1
|
Humayun S, Hayyan M, Alias Y. A review on reactive oxygen species-induced mechanism pathways of pharmaceutical waste degradation: Acetaminophen as a drug waste model. J Environ Sci (China) 2025; 147:688-713. [PMID: 39003083 DOI: 10.1016/j.jes.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 07/15/2024]
Abstract
Innately designed to induce physiological changes, pharmaceuticals are foreknowingly hazardous to the ecosystem. Advanced oxidation processes (AOPs) are recognized as a set of contemporary and highly efficient methods being used as a contrivance for the removal of pharmaceutical residues. Since reactive oxygen species (ROS) are formed in these processes to interact and contribute directly toward the oxidation of target contaminant(s), a profound insight regarding the mechanisms of ROS leading to the degradation of pharmaceuticals is fundamentally significant. The conceptualization of some specific reaction mechanisms allows the design of an effective and safe degradation process that can empirically reduce the environmental impact of the micropollutants. This review mainly deliberates the mechanistic reaction pathways for ROS-mediated degradation of pharmaceuticals often leading to complete mineralization, with a focus on acetaminophen as a drug waste model.
Collapse
Affiliation(s)
- Saba Humayun
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Centre for Ionic Liquids, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Maan Hayyan
- Chemical Engineering Program, Faculty of Engineering and Technology, Muscat University, Muscat P.C.130, Oman.
| | - Yatimah Alias
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Centre for Ionic Liquids, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
2
|
Del Rosario Salas-Sandoval E, Pérez-Segura T, Garcia-Segura S, Dos Santos AJ. Innovative approaches to electrochemical oxidation of Bisphenol B in synthetic and complex water environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176762. [PMID: 39393701 DOI: 10.1016/j.scitotenv.2024.176762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
The substitution of Bisphenol A (BPA) with Bisphenol B (BPB) has raised concerns due to BPB's increased environmental presence and its potential hazards. Despite the frequent detection in water environments, effective removal methods for BPB are still limited. This study hypothesizes that electrochemical oxidation (EO) can effectively degrade BPB and its by-products. To test this, EO was applied under various conditions, analyzing the role of anode material, current density, pH, and BPB concentration. The results revealed that BPB degradation followed pseudo-first-order kinetics, with boron-doped diamond (BDD) anode showing a rate constant 27 times higher than iridium oxide electrodes. After 180 min, BDD achieved 81.8 % mineralization of BPB. The remaining organic load was associated to easily biodegradable short-chain carboxylic acids. Additionally, the EO process was evaluated in different matrices, including drinking water, tap water, simulated municipal wastewater, and synthetic urine, to assess the impact of matrix complexity. Electrogenerated oxidants, such as hydroxyl radicals, sulfate radicals, and active chlorine, significantly enhanced BPB degradation rates in real water matrices. Energy consumption varied from 5.32 kWh m-3 in drinking water to 2.28 kWh m-3 in synthetic urine, demonstrating the role of matrix composition in EO efficiency. These findings show that EO is a promising technology for removing BPB and similar chemicals in real-world water matrices.
Collapse
Affiliation(s)
- Elizabeth Del Rosario Salas-Sandoval
- Departamento de Ingeniería Química, DCNE, Universidad de Guanajuato, Noria Alta s/n, Noria Alta, Guanajuato 36050, Mexico; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States
| | - Tzayam Pérez-Segura
- Departamento de Ingeniería Química, DCNE, Universidad de Guanajuato, Noria Alta s/n, Noria Alta, Guanajuato 36050, Mexico
| | - Sergi Garcia-Segura
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States
| | - Alexsandro J Dos Santos
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States.
| |
Collapse
|
3
|
Yang Z, Zhou Y, Jiang Y, Zhao P, Meng X. Reconsideration of the role of hydrogen peroxide in peroxymonocarbonate-based oxidation system for pollutant control. WATER RESEARCH 2024; 268:122750. [PMID: 39522127 DOI: 10.1016/j.watres.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Advanced oxidation processes that utilize peroxymonocarbonate (HCO4-), generated in-situ through the reaction of HCO3- and H2O2, are employed for the removal of pollutants in water. Nevertheless, the precise role of H2O2 in these processes remains a subject of debate. This study established a HCO4--based oxidation system using NaHCO3 and H2O2 for the degradation of acetaminophen and investigated the activation mechanisms of coexisting oxidants. Under thermal activation conditions, the OO bond in HCO4- (HOOCOO-) was more readily cleaved than the OO bond in the co-existing oxidant H2O2 (HOOH), leading to the generation of reactive oxygen species (ROS). Based on kinetics and ROS evaluation, H2O2 primarily served to form HCO4- rather than converting to ·OH or O2, with HCO4- acting as the primary oxidant for degradation through the formation of CO3·-and ·OH. In this oxidation system, H2O2 utilization efficiency for ·OH production reached 27.34 %, ·OH yield reached 24.15 % and acetaminophen degradation efficiency realized 83 % at 60 °C with 20 mM HCO3- and 20 mM H2O2. The apparent activation energy of acetaminophen degradation and HCO4- activation were calculated as 90.83 kJ mol-1 and 18.81 kJ mol-1, respectively. Moreover, a novel CO2-derived HCO4--based system led to a comparable acetaminophen degradation efficiency of 82 % and a higher kobs of 0.028 min-1. The system optimization and ROS evaluation suggest that high concentration of H2O2 inhibited the degradation and quenched CO3·- and ·OH to yield ·O2- and 1O2. Furthermore, EPR analysis and quenching experiments indicate that CO3·- was mainly responsible for acetaminophen degradation. This work provides fundamental understanding of the HCO4--based oxidation system.
Collapse
Affiliation(s)
- Zihan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhou
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqian Jiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiqing Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
4
|
Nachaichot A, Phonlakan K, Nijpanich S, Pornsuwan S, Budsombat S. Zeolitic imidazolate framework-67 in chitosan-grafted hydrogel as an effective catalyst for peroxymonosulfate activation to degrade antibiotics and dyes. RSC Adv 2024; 14:35628-35637. [PMID: 39524080 PMCID: PMC11544535 DOI: 10.1039/d4ra06537a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Zeolitic imidazolate framework-67 (ZIF-67) was synthesized in situ in the hydrogel of chitosan-grafted poly(acrylic acid) (chitosan-g-PAA) to activate peroxymonosulfate (PMS) and degrade tetracycline (TC). The catalytic performance of the composite hydrogel for TC degradation was evaluated under different conditions. The results showed rapid degradation, with enhanced degradation efficiency as the catalyst dosage, PMS dosage, and temperature increased. TC was degraded entirely within 30 min for catalyst and PMS dosages of 1 and 1 g per L, respectively. The composite hydrogel was effective across a broad pH range. A scavenging study and electron paramagnetic resonance experiments indicated that SO4˙-, HO˙, O2˙- and 1O2 were involved in the degradation process. The antibacterial test against E. coli showed that the products of the TC degradation were nontoxic. Additionally, the composite hydrogel was evaluated in the presence of anions and in real water samples. The reusability study showed that the composite hydrogel could be recovered through filtration and effectively used for five consecutive cycles. Moreover, the composite hydrogel could degrade 82% ciprofloxacin and 86% norfloxacin, while it could completely degrade rhodamine B, reactive red 141, and methylene blue dyes within 30 min.
Collapse
Affiliation(s)
- Atipong Nachaichot
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand +66-4300 9700. ext. 42174
| | - Kunlarat Phonlakan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand +66-4300 9700. ext. 42174
| | - Supinya Nijpanich
- Synchrotron Light Research Institute (Public Organization) Nakhonratchasima 30000 Thailand
| | - Soraya Pornsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University 272 Rama VI Rd., Ratchathewi Bangkok 10400 Thailand
| | - Surangkhana Budsombat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand +66-4300 9700. ext. 42174
| |
Collapse
|
5
|
Song Z, Zhang Y, Yang Y, Chen Y, Ren N, Duan X. Kinetics and mechanisms of non-radically and radically induced degradation of bisphenol A in a peroxymonosulfate-chloride system. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100452. [PMID: 39161574 PMCID: PMC11331699 DOI: 10.1016/j.ese.2024.100452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/21/2024]
Abstract
Bisphenol A, a hazardous endocrine disruptor, poses significant environmental and human health threats, demanding efficient removal approaches. Traditional biological methods struggle to treat BPA wastewater with high chloride (Cl-) levels due to the toxicity of high Cl- to microorganisms. While persulfate-based advanced oxidation processes (PS-AOPs) have shown promise in removing BPA from high Cl- wastewater, their widespread application is always limited by the high energy and chemical usage costs. Here we show that peroxymonosulfate (PMS) degrades BPA in situ under high Cl- concentrations. BPA was completely removed in 30 min with 0.3 mM PMS and 60 mM Cl-. Non-radical reactive species, notably free chlorine species, including dissolved Cl2(l), HClO, and ClO- dominate the removal of BPA at temperatures ranging from 15 to 60 °C. Besides, free radicals, including •OH and Cl2 •-, contribute minimally to BPA removal at 60 °C. Based on the elementary kinetic models, the production rate constant of Cl2(l) (32.5 M-1 s-1) is much higher than HClO (6.5 × 10-4 M-1 s-1), and its degradation rate with BPA (2 × 107 M-1 s-1) is also much faster than HClO (18 M-1 s-1). Furthermore, the degradation of BPA by Cl2(l) and HClO were enlarged by 10- and 18-fold at 60 °C compared to room temperature, suggesting waste heat utilization can enhance treatment performance. Overall, this research provides valuable insights into the effectiveness of direct PMS introduction for removing organic micropollutants from high Cl- wastewater. It further underscores the critical kinetics and mechanisms within the PMS/Cl⁻ system, presenting a cost-effective and environmentally sustainable alternative for wastewater treatment.
Collapse
Affiliation(s)
- Zhao Song
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, PR China
| | - Yu Zhang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Yanhu Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Yidi Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
6
|
Zhou H, Zhong S, Chen J, Ren S, Ren W, Lai B, Guan X, Ma T, Wang S, Duan X. Overlooked Complexation and Competition Effects of Phenolic Contaminants in a Mn(II)/Nitrilotriacetic Acid/Peroxymonosulfate System: Inhibited Generation of Primary and Secondary High-Valent Manganese Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19080-19089. [PMID: 39276341 DOI: 10.1021/acs.est.4c07370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Organic contaminants with lower Hammett constants are typically more prone to being attacked by reactive oxygen species (ROS) in advanced oxidation processes (AOPs). However, the interactions of an organic contaminant with catalytic centers and participating ROS are complex and lack an in-depth understanding. In this work, we observed an abnormal phenomenon in AOPs that the degradation of electron-rich phenolics, such as 4-methoxyphenol, acetaminophen, and 4-presol, was unexpectedly slower than electron-deficient phenolics in a Mn(II)/nitrilotriacetic acid/peroxymonosulfate (Mn(II)/NTA/PMS) system. The established quantitative structure-activity relationship revealed a volcano-type dependence of the degradation rates on the Hammett constants of pollutants. Leveraging substantial analytical techniques and modeling analysis, we concluded that the electron-rich phenolics would inhibit the generation of both primary (Mn(III)NTA) and secondary (Mn(V)NTA) high-valent manganese species through complexation and competition effects. Specifically, the electron-rich phenolics would form a hydrogen bond with Mn(II)/NTA/PMS through outer-sphere interactions, thereby reducing the electrophilic reactivity of PMS to accept the electron transfer from Mn(II)NTA, and slowing down the generation of reactive Mn(III)NTA. Furthermore, the generated Mn(III)NTA is more inclined to react with electron-rich phenolics than PMS due to their higher reaction rate constants (8314 ± 440, 6372 ± 146, and 6919 ± 31 M-1 s-1 for 4-methoxyphenol, acetaminophen, and 4-presol, respectively, as compared with 671 M-1 s-1 for PMS). Consequently, the two-stage inhibition impeded the generation of Mn(V)NTA. In contrast, the complexation and competition effects are insignificant for electron-deficient phenolics, leading to declined reaction rates when the Hammett constants of pollutants increase. For practical applications, such complexation and competition effects would cause the degradation of electron-rich phenolics to be more susceptible to water matrixes, whereas the degradation of electron-deficient phenolics remains largely unaffected. Overall, this study elucidated the intricate interaction mechanisms between contaminants and reactive metal species at both the electronic and kinetic levels, further illuminating their implications for practical treatment.
Collapse
Affiliation(s)
- Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Junwen Chen
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shiying Ren
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Wei Ren
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
7
|
Lei J, Ding L, Li Y, Li X, Pan S, Wu D, Jiang K. Picolinic acid promotes organic pollutants removal in Fe(III)/periodate process: Mechanism and relationship between removal efficiency and pollutant structure. WATER RESEARCH 2024; 268:122631. [PMID: 39437573 DOI: 10.1016/j.watres.2024.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
The application of Fe-catalyzed periodate (PI) processes is often limited by both the narrow applicable pH range and weak reaction between Fe(III) and oxidant. Here, the biodegradable picolinic acid (PICA) was used as one kind of chelating ligands (CLs) to enhance the removal of organic pollutants (OPs) at initial pH 3.0-8.0, which displayed superior properties than the other CLs in Fe(III)/PI process. The dominant reactive species produced in the Fe(III)-PICA/PI process turned out to be high-valent iron-oxo (FeIV=O) species and hydroxyl radical (•OH) by quenching, sulfoxide probe transformation, and 18O isotope-labeling tests. The relative contribution of FeIV=O and •OH was dependent on OPs ionization potential (IP) and energy gap (ΔE). The degradation of OPs was also directly associated with their structure, the apparent rate constants correlated well with the highest occupied molecular orbital energy (EHOMO), IP, and ΔE, and among them ΔE had a greater effect. Furthermore, Fe(III)-PICA complexes displayed excellent long-term effectiveness for OPs removal in actual water matrixes, along with the non-toxic conversion of PI, indicating a broad application perspective of Fe(III)-PICA/PI process. This study provides an efficient method to improve the performance of Fe(III)/PI process and reveals the mechanism and relationship between removal efficiency and pollutant structure.
Collapse
Affiliation(s)
- Jiansen Lei
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Linjie Ding
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Yangju Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Xiang Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Siyuan Pan
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Dapeng Wu
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Kai Jiang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| |
Collapse
|
8
|
Jin S, Tan W, Tang X, Li M, Yu X, Zhang H, Song S, Zeng T. Unraveling the Fundamentals of Axial Coordination FeN 4+1 Sites Regulating the Peroxymonosulfate Activation for Fenton-Like Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405012. [PMID: 39380378 DOI: 10.1002/smll.202405012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/14/2024] [Indexed: 10/10/2024]
Abstract
Precise modulation of the axial coordination microenvironment in single-atom catalysts (SACs) to enhance peroxymonosulfate (PMS) activation represents a promising yet underexplored approach. This study introduces a pyrolysis-free strategy to fabricate SACs with well-defined axial-FeN4+1 coordination structures. By incorporating additional out-of-plane axial nitrogen into well-defined FeN4 active sites within a planar, fully conjugated polyphthalocyanine framework, FeN4+1 configurations are developed that significantly enhance PMS activation. The axial-FeN4+1 catalyst excelled in activating PMS, with a high bisphenol A (BPA) degradation rate of 2.256 min-1, surpassing planar-FeN4/PMS systems by 6.8 times. Theoretical calculations revealed that the axial coordination between N and the Fe sites forms an optimized axial FeN4+1 structure, disrupting the electron distribution symmetry of Fe and optimizing the electron distribution of the Fe 3d orbital (increasing the d-band center from -1.231 to -0.432 eV). Consequently, this led to an enhanced perpendicular adsorption energy of PMS from -1.79 to -1.82 eV and reduced energy barriers for the formation of the key reaction intermediate (O*) that generates 1O2. This study provides new insights into PMS activation through the axial coordinated engineering of well-defined SACs in water purification processes.
Collapse
Affiliation(s)
- Sijia Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Wenxian Tan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Xiaofeng Tang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Mengxuan Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Xinyi Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Haiyan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Tao Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
- Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, Zhejiang, 312000, P. R. China
| |
Collapse
|
9
|
Masud MAA, Shin WS. Advanced carbo-catalytic degradation of antibiotics using conductive polymer-seaweed biochar composite: Exploring N/S functionalization and non-radical dynamics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135449. [PMID: 39137546 DOI: 10.1016/j.jhazmat.2024.135449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Polyaniline (PANI) and Saccharina Japanica seaweed (kelp) biochar (KBC) composites were synthesized in-situ through polymerization. This study presents a novel approach to the degradation of sulfamethoxazole (SMX), a prevalent antibiotic, using a PANI-KBC composite to activate peroxymonosulfate (PMS). Extensive characterizations of the PANI-KBC composite were conducted, resulting in successful synthesis, uniform distribution of PANI on the biochar surface, and the multifunctional role of PANI-KBC in SMX degradation. A removal efficiency of 97.24% for SMX (10 mg L-1) was attained in 60 min with PANI-KBC (0.1 g L-1) and PMS (1.0 mM) at pH 5.2, with PANI-KBC showing effectiveness (>92%) across a pH range of 3.0-9.0. In the degradation of SMX, both radical (SO4•- and •OH) and non-radical (1O2 and electron transfer) pathways are involved. The reaction processes are critically influenced by the roles of SO4•-, 1O2 and electron transfer mechanisms. It was suggested that pyrrolic N, oxidized sulfur (-C-SO2-C-), structural defects, and O-CO were implicated in the production of 1O2 and electron transfer processes, respectively, and a portion of 1O2 originated from the conversion of O2•-. The study evaluated by-product toxicity, composite reusability, and stability, confirming its practical potential for sustainable groundwater remediation.
Collapse
Affiliation(s)
- Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
10
|
Jiang R, Zhong D, Xu Y, He Y, Zhang J, Liao P. Chitosan-derived N-doped carbon supported Cu/Fe co-doped MoS 2 nanoparticles as peroxymonosulfate activator for efficient dyes degradation. Int J Biol Macromol 2024; 278:134352. [PMID: 39094868 DOI: 10.1016/j.ijbiomac.2024.134352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Peroxymonosulfate (PMS), which is dominated by free radical (SO4•-) pathway, has a good removal effect on organic pollutants in complex water matrices. In this article, a new catalyst (CFM@NC) was synthesized by hydrothermal carbonization method with chitosan (CS) as N and C precursors, and used to activate PMS to degrade dye wastewater. CFM@NC/PMS system can degrade 50 mg·L-1 rhodamine B by 99.59 % within 30 min, and the degradation rate remains as high as 97.32 % after 5 cycles. It has good complex background matrices, acid-base anti-interference ability (pH 2.6-10.1), universality and reusability. It can degrade methyl orange and methylene blue by >98 % within 30 min. The high efficiency of the composite is due to the fact that CS-modified MoS2 as a carrier exposes a large number of active sites, which not only disperses CuFe2O4 nanoparticles and improves the stability of the catalyst, but also provides abundant electron rich groups, which promotes the activation of PMS and the production of reactive oxygen species (ROS). PMS is effectively activated by catalytic sites (Cu+/Cu2+, Fe2+/Fe3+, Mo4+/Mo6+, pyridine N, pyrrole N, edge sulfur and hydroxyl group) to produce a large number of radicals to attack RhB molecules, causing chromophore cleavage, ring opening, and mineralization. Among them, free radical SO4•- is the main ROS for RhB degradation. This work is expected to provide a new idea for the design and synthesis of environmentally friendly and efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Ran Jiang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yuanzhen He
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jiayou Zhang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Pengfei Liao
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
11
|
Pan M, He Z, Yang X. Functional biochar accelerates peroxymonosulfate activation for organic contaminant degradation via the specific B-C-N configuration. CHEMOSPHERE 2024; 365:143202. [PMID: 39218261 DOI: 10.1016/j.chemosphere.2024.143202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Functional biochar designed with heteroatom doping facilitates the activation of peroxymonosulfate (PMS), triggering both radical and non-radical systems and thus augmenting pollutant degradation efficiency. A sequence of functional biochar, derived from hyperaccumulator (Sedum alfredii) residues, was synthesized via sequential doping with boron and nitrogen. The SABC-B@N-2 exhibited outstanding catalytic effectiveness in activating PMS to degrade the model pollutant, acid orange 7 (Kobs = 0.0655 min-1), which was 6.75 times more active than the pristine biochar and achieved notable mineralization efficiency (71.98%) at reduced PMS concentration (0.1 mM). Relative contribution evaluations, using steady-state concentrations combined with electrochemical and in situ Raman analyses, reveal that co-doping with boron and nitrogen alters the reaction pathway, transitioning from PMS activation through multiple reactive oxygen species (ROSs) to a predominantly non-radical process facilitated by electron transfer. Moreover, the previously misunderstood concept that singlet oxygen (1O2) plays a central role in the degradation of AO7 has been clarified. Correlation analysis and density functional theory calculations indicate that the distinct BCN configuration, featuring the BC2O group and pyridinic-N, is fundamental to the active site. This research substantially advances the sustainability of phytoremediation by offering a viable methodology to synthesize highly catalytic functional biochar utilizing hyperaccumulator residues.
Collapse
Affiliation(s)
- Minghui Pan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Fort Pierce, FL, 34945, USA
| | - Xiaoe Yang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
12
|
Fan Y, Chu M, Li H, Sun Z, Kong D, Yao J, Wang G, Wang Y, Zhu HY. Optimal Oxophilicity at the Fe-N x Interface Enhances the Generation of Singlet Oxygen for Efficient Fenton-Like Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403804. [PMID: 38973112 DOI: 10.1002/smll.202403804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Indexed: 07/09/2024]
Abstract
In the pursuit of efficient singlet oxygen generation in Fenton-like catalysis, the utilization of single-atom catalysts (SACs) emerges as a highly desired strategy. Here, a discovery is reported that the single-atom Fe coordinated with five N-atoms on N-doped porous carbon, denoted as Fe-N5/NC, outperform its counterparts, those coordinated with four (Fe-N4/NC) or six N-atoms (Fe-N6/NC), as well as state-of-the-art SACs comprising other transition metals. Thus, Fe-N5/NC exhibits exceptional efficacy in activating peroxymonosulfate for the degradation of organic pollutants. The coordination number of N-atoms can be readily adjusted by pyrolysis of pre-assembly structures consisting of Fe3+ and various isomers of phenylenediamine. Fe-N5/NC displayed outstanding tolerance to environmental disturbances and minimal iron leaching when incorporated into a membrane reactor. A mechanistic study reveals that the axial ligand N reduces the contribution of Fe-3d orbitals in LUMO and increases the LUMO energy of Fe-N5/NC. This, in turn, reduces the oxophilicity of the Fe center, promoting the reactivity of *OO intermediate-a pivotal step for yielding singlet oxygen and the rate-determining step. These findings unveil the significance of manipulating the oxophilicity of metal atoms in single-atom catalysis and highlight the potential to augment Fenton-like catalysis performance using Fe-SACs.
Collapse
Affiliation(s)
- Yafei Fan
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Menghui Chu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Haibin Li
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Zhaoli Sun
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Dezhi Kong
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jianfei Yao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Huai-Yong Zhu
- School of Chemistry, Physics and Mechanical Engineering, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
13
|
Liu T, Li C, Chen X, Chen Y, Cui K, Wang D, Wei Q. Peroxymonosulfate Activation by Fe@N Co-Doped Biochar for the Degradation of Sulfamethoxazole: The Key Role of Pyrrolic N. Int J Mol Sci 2024; 25:10528. [PMID: 39408859 PMCID: PMC11477339 DOI: 10.3390/ijms251910528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
In this study, Fe, N co-doped biochar (Fe@N co-doped BC) was synthesized by the carbonization-pyrolysis method and used as a carbocatalyst to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) removal. In the Fe@N co-doped BC/PMS system, the degradation efficiency of SMX (10.0 mg·L-1) was 90.2% within 40 min under optimal conditions. Radical quenching experiments and electron spin resonance (ESR) analysis suggested that sulfate radicals (SO4•-), hydroxyl radicals (•OH), and singlet oxygen (1O2) participated in the degradation process. After the reaction, the proportion of pyrrolic N decreased from 57.9% to 27.1%. Pyrrolic N served as an active site to break the inert carbon network structure and promote the generation of reactive oxygen species (ROS). In addition, pyrrolic N showed a stronger interaction with PMS and significantly reduced the activation energy required for the reaction (∆G = 23.54 kcal/mol). The utilization potentiality of Fe@N co-doped BC was systematically evaluated in terms of its reusability and selectivity to organics. Finally, the intermediates of SMX were also detected.
Collapse
Affiliation(s)
- Tong Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Chenxuan Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Xing Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (C.L.); (X.C.); (Y.C.)
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Dejin Wang
- School of Resources and Environment, Anqing Normal University, Anqing 246011, China;
| | - Qiang Wei
- School of Resources and Environment, Anqing Normal University, Anqing 246011, China;
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Jia W, Li Y, Chen C, Wu Y, Liang Y, Du J, Feng X, Wang H, Wu Q, Guo WQ. Unveiling the fate of metal leaching in bimetal-catalyzed Fenton-like systems: pivotal role of aqueous matrices and machine learning prediction. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135291. [PMID: 39047571 DOI: 10.1016/j.jhazmat.2024.135291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Metal-based catalytic materials exhibit exceptional properties in degrading emerging pollutants within Fenton-like systems. However, the potential risk of metal leaching has become pressing environmental concern. This study addressed scientific issues pertaining to the leaching behavior and control strategies for metal-based catalytic materials. Innovative cobalt-aluminum hydrotalcite (CoAl-LDH) triggered peroxymonosulfate (PMS) activation system was constructed and achieved near-complete removal of Ciprofloxacin (CIP) across diverse water quality environments. Notably, it was found that the tunable ion exchange and Al3+ stabilization of CoAl-LDH occurred due to the particularity of neutral water quality, resulting in significantly lower Co2+ leaching levels (0.321 mg/L) compared to acidic conditions (5.103 mg/L). In light of this, machine learning technology was then employed for the first time to simulate the dynamic trend of Co2+ leaching and elucidated the critical regulatory roles and mechanisms of Al3+, aqueous matrix, and reaction rate. Furthermore, degradation systems based on different water quality and metal leaching levels regulated the generation levels of SO4.- and O2∙-, and the unique advantages of free radical attack paths were clarified through CIP degradation products and ecotoxicity analysis. These findings introduced novel insights and approaches for engineering application and pollution control in metal-based Fenton-like water treatment.
Collapse
Affiliation(s)
- Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuchu Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yaohua Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongqi Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juanshan Du
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju 58330, South Korea
| | - Xiaochi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
15
|
Yang Y, Li J, Qu W, Wang W, Ma C, Wei Z, Liu J, He X. Graphene/MoS 2-assisted alum sludge electrode induces selective oxidation for organophosphorus pesticides degradation: Co-oxidation and detoxification mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135002. [PMID: 38925050 DOI: 10.1016/j.jhazmat.2024.135002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/02/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Designing an electrode that can generate abundant free radicals and 1O2, which can effectively degrade and detoxify organophosphorus pesticides (OPPs) through a co-oxidation pathway, is important. In this study, we prepared a electrode GO/MoS2@AS by supporting MoS2 on alum sludge (AS) under graphene oxide (GO) nanoconfinement. The results show that the dominant role of 1O2 at the cathode and •OHads at the anode for degradation, in addition to the involvement of 1O2 in the cathodic degradation mechanism, can be attributed to the abundant precursor •O2- and H2O2. Furthermore, calculations using density functional theory and toxicity prediction of products show that the energy (∆E) requirements of •OHfree to break the C-O bond of the pyridine ring and phosphate group are higher than that required for 1O2, and this non-radical oxidation plays a key role in detoxification. In contrast, accelerating ring opening and oxidation processes are attributed to radical oxidation. Above all, the cathodic detoxification is more effective than anodic detoxification. Three prevalent OPPs, chlorpyrifos, glyphosate, and trichlorfon, were degraded in the GO/MoS2@AS system by over 90 %, with mineralization rates of 76.66 %, 85.46 %, and 82.18 %, respectively. This study provides insights into the co-oxidation degradation and detoxification mechanism mediated by 1O2 and •OHfree.
Collapse
Affiliation(s)
- Yulin Yang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China
| | - Junfeng Li
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, Xinjiang, PR China.
| | - Wenying Qu
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, Xinjiang, PR China
| | - Wenhuai Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, Xinjiang, PR China
| | - Chengxiao Ma
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China
| | - Zihan Wei
- College of Environment,Hohai University, Nanjing 210024, Jiangsu, PR China
| | - Jianchao Liu
- College of Environment,Hohai University, Nanjing 210024, Jiangsu, PR China
| | - Xinlin He
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, Xinjiang, PR China.
| |
Collapse
|
16
|
Lu N, Liu F. Tempospatially Confined Catalytic Membranes for Advanced Water Remediation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311419. [PMID: 38345861 DOI: 10.1002/adma.202311419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
The application of homogeneous catalysts in water remediation is limited by their excessive chemical and energy input, weak regenerability, and potential leaching. Heterogeneous catalytic membranes (CMs) offer a new approach to facilitate efficient, selective, and continuous pollutant degradation. Thus, integrating membranes and continuous filtration with heterogeneous advanced oxidation processes (AOPs) can promote thermodynamic and kinetic mass transfers in spatially confined intrapores and facilitate diffusion-reaction processes. Despite the remarkable advantages of heterogeneous CMs, their engineering application is practically restricted due to the fuzzy design criteria for specific applications. Herein, the recent advances in CMs for advanced water remediation are critically reviewed and the design flow for tempospatially confined CMs is proposed. Further, state-of-the-art CM materials and their catalytic mechanisms are reviewed, after which the tempospatial confinement mechanisms comprising the nanoconfinement effect, interface effect, and kinetic mass transfer are emphasized, thus clarifying their roles in the construction and performance optimization of CMs. Additionally, the fabrication methods for CMs based on their catalysts and pore sizes are summarized and an overview of their application and performance evaluations is presented. Finally, future directions for CMs in materials research and water treatment, are presented.
Collapse
Affiliation(s)
- Na Lu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
17
|
Lu W, Chen N, Feng C, Sirés I, An N, Mu H. Exploring the viability of peracetic acid-mediated antibiotic degradation in wastewater through activation with electrogenerated HClO. WATER RESEARCH 2024; 261:122007. [PMID: 38996730 DOI: 10.1016/j.watres.2024.122007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Electrochemical advanced oxidation processes (EAOPs) face challenging conditions in chloride media, owing to the co-generation of undesirable Cl-disinfection byproducts (Cl-DBPs). Herein, the synergistic activation between in-situ electrogenerated HClO and peracetic acid (PAA)-based reactive species in actual wastewater is discussed. A metal-free graphene-modified graphite felt (graphene/GF) cathode is used for the first time to achieve the electrochemically-mediated activation of PAA. The PAA/Cl- system allowed a near-complete sulfamethoxazole (SMX) degradation (kobs =0.49 min-1) in only 5 min in a model solution, inducing 32.7- and 8.2-fold rise in kobs as compared to single PAA and Cl- systems, respectively. Such enhancement is attributed to the occurrence of 1O2 (25.5 μmol L-1 after 5 min of electrolysis) from the thermodynamically favored reaction between HClO and PAA-based reactive species. The antibiotic degradation in a complex water matrix was further considered. The SMX removal is slightly susceptible to the coexisting natural organic matter, with both the acute cytotoxicity (ACT) and the yield of 12 DBPs decreasing by 29.4 % and 37.3 %, respectively. According to calculations, HClO accumulation and organic Cl-addition reactions are thermodynamically unfavored. This study provides a scenario-oriented paradigm for PAA-based electrochemical treatment technology, being particularly appealing for treating wastewater rich in Cl- ion, which may derive in toxic Cl-DBPs.
Collapse
Affiliation(s)
- Wang Lu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China; Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Ning An
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Haotian Mu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| |
Collapse
|
18
|
Li R, Huang D, Tao J, Wei Z, Wang G, Zhou W, Xu W, Huang H, Li S, Tang L. In-Depth Investigation of Role of -BCO 2 in the Degradation of Sulfamethazine by Metal-Free Biochar/Persulfate: The Mechanism of Occurrence of Nonradical Process. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44850-44862. [PMID: 39159305 DOI: 10.1021/acsami.4c08749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The remediation of organic wastewater through advanced oxidation processes (AOPs) based on metal-free biochar/persulfate systems has been extensively researched. In this work, boron-doped alkali lignin biochar (BKC1:3) was utilized to activate peroxymonosulfate (PMS) for the removal of sulfamethazine (SMZ). The porous structure and substantial specific surface area of BKC1:3 facilitated the adsorption and thus degradation of SMZ. The XPS characterization and density functional theory (DFT) calculations demonstrated that -BCO2 was the main active site of BKC1:3, which dominated the occurrence of nonradical pathways. Neither quenching experiments nor EPR characterization revealed the generation of free radical signals. Compared with KC, BKC1:3 possessed more electron-rich regions. The narrow energy gap (ΔEgap = 1.87 eV) of BKC (-BCO2) promoted the electron transfer to the substable complex (BKC@PMS*) on SMZ, driving the electron transfer mechanism. In addition, the adsorption energy of BKC(-BCO2)@PMS was lower (-0.75 eV → -5.12 eV), implying a more spontaneous adsorption process. The O-O (PMS) bond length in BKC(-BCO2)@PMS increased significantly (1.412 Å → 1.481 Å), which led to the easier decomposition of PMS during adsorption and facilitated the generation of 1O2. More importantly, a combination of Gaussian and LC-MS techniques was hypothesized regarding the attack sites and degradation intermediates of the active species in this system. The synergistic T.E.S.T software and toxicity tests predicted low or even no toxicity of the intermediates. Overall, this study proposed a strategy for the preparation of metal-free biochar, aiming to inspire ideas for the treatment of organic-polluted wastewater through advanced oxidation processes (AOPs).
Collapse
Affiliation(s)
- Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiaxi Tao
- ShenZhen Water (Group) Co., LTD, ShenZhen 518000, PR China
| | - Zhen Wei
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sai Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
19
|
Hou Y, Zhou P, Liu F, Tong K, Lu Y, Li Z, Liang J, Tong M. Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification. Nat Commun 2024; 15:7350. [PMID: 39187567 PMCID: PMC11347572 DOI: 10.1038/s41467-024-51878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
Owing to their capability to produce reactive oxygen species (ROS) under solar irradiation, covalent organic frameworks (COFs) with pre-designable structure and unique architectures show great potentials for water purification. However, the sluggish charge separation, inefficient oxygen activation and poor structure stability in COFs restrict their practical applications to decontaminate water. Herein, via a facile one-pot synthetic strategy, we show the direct conversion of reversible imine linkage into rigid thiazole linkage can adjust the π-conjugation and local charge polarization of skeleton to boost the exciton dissociation on COFs. The rigid linkage can also improve the robustness of skeleton and the stability of COFs during the consecutive utilization process. More importantly, the thiazole linkage in COFs with optimal C 2p states (COF-S) effectively increases the activities of neighboring benzene unit to directly modulate the O2-adsorption energy barrier and improve the ROS production efficiency, resulting in the excellent photocatalytic degradation efficiency of seven toxic emerging contaminants (e.g. degrading ~99% of 5 mg L-1 paracetamol in only 7 min) and effective bacterial/algal inactivation performance. Besides, COF-S can be immobilized in continuous-flow reactor and in enlarged reactor to efficiently eliminate pollutants under natural sunlight irradiation, demonstrating the feasibility for practical application.
Collapse
Affiliation(s)
- Yanghui Hou
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, P. R. China
| | - Peng Zhou
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, P. R. China
| | - Fuyang Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, P. R. China
| | - Ke Tong
- School of Environmental Science and Engineering, TianGong University, Tianjin, 300387, P. R. China
| | - Yanyu Lu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, P. R. China
| | - Zhengmao Li
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, P. R. China
| | - Jialiang Liang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China.
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, P. R. China.
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
20
|
Niu L, Lei Q, Zhao T, Tang Z, Cai Y, Hou D, Zhang S, Fang M, Hou G, Zhao X, Wu F. In situ N-doping engineered biochar catalysts for oxidation degradation of sulfadiazine via nonradical pathways: Singlet oxygen and electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173206. [PMID: 38761925 DOI: 10.1016/j.scitotenv.2024.173206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Understanding the structure of non-metallic heteroatom-doped carbon catalysts and the subsequent degradation of new pollutants is crucial for designing more efficient carbon catalysts. Environmentally friendly in situ N-doped biochar catalysts were prepared for peroxymonosulfate (PMS) activation and sulfadiazine (SDZ) degradation. The acid washing process and calcination temperature of catalyst increased π-π* shake up, graphitic N percentage, specific surface area and defects, promoting the transformation of pollutant degradation mechanism from radical pathway to non-radical pathway. 100 % of the SDZ with the initial concentration of 10 mg/L was quickly degraded within 60 min using 0.2 g/L catalysts and 0.5 mM PMS. Excellent catalytic performance was attributed to singlet oxygen and electron transfer-dominated non-radical pathways. The four potential degradation pathways of SDZ were proposed, and toxicity predication indicated that overall biotoxicity of the intermediates during SDZ degradation was decreased. This research deepens our understanding of the mechanisms of non-radical pathways and guides the synthesis of carbon-based catalysts.
Collapse
Affiliation(s)
- Lin Niu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Qitao Lei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment & Ecology, Jiangnan University, Wuxi 214122, PR China
| | - Tianhui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Siyuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mengyuan Fang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Guoqing Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
21
|
Feng M, Xu Z, Xie H, Lin K, Zhang M. Ultra-efficient peroxymonosulfate utilization and trichloroethylene degradation in heterogeneous catalytic system guided by sheet-like Cu 2MnO 4 nanoparticles: The role of Cu(III)-O species and free radicals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121799. [PMID: 38991347 DOI: 10.1016/j.jenvman.2024.121799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Synthesizing cubic spinel Cu2MnO4 with nanosheet structure (SCMO) aimed to construct a "non-radical-mediated radical-oxidative reaction", for increasing PMS utilization efficiency, and solving the defects of SO4•- and •OH through indirect PMS activation by electron transfer process. Compared with box-like Cu2MnO4 (11.1%, 0.0035 min-1) and ordinary Cu2MnO4 nanoparticles (21.3%, 0.0070 min-1), SCMO/PMS showed excellent trichloroethylene removal (98.8%, 0.1577 min-1). The pivotal role of Cu(III) was determined based on EPR analysis, quenching experiments, chemical probe experiments, hydrogen temperature-programmed reduction and Raman spectroscopy analysis, in-situ FTIR and Raman analyses. In brief, the interaction between PMS and SCMO could produce surface-bonded reactive complexes and the subsequent breaking of O-O bond in the sub-stable structure allowed the conversion of Cu(II) to Cu(III), which in turn facilitates the generation of •OH and SO4•-. The density functional theory (DFT) calculations provided supporting evidence for the electron donor role of SCMO and the increase of the electron acceptance capacity of PMS. SCMO/PMS system showed good resistance and degradation efficiency to complex composition and combined pollutants in actually contaminated groundwater, respectively. However, the coexistence of high concentrations of arsenic could significantly affect SCMO performance due to their adsorption on -OH groups, which still need in-depth study.
Collapse
Affiliation(s)
- Meiyun Feng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiqiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310003, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
22
|
Li S, Zou J, Wu J, Lin J, Tang C, Yang S, Chen L, Li Q, Wang P, Ma J. Protocatechuic acid enhanced the selective degradation of sulfonamide antibiotics in Fe(III)/peracetic acid process under actually neutral pH conditions. WATER RESEARCH 2024; 259:121891. [PMID: 38870888 DOI: 10.1016/j.watres.2024.121891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
The practical application of the Fe-catalyzed peracetic acid (PAA) processes is seriously restricted due to the need for narrow pH working range and poor anti-interference capacity. This study demonstrates that protocatechuic acid (PCA), a natural and eco-environmental phenolic acid, significantly enhanced the removal of sulfonamide antibiotics in Fe(III)/PAA process under actually neutral pH conditions (6.0-8.0) by complexing Fe(III). With sulfamethoxazole (SMX) as the model contaminant, the pseudo-first-order rate constant of SMX elimination in PCA/Fe(III)/PAA process was 63.5 times higher than that in Fe(III)/PAA process at pH 7.0, surpassing most of the previously reported strategies-enhanced Fe-catalyzed PAA processes (i.e., picolinic acid and hydroxylamine etc.). Excluding the primary contribution of reactive species commonly found in Fe-catalyzed PAA processes (e.g., •OH, R-O•, Fe(IV)/Fe(V) and 1O2) to SMX removal, the Fe(III)-peroxy complex intermediate (CH3C(O)OO-Fe(III)-PCA) was proposed as the primary reactive species in PCA/Fe(III)/PAA process. DFT theoretical calculations indicate that CH3C(O)OO-Fe(III)-PCA exhibited stronger oxidation potential than CH3C(O)OO-Fe(III), thereby enhancing SMX removal. Four potential removal pathways of SMX were proposed and the toxicity of reaction solution decreased with the removal of SMX. Furthermore, PCA/Fe(III)/PAA process exhibited strong anti-interference capacity to common natural anions (HCO3-, Cl-and NO3-) and humic acid. More importantly, the PCA/Fe(III)/PAA process demonstrated high efficiency for SMX elimination in actual samples, even at a trace Fe(III) dosage (i.e., 5 μM). Overall, this study provided a highly-efficient and eco-environmental strategy to remove sulfonamide antibiotics in Fe(III)/PAA process under actually neutral pH conditions and to strengthen its anti-interference capacity, underscoring its potential application in water treatment.
Collapse
Affiliation(s)
- Sheng Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China.
| | - Jianying Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Jinbin Lin
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Environment, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chenyu Tang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Shiyi Yang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Lingxin Chen
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, Fujian, 361005, PR China
| | - Panpan Wang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| |
Collapse
|
23
|
Zeng Y, Deng J, Zhou N, Xia W, Wang Z, Song B, Wang Z, Yang Y, Xu X, Zeng G, Zhou C. Mediated Peroxymonosulfate Activation at the Single Atom Fe-N 3O 1 Sites: Synergistic Degradation of Antibiotics by Two Non-Radical Pathways. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311552. [PMID: 38501866 DOI: 10.1002/smll.202311552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Indexed: 03/20/2024]
Abstract
The activation of persulfates to degrade refractory organic pollutants is a hot issue in advanced oxidation right now. Here, it is reported that single-atom Fe-incorporated carbon nitride (Fe-CN-650) can effectively activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) removal. Through some characterization techniques and DFT calculation, it is proved that Fe single atoms in Fe-CN-650 exist mainly in the form of Fe-N3O1 coordination, and Fe-N3O1 exhibited better affinity for PMS than the traditional Fe-N4 structure. The degradation rate constant of SMX in the Fe-CN-650/PMS system reached 0.472 min-1, and 90.80% of SMX can still be effectively degraded within 10 min after five consecutive recovery cycles. The radical quenching experiment and electrochemical analysis confirm that the pollutants are mainly degraded by two non-radical pathways through 1O2 and Fe(IV)═O induced at the Fe-N3O1 sites. In addition, the intermediate products of SMX degradation in the Fe-CN-650/PMS system show toxicity attenuation or non-toxicity. This study offers valuable insights into the design of carbon-based single-atom catalysts and provides a potential remediation technology for the optimum activation of PMS to disintegrate organic pollutants.
Collapse
Affiliation(s)
- Yuxi Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Jie Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Nan Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Wu Xia
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Zihao Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Ziwei Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
24
|
Wang M, Song Z, Shen Q, Zeng H, Su X, Sun F, Dong W, Xing D, Zhou G. Simultaneous enhanced antibiotic pollutants removal and sustained permeability of the membrane involving CoFe 2O 4/MoS 2 catalyst initiated with simple H 2O 2 backwashing. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135086. [PMID: 39024762 DOI: 10.1016/j.jhazmat.2024.135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Membranes for wastewater treatment should ideally exhibit sustainable high permeate production, enhanced pollutant removal, and intrinsic physical rejection. In this study, CoFe2O4/MoS2 serves as a non-homogeneous phase catalyst; it is combined with polyether sulfone membranes via liquid-induced phase separation to simultaneously sustain membrane permeability and enhance antibiotic pollutant degradation. The prepared catalytic membranes have higher pure water flux (329.34 L m-2 h-1) than pristine polyethersulfone membranes (219.03 L m-2 h-1), as well as higher mean pore size, porosity, and hydrophilicity. Under a moderate transmembrane pressure (0.05 MPa), tetracycline (TC) in synthetic and real wastewater was degraded by the optimal catalytic membrane by 72.7 % and 91.2 %, respectively. Owing to the generation of the reactive oxygen species (ROS) during the Fenton-like reaction process, the catalytic membrane could exclude the natural organics during the H2O2 backwash step and selectively promote fouling degradation in the membrane channel. The irreversible fouling ratio of the catalyzed membrane was significantly reduced, and the flux recovery rate increased by up to 91.6 %. A potential catalytic mechanism and TC degradation pathways were proposed. This study offers valuable insights for designing catalytic membranes with enhanced filtration performance.
Collapse
Affiliation(s)
- Mingming Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zi Song
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Qi Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Haojie Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiaoli Su
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wenyi Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dingyu Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guofei Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
25
|
Wang S, Wang J. Radiation-induced preparation of nanoscale CoO@graphene oxide for activating peroxymonosulfate to degrade emerging organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173211. [PMID: 38754511 DOI: 10.1016/j.scitotenv.2024.173211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
In this study, ionizing radiation was used to induce the in-situ formation of highly dispersed nanosized cobalt oxide on the surface of graphene oxide (R-Co-GO), which was highly effective for activating PMS to degrade sulfamethoxazole (SMX). R-Co-GO had the highest catalytic activity when 150 μL cobalt chloride hexahydrate solution was used in the precursor, and the pseudo first-order kinetic constant of SMX degradation was 0.07 min-1 with high mineralization efficiency (63.1 %) and high PMS utilization efficiency. The sulfate radicals and high-valent cobalt oxo were mainly responsible for SMX degradation. Mechanism analysis showed that cobalt active site dominated in PMS activation, which was responsible for the formation of sulfate radicals and high-valent cobalt oxo; while the carbon framework contributed to the formation of singlet oxygen. The R-Co-GO-150 had good catalytic activity and stability in five cycling experiments, in which SMX was completely degraded and the concentration of dissolved Co was below 0.1 mg/L. In addition, the R-Co-GO-150/PMS system could also degrade phenol, bisphenol A, atrazine and nitrobenzene effectively, confirming its wide applicability. This study provided a facile method to uniformly disperse the metal oxides on the surface of carbon materials, and an effective system for the removal of emerging organic pollutants from the actual wastewater.
Collapse
Affiliation(s)
- Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
26
|
Liu GC, Yi XH, Chu HY, Wang CC, Gao Y, Wang F, Wang FX, Wang P, Wang JF. Floating MIL-88A(Fe)@expanded perlites catalyst for continuous photo-Fenton degradation toward tetracyclines under artificial light and real solar light. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134420. [PMID: 38691997 DOI: 10.1016/j.jhazmat.2024.134420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
In this work, MIL-88A(Fe) was immobilized onto the expanded perlites to fabricate the floating MIL-88A(Fe)@expanded perlites (M@EP) catalyst via high throughput batch synthesis method under room temperature. The as-prepared M@EP could efficiently activate H2O2 to achieve 100% tetracycline antibiotics (TCs) removal under both artificial low power UV light (UVL) and real sunlight (SL) irradiation. The toxicological evaluation, growth experiment of mung beans and antimicrobial estimation revealed the decreasing aquatic toxicity of the TCs intermediates compared to those of the pristine TCs. A self-designed continuous bed reactor was employed to investigate the long-term operation of the M@EP. The findings demonstrated that the antibiotics mixture can be continuously degraded up to 7 days under UVL and 5 daytimes under SL irradiation, respectively. More importantly, ca. 76.9% and 81.6% of total organic carbon (TOC) removal efficiencies were accomplished in continuous bed reactor under UVL and SL irradiation, respectively. This work advances the immobilized MOFs on floating supports for their practical application in large-scale wastewater purification through advanced oxidation processes. ENVIRONMENTAL IMPLICATION: This work presented the high throughput production and photo-Fenton degradation application of floating MIL-88A(Fe)@expanded perlites (M@EP). Three tetracycline antibiotics (TCs) were selected as model pollutants to test the degradation ability of M@EP in batch experiment and continuous operation under artificial light and solar light. The complete TCs degradation could be accomplished in self-designed device up to 7 d under UV light and 5 d under real solar light. This work tapped a new door to push MOFs-based functional materials in the real water purification.
Collapse
Affiliation(s)
- Guang-Chi Liu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Xiao-Hong Yi
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Hong-Yu Chu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| | - Ya Gao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Fei Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Fu-Xue Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Jian-Feng Wang
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, PR China
| |
Collapse
|
27
|
Bibi M, Yasmin A, Murtza I, Abbas S. A novel univariate interpolation and bivariate regression hybrid method application to biodegradation of bisphenol A diglycidyl ether using laccases from Geobacillus stearothermophilus and Geobacillus thermoparafinivorans strains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45441-45451. [PMID: 38951392 DOI: 10.1007/s11356-024-34095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Bisphenol A diglycidyl ether (BADGE), a derivative of the well-known endocrine disruptor Bisphenol A (BPA), is a potential threat to long-term environmental health due to its prevalence as a micropollutant. This study addresses the previously unexplored area of BADGE toxicity and removal. We investigated, for the first time, the biodegradation potential of laccase isolated from Geobacillus thermophilic bacteria against BADGE. The laccase-mediated degradation process was optimized using a combination of response surface methodology (RSM) and machine learning models. Degradation of BADGE was analyzed by various techniques, including UV-Vis spectrophotometry, high-performance liquid chromatography (HPLC), Fourier transform infrared (FTIR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS). Laccase from Geobacillus stearothermophilus strain MB600 achieved a degradation rate of 93.28% within 30 min, while laccase from Geobacillus thermoparafinivorans strain MB606 reached 94% degradation within 90 min. RSM analysis predicted the optimal degradation conditions to be 60 min reaction time, 80°C temperature, and pH 4.5. Furthermore, CB-Dock simulations revealed good binding interactions between laccase enzymes and BADGE, with an initial binding mode selected for a cavity size of 263 and a Vina score of -5.5, which confirmed the observed biodegradation potential of laccase. These findings highlight the biocatalytic potential of laccases derived from thermophilic Geobacillus strains, notably MB600, for enzymatic decontamination of BADGE-contaminated environments.
Collapse
Affiliation(s)
- Monaza Bibi
- Microbiology and Biotechnology Research lab, Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan.
| | - Azra Yasmin
- Microbiology and Biotechnology Research lab, Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| | - Iqbal Murtza
- Department of Creative Technologies, Faculty of Computing and AI, Air University, Islamabad, Pakistan
| | - Sidra Abbas
- Microbiology and Biotechnology Research lab, Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| |
Collapse
|
28
|
Hu X, Zhu M. Were Persulfate-Based Advanced Oxidation Processes Really Understood? Basic Concepts, Cognitive Biases, and Experimental Details. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10415-10444. [PMID: 38848315 DOI: 10.1021/acs.est.3c10898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Persulfate (PS)-based advanced oxidation processes (AOPs) for pollutant removal have attracted extensive interest, but some controversies about the identification of reactive species were usually observed. This critical review aims to comprehensively introduce basic concepts and rectify cognitive biases and appeals to pay more attention to experimental details in PS-AOPs, so as to accurately explore reaction mechanisms. The review scientifically summarizes the character, generation, and identification of different reactive species. It then highlights the complexities about the analysis of electron paramagnetic resonance, the uncertainties about the use of probes and scavengers, and the necessities about the determination of scavenger concentration. The importance of the choice of buffer solution, operating mode, terminator, and filter membrane is also emphasized. Finally, we discuss current challenges and future perspectives to alleviate the misinterpretations toward reactive species and reaction mechanisms in PS-AOPs.
Collapse
Affiliation(s)
- Xiaonan Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
| |
Collapse
|
29
|
Zhao Y, Yang F, Jiang H, Gao G. Piezoceramic membrane with built-in ultrasound for reactive oxygen species generation and synergistic vibration anti-fouling. Nat Commun 2024; 15:4845. [PMID: 38844530 PMCID: PMC11156986 DOI: 10.1038/s41467-024-49266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Piezoceramic membranes have emerged as a prominent solution for membrane fouling control. However, the prevalent use of toxic lead and limitations of vibration-based anti-fouling mechanism impede their wider adoption in water treatment. This study introduces a Mn/BaTiO3 piezoceramic membrane, demonstrating a promising in-situ anti-fouling efficacy and mechanism insights. When applied to an Alternating Current at a resonant frequency of 20 V, 265 kHz, the membrane achieves optimal vibration, effectively mitigating various foulants such as high-concentration oil (2500 ppm, including real industrial oil wastewater), bacteria and different charged inorganic colloidal particles, showing advantages over other reported piezoceramic membranes. Importantly, our findings suggest that the built-in ultrasonic vibration of piezoceramic membranes can generate reactive oxygen species. This offers profound insights into the distinct anti-fouling processes for organic and inorganic wastewater, supplementing and unifying the traditional singular vibrational anti-fouling mechanism of piezoceramic membranes, and potentially propelling the development of piezoelectric catalytic membranes.
Collapse
Affiliation(s)
- Yang Zhao
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, China.
| | - Feng Yang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Han Jiang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
30
|
Dong Y, He CS, Sun S, Liu J, Xie ZH, Li JY, Zhou P, Zhang H, Dong F, Lai B. Mechanically treated Mn 2O 3 triggers peracetic acid activation for superior non-radical oxidation of micropollutants: Identification of reactive complexes. WATER RESEARCH 2024; 255:121486. [PMID: 38564895 DOI: 10.1016/j.watres.2024.121486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
This study used a simple mechanical ball milling strategy to significantly improve the ability of Mn2O3 to activate peracetic acid (PAA) for sustainable and efficient degradation of organic micropollutant (like bisphenol A, BPA). BPA was successfully removed and detoxified via PAA activation by the bm-Mn2O3 within 30 min under neutral environment, with the BPA degradation kinetic rate improved by 3.4 times. Satisfactory BPA removal efficiency can still be achieved over a wide pH range, in actual water and after reuse of bm-Mn2O3 for four cycles. The change in hydrophilicity of Mn2O3 after ball milling evidently elevated the affinity of Mn2O3 for binding to PAA, while the reduction in particle size exposed more active sites contributing partially to catalytic oxidation. Further analysis revealed that BPA oxidation in the ball mill-treated Mn2O3 (bm-Mn2O3)/PAA process mainly depends on the bm-Mn2O3-PAA complex (i.e., Mn(III)-OO(O)CCH3) mediated non-radical pathway rather than R-O• and Mn(IV). Especially, the existence of the Mn(III)-PAA complex was definitely verified by in situ Raman spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Simultaneously, density functional theory calculations determined that PAA adsorbs readily on manganese sites thereby favoring the formation of Mn(III)-OO(O)CCH3 complexes. This study advances an in-depth understanding of the underlying mechanisms involved in the manganese oxide-catalyzed activation of PAA for superior non-radical oxidation of micropollutants.
Collapse
Affiliation(s)
- Yudan Dong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Si Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jiali Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhi-Hui Xie
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jie-Yuan Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
31
|
Xie H, Li Q, Wang M, Feng Y, Wang B. Unraveling the photochemical behavior of dissolved organic matter derived from hydrothermal carbonization process water: Insights from molecular transformation and photoactive species. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133946. [PMID: 38442603 DOI: 10.1016/j.jhazmat.2024.133946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Hydrothermal carbonization process water (HTPW) has been utilized as a substitute for chemical fertilizers in agricultural applications. However, the input of HTPW into paddy water, particularly the significant proportion of dissolved organic matter (DOM) in HTPW (DOM-HTPW), directly engages in photochemical transformations, a phenomenon often overlooked. This study observed a consistent decrease in humification (SUVA280, 7.7-53.9%) and aromaticity (SUVA254, 6.1-40.0%) of DOM-HTPW after irradiation. The primary active photobleaching components of DOM-HTPW varied depending on the feedstock, such as protein for chicken manure DOM-HTPW and lignin for rice straw DOM-HTPW. The photochemical activity of DOM-HTPW was augmented by its lower molecular weight and higher hydrophilic composition, particularly evident in chicken manure DOM-HTPW, which exhibited higher generation rates for 1O2 (35.1-37.1%), 3DOM* (32.8-43.9%), and O2•- (28.6-48.8%) as measured by molecular probes. DOM-HTPW effectively facilitated the phototransformation of tetracycline, with the contribution of O2•- being more significant than 3DOM* and 1O2. These findings shed new light on the understanding the photochemical processes of DOM-HTPW as exogenous DOM and the interconnected fate of contaminants in aquatic environments.
Collapse
Affiliation(s)
- Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qiaoqiao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minli Wang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
32
|
Cheng Z, Yin K, Xu X, Yue Q, Gao B, Gao Y. Insights into the efficient water treatment over N-doped carbon nanosheets with layered minerals as template: The role of interfacial electron tunneling and transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133924. [PMID: 38452671 DOI: 10.1016/j.jhazmat.2024.133924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Peroxymonosulfate (PMS) oxidation reactions have been extensively studied recently. Due to the high material cost and low catalytic capability, PMS oxidation technology cannot be effectively applied in an industrial water treatment process. In this work, we developed a modification strategy based on enhancing the neglected electron tunneling effect to optimize the intrinsic electron transport process of the catalyst. The 2D nitrogen-doped carbon-based nanosheets with small interlayer spacing were prepared by self-polymerization of dopamine hydrochloride inserted into the natural layered bentonite template. Systematic characterizations confirmed that the smaller layer spacing in the 2D nitride-doped carbon-based nanosheets reduces the depletion layer width. The weak electronic shielding effect derived by the small layer spacing on the material subsurface enhanced the bulk electron tunneling effect. More bulk electrons could be migrated to the catalyst surface to activate PMS molecules. The PMS activation system showed ultrafast oxidation capability to degrade organic pollutants and strong ability to resist interference from environmental matrixes due to the optimized electron transfer process. Furthermore, the developed membrane reactor exhibited strong catalytic stability during the continuous degradation of P-Chlorophenol (CP).
Collapse
Affiliation(s)
- Ziwen Cheng
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Kexin Yin
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xing Xu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Yue Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
33
|
Long Y, Zhao J, Dai J, Lu G, Lin M, Li S. Atomically dispersed cobalt activator with nitrogen and sulfur co-coordination for high-efficiency Fenton-like catalysis: Insights into density-dependent activity and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133996. [PMID: 38471377 DOI: 10.1016/j.jhazmat.2024.133996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Atomically dispersed metal activators (ADMAs) have demonstrated unique advantages in environmental remediation, but how to controllably regulate the active site density and electronic structure of ADMAs to further enhance activation efficiency remains challenging. Here, we introduce a sulfur-atom-doping approach that allows the fine-tuning of atomic Co site content and electronic structure, enabling exploration of density-dependent activation performance of ADMAs for peroxymonosulfate (PMS)-based Fenton-like catalysis. Our investigation reveals a direct correlation between activation capacity and single-Co-site density. The optimal SNC@CoSA-0.05 activator with densely populated Co-N3S1 sites (10.1 wt%) displays exceptional efficacy in eliminating Rhodamine B, with specific activity of 31.0 min-1 g-1 L, outperforming most previously published activators. Moreover, SNC@CoSA-0.05 showed a remarkedly reduced metal leaching (47.4 μg L-1) than its nanocluster counterpart (194 μg L-1) at pH 3.2. Experimental and theoretical analyses unveiled that coordinated sulfur actively modulates the electronic structure of the central Co atom, enhancing the adsorption and activation of PMS, thereby improving decontamination efficiency. Mechanistic studies further elucidate the predominant electron-transfer regime involved in oxidizing micropollutants by SNC@CoSA-0.05/PMS, with Co(IV)=O, •OH, and SO4•- being the auxiliary oxidizing species. This study not only offers a method for concurrent adjustment of active site density and electronic structure in ADMAs but also sheds light on the activation mechanisms of atomic metal sites.
Collapse
Affiliation(s)
- Yangke Long
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
| | - Jiakun Zhao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jian Dai
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Guangzhao Lu
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Manling Lin
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Sheng Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
34
|
Jiang L, Li W, Wang H, Yang J, Chen H, Wang X, Yuan X, Wang H. Non-radical activation of low additive periodate by carbon-doped boron nitride for acetaminophen degradation: Significance of high-potential metastable intermediates. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133806. [PMID: 38430599 DOI: 10.1016/j.jhazmat.2024.133806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/28/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Metal-free environmental-friendly and cost-effective catalysts for periodate (PI) activation are crucial to popularize their application for micropollutant removal in water. Herein, we report that carbon-doped boron nitride (C-BN) can efficiently activate PI to degrade acetaminophen under very low oxidant doses (40 μM) and over a relatively wide pH range (3-9). As expected, the significant reduction in periodate addition is likely to be due to the higher chemical utilization efficiency achieved by a non-radical oxidation pathway. This involved two main mechanisms, the electron transfer process mediated by the high-potential metastable C-BN-900-PI* complex and singlet oxygen. In this case, the CO groups and defects on the C-BN surface were identified as key active sites for PI activation. Notably, the prepared C-BN-900 had good cycling performance and the degradation efficiency is recovered after simple annealing. The existence of HCO3- and HA significantly inhibited the reaction, whereas Cl-, SO42-, and NO3- had little effect on the degradation of ACE. Overall, this study provides a new alternative method to regulate the non-radical pathway of boron nitride/periodate system.
Collapse
Affiliation(s)
- Longbo Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Wenqin Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hui Wang
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Jinjuan Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Haoyun Chen
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, PR China
| | - Xinyu Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
35
|
Yin K, Hong W, Yang J, Li Y, Gao Y, Li Q, Xu X. Selective and ultrafast oxidation of multiple pollutants by biomorphic diatomite-based catalyst and stable catalytic Fenton-like membrane: Degradation behavior and mechanism analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123825. [PMID: 38513946 DOI: 10.1016/j.envpol.2024.123825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Carbon-driven advanced oxidations show great potential in water purification, but regulating structures and properties of carbon-based catalysts to achieve ultrafast Fenton-like reactions remains challenging. Herein, a biomorphic diatomite-based catalyst (BD-C) with Si-O doping was prepared using natural diatomite as silicon source and porous template. The results showed that the metal-free BD-C catalyst exhibited ultrafast oxidation performances (0.95-2.58 min-1) towards a variety of pollutants in PMS-based Fenton-like reaction, with the Fenton-like activity of metal-free catalyst comparable to metal-based catalysts or even single-atom catalysts. Pollutants (e.g., CP, BPA, TC, and PCM) with electron-donating groups exhibited extremely low PMS decomposition with overwhelmed electron transfer process (ETP), while high PMS consumption was induced by the addition of electron-withdrawing pollutants (e.g., MNZ and ATZ), which was dominated by radical oxidation. The BD-C/PMS system also showed a high ability to resist the environmental interference. In-depth theoretical investigations demonstrated that the coordination of Si-O can lower the potential barrier of PMS activation for accelerating the generation of radicals, and also promote the electron transfer from pollutants to the BD-C/PMS complexes. In addition, BD-C was deposited onto a polytetrafluoroethylene membrane (PTFEM) with 100% of pollutants removal over 10 h, thereby revealing the promising prospects of utilizing BD-C for practical applications.
Collapse
Affiliation(s)
- Kexin Yin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Wei Hong
- Shandong Resources and Environment Construction Group Co. Ltd., Jinan, 250100, PR China
| | - Jingren Yang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China; Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, PR China.
| |
Collapse
|
36
|
Xian L, Fan G. N,S,O triply-doped carbon with nanotubes-interwoven nanosheets encapsulated Co nanoparticles for robust antibiotic destruction via activating peroxymonosulfate. ENVIRONMENTAL RESEARCH 2024; 248:118259. [PMID: 38272289 DOI: 10.1016/j.envres.2024.118259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
The development of facile and effective approaches to regulate the stability and reusability of metallic Co catalytic materials towards peroxymonosulfate (PMS) activation for remediating antibiotic pollutants remains challenging. In this study, we develop a one-step pyrolysis strategy to fabricate three-dimensional porous architecture assembled with N,S,O-codoped carbon nanotube-interwoven hierarchically porous carbon nanosheets encapsulated Co nanoparticles (Co@NSOC), which serve as chainmail catalysts for stable and reusable degradation of tetracycline hydrochloride (TCH) through PMS activation. The optimal Co@NSOC-700-activated PMS system presents an excellent removal efficiency of 94.1 % for TCH within 10 min and a high cycling efficiency of 92.9 % after eight cycles. The encapsulated structure, abundant catalytic sites, superior hydrophilicity and strong magnetism contribute to the high performance. Further investigation demonstrates that both radical and nonradical pathways contribute to the TCH destruction, and 1O2 is verified as the dominant reactive substance. The possible degradation pathways and the toxicity of intermediates for TCH are evaluated. This work offers an innovative structure design and surface modulation strategy to fabricate robust catalysts towards environmental remediation.
Collapse
Affiliation(s)
- Lin Xian
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|
37
|
Xie Z, Zhang Y, Li Z, Zhang S, Du C. Nitrogen-Doped Biochar for Enhanced Peroxymonosulfate Activation to Degrade Phenol through Both Free Radical and Direct Oxidation Based on Electron Transfer Pathways. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8520-8532. [PMID: 38608211 DOI: 10.1021/acs.langmuir.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Nowadays, super nitrogen-doped biochar (SNBC) material has become one of the most promising metal-free catalysts for activating peroxymonosulfate (PMS) to degrade organic pollutants. To understand the evolution of SNBC properties with fabrication conditions, a variety of SNBC materials were prepared and characterized by elemental analysis, N2 adsorption-desorption, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. We systematically investigated the activation potential of these SNBC materials for PMS to degrade phenol. SN1BC-800 with the best catalytic performance was obtained by changing the activation temperatures and the ratio of biochar to melamine. The effects of catalyst dosage, the PMS concentration, pH, and reaction temperature on phenol degradation were studied in detail. In the presence of 0.3 g/L SN1BC-800 and 1 g/L PMS, the removal rate of 20 mg/L phenol could reach 100% within 5 min. According to electron paramagnetic resonance spectra and free radical quenching experiments, a nonfree radical pathway of phenol degradation dominated by 1O2 and electron transfer was proposed. More interestingly, the excellent catalytic performance of the SN1BC-800/PMS system is universally applicable in the degradation of other typical organic pollutants. In addition, the degradation rate of phenol is still over 80% after five reuses, which shows that the SN1BC-800 catalyst has high stability and good application prospects in environmental remediation.
Collapse
Affiliation(s)
- Zengrun Xie
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai 264025, Shandong province, China
| | - Yuanyuan Zhang
- Environmental Monitor Station of Yantai, Shandong Province, China, No. 118, Qingnian South Road, Yantai 264000, Shandong province, China
| | - Zhiling Li
- Division of Science and Technology, Ludong University, Yantai 264025, Shandong province, China
| | - Shengxiao Zhang
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai 264025, Shandong province, China
| | - Chenyu Du
- School of Chemistry and Materials Science, Institute of Environmental Science, Ludong University, Yantai 264025, Shandong province, China
| |
Collapse
|
38
|
Wang K, Li H, Qin X, Ma T, Zhu L, Zhang C, Yu W, Zhou X. Theory-guided unraveling of the mechanism underlying Cu 1.0/Mn 1.0-ZnO with dual reaction centers for enhanced peroxymonosulfate activation. ENVIRONMENTAL RESEARCH 2024; 247:118258. [PMID: 38262512 DOI: 10.1016/j.envres.2024.118258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Developing efficient catalytic systems for water contamination removal is a topic of great interest. However, the use of heterogeneous catalysts faces challenges due to insufficient active sites and electron cycling. In this study, results from first-principles calculations demonstrate that dual reaction centers (DRCs) are produced around the Cu and Mn sites in Cu1.0/Mn1.0-ZnO due to the electronegativity difference. Experimental results reveal the material with DRCs greatly enhances electron transfer efficiency and significantly impacts the oxidation and reduction of peroxymonosulfate (PMS). In addition, the self-consistent potential correction (SCPC) method was introduced to correct the energy and charge of charged periodic systems simulating a catalytic process, resulting in more precise catalytic results. Specifically, the material exhibits a preference for adsorbing negatively charged PMS anions at electron-deficient Mn sites, facilitating PMS oxidation for the generation of 1O2, and PMS reduction around the electron-rich Cu for the formation of •OH and SO4•-. The major reactive oxygen species is 1O2, showcasing effective performance in various degradation systems. Overall, our work provides novel insights into the persulfate-based heterogeneous catalytic oxidation process, paving the way for the development of high-performance catalytic systems for water purification.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Xiaofei Qin
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ting Ma
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Lin Zhu
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Wei Yu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xulun Zhou
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
39
|
Xie Y, Zhang K, Shen Z, Feng M, Wang C. Simulated sunlight/periodate-triggered formation of toxic halogenated bisphenols in highly saline water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26320-26329. [PMID: 38523216 DOI: 10.1007/s11356-024-32962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Periodate (PI)-based oxidation using the activators, such as metal ions and light irradiation, has emerged as a feasible treatment strategy for the effective remediation of contaminated water and wastewater. Given the pervasive nature of PI residues and solar exposure during application, the role of solar light in remediating the challenging highly saline water matrices needs to be elucidated. In this study, bisphenol A (BPA) was selected as the targeted micropollutant, which can be efficiently eliminated by the simulated sunlight (SSL)/PI system in the presence of high-level Cl- (up to 846.0 mM) at pH 7.0. The presence of different background constituents of water, such as halides, nitrate, and dissolved organic matter, had no effect, or even accelerated BPA abatement. Particularly, the ubiquitous Br- or I- appreciably enhanced the BPA transformation efficiency, which may be ascribed to the generation of high-selective reactive HOBr or HOI. The in silico predictions suggested that the transformation products generated by halide-mediated SSL/PI systems via halogen substitutions showed greater persistence, bioaccumulation, and aquatic toxicity than BPA itself. These findings highlighted a widespread phenomenon during PI-based oxidative treatment of highly saline water, which needs special attention under solar light illumination.
Collapse
Affiliation(s)
- Yuwei Xie
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Kaiting Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Zhen Shen
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Chong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
40
|
Phonlakan K, Pornsuwan S, Nijpanich S, Budsombat S. Co 2+-adsorbed chitosan-grafted-poly(acrylic acid) hydrogel as peroxymonosulfate activator for effective dye degradation. Int J Biol Macromol 2024; 265:130922. [PMID: 38518932 DOI: 10.1016/j.ijbiomac.2024.130922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
In this work, chitosan-grafted-poly(acrylic acid) (CS-g-PAA) was synthesized for use as a Co2+ adsorbent and circularly utilized as a peroxymonosulfate (PMS) activator in the degradation of rhodamine B (RhB) dye. CS-g-PAA demonstrated 3.7 times higher adsorption capacity toward Co2+ than pristine chitosan. The impact of the adsorption conditions was evaluated. The pseudo-second-order kinetic model and the Langmuir isotherm model best described the adsorption process. Under optimum conditions, the adsorption capacity of CS-g-PAA for Co2+ was 212 mg/g. The Co2+-adsorbed CS-g-PAA hydrogel was further utilized in the RhB degradation process. The effects of catalyst dosage, initial RhB concentration, pH, and the coexistence of anions on the degradation of RhB were studied. The hydrogel catalyst could remove 98 % of RhB within 5 min, at a degradation rate of 0.624 per min. Electron paramagnetic resonance (EPR) analysis and the radical scavenger experiment suggested that SO4•-, HO•, 1O2, and O2•- were involved in the degradation. Furthermore, when tested in various water systems, high degradation efficiencies of 98 % were attained after 20 min. The hydrogel catalyst performed excellent degradation over ten cycles without any chemical recovery processes. Moreover, high degradation efficiencies were observed between 95 % and 98 % when tested with other dyes.
Collapse
Affiliation(s)
- Kunlarat Phonlakan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Soraya Pornsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Supinya Nijpanich
- Synchrotron Light Research Institute (Public organization), Nakhonratchasima 30000, Thailand
| | - Surangkhana Budsombat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Materials Chemistry Research Center, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
41
|
Du F, Huo X, Xue C, Zhang C, Wang H, Dai C, Yang Y, Lai C, He J. Catalytic activation of persulfate by nanoscale zero-valent iron-derived supported boron-doped porous carbon for bisphenol A degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28241-28252. [PMID: 38538997 DOI: 10.1007/s11356-024-33035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/18/2024] [Indexed: 04/30/2024]
Abstract
In this study, boron-doped porous carbon materials (BCs) with high surface areas were synthesized employing coffee grounds as carbon source and sodium bicarbonate and boric acid as precursors; afterward, nanoscale zero-valent iron (nZVI) and BCs composites (denoted as nZVI@BCs) were further prepared through reduction of FeSO4 by NaBH4 along with stirring. The performance of the nZVI@BCs for activating persulfate (PS) was evaluated for the degradation of bisphenol A (BPA). In comparison with nZVI@Cs/PS, nZVI@BCs/PS could greatly promote the degradation and mineralization of BPA via both radical and non-radical pathways. On the one hand, electron spin resonance and radical quenching studies represented that •OH, SO4•-, and O2•- were mainly produced in the nZVI@BCs/PS system for BPA degradation. On the other hand, the open circuit voltages of nZVI@BCs and nZVI@Cs in different systems indicated that non-radical pathway still existed in our system. PS could grab the unstable unpaired electron on nZVI@BCs to form a carbon material surface-confined complex ([nZVI@BCs]*) with a high redox potential, then accelerate BPA removal efficiency via direct electron transfer. Furthermore, the performances and mechanisms for BPA degradation were examined by PS activation with nZVI@BC composites at various conditions including dosages of nZVI@BCs, BPA and PS, initially pH value, temperature, common anions, and humid acid. Therefore, this study provides a novel insight for development of high-performance carbon catalysts toward environmental remediation.
Collapse
Affiliation(s)
- Fuxiang Du
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China
| | - Xiaowei Huo
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China.
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China.
- College of Architecture & Environment, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Chao Xue
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China
| | - Chenggui Zhang
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China
| | - Huichao Wang
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China
| | - Chao Dai
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China
| | - Yang Yang
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China
| | - Cheng Lai
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China
| | - Junjun He
- China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, 430074, People's Republic of China
- China Construction Third Engineering Bureau, Southwest Group Co., Ltd., Chengdu, 610218, People's Republic of China
| |
Collapse
|
42
|
Jiang R, Zhong D, Xu Y, Chang H, He Y, Zhang J, Liao P. Chitosan derived N-doped carbon anchored Co 3O 4-doped MoS 2 nanosheets as an efficient peroxymonosulfate activator for degradation of dyes. Int J Biol Macromol 2024; 265:130519. [PMID: 38553393 DOI: 10.1016/j.ijbiomac.2024.130519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/18/2024]
Abstract
Peroxymonosulfate (PMS), which is dominated by non-free radical pathway, has a good removal effect on organic pollutants in complex water matrices. In this article, a biodegradable cobalt-based catalyst (Co3O4/MoS2@NCS) was synthesized by a simple hydrothermal method with chitosan (CS) as nitrogen‑carbon precursor and doped with Cobaltic‑cobaltous oxide (Co3O4) and Molybdenum disulfide (MoS2), and was used to activate PMS to degrade dye wastewater. Electrochemical tests showed that Co3O4/MoS2@NCS exhibited higher current density and cycling area than MoS2@NCS and MoS2. In the Co3O4/MoS2@NCS/PMS system, the degradation rate of 30 mg·L-1 rhodamine B (RhB) reached 97.75 % within 5 min, and kept as high as 94.34 % after 5 cycles. Its rate constant was 1.91 and 8.37 times that of MoS2@NCS/PMS and MoS2/PMS, respectively. It had good complex background matrices and acid-base anti-interference ability, and had good universality and reusability. The degradation rate of methyl orange (MO) and methylene blue (MB) were more than 91 % within 5 min at pH 4.8. The experimental results demonstrated that MoS2-modified CS as a carrier exposed a large number of active sites, which not only dispersed Co3O4 nanoparticles and improved the stability of the catalyst, but also provided abundant electron rich groups, and promoted the activation of PMS and the production of reactive oxygen species (ROS). PMS was effectively activated by catalytic sites (Co3+/Co2+, Mo4+/Mo5+/Mo6+, CO, pyridine N, pyrrole N, hydroxyl group and unsaturated sulfur), producing a large number of radicals that attack RhB molecules, causing chromophore cleavage, ring opening, and mineralization. Among them, non-free radical 1O2 was the main ROS for RhB degradation. This work is expected to provide a new idea for the design and synthesis of environmentally friendly and efficient MoS2-modified cobalt-based catalysts.
Collapse
Affiliation(s)
- Ran Jiang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Haixing Chang
- School of Resources & Environmental Science, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Yuanzhen He
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jiayou Zhang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Pengfei Liao
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
43
|
Chu B, Tan Y, Lou Y, Lin J, Liu Y, Feng J, Chen H. Preparation of Cobalt-Nitrogen Co-Doped Carbon Nanotubes for Activated Peroxymonosulfate Degradation of Carbamazepine. Molecules 2024; 29:1525. [PMID: 38611805 PMCID: PMC11013098 DOI: 10.3390/molecules29071525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Cobalt-nitrogen co-doped carbon nanotubes (Co3@NCNT-800) were synthesized via a facile and economical approach to investigate the efficient degradation of organic pollutants in aqueous environments. This material demonstrated high catalytic efficiency in the degradation of carbamazepine (CBZ) in the presence of peroxymonosulfate (PMS). The experimental data revealed that at a neutral pH of 7 and an initial CBZ concentration of 20 mg/L, the application of Co3@NCNT-800 at 0.2 g/L facilitated a degradation rate of 64.7% within 60 min. Mechanistic investigations indicated that the presence of pyridinic nitrogen and cobalt species enhanced the generation of reactive oxygen species. Radical scavenging assays and electron spin resonance spectroscopy confirmed that radical and nonradical pathways contributed to CBZ degradation, with the nonradical mechanism being predominant. This research presents the development of a novel PMS catalyst, synthesized through an efficient and stable method, which provides a cost-effective solution for the remediation of organic contaminants in water.
Collapse
Affiliation(s)
- Bei Chu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi 315300, China; (Y.T.); (Y.L.); (J.L.); (Y.L.); (J.F.); (H.C.)
| | | | | | | | | | | | | |
Collapse
|
44
|
Duan P, Kong F, Fu X, Han Z, Sun G, Yu Z, Wang S, Cui Y. Peroxymonosulfate activation by walnut shell activated carbon supported nano zero-valent iron for the degradation of tetracycline: Performance, degradation pathway and mechanism. ENVIRONMENTAL RESEARCH 2024; 245:117971. [PMID: 38145740 DOI: 10.1016/j.envres.2023.117971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/11/2023] [Accepted: 12/03/2023] [Indexed: 12/27/2023]
Abstract
In this study, activated carbon (WS-AC) was prepared from walnut shell. Nano-zero-valent iron (nZVI) was loaded on walnut shell activated carbon by liquid phase reduction method and used as catalyst (WS-AC/nZVI) to activate peroxymonosulfate (PMS) to efficiently degrade tetracycline (TC) in solution. The composite material with a mass ratio of WS-AC to nZVI of 1:1 has the highest catalytic performance for activating PMS to degrade TC. The results showed that under the conditions of TC concentration of 100 ppm, PMS dosage of 0.2 mM and WS-AC/nZVI dosage of 0.1 g/L, the removal efficiency of TC could reach 81%. Based on quenching experiments and electron spin resonance (EPR), it was verified that •OH, SO4•- and 1O2 bound on the catalyst surface were the main reactive oxygen species during the reaction. The intermediate products of TC were identified by liquid chromatography-mass spectrometry (HPLC-MS) and DFT calculation, and the possible degradation pathway of TC was proposed. The catalyst still maintained high removal efficiency of TC after four cycles of experiments, and the minimal iron loss on the surface of the catalyst indicated that it had good stability. The efficient and stable WS-AC/nZVI activated PMS showed great potential in the degradation of antibiotics.
Collapse
Affiliation(s)
- Pingping Duan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Fanlong Kong
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Xiuzheng Fu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhijie Han
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Guangwei Sun
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhengda Yu
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China
| | - Sen Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China.
| | - Yuqian Cui
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China.
| |
Collapse
|
45
|
Jiang Y, Gao K, Li Y, Chen Y, Cai X, Wang D. Ni introduction induced non-radical degradation of bisphenol A in spinel ferrite/H 2O 2 systems. Chem Commun (Camb) 2024; 60:3158-3161. [PMID: 38407404 DOI: 10.1039/d3cc06100k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Herein, we achieved reactive oxygen species manipulation using transition metal spinel ferrites (NixCo1-xFe2O4, x = 0, 0.5, 1) as Fenton-like agents. Specifically, NiFe2O4 mainly produced 1O2 and high-valence metals, while CoFe2O4 mainly produced ˙OH, from H2O2 activation. With bisphenol A as a model pollutant, the NiFe2O4/H2O2 system exhibited good resistance to ion interference.
Collapse
Affiliation(s)
- Yilan Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China.
| | - Keyi Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China.
| | - Yingying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China.
| | - Yuanyuan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China.
| | - Xinyang Cai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China.
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China.
| |
Collapse
|
46
|
Wang F, Li YH, Gao Y, Chai Y, Wei Y, Wang CC, Wang P, Fu H, Zhao C. Ultrafast removal of organics via peroxymonosulfate activation over Co 2P/TD hollow spheres derived from ZIF-67. Chem Commun (Camb) 2024. [PMID: 38477555 DOI: 10.1039/d4cc00280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Co2P/tetrasodium diphosphate (TD) derived from ZIF-67/sodium phytate was newly developed and synthesized, and exhibited excellent degradation ability toward various refractory organics via peroxymonosulfate activation. A corresponding reaction mechanism was proposed. In addition, a continuous-flow operation of phenol degradation was realized.
Collapse
Affiliation(s)
- Fei Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Yu-Hang Li
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Ya Gao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Yutong Chai
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Yuwei Wei
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Huifen Fu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Chen Zhao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
47
|
Dai H, Zhao Z, Wang K, Meng F, Lin D, Zhou W, Chen D, Zhang M, Yang D. Regulating electronic structure of Fe single-atom site by S/N dual-coordination for efficient Fenton-like catalysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133399. [PMID: 38163411 DOI: 10.1016/j.jhazmat.2023.133399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The activity of single-atom catalysts in peroxymonosulfate activation process is bound up with the local electronic state of metal center. However, the large electronegativity of N atoms in Metal-N4 restricts the electron transfer between center metal atom and peroxymonosulfate. Herein, we constructed Fe-SN-C catalyst by incorporating S atom in the first coordination sphere of Fe single-atom site (Fe-S1N3) for Fenton-like catalysis. The Fe-SN-C with a low valent Fe is found to exhibit excellent catalytic activity for bisphenol A degradation, and the corresponding rate constant reaches 0.405 min-1, 11.9-fold higher than the original Fe-N-C. Besides, the Fe-SN-C/PMS system exhibits ideal catalytic stability under the effect of wide pH range and background substrates by the fast generation of high-valent Fe species. Experimental results and theoretical calculations reveal that the dual coordination of S and N atoms notably increases the local electron density of Fe atoms and electron filling in eg orbital, causing a d band center shifting close to the fermi level and thereby optimizes the activation energy for peroxymonosulfate decomposition via Fe 3d-O 2p orbital interaction. This work provides further development of promising SACs for the efficient activation of peroxymonosulfate based on direct regulation of the coordination environment of active center metal atoms.
Collapse
Affiliation(s)
- Huiwang Dai
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Ecological Civilization Academy, Anji, Zhejiang 310058, China
| | - Zhendong Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fanxu Meng
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Ecological Civilization Academy, Anji, Zhejiang 310058, China
| | - Wenjun Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Ecological Civilization Academy, Anji, Zhejiang 310058, China.
| | - Dingjiang Chen
- Zhejiang Ecological Civilization Academy, Anji, Zhejiang 310058, China; Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming Zhang
- Department of Environment Engineering, China Jiliang University, Hangzhou 310018, China
| | - Dongye Yang
- Zhejiang Huanneng Environmental Technology Co. Ltd., Hangzhou, Zhejiang 310012, China
| |
Collapse
|
48
|
Li T, Omoniyi AO, Wang Y, Hu X, Su Z. Enhancing dye degradation using a novel cobalt metal-organic framework as a peroxymonosulfate activator. Dalton Trans 2024; 53:3523-3533. [PMID: 38275124 DOI: 10.1039/d3dt03707j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Among transition metals, cobalt ions exhibit superior catalytic activity in the peroxymonosulfate (PMS) degradation of pollutants. However, practical application is hindered by their high rate of ion leaching and the propensity for particle reunion issues. In this study, a novel cobalt metal-organic framework catalyst, denoted as CUST-565 ([Co3(BTB)2(BIPY)2]·4.5H2O·DMA), was synthesized via a one-step solvothermal method. The obtained crystal was employed as a catalyst to activate PMS for degrading two pollutants, methyl orange (MO) and rhodamine B (RhB), in wastewater. The catalyst demonstrated efficacy in PMS, achieving 97% degradation of MO and 98% degradation of RhB within 30 min at an initial concentration of 20.0 mg L-1. Additionally, various factors affecting dye degradation, including PMS dosage, catalyst dosage, temperature, initial pH, and coexisting anions, were investigated. Radical quenching experiments confirmed the presence of sulfate radicals (SO4˙-), hydroxyl radicals (HO˙), superoxide radicals (O2˙-), and singlet oxygen (1O2) in the system. After four cycles, CUST-565 retained its ability to catalytically degrade approximately 80% of the pollutants. These observed stability and reusability properties, corroborated by a series of characterization analyses before and after use, suggest that CUST-565 exhibits reliable performance. This work contributes to the development of cobalt-PMS catalysts for efficiently degrading dyes in wastewater.
Collapse
Affiliation(s)
- Tuotuo Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, China
| | - Ahmed Olalekan Omoniyi
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, China
| | - Yuliang Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, China
| | - Xiaoli Hu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, China
| | - Zhongmin Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, China
- Joint Sino-Russian Laboratory of Optical Materials and Chemistry, Changchun 130022, China.
| |
Collapse
|
49
|
Cao Y, Li J, Wang Z, Guan C, Jiang J. The synergistic effect of oxidant-peroxide coupling systems for water and wastewater treatments. WATER RESEARCH 2024; 249:120992. [PMID: 38096724 DOI: 10.1016/j.watres.2023.120992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/09/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
With the growing complexity and severity of water pollution, it has become increasingly challenging to effectively remove contaminants or inactivate microorganisms just by traditional chemical oxidants such as O3, chlorine, Fe(VI) and Mn(VII). Up till now, numerous studies have indicated that these oxidants in combination with peroxides (i.e., hydrogen peroxide (H2O2), peroxymonosulfate (PMS), peracetic acid (PAA) and periodate (PI)) exhibited excellent synergistic oxidation. This paper provided a comprehensive review on the combination of aforementioned oxidant-peroxide applied in water and wastewater treatments. From one aspect, the paper thoroughly elucidated the synergy mechanism of each oxidant-peroxide combination in turn. Among these combinations, H2O2 or PMS generally performed as the activator of four traditional oxidants above to accelerate reactive species generation and therein various reaction mechanisms, including electron transfer, O atom abstraction and oxo ligand substitution, were involved. In addition, although neither PAA nor PI was able to directly activate Fe(VI) and Mn(VII), they could act as the stabilizer of intermediate reactive iron/manganese species to improve the latter utilization efficiency. From another aspect, this paper summarized the influence of water quality parameters, such as pH, inorganic ions and natural organic matter (NOM), on the oxidation performance of most combined systems. Finally, this paper highlighted knowledge gaps and identified areas that require further research.
Collapse
Affiliation(s)
- Ying Cao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai, 519087, China
| | - Zhen Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Chaoting Guan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
50
|
Guo J, Wang Y, Shang Y, Yin K, Li Q, Gao B, Li Y, Duan X, Xu X. Fenton-like activity and pathway modulation via single-atom sites and pollutants comediates the electron transfer process. Proc Natl Acad Sci U S A 2024; 121:e2313387121. [PMID: 38190529 PMCID: PMC10801885 DOI: 10.1073/pnas.2313387121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The studies on the origin of versatile oxidation pathways toward targeted pollutants in the single-atom catalysts (SACs)/peroxymonosulfate (PMS) systems were always associated with the coordination structures rather than the perspective of pollutant characteristics, and the analysis of mechanism commonality is lacking. In this work, a variety of single-atom catalysts (M-SACs, M: Fe, Co, and Cu) were fabricated via a pyrolysis process using lignin as the complexation agent and substrate precursor. Sixteen kinds of commonly detected pollutants in various references were selected, and their lnkobs values in M-SACs/PMS systems correlated well (R2 = 0.832 to 0.883) with their electrophilic indexes (reflecting the electron accepting/donating ability of the pollutants) as well as the energy gap (R2 = 0.801 to 0.840) between the pollutants and M-SACs/PMS complexes. Both the electron transfer process (ETP) and radical pathways can be significantly enhanced in the M-SACs/PMS systems, while radical oxidation was overwhelmed by the ETP oxidation toward the pollutants with lower electrophilic indexes. In contrast, pollutants with higher electrophilic indexes represented the weaker electron-donating capacity to the M-SACs/PMS complexes, which resulted in the weaker ETP oxidation accompanied with noticeable radical oxidation. In addition, the ETP oxidation in different M-SACs/PMS systems can be regulated via the energy gaps between the M-SACs/PMS complexes and pollutants. As a result, the Fenton-like activities in the M-SACs/PMS systems could be well modulated by the reaction pathways, which were determined by both electrophilic indexes of pollutants and single-atom sites. This work provided a strategy to establish PMS-based AOP systems with tunable oxidation capacities and pathways for high-efficiency organic decontamination.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, People’s Republic of China
| | - Yujie Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, People’s Republic of China
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao266590, People’s Republic of China
| | - Kexin Yin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, People’s Republic of China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, People’s Republic of China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, People’s Republic of China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao266237, People’s Republic of China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao266237, People’s Republic of China
| |
Collapse
|