|
Xu R, Ren H, Chi T, Zheng Y, Xie Y, Tian J, Chen L. Ozone oxidation of 2,4,6-TCP in the presence of halide ions: Kinetics, degradation pathways and toxicity evaluation. CHEMOSPHERE 2022; 288:132343. [PMID: 34597631 DOI: 10.1016/j.chemosphere.2021.132343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
2,4,6-Trichlorophenol (2,4,6-TCP) is extensively consumed in industrial production and may cause environmental damages. The effect of halide ions on the decomposition of 2,4,6-TCP has often been overlooked. In this study, the bromide ion was found to have a stronger negative impact on 2,4,6-TCP degradation than chloride ion in the O3 system, and led to the formation of adsorbable organic halogens (AOX). Kinetic modeling demonstrated that the concentration of various radicals was largely depended on the solution pH, and stronger basicity not only contributed to the mineralization of 2,4,6-TCP, but also inhibited the formation of halogenated by-products. Combining the intermediate identification and quantum chemical calculation, the degradation pathways of 2,4,6-TCP during ozone oxidation process were proposed. The toxicity test and ECOSAR simulation demonstrated that the acute toxicity of some 2,4,6-TCP degradation intermediates was relatively higher than their parent compound. With high concentrations of halide ions, the ozone-treated solution showed greater toxicity than the originator 2,4,6-TCP solution. These results illustrate that the ozone treatment of the halide-containing wastewater may cause potential ecological hazards and its application needs to be more cautious.
Collapse
Affiliation(s)
- Ranyun Xu
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hang Ren
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tongtong Chi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuhan Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100084, China
| | - Yawei Xie
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jinping Tian
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lyujun Chen
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
15
|
Lyu C, Zhang L, He D, Su B, Lyu Y. Micrometer-sized NiOOH hierarchical spheres for enhanced degradation of sulfadiazine via synergistic adsorption and catalytic oxidation in peroxymonosulfate system. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Stanbury DM. Misconceptions about the Chemistry of Aqueous Chlorine Atoms and HClOH •(aq), and a Revised Mechanism for the Photochemical Peroxydisulfate/Chloride Reaction. Phys Chem Chem Phys 2022; 24:12541-12549. [DOI: 10.1039/d2cp00914e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is widely considered that aqueous chlorine atoms (Cl•) convert to the species HClOH• with a half life of about 3 µs and that this species plays an important role...
Collapse
|
17
|
Huang Y, Jiang Q, Yu X, Gan H, Zhu X, Fan S, Su Y, Xu Z, He C. A combined radical and non-radical oxidation processes for efficient degradation of Acid Orange 7 in the homogeneous Cu(II)/PMS system: important role of chloride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51251-51264. [PMID: 33982257 DOI: 10.1007/s11356-021-14262-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Trace copper ion (Cu(II)) in water and wastewater can trigger peroxymonosulfate (PMS) activation to oxidize organic compounds, but it only works under alkaline conditions. In this work, we found that the presence of chloride could significantly accelerate the oxidation of Acid Orange 7 (AO7) by the Cu(II)/PMS process at a wide pH range (4.0-9.0). The observed pseudo-first-order rate constant k for AO7 oxidation was linearly correlated with the increased Cl- concentration (0-300 mM). An increase in mineralization rate was observed in the presence of Cl-, while the overall mineralization was quite low. Decomposition of PMS facilitated when Cl- concentration or pH value increased. Based on the scavenger experiments and electron paramagnetic resonance (EPR) measurement, the mechanism of Cu(II)-catalyzed PMS oxidation process in the presence of Cl- was proposed as both the radical and non-radical pathway, and 1O2 was the reactive oxygen species in the Cu(II)/PMS system. Finally, a possible degradation pathway of AO7 was elucidated. The feasibility of in situ utilizing high salinity and trace cupric species to accelerate the degradation of organic pollutants by the Cu(II)/PMS process in water and wastewater was demonstrated. However, the identification of undesired chlorinated by-products reminds us of cautiousness in assessing the application of Cu(II)/PMS system under chloride-rich environment. The findings of this work provide a simple and efficient approach to apply PMS in the remediation of refractory organic contaminants in the presence of trace cupric species under a high salinity environment with a wide range of pH.
Collapse
Affiliation(s)
- Ying Huang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Qiongji Jiang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Xubiao Yu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Huihui Gan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Xia Zhu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Siyi Fan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yan Su
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zhirui Xu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Cunrui He
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
18
|
Huang Y, Yu X, Gan H, Jiang L, Gong H. Degradation and chlorination mechanism of fumaric acid based on SO 4•-: an experimental and theoretical study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48471-48480. [PMID: 33907958 DOI: 10.1007/s11356-021-12756-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
It is well known that chloride ions could affect the oxidation kinetics and mechanism of contaminant based on SO4•- in the wastewater. Here, the degradation of an organic acid, fumaric acid (FA), was investigated in the presence of chloride (0-300 mM) by the Fe(II)/peroxymonosulfate (Fe(II)/PMS) system. A negative impact of chloride was observed on the rates of FA degradation. The degree of inhibitory effect was higher in Fe(II)/PMS addition order. Some chlorinated byproducts were identified during the FA oxidation process in the presence of Cl- by the ultraperformance liquid chromatography and quadrupole-time of flight mass spectrometer (UPLC-QTOF-MS). With the increasing content of Cl-, an accumulation of adsorbable organic halogen (AOX), an increase in acute toxicity, and an inhibition of mineralization were observed. According to the results of kinetic modeling, the production and transformation of oxidative species were dependent on Cl- dosage and reaction time. SO4•- was supposed to be the main radical for FA degradation with Cl- concentration below 5 mM, whereas Cl2•- was primarily responsible for the depletion of FA at [Cl-] > 5 mM. A possible degradation pathway of FA was discussed. This study reveals the potential environmental risk of organic acid and is necessary to explore useful strategies for ameliorating the treatment of chloride-rich wastewater.
Collapse
Affiliation(s)
- Ying Huang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Xubiao Yu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Huihui Gan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Li Jiang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Hancheng Gong
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
19
|
Effects of exogenic chloride on oxidative degradation of chlorinated azo dye by UV-activated peroxodisulfate. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Wang Z, Fu Y, Wang L. Abiotic oxidation of arsenite in natural and engineered systems: Mechanisms and related controversies over the last two decades (1999-2020). JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125488. [PMID: 33676246 DOI: 10.1016/j.jhazmat.2021.125488] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Abiotic oxidation of toxic As(III) to As(V) is being deemed as a necessary step for the overall arsenic decontamination in both natural and engineered systems. Direct oxidation of As(III) by chemical oxidants, such as ozone, permanganate, ferrate, chlorine and chloramine, or naturally occurring minerals like Mn, Fe oxides, seems straightforward. Both O2 and H2O2 are ineffective for arsenite oxidation, but they can be activated by reducing substances like Fe2+, Fe0 to increase the oxidation rates. Photo-induced oxidation of As(III) has been demonstrated effective in Fe complexes or minerals, NO3-/NO2-, dissolved organic matter (DOM), peroxygens and TiO2 systems. Although a variety of oxidation methods have been developed over the past two decades, there remain many scientific and technical challenges that must be overcome before the rapid progress in basic knowledge can be translated into environmental benefits. To better understand the trends in the existing data and to identify the knowledge gaps, this review describes in detail the complicated mechanisms for As(III) oxidation by various methods and emphasizes on the conflicting data and explanation. Some prevailing concerns and challenges in the sphere of As(III) oxidation are also pointed out so as to appeal to researchers for further investigations.
Collapse
Affiliation(s)
- Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China.
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
21
|
Lai X, Ning XA, Zhang Y, Li Y, Li R, Chen J, Wu S. Treatment of simulated textile sludge using the Fenton/Cl - system: The roles of chlorine radicals and superoxide anions on PAHs removal. ENVIRONMENTAL RESEARCH 2021; 197:110997. [PMID: 33713713 DOI: 10.1016/j.envres.2021.110997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/20/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The main content of this work is to investigate the removal of polycyclic aromatic hydrocarbons (PAHs: phenanthrene, anthracene, and fluoranthene) from simulated sludge solid phase employing an Fenton/Cl- system under various Cl- contents and pH values. The steady-state concentrations of the hydroxyl, chlorine, and dichloride anion radicals ([·OH]ss, [·Cl]ss, and [Cl2·-]ss) in heterogeneous system were first measured using tert-butanol, nitrobenzene, and benzoic acid. The outcomes exhibited that increasing the Cl- content from 50 to 2000 mg/L (pH = 3.0) or raising the pH from 3.0 to 5.0 (1000 mg/L Cl-) caused [·OH]ss to continuously decrease and [Cl2·-]ss and the concentration of superoxide anions (HO2·/O2·-) to continuously increase. When the pH was 3.0 and the Cl- concentration was 1000 mg/L, [·Cl]ss had a maximum value of 9.27 × 10-14 M. Combining the results of PAH removal, radical quenching, and product analysis, it was found that ·Cl in the Fenton/Cl- system promoted the oxidative degradation of phenanthrene without forming chlorination byproducts. Furthermore, HO2·/O2·- was helpful in removing anthracene and fluoranthene. Under the environment of high Cl- content (≥1000 mg/L), PAHs could be removed more effectively by using HO2·/O2·-. This investigation underpins further study on the regulation of reactive species and the efficient degradation of target organic matter in Fenton/Cl- system, and provides a basis for studying the formation of chlorinated or toxic byproducts in the process of treating textile dyeing sludge by Fenton.
Collapse
Affiliation(s)
- Xiaojun Lai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xun-An Ning
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yaping Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yang Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Riwen Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiayi Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shiyin Wu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
22
|
Li ZY, Wang L, Liu YL, He PN, Zhang X, Chen J, Gu HT, Zhang HC, Ma J. Overlooked enhancement of chloride ion on the transformation of reactive species in peroxymonosulfate/Fe(II)/NH 2OH system. WATER RESEARCH 2021; 195:116973. [PMID: 33677242 DOI: 10.1016/j.watres.2021.116973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Though hydroxylamine (NH2OH) is effective for accelerating pollutants degradation in Fenton and Fenton-like systems, the effect of anions simultaneously introduced by the hydroxylamine salts have always been ignored. Herein, effect of two commonly used hydroxylamine salts, hydroxylamine hydrochloride (NH2OH·HCl) and hydroxylamine sulfate [(NH2OH)2·H2SO4], for the degradation of dimethyl phthalate (DMP) in peroxymonosulfate (PMS)/Fe(II) system was comparatively investigated. Degradation efficiency of DMP with NH2OH·HCl was 1.6 times of that with same dosages of (NH2OH)2·H2SO4. SO4·-, Fe(IV) and ·OH formed in the PMS/Fe(II)/NH2OH system, but ·OH was the major species for DMP degradation. Addition of Cl- significantly improved the production of ·OH and Cl·, and the exposure dose of ·OH (CT·OH) was more than 10 times that of CTCl· as the concentration of Cl- increased to 1 mM. Calculations based on branching ratios of Cl· and ·OH indicated that the reactions of Cl- with SO4·- and Cl· with H2O were not the only production sources of ·OH in the system. Further experiments with methyl phenyl sulfoxide (PMSO) as the probe indicated that Cl- would facilitate the shift of reactive species from Fe(IV) to radicals (SO4·- or ·OH) in the system. Both hydroxylation and nitration intermediate products were detected in the oxidation of DMP. Cl- promoted the formation of hydroxylation intermediates and reduced the formation of nitration intermediates. This study revealed for the first time that Cl- could shift reactive species from Fe(IV) to radicals in PMS/Fe(II) system, raising attention to the influence of the coexisting anions (especially Cl-) for pollutants oxidation in iron-related oxidation processes.
Collapse
Affiliation(s)
- Zhuo-Yu Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yu-Lei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Pei-Nan He
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jia Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Hai-Teng Gu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Hao-Chen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
23
|
Yang F, Sheng B, Wang Z, Xue Y, Liu J, Ma T, Bush R, Kušić H, Zhou Y. Performance of UV/acetylacetone process for saline dye wastewater treatment: Kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124774. [PMID: 33310333 DOI: 10.1016/j.jhazmat.2020.124774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Futility of traditional advanced oxidation processes (AOPs) in saline wastewater treatment has stimulated the quest for novel "halotolerant" chemical oxidation technology. Acetylacetone (AA) has proven to be a potent photo-activator in the degradation of dyes, but the applicability of UV/AA for saline wastewater treatment needs to be verified. In this study, degradation of crystal violet (CV) was investigated in the UV/AA system in the presence of various concentrations of exogenic Cl- or Br-. The results reveal that degradation, mineralization and even accumulation of adsorbable organic halides (AOX) were not significantly affected by the addition of Cl- or Br-. Rates of CV degradation were enhanced by elevating either AA dosage or solution acidity. An apparent kinetic rate equation was developed as r = -d[CV]/dt = k[CV]a[AA]b = (7.34 × 10-4 mM1-(a+b) min-1) × [CV]a=0.16 [AA]b=0.97. In terms of results of radical quenching experiments, direct electron/energy transfer is considered as the major reaction mechanism, while either singlet oxygen or triplet state (3(AA)*) might be involved. Based on identification of degradation byproducts, a possible degradation pathway of CV in the UV/AA system is proposed.
Collapse
Affiliation(s)
- Fei Yang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Bo Sheng
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhaohui Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| | - Ying Xue
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jianshe Liu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Tianyi Ma
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Richard Bush
- Sustainable Development Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Hrvoje Kušić
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Yanbo Zhou
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
24
|
Yang J, He X, Dai J, Chen Y, Li Y, Hu X. Electron-transfer-dominated non-radical activation of peroxydisulfate for efficient removal of chlorophenol contaminants by one-pot synthesized nitrogen and sulfur codoped mesoporous carbon. ENVIRONMENTAL RESEARCH 2021; 194:110496. [PMID: 33220245 DOI: 10.1016/j.envres.2020.110496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/30/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Synergistic adsorption and oxidative degradation (via persulfate activation) on metal-free carbonaceous materials are expected to be environmentally friendly and highly efficient approach toward contaminants removal. Herein, nitrogen and sulfur codoped mesoporous carbon (NSDMC) were firstly synthesized via co-carbonization of calcium citrate and thiourea without any templates. NSDMC samples exhibit remarkably enhanced adsorption capacity and oxidative degradation (by activating PDS) for chlorophenols elimination. Increased SBET and introduced N-containing functional groups are beneficial for chlorophenols adsorption, PDS accessibility and successive activation. Doped sulfur species (especially for thiophenic S) can enhance the electron-transport performance of NSDMC, further promoting PDS activation and chlorophenols degradation. It can be ascribed to the synergistic effect of N and S codoping. NSDMC-30 (containing 5.83 at.% nitrogen and 2.15 at.% sulfur, and possessing SBET of 1935.9 m2 g-1) exhibits the optimal adsorption and catalytic oxidation capability for 4-CP removal. Degradation rate constant of NSDMC-30 is 0.125 min-1, which is 3.0 times and 7.8 times higher than nitrogen-doped MC and pristine MC, respectively. Radicals quenching experiments and EPR tests demonstrate that non-radical pathways play dominant role for PDS activation and chlorophenols degradation. Based on the influences of catalyst loading, initial 4-CP concentration, and PDS dosage on degradation kinetics of 4-CP, the pre-adsorption is unveiled to be the critical step determining oxidation rate of chlorophenols. More importantly, the results of in-situ Raman and electrochemical tests show that the surface-confined and activated PDS complex (carbon-PDS*) and continuous electron transfer from co-adsorbed 4-CP are mainly responsible for the oxidative degradation of chlorophenols. The intermediate products and TOC removal indicate that chlorophenols can be efficiently degraded and mineralized by as-synthesized NSDMC via activating PDS. Besides, the present NSDMC/PDS system is also applicable for purification of actual polluted water samples. This work provides in-depth knowledge of carbon-driven nonradical process for PDS activation and contaminants remediation.
Collapse
Affiliation(s)
- Juan Yang
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China; State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454003, China.
| | - Xiaoqian He
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Jun Dai
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China; State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Yumei Chen
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Yingjie Li
- School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Xuefeng Hu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
25
|
Chen SQ, Li M, Ma XY, Zhou MJ, Wang D, Yan MY, Li Z, Yao KF. Influence of inorganic ions on degradation capability of Fe-based metallic glass towards dyeing wastewater remediation. CHEMOSPHERE 2021; 264:128392. [PMID: 33002804 DOI: 10.1016/j.chemosphere.2020.128392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Metallic glasses (MGs) are promising candidates for catalysts with high efficiency for dyeing wastewater remediation, due to their metastable nature, disordered structure, and large residual stresses. However, dyeing wastewater usually contains a high concentration of inorganic ions which may have adverse effects on the degradation process, while the impacts of these ions on MGs' degradation capability have often been overlooked and still remain unknown. Thus, the roles of inorganic ions (Cl-, NO3-, SO42-, and H2PO4-) on the degradation of azo dye by Fe-based MG with nominal composition of Fe81Si4B14Cu1 were systematically investigated. The results showed that the inorganic ions have significant influence on MG's surface morphology, degradation capability, mineralization and durability. All these aspects need to be considered prior to application of MGs for azo dyes degradation in real natural contaminated water or saline wastewater.
Collapse
Affiliation(s)
- Shuang-Qin Chen
- School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, China; Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, China.
| | - Mai Li
- School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, China; Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, China
| | - Xu-Yang Ma
- School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Ming-Jie Zhou
- School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Dong Wang
- School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Meng-Yang Yan
- School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, China; Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, China
| | - Zhun Li
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke-Fu Yao
- School of Material Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
26
|
Lai X, Ning XA, Chen J, Li Y, Zhang Y, Yuan Y. Comparison of the Fe 2+/H 2O 2 and Fe 2+/PMS systems in simulated sludge: Removal of PAHs, migration of elements and formation of chlorination by-products. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122826. [PMID: 32506047 DOI: 10.1016/j.jhazmat.2020.122826] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
In this study, polycyclic aromatic hydrocarbons (PAHs) at practical concentrations in the simulated sludge treated by the Fe2+/H2O2 and Fe2+/peroxymonosulfate (PMS) systems were evaluated in terms of the PAHs (phenanthrene, anthracene, fluoranthene) removal, element migration, Cl- effect, and chlorination by-product formation. The results indicated that according to the removal rate of PAHs, the optimal dosage of the Fe2+/PMS system (∑PAHs removal rate was 64.66 ± 2.82 %) was 1/30 of that for the Fe2+/H2O2 system (∑PAHs removal rate was 78.63 ± 0.38 %). The elemental contents in the simulated sludge were mainly affected by the extent of advanced oxidation and the amount of generated iron flocs. By studying the PAHs removal, free chlorine formation, total organochlorine content, and PAHs products in Fe2+/H2O2/Cl- and Fe2+/PMS/Cl- systems, it was found that chlorine radicals (·Cl) had high reactivity with phenanthrene and fluoranthene, whereas dichloride anion radicals (Cl2·-) exhibited the opposite behavior. Furthermore, PAHs were oxidized by ·Cl and hydroxyl radical in the Fe2+/H2O2/Cl- system, whereas PAHs and their products were chlorinated by free chlorine and ·Cl in the Fe2+/PMS/Cl- system to six chlorinated by-products such as Cl-PAHs (9-Cl-phenanthrene, 2-Cl-anthracene, 9,10-Cl2-anthracene, 3-Cl-fluoranthene). These results provide some useful suggestions for the safe advanced oxidation process treatment of textile dyeing sludge.
Collapse
Affiliation(s)
- Xiaojun Lai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xun-An Ning
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiayi Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaping Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiqian Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
27
|
Ye Q, Wu J, Wu P, Wang J, Niu W, Yang S, Chen M, Rehman S, Zhu N. Enhancing peroxymonosulfate activation of Fe-Al layered double hydroxide by dissolved organic matter: Performance and mechanism. WATER RESEARCH 2020; 185:116246. [PMID: 32739697 DOI: 10.1016/j.watres.2020.116246] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In this study, peroxymonosulfate (PMS) activation of FeAl layered double hydroxide (FeAl-LDH) was enhanced by compounding dissolved organic matter (DOM). The characterization and catalytic performance of FeAl-LDH and DOM-LDH were investigated. The results revealed that the physicochemical properties of DOM-LDH were superior to FeAl-LDH: (i) The higher proportion of Fe(II) was found in DOM-LDH, mainly existed in the form of trans-coordinated octahedral Fe(II); (ii) DOM-LDH showed a flower-like morphology with larger specific surface area, pore width and pore volume; (iii) More functional groups and surface oxygen vacancies were found in DOM-LDH. Moreover, DOM promoted the process of PMS activation by accelerating Fe(III) reduction with humic acid-like compounds. The results of electron paramagnetic resonance (EPR) and quenching experiments indicated that more reactive oxygen species (ROS) were generated in DOM-LDH/PMS system, •OH was considered as the dominant ROS for Bisphenol A (BPA) degradation. As a result, the degradation efficiency for BPA (20 mg L-1) in FeAl-LDH/PMS system was increased from 60% to 93% within 60 min after the introduction of DOM. This work is expected to facilitate the design and application of Fe(II)/PMS system for environmental protection.
Collapse
Affiliation(s)
- Quanyun Ye
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China.
| | - Jinxin Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Wenchao Niu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Shanshan Yang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| |
Collapse
|
28
|
Wang S, Liu Y, Wang J. Peroxymonosulfate Activation by Fe-Co-O-Codoped Graphite Carbon Nitride for Degradation of Sulfamethoxazole. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10361-10369. [PMID: 32672945 DOI: 10.1021/acs.est.0c03256] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphite carbon nitride (g-C3N4) has a stable structure but poor catalytic capability for activating peroxymonosulfate (PMS). In this study, the codoping of g-C3N4 with bimetallic oxides (iron and cobalt) and oxygen was investigated to enhance its catalytic capability. The results showed that iron, cobalt, and oxygen codoped g-C3N4 (Fe-Co-O-g-C3N4) was successfully prepared, which was capable of completely degrading sulfamethoxazole (SMX) (0.04 mM) within 30 min, with a reaction rate of 0.085 min-1, indicating the superior catalytic activity of Fe-Co-O-g-C3N4. The mineralization efficiency of SMX was 22.1%. Sulfate radicals and singlet oxygen were detected during the process of PMS activation. However, the role that singlet oxygen played in degrading SMX was not obvious. Surface-bound reactive species and sulfate radicals were responsible for SMX degradation, in which sulfate radicals contributed to 46.6% of SMX degradation. The superior catalytic activity was due to the synergistic effect of metal oxides and O-g-C3N4, in which O-g-C3N4 could act as a carrier and an activator as well as an electron mediator to promote the conversion of Fe(III) to Fe(II) and Co(III) to Co(II). Four main steps of SMX degradation were proposed, including direct oxidation of SMX, bond fission of N-C, bond fission of N-S, and bond fission of S-C. The effect of the pH, temperature, PMS concentration, chloridion, bicarbonate, and humic acids on SMX degradation was investigated. Cycling experiments demonstrated the good stability of Fe-Co-O-g-C3N4. This study first reported the preparation of bimetallic oxide and oxygen codoped g-C3N4, which was an effective PMS activator for degradation of toxic organic pollutants.
Collapse
Affiliation(s)
- Shizong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, P. R. China
| | - Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, P. R. China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, P. R. China
- Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
29
|
Xu X, Ran Z, Wen G, Liang Z, Wan Q, Chen Z, Lin Y, Li K, Wang J, Huang T. Efficient inactivation of bacteria in ballast water by adding potassium peroxymonosulfate alone: Role of halide ions. CHEMOSPHERE 2020; 253:126656. [PMID: 32278911 DOI: 10.1016/j.chemosphere.2020.126656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
In recent years, ballast water disinfection has been paid much more attention due to the untreated discharged ballast water posing threaten of biological invasion and health related consequences. In this study, an effective and simple approach for ballast water disinfection by just adding potassium peroxymonosulfate (PMS) was assessed, and the role of halide ions in seawater on the enhancement of inactivation was revealed. The reactive species responsible for inactivation, the leakage of intracellular materials, and changes of cellular morphology after inactivation were evaluated to explore the inactivation mechanism. The results showed that Escherichia coli and Bacillus subtilis in ballast water could be totally inactivated within 10 min by adding 0.2 mM PMS alone. The inactivation of bacteria in ballast water fitted to the delayed Chick-Watson model. Chloride and bromide ion in seawater were found to play a crucial role in inactivating bacteria, while the effect of iodide ion could be negligible due to its relative lower concentration in seawater. Chlorine and bromine, produced by the reaction of PMS with chloride and bromide ion, were proved to be the main reactive components that were responsible for the inactivation of bacteria. The extracellular ATP and total nitrogen concentration increased after inactivation which indicated that cell membrane was destroyed by reactive oxidants produced by the reaction between PMS and halide ions. The change of cell morphology confirmed that bacteria were seriously damaged after inactivation. The results suggest that PMS is an attractive alternative disinfectant for ballast water disinfection and this application deserved further research.
Collapse
Affiliation(s)
- Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Zhilin Ran
- Institute of Innovational Education Research, School of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, 518172, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Zhiting Liang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Zhuhao Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Yuzhao Lin
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
30
|
Peng J, Zhang C, Zhang Y, Shao S, Wang P, Liu G, Dong H, Liu D, Shi J, Cao Z, Liu H, Gao S. Efficient removal of triclosan via peroxymonosulfate activated by a ppb level dosage of Co(II) in water: Reaction kinetics, mechanisms and detoxification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110676. [PMID: 32361496 DOI: 10.1016/j.ecoenv.2020.110676] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS), an extensively used broad-spectrum antimicrobial agent, has raised significant environmental concerns regarding its widespread occurrence in waters. In this study, the removal of TCS in aqueous solution via peroxymonosulfate (PMS) activated by an extremely low-level Co2+ (0.02 μM) was systematically investigated. During preliminary test, TCS (10 μM) was totally degraded in 30 min by using 0.1 μM Co2+ and 40 μM PMS at pH 7.0 with a degradation rate constant of 0.1219 min-1. A first-order apparent degradation rate of TCS was found with respect to the PMS concentrations. At extremely low dosage of Co2+ (0.02 μM), the presence of NO3-, HCO3-, PLFA, and SRHA within test concentrations significantly inhibited TCS removal, while a dual effect of Cl- on the degradation rate of TCS was observed. The quenching experiments verified that SO4- was the dominant reactive oxygen species (ROS) rather than OH. Six major intermediates were identified using TOF-LC-MS, based on which we proposed three associated reaction pathways including hydroxylation, ether bond breakage, and dechlorination. Toxicity predictions by ECOSAR software exhibited aquatic toxicity reduction of TCS after Co2+/PMS treatment. We outlook these findings to advance the feasibility of organic contaminants removal via Co2+/PMS system with Co2+ at extremely low levels.
Collapse
Affiliation(s)
- Jianbiao Peng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, PR China.
| | - Chaonan Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, PR China
| | - Yaozong Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, PR China
| | - Shuai Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Pingping Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Guoguang Liu
- School of Environmental Science and Engineering, and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Hang Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Dexin Liu
- College of Environment and Planning, Henan University, Kaifeng, 475004, PR China
| | - Jialu Shi
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, PR China
| | - Zhiguo Cao
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, PR China
| | - Haijin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, PR China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
31
|
Enhanced activation of peroxymonosulfate using oxygen vacancy-enriched FeCo2O4−x spinel for 2,4-dichlorophenol removal: Singlet oxygen-dominated nonradical process. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124568] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Chen H, Lin T, Chen W, Xu H, Tao H. Significant role of high-valent iron-oxo species in the degradation and detoxification of indomethacine. CHEMOSPHERE 2020; 251:126451. [PMID: 32169695 DOI: 10.1016/j.chemosphere.2020.126451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
A novel high-valent iron-oxo species (Fe(IV) = O) generated from Iron hexadecachlorophthalocyanine (FePcCl16)-mediated peroxymonosulfate (PMS) activation under visible light illumination for the degradation of a special group of compounds, indomethacine (IDM), containing methoxy, carboxyl, chloro, and amide groups was investigated. The experimental results indicate that Fe(IV) = O was able to selectively attack the carbonyl C-N bond on twisted amide groups, which exerts a strong toxic effect, and could therefore, effectively degrade and detoxify IDM and its byproducts. Twelve byproducts were identified by HPLC/MS/MS and calculation of frontier electron densities (FEDs), with all amide-group breakage products detected, and the possible pathways were deduced, which mainly consisted of Fe(IV) = O-induced cleavage of amide groups and radicals-induced reactions. Ecological risk assessment further confirmed a decrease in toxicity towards IDM degradation, which provides a promising Fe(IV) = O species for selective oxidation and detoxification of destabilized ground-state amides in drinking-water and wastewater treatment.
Collapse
Affiliation(s)
- Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Hang Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Hui Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
33
|
Stanbury DM. Mechanisms of Advanced Oxidation Processes, the Principle of Detailed Balancing, and Specifics of the UV/Chloramine Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4658-4663. [PMID: 32126765 DOI: 10.1021/acs.est.9b07484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advanced oxidation processes tend to have very complex reaction mechanisms, and models containing over 150 steps have been developed to describe the chemistry. Without the aid of automation, it is extremely difficult to avoid the development of kinetic mechanisms that violate the principle of detailed balancing. Here, we apply DETBAL, a computer application, to systematically identify many violations of the principle of detailed balancing in a model proposed for the UV/chloramine process. We then show that these violations can also be found in dozens of other proposed models for advanced oxidation processes. Suggested repairs to these violations are provided. These repairs lead to no significant changes in the model predictions because the illegal loops include steps that are unnecessary under the conditions modeled. The model omits certain steps that do have significant effects on the model predictions.
Collapse
Affiliation(s)
- David M Stanbury
- Department of Chemistry and Biochemistry Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
34
|
Sheng B, Zhou X, Shi Z, Wang Z, Guo Y, Lou X, Liu J. Is addition of reductive metals (Mo, W) a panacea for accelerating transition metals-mediated peroxymonosulfate activation? JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121877. [PMID: 31884370 DOI: 10.1016/j.jhazmat.2019.121877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
The interaction of reductive metal ions and peroxymonosulfate (PMS) is necessary for the generation of sulfate radials (SO4-), however, this process is greatly restrained by the sluggish reduction of high-valent metal ions. Here we report that commercially available reductive metal (Mo or W) powders are capable of unlocking this kinetic constraint. The reduction of Fe(III) to Fe(II), decomposition of PMS, and degradation/mineralization of 4-chlorophenol (4-CP) are all accelerated in the Mo/Fe2+/PMS process at a very low Fe2+/PMS ratio (Fe2+/PMS = 1/10). In such an accelerated system, common adverse effects of natural water constituents such as chloride and humic acid are largely mitigated. According to the fluorescence measurement and scavenging tests, sulfate and hydroxyl radicals dominate in Mo/Fe2+/PMS process. The addition of Mo or W is further confirmed to favor Cu2+/PMS process, but this is not the case for other metal ions (Mn2+, Ni2+, Ce3+ and Co2+). Reductive zero-valence and four-valence active sites (Mo0 and Mo4+; W0 and W4+) play key roles in overall redox reaction. Overall, our present work provides an alternative route for expediting redox cycling of transition metals in advanced oxidation processes, without useless consumption of PMS and increase of total organic carbon.
Collapse
Affiliation(s)
- Bo Sheng
- Research Center of Resource Recycling Science and Engineering, School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Zhou
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhun Shi
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), No.20 Cuiniao Road, Chen Jiazhen, Shanghai 202162, China.
| | - Yaoguang Guo
- Research Center of Resource Recycling Science and Engineering, School of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Xiaoyi Lou
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Jianshe Liu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
35
|
Wang Z, Wang X, Yuan R, Xiao D. Resolving the kinetic and intrinsic constraints of heat-activated peroxydisulfate oxidation of iopromide in aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121281. [PMID: 31585288 DOI: 10.1016/j.jhazmat.2019.121281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Iopromide (IOP) has been identified as one of the most persistent pharmaceuticals in wastewater treatment processes, however, kinetic and intrinsic factors constraining its fast removal in advanced oxidation processes (AOPs) are yet to be resolved. Here oxidation of IOP by heat-activated peroxydisulfate (PDS) was investigated both experimentally and theoretically. Rates of IOP degradation were enhanced by elevating solution temperature and acidity. An apparent kinetic rate equation was developed, based on the pseudo-first-order reaction model and assumption of steady state of SO4-. The common water constituents showed inhibitory effects on IOP decomposition to various extent. An insufficient supply of SO4- was considered as the major kinetic constraint. Eight byproducts were identified and most of which had intact triiodinated benzene ring. O-demethylation, oxidation of amino moiety and oxidation/elimination of alcohol groups are proposed as the primary degradation pathways, in accordance with the incomplete mineralization and non-detectable release of inorganic iodine. Quantum chemical calculations predict that oxidation of alkyl chains of IOP preferentially occurs and IOP byproducts with shorter side chains and intact triiodinated ring are more reactive than IOP. By virtue of the identified kinetic and intrinsic constraints, strategies to maximize degradation efficiency of IOP are proposed.
Collapse
Affiliation(s)
- Zhaohui Wang
- Shanghai Key Laboratory of Urbanization and Ecological Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China.
| | - Xiaoxiao Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ruixia Yuan
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Dongxue Xiao
- Chinese Academy of Fishery Sciences, East China Sea Fisheries Research Institute, Shanghai 200090, China
| |
Collapse
|
36
|
Chi H, He X, Zhang J, Ma J. Efficient degradation of refractory organic contaminants by zero-valent copper/hydroxylamine/peroxymonosulfate process. CHEMOSPHERE 2019; 237:124431. [PMID: 31374392 DOI: 10.1016/j.chemosphere.2019.124431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Degradation of naproxen, bisphenol S and ibuprofen in a hydroxylamine enhanced zero-valent copper (Cu0) catalyzed peroxymonosulfate system was investigated for the first time. We found that hydroxylamine addition accelerated the reduction of Cu2+ to Cu+ as well as the corrosion of Cu0, and environmental friendly gas nitrogen was the main product of hydroxylamine. Additionally, hydroxyl radical and sulfate radical were identified to be the dominant reaction species by competitive experiments. The degradation of naproxen, bisphenol S and ibuprofen kept highly efficient in the pH range of 3.0-7.0 in Cu0/hydroxylamine/peroxymonosulfate process, with their degradation products identified by HPLC-MS, which showed that Cu0/hydroxylamine/peroxymonosulfate system could be an alternative to remove non-steroidal antiinflammatory drugs or plasticizers in wastewater. Furthermore, the effects of Cu0, hydroxylamine and peroxymonosulfate dosage were studied and optimized by a BBD based response surface model. This study provided a method to solve the disadvantages of Cu0/peroxymonosulfate systems, and gave a promising method to enhance the efficiencies of ZVMs activated system such as iron, cobalt and copper.
Collapse
Affiliation(s)
- Huizhong Chi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xu He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jianqiao Zhang
- Environmental Protection and Affairs Bureau of Shenzhen Luohu District, Shenzhen, 518003, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
37
|
Wang Z, Liu Q, Yang F, Huang Y, Xue Y, Yuan R, Sheng B, Wang X. Accelerated oxidation of 2,4,6-trichlorophenol in Cu(II)/H 2O 2/Cl - system: A unique "halotolerant" Fenton-like process? ENVIRONMENT INTERNATIONAL 2019; 132:105128. [PMID: 31479958 DOI: 10.1016/j.envint.2019.105128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/25/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
The roles of chloride in enhanced oxidative degradation of refractory organic pollutants are recently identified in the Cu(II)/H2O2/Cl- system, but the identity of the reactive oxidants and potential conversion of inorganic chloride to organochlorine in such oxidizing environment remain obscure. Here we report that Cu(II)/H2O2/Cl- system is a unique "halotolerant" Fenton-like process that works most efficiently in saline water among the five tested redox-active metals ions (i.e. Cr(VI), Ce(III), Co(II), Mn(II) and Cu(II)). The observed pseudo first-order rate constant for 2,4,6-trichlorophenol (TCP) degradation was linearly correlated with the elevated Cl- content. The TCP degradation rate at [Cl-]0 = 1000 mM by the Cu(II)/H2O2 system was approximately 46-fold higher than that at [Cl-]0 = 5 mM. The optimal mineralization rate of TCP and percentage of absorbable organic halogens (AOX) decrease were 31.6% and 63.8%, respectively, in the tested Cu(II)/H2O2/Cl- system. However, the detection of fused chlorinated byproducts (i.e. chloro-anthracene-pentaol, dioxine, chlorinated dibenzofuran) reminds us of cautiousness in evaluating the applicability of Cu(II)-catalyzed Fenton-like reaction, particularly while it is to be applied to the treatment of wastewater contaminated with chlorophenols. Two independent models (i.e. "Cu(III) model" and "OH model") were developed to describe the kinetics of Cu(II)/H2O2/Cl- system. The failure of "OH model" to rationalize the observed AOX decay has disproved the "OH model" through reductio ad absurdum. The ability of "Cu(III) model" to adequately explain the experimental data demonstrates that Cu(III)-chloro complexes, rather than OH, is the major product resulting from reactions between Cu(I)-chloro complexes and H2O2 at neutral pH.
Collapse
Affiliation(s)
- Zhaohui Wang
- Shanghai Key Laboratory of Urbanization and Ecological Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China.
| | - Qingze Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Fei Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ying Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ying Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ruixia Yuan
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Bo Sheng
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoxiao Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
38
|
Bao T, Jin J, Damtie MM, Wu K, Yu ZM, Wang L, Chen J, Zhang Y, Frost RL. Green synthesis and application of nanoscale zero-valent iron/rectorite composite material for P-chlorophenol degradation via heterogeneous Fenton reaction. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Ouyang W, Chen T, Shi Y, Tong L, Chen Y, Wang W, Yang J, Xue J. Physico-chemical processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1350-1377. [PMID: 31529571 DOI: 10.1002/wer.1231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
The review scans research articles published in 2018 on physico-chemical processes for water and wastewater treatment. The paper includes eight sections, that is, membrane technology, granular filtration, flotation, adsorption, coagulation/flocculation, capacitive deionization, ion exchange, and oxidation. The membrane technology section further divides into six parts, including microfiltration, ultrafiltration, nanofiltration, reverse osmosis/forward osmosis, and membrane distillation. PRACTITIONER POINTS: Totally 266 articles on water and wastewater treatment have been scanned; The review is sectioned into 8 major parts; Membrane technology has drawn the widest attention from the research community.
Collapse
Affiliation(s)
- Weihang Ouyang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Tianhao Chen
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yihao Shi
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Liangyu Tong
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yangyu Chen
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Weiwen Wang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jiajun Yang
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jinkai Xue
- School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Environmental Systems Engineering, University of Regina, Saskatchewan, Canada
| |
Collapse
|
40
|
Song Q, Feng Y, Wang Z, Liu G, Lv W. Degradation of triphenyl phosphate (TPhP) by CoFe 2O 4-activated peroxymonosulfate oxidation process: Kinetics, pathways, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:331-338. [PMID: 31121397 DOI: 10.1016/j.scitotenv.2019.05.105] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
The aryl organophosphate flame retardant triphenyl phosphate (TPhP) has been frequently detected in environment and biota, and the potential risks of TPhP to aquatic organisms have also been demonstrated. The degradation of TPhP by CoFe2O4 activated peroxymonosulfate (PMS) was studied in this work. At initial pH of 7.0, 10 μM TPhP could be removed by 99.5% with 0.25 g/L CoFe2O4 and 0.5 mM PMS after 6 min oxidation, indicating the excellent performance of CoFe2O4 activated PMS process on the treatment of TPhP. The influence of PMS and CoFe2O4 dosage, initial pH, humic acid (HA), and anions (Cl-, NO3-, and HCO3-) on TPhP degradation were investigated systematically. Results showed that the degradation of TPhP was enhanced with increasing PMS concentrations from 0.1 to 1 mM, while it reduced as CoFe2O4 dosage increased. TPhP degradation efficiencies depended on solution pH with neutral pH showing the optimum degradation conditions. Recycling experiment indicated that the CoFe2O4 nanoparticles (NPs) possessed high potential for reusability. The radical identification experiments were performed and SO4•- was confirmed as the dominant radicals in TPhP degradation, and activation mechanism of PMS by CoFe2O4 NPs was hence explained. Humic acids (HA) (2-20 mg/L) as the representative organic natural matter existing in environment inhibited TPhP removal. Anions including Cl-, NO3-, and HCO3- all reduced TPhP degradation. In addition, TPhP degradation products were identified by liquid chromatography-mass spectrometry, and the degradation pathways of TPhP were proposed accordingly.
Collapse
Affiliation(s)
- Qingyun Song
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiping Feng
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhu Wang
- Research Institute of Environmental Studies at Greater Bay, Rural Non-point Source Pollution Comprehensive Management Technology Center of Guangdong Province, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Guoguang Liu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Wenying Lv
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
41
|
Yang F, Sheng B, Wang Z, Yuan R, Xue Y, Wang X, Liu Q, Liu J. An often-overestimated adverse effect of halides in heat/persulfate-based degradation of wastewater contaminants. ENVIRONMENT INTERNATIONAL 2019; 130:104918. [PMID: 31234000 DOI: 10.1016/j.envint.2019.104918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Halides (X-) in the industrial wastewater are usually thought to adversely affect the degradation kinetics and mineralization rates in several SO4--based advanced oxidation processes. However, their unfavorable effects might be overestimated, particularly the heat/persulfate (PS) system as tested in the present study. Here the degradation of phenol, benzoic acid, coumarin and acid orange 7 (AO7) was examined with the presence of chloride or bromide in a heat/PS process. Cl- was found to have a dual effect (inhibition followed by enhancement) on the decomposition rates of organic pollutants, whereas the effects of Br- are insignificant within the tested concentration (0-0.2 mM). However, some chlorinated or brominated compounds were still identified in this heat/PS system. Unexpectedly, the mineralization rates of AO7, phenol, benzoic acid and coumarin were not apparently inhibited. In addition, the formation of adsorbable organic halogen (AOX) in the heat/PS system was much less than those in the peroxymonosulfate (PMS)/Cl- or PMS/Br- systems. According to the results of kinetic modeling, SO4- was the dominating radical for AO7 degradation without Cl- or Br-, but Cl2- was the main oxidant in the presence of Cl-, SO4-, Br and Br2- were responsible for the oxidation of AO7 in the presence of Br-. The present study assumes that X2/HOX, rather than halogen radicals, is responsible for the enhanced formation of organohalogens. These findings are meaningful to evaluate the PS-based technologies for the high-salinity wastewater and to develop useful strategies for mitigating the negative effects of halides in advanced oxidation processes (AOPs).
Collapse
Affiliation(s)
- Fei Yang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Bo Sheng
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhaohui Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Key Laboratory of Urbanization and Ecological Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China.
| | - Ruixia Yuan
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 15 163318, China
| | - Ying Xue
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxiao Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qingze Liu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianshe Liu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
42
|
Huang Y, Sheng B, Yang F, Wang Z, Tang Y, Liu Q, Wang X, Liu J. Chlorine incorporation into dye degradation by-product (coumarin) in UV/peroxymonosulfate process: A negative case of end-of-pipe treatment. CHEMOSPHERE 2019; 229:374-382. [PMID: 31078895 DOI: 10.1016/j.chemosphere.2019.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Recently, UV/peroxymonosulfate (PMS) seems as a panacea for the treatment of recalcitrant organic pollutants; however, the presence of high concentration of chloride in saline wastewater indeed complicates this end-of-pipe technology. Here a negative case of UV/PMS for the treatment of one of secondary degradation byproducts of dyes (coumarin, COU) is demonstrated. The removal rate of COU is reduced by addition of Cl- (0-10 mM). Further increase in Cl- content favors a rapid COU degradation, whereas Cl- involvement seems to open a "Pandora's box": 1) a variety of chlorinated organic intermediates such as 4-chloroisocoumarin and 5-chloro-2-hydroxy-benzaldehyde are identified; 2) Accumulation and relative increase of absorbable organic halogen (AOX) with reaction time in the presence of high levels of chloride are observed; 3) the acute toxicity of the treated COU solution increases; 4) mineralization rate of COU decreases with the increasing [Cl-]. The fluorescence intensity in the UV/PMS/COU system declines with the addition of Cl-, implying the scavenging effects of chloride on hydroxyl radicals. The possible reaction pathways of COU are discussed. These findings highlight the imperativeness of minimizing auxiliary salt dosages in dyeing processes (i.e., source reduction) and developing new end-of-pipe technologies that can work in a saline environment.
Collapse
Affiliation(s)
- Ying Huang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Bo Sheng
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fei Yang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhaohui Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), Shanghai, 200062, China.
| | - Yizhen Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, 266033, Qingdao, China
| | - Qingze Liu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxiao Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianshe Liu
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
43
|
Dong Y, Cui X, Lu X, Jian X, Xu Q, Tan C. Enhanced degradation of sulfadiazine by novel β-alaninediacetic acid-modified Fe 3O 4 nanocomposite coupled with peroxymonosulfate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:490-500. [PMID: 30695749 DOI: 10.1016/j.scitotenv.2019.01.280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Magnetic nanocomposite β-alaninediacetic acid-modified Fe3O4 (β-ADA@Fe3O4) was prepared, characterized and evaluated to activate peroxymonosulfate (PMS) for improved degradation of sulfadiazine (SD). The results reveal that β-ADA@Fe3O4 express more efficient catalytic activity in PMS inducement compared with Fe3O4, and the observed pseudo first rate constant (kobs) of SD degradation is enhanced from 1.05 × 10-2 to 7.02 × 10-2 min-1 when Fe3O4 is replaced by β-ADA@Fe3O4. The highest removal rate 54.0% occurs when [PMS]0 and m(β-ADA@Fe3O4)0 was 0.3 mM and 0.8 g/L at neutral pH. High intensity of hydroxyl radicals (OH) and relatively low intensity of sulfate radicals (SO4-) are distinguished in system by scavenging experiments and electron paramagnetic resonance (EPR) tests. Results point that β-ADA would significantly promote the circulation of Fe2+-Fe3+ on the surface of β-ADA@Fe3O4, producing more radicals (OH, SO4-). The findings herein imply that β-ADA@Fe3O4 is an efficient and green catalyst in activation of peroxymonosulfate under neutral environment.
Collapse
Affiliation(s)
- Yujie Dong
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Xinxin Cui
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Xu Lu
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Xinchi Jian
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Qinglong Xu
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Chaoqun Tan
- School of Civil Engineering, Southeast University, Nanjing 210096, China; Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|