1
|
Ribeiro AVC, Mannarino CF, Dos Santos Leal T, de Oliveira CS, Bianco K, Clementino MM, Novo SPC, Prado T, de Castro EDSG, Lermontov A, Fumian TM, Miagostovich MP. Environmental Dissemination of SARS-CoV-2: An Analysis Employing Crassphage and Next-Generation Sequencing Protocols. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:13. [PMID: 39776004 DOI: 10.1007/s12560-024-09620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/07/2024] [Indexed: 01/11/2025]
Abstract
This study aimed to investigate the dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in water samples obtained during the coronavirus disease 2019 pandemic period, employing cross-assembly phage (crAssphage) as a fecal contamination biomarker and next-generation sequencing protocols to characterize SARS-CoV-2 variants. Raw wastewater and surface water (stream and sea) samples were collected for over a month in Rio de Janeiro, Brazil. Ultracentrifugation and negatively charged membrane filtration were employed for viral concentration of the wastewater and surface water samples, respectively. Viruses were detected and quantified by (RT-)qPCR applying TaqMan® system protocols. SARS-CoV-2 RNA signals were detected in 92.5% (37/40) of the wastewater samples and in 31.25% (10/32) of the stream water samples, but not in seawater samples. CrAssphage was detected in 100% of the wastewater samples, 93.75% (30/32) of the stream samples, and in 2/4 of the seawater samples. CrAssphage detection and high concentrations in stream surface waters (median 8.95 log10 gc/L) revealed diffuse contamination by domestic wastewater in a region with high sanitary coverage. The correlations detected between SARS-CoV-2 data and the moving averages of clinical cases per capita over the sampling period were moderate to strong when applying a 13-day offset, regardless of normalization by crAssphage data or not. Sequencing of the receptor-binding domain of the spike protein confirmed the detection of SARS-CoV-2, but did not characterize the circulating variant. On the other hand, the whole genome sequencing protocol identified circulation of the Gamma variant, corroborating the sampling period clinical data.
Collapse
Affiliation(s)
- André Vinicius Costa Ribeiro
- Stricto Sensu Graduate Program in Cellular and Molecular Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil.
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil.
| | - Camille Ferreira Mannarino
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Thiago Dos Santos Leal
- Niterói City Hall/Secretariat for Environment, Water Resources and Sustainability, Niterói, 24020-206, Brazil
| | - Carla Santos de Oliveira
- Laboratory of Arbovirus and Hemorrhagic Virus, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Kayo Bianco
- National Institute of Quality Control in Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Maysa Mandetta Clementino
- National Institute of Quality Control in Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Shênia Patricia Corrêa Novo
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Tatiana Prado
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | | | - André Lermontov
- Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149 - Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
2
|
Gómez-Gómez C, Ramos-Barbero MD, Sala-Comorera L, Morales-Cortes S, Vique G, García-Aljaro C, Muniesa M. Persistence of crAssBcn phages in conditions of natural inactivation and disinfection process and their potential role as human source tracking markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177450. [PMID: 39536863 DOI: 10.1016/j.scitotenv.2024.177450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Due to their abundance in the human gut, human specificity, and global distribution, some crAss-like phages, including the original p-crAssphage, have been proposed as indicators of human fecal pollution suitable for microbial source tracking (MST). The prevalence of crAss-like phages in water, and consequently their usefulness as MST indicators, is determined by their ability to survive various inactivation and disinfection processes. Recently, we isolated new crAss-like phages (named crAssBcn phages) capable of infecting Bacteroides intestinalis and exhibiting a wide geographical distribution. Here, we assessed the infectivity and DNA integrity of three crAssBcn phages (ΦCrAssBcn6, 10, and 15) and ΦCrAss001, the first crAss-like phage isolated, at different pHs and temperatures, after UV and chlorine treatments, and under natural conditions. Their bacterial host, B. intestinalis and a siphovirus Bacteroides-infecting phage GA17-A were used as controls. Infectious crAssBcn phages remained stable for a month at 4, 22, and 37 °C, and at pH 7, but inactivated when exposed to pH 3. Infective crAssBcn phages decreased by 5 log10 after treatment with 10 ppm of chlorine for 1 min and after UV treatment at a fluence of 5.94 mJ/cm2. However, heat treatment at 60 and 70 °C resulted in only a moderate decrease (<1 log10 and almost 3 log10 units of reduction, respectively). Experiments under natural conditions in outdoor mesocosms revealed that inactivation rates for crAssBcn phages, as for the other microorganisms, were higher in summer (up to 6 log10) than in winter (<4 log10), suggesting a higher incidence of inactivation factors, such as sunlight and temperature, in the warmer months. B. intestinalis was significantly more prone to inactivation than phages in most conditions except for the irradiation treatment. In contrast, crAssBcn phage DNA remained stable, with minimal reduction under most of the tested conditions, except in the summer mesocosm and UV assays.
Collapse
Affiliation(s)
- Clara Gómez-Gómez
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Maria Dolores Ramos-Barbero
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Laura Sala-Comorera
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Sara Morales-Cortes
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Gloria Vique
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Cristina García-Aljaro
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, Section of Microbiology, Virology and Biotechnology, School of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona, Spain.
| |
Collapse
|
3
|
Kim DW, Woo DU, Kim UI, Kang YJ, Koo OK. Development of a novel crAss-like phage detection method with a broad spectrum for microbial source tracking. WATER RESEARCH 2024; 266:122330. [PMID: 39216125 DOI: 10.1016/j.watres.2024.122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
CrAssphage has been recognized as the most abundant and human-specific bacteriophage in the human gut. Consequently, crAssphage has been used as a microbial source tracking (MST) marker to monitor human fecal contamination. Many crAss-like phages (CLPs) have been recently discovered, expanding the classification into the new order Crassvirales. This study aims to assess CLP prevalence in South Korea and develop a detection system for MST applications. Thirteen CLPs were identified in six human fecal samples and categorized into seven genera via metagenomic analysis. The major head protein (MHP) displayed increased sequence similarity within each genus. Eight PCR primer candidates, designed from MHP sequences, were evaluated in animal and human feces. CLPs were absent in animal feces except for those from raccoons, which hosted genera VI, VIIa, and VIIb. CLPs were detected in 91.52% (54/59) of humans, with genus VI (38 out of 59) showing the highest prevalence, nearly double that of p-crAssphage in genus I (22 out of 59). This study highlights genus VI as a potent MST marker, broadening the detection range for CLPs. Human-specific and selectively targeted MST markers can significantly impact hygiene regulations, lowering public health costs through their application in screening liver, sewage, wastewater, and various environmental samples.
Collapse
Affiliation(s)
- Dong Woo Kim
- Department of Food Science & Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Dong U Woo
- Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, Republic of Korea
| | - Ui In Kim
- Department of Food Science & Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Yang Jae Kang
- Division of Bio & Medical Bigdata Department (BK4 Program), Gyeongsang National University, Jinju, Republic of Korea; Division of Life Science Department, Gyeongsang National University, Jinju, Republic of Korea; Research Institute of Molecular Alchemy, Gyeongsang National University, Jinju, Republic of Korea.
| | - Ok Kyung Koo
- Department of Food Science & Technology, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Morales-Cortés S, Sala-Comorera L, Gómez-Gómez C, Muniesa M, García-Aljaro C. CrAss-like phages are suitable indicators of antibiotic resistance genes found in abundance in fecally polluted samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124713. [PMID: 39134166 DOI: 10.1016/j.envpol.2024.124713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Antibiotic resistance genes (ARGs) have been extensively observed in bacterial DNA, and more recently, in phage particles from various water sources and food items. The pivotal role played by ARG transmission in the proliferation of antibiotic resistance and emergence of new resistant strains calls for a thorough understanding of the underlying mechanisms. The aim of this study was to assess the suitability of the prototypical p-crAssphage, a proposed indicator of human fecal contamination, and the recently isolated crAssBcn phages, both belonging to the Crassvirales group, as potential indicators of ARGs. These crAss-like phages were evaluated alongside specific ARGs (blaTEM, blaCTX-M-1, blaCTX-M-9, blaVIM, blaOXA-48, qnrA, qnrS, tetW and sul1) within the total DNA and phage DNA fractions in water and food samples containing different levels of fecal pollution. In samples with high fecal load (>103 CFU/g or ml of E. coli or somatic coliphages), such as wastewater and sludge, positive correlations were found between both types of crAss-like phages and ARGs in both DNA fractions. The strongest correlation was observed between sul1 and crAssBcn phages (rho = 0.90) in sludge samples, followed by blaCTX-M-9 and p-crAssphage (rho = 0.86) in sewage samples, both in the phage DNA fraction. The use of crAssphage and crAssBcn as indicators of ARGs, considered to be emerging environmental contaminants of anthropogenic origin, is supported by their close association with the human gut. Monitoring ARGs can help to mitigate their dissemination and prevent the emergence of new resistant bacterial strains, thus safeguarding public health.
Collapse
Affiliation(s)
- Sara Morales-Cortés
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| | - Clara Gómez-Gómez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643, Prevosti Building Floor 0, E-08028, Barcelona, Spain.
| |
Collapse
|
5
|
Steinbacher SD, Ameen A, Demeter K, Lun D, Derx J, Lindner G, Sommer R, Linke RB, Kolm C, Zuser K, Heckel M, Perschl A, Blöschl G, Blaschke AP, Kirschner AKT, Farnleitner AH. Assessing the impact of inland navigation on the faecal pollution status of large rivers: A novel integrated field approach. WATER RESEARCH 2024; 261:122029. [PMID: 38996728 DOI: 10.1016/j.watres.2024.122029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024]
Abstract
The contribution of ships to the microbial faecal pollution status of water bodies is largely unknown but frequently of human health concern. No methodology for a comprehensive and target-orientated system analysis was available so far. We developed a novel approach for integrated and multistage impact evaluation. The approach includes, i) theoretical faecal pollution source profiling (PSP, i.e., size and pollution capacity estimation from municipal vs. ship sewage disposal) for impact scenario estimation and hypothesis generation, ii) high-resolution field assessment of faecal pollution levels and chemo-physical water quality at the selected river reaches, using standardized faecal indicators (cultivation-based) and genetic microbial source tracking markers (qPCR-based), and iii) integrated statistical analyses of the observed faecal pollution and the number of ships assessed by satellite-based automated ship tracking (i.e., automated identification system, AIS) at local and regional scales. The new approach was realised at a 230 km long Danube River reach in Austria, enabling detailed understanding of the complex pollution characteristics (i.e., longitudinal/cross-sectional river and upstream/downstream docking area analysis). Faecal impact of navigation was demonstrated to be remarkably low at regional and local scale (despite a high local contamination capacity), indicating predominantly correct disposal practices during the investigated period. Nonetheless, faecal emissions were sensitively traceable, attributable to the ship category (discriminated types: cruise, passenger and freight ships) and individual vessels (docking time analysis) at one docking area by the link with AIS data. The new innovative and sensitive approach is transferrable to any water body worldwide with available ship-tracking data, supporting target-orientated monitoring and evidence-based management practices.
Collapse
Affiliation(s)
- Sophia D Steinbacher
- Division Water Quality and Health, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, A-3500 Krems an der Donau, Austria; Institute of Chemical, Environmental and Bioscience Engineering, Microbiology and Molecular Diagnostics E166/5/3, TU Wien, Gumpendorferstraße 1a, A-1060 Vienna, Austria
| | - Ahmad Ameen
- Institute of Hydraulic Engineering and Water Resources Management E222, TU Wien, Karlsplatz 13, A-1040 Vienna, Austria
| | - Katalin Demeter
- Institute of Chemical, Environmental and Bioscience Engineering, Microbiology and Molecular Diagnostics E166/5/3, TU Wien, Gumpendorferstraße 1a, A-1060 Vienna, Austria
| | - David Lun
- Institute of Hydraulic Engineering and Water Resources Management E222, TU Wien, Karlsplatz 13, A-1040 Vienna, Austria
| | - Julia Derx
- Institute of Hydraulic Engineering and Water Resources Management E222, TU Wien, Karlsplatz 13, A-1040 Vienna, Austria
| | - Gerhard Lindner
- Institute for Hygiene and Applied Immunology, Water Hygiene, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Regina Sommer
- Institute for Hygiene and Applied Immunology, Water Hygiene, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Rita B Linke
- Institute of Chemical, Environmental and Bioscience Engineering, Microbiology and Molecular Diagnostics E166/5/3, TU Wien, Gumpendorferstraße 1a, A-1060 Vienna, Austria
| | - Claudia Kolm
- Division Water Quality and Health, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, A-3500 Krems an der Donau, Austria
| | - Karen Zuser
- Division Water Quality and Health, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, A-3500 Krems an der Donau, Austria
| | - Martina Heckel
- Abteilung Wasserwirtschaft (WA2), Government of Lower Austria, A-3109 St. Pölten, Landhausplatz 1, Haus 2, Austria
| | - Andrea Perschl
- Abteilung Wasserwirtschaft (WA2), Government of Lower Austria, A-3109 St. Pölten, Landhausplatz 1, Haus 2, Austria
| | - Günter Blöschl
- Institute of Hydraulic Engineering and Water Resources Management E222, TU Wien, Karlsplatz 13, A-1040 Vienna, Austria
| | - Alfred P Blaschke
- Institute of Hydraulic Engineering and Water Resources Management E222, TU Wien, Karlsplatz 13, A-1040 Vienna, Austria
| | - Alexander K T Kirschner
- Division Water Quality and Health, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, A-3500 Krems an der Donau, Austria; Institute for Hygiene and Applied Immunology, Water Microbiology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria.
| | - Andreas H Farnleitner
- Division Water Quality and Health, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, A-3500 Krems an der Donau, Austria; Institute of Chemical, Environmental and Bioscience Engineering, Microbiology and Molecular Diagnostics E166/5/3, TU Wien, Gumpendorferstraße 1a, A-1060 Vienna, Austria.
| |
Collapse
|
6
|
Armenise E, Rustage S, Jackson KJ, Watts G, Hart A. Adjusting for dilution in wastewater using biomarkers: A practical approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121596. [PMID: 38991335 DOI: 10.1016/j.jenvman.2024.121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
We developed a biomarker-based approach to quantify in-sewer dilution by measuring wastewater quality parameters (ammoniacal-N, orthophosphate, crAssphage). This approach can enhance the environmental management of wastewater treatment works (WWTW) by optimising their operation and providing cost-effective information on the health and behaviour of populations and their interactions with the environment through wastewater-based epidemiology (WBE). Our method relies on site specific baselines calculated for each biomarker. These baselines reflect the sewer conditions without the influence of rainfall-derived inflow and infiltration (RDII). Ammoniacal-N was the best candidate to use as proxy for dilution. We demonstrated that the dilution calculated using biomarkers correlates well with the dilution indicated by measured flow. In some instances, the biomarkers showed much higher dilution than measured flows. These differences were attributed to the loss of flow volume at wastewater treatment works due to the activation of combined sewer overflows (CSOs) and/or storm tanks. Using flow measured directly at the WWTW could therefore result in underestimation of target analyte loads.
Collapse
Affiliation(s)
- E Armenise
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK.
| | - S Rustage
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| | - K J Jackson
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| | - G Watts
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| | - A Hart
- Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH, UK
| |
Collapse
|
7
|
Cookson AL, Devane M, Marshall JC, Moinet M, Gardner A, Collis RM, Rogers L, Biggs PJ, Pita AB, Cornelius AJ, Haysom I, Hayman DTS, Gilpin BJ, Leonard M. Population structure and pathogen interaction of Escherichia coli in freshwater: Implications of land-use for water quality and public health in Aotearoa New Zealand. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13319. [PMID: 39096033 PMCID: PMC11297283 DOI: 10.1111/1758-2229.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024]
Abstract
Freshwater samples (n = 199) were obtained from 41 sites with contrasting land-uses (avian, low impact, dairy, urban, sheep and beef, and mixed sheep, beef and dairy) and the E. coli phylotype of 3980 isolates (20 per water sample enrichment) was determined. Eight phylotypes were identified with B1 (48.04%), B2 (14.87%) and A (14.79%) the most abundant. Escherichia marmotae (n = 22), and Escherichia ruysiae (n = 1), were rare (0.68%) suggesting that these environmental strains are unlikely to confound water quality assessments. Phylotypes A and B1 were overrepresented in dairy and urban sites (p < 0.0001), whilst B2 were overrepresented in low impact sites (p < 0.0001). Pathogens ((Salmonella, Campylobacter, Cryptosporidium or Giardia) and the presence of diarrhoeagenic E. coli-associated genes (stx and eae) were detected in 89.9% (179/199) samples, including 80.5% (33/41) of samples with putative non-recent faecal inputs. Quantitative PCR to detect microbial source tracking targets from human, ruminant and avian contamination were concordant with land-use type and E. coli phylotype abundance. This study demonstrated that a potential recreational health risk remains where pathogens occurred in water samples with low E. coli concentration, potential non-recent faecal sources, low impact sites and where human, ruminant and avian faecal sources were absent.
Collapse
Affiliation(s)
- Adrian L. Cookson
- AgResearch LimitedHopkirk Research InstitutePalmerston NorthNew Zealand
- mEpiLab, School of Veterinary SciencesMassey UniversityPalmerston NorthNew Zealand
- Institute of Environmental Science and ResearchKenepuru Science CentrePoriruaNew Zealand
| | - Meg Devane
- Institute of Environmental Science and ResearchChristchurchNew Zealand
| | - Jonathan C. Marshall
- School of Mathematical and Computational SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Marie Moinet
- AgResearch LimitedHopkirk Research InstitutePalmerston NorthNew Zealand
- Institute of Environmental Science and ResearchChristchurchNew Zealand
| | - Amanda Gardner
- AgResearch LimitedHopkirk Research InstitutePalmerston NorthNew Zealand
| | - Rose M. Collis
- AgResearch LimitedHopkirk Research InstitutePalmerston NorthNew Zealand
| | - Lynn Rogers
- AgResearch LimitedHopkirk Research InstitutePalmerston NorthNew Zealand
| | - Patrick J. Biggs
- mEpiLab, School of Veterinary SciencesMassey UniversityPalmerston NorthNew Zealand
- School of Natural SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Anthony B. Pita
- mEpiLab, School of Veterinary SciencesMassey UniversityPalmerston NorthNew Zealand
| | | | - Iain Haysom
- Institute of Environmental Science and ResearchChristchurchNew Zealand
| | - David T. S. Hayman
- mEpiLab, School of Veterinary SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Brent J. Gilpin
- Institute of Environmental Science and ResearchChristchurchNew Zealand
| | - Margaret Leonard
- Institute of Environmental Science and ResearchChristchurchNew Zealand
| |
Collapse
|
8
|
Parra B, Lutz VT, Brøndsted L, Carmona JL, Palomo A, Nesme J, Van Hung Le V, Smets BF, Dechesne A. Characterization and Abundance of Plasmid-Dependent Alphatectivirus Bacteriophages. MICROBIAL ECOLOGY 2024; 87:85. [PMID: 38935220 PMCID: PMC11211187 DOI: 10.1007/s00248-024-02401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Antimicrobial resistance (AMR) is a major public health threat, exacerbated by the ability of bacteria to rapidly disseminate antimicrobial resistance genes (ARG). Since conjugative plasmids of the incompatibility group P (IncP) are ubiquitous mobile genetic elements that often carry ARG and are broad-host-range, they are important targets to prevent the dissemination of AMR. Plasmid-dependent phages infect plasmid-carrying bacteria by recognizing components of the conjugative secretion system as receptors. We sought to isolate plasmid-dependent phages from wastewater using an avirulent strain of Salmonella enterica carrying the conjugative IncP plasmid pKJK5. Irrespective of the site, we only obtained bacteriophages belonging to the genus Alphatectivirus. Eleven isolates were sequenced, their genomes analyzed, and their host range established using S. enterica, Escherichia coli, and Pseudomonas putida carrying diverse conjugative plasmids. We confirmed that Alphatectivirus are abundant in domestic and hospital wastewater using culture-dependent and culture-independent approaches. However, these results are not consistent with their low or undetectable occurrence in metagenomes. Therefore, overall, our results emphasize the importance of performing phage isolation to uncover diversity, especially considering the potential of plasmid-dependent phages to reduce the spread of ARG carried by conjugative plasmids, and to help combat the AMR crisis.
Collapse
Affiliation(s)
- Boris Parra
- Department of Environmental Engineering and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Laboratorio de Investigación de Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Concepción, Chile
| | - Veronika T Lutz
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Javiera L Carmona
- Department of Environmental Engineering and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Alejandro Palomo
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Vuong Van Hung Le
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Barth F Smets
- Department of Environmental Engineering and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofs Plads, Building 221, Kgs. Lyngby, 2800, Denmark.
| |
Collapse
|
9
|
Remesh AT, Viswanathan R. CrAss-Like Phages: From Discovery in Human Fecal Metagenome to Application as a Microbial Source Tracking Marker. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:121-135. [PMID: 38413544 DOI: 10.1007/s12560-024-09584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
CrAss-like phages are a diverse group of bacteriophages genetically similar to the prototypical crAssphage (p-crAssphage), which was discovered in the human gut microbiome through a metagenomics approach. It was identified as a ubiquitous and highly abundant bacteriophage group in the gut microbiome. Initial co-occurrence analysis postulated Bacteroides spp. as the prospective bacterial host. Subsequent studies have confirmed multiple host species under Phylum Bacteroidetes and some Firmicutes. Detection of crAss-like phages in sewage-contaminated environmental water and robust correlation with enteric viruses and bacteria has culminated in their adoption as a microbial source tracking (MST) marker. Polymerase chain reaction (PCR) and real-time PCR assays have been developed utilizing the conserved genes in the p-crAssphage genome to detect human fecal contamination of different water sources, with high specificity. Numerous investigations have examined the implications of crAss-like phages in diverse disease conditions, including ulcerative colitis, obesity and metabolic syndrome, autism spectrum disorders, rheumatoid arthritis, atopic eczema, and other autoimmune disorders. These studies have unveiled associations between certain diseases and diminished abundance and diversity of crAss-like phages. This review offers insights into the diverse aspects of research on crAss-like phages, including their discovery, genomic characteristics, structure, taxonomy, isolation, molecular detection, application as an MST marker, and role as a gut microbiome modulator with consequential health implications.
Collapse
|
10
|
Puchades-Colera P, Díaz-Reolid A, Girón-Guzmán I, Cuevas-Ferrando E, Pérez-Cataluña A, Sánchez G. Capsid Integrity Detection of Enteric Viruses in Reclaimed Waters. Viruses 2024; 16:816. [PMID: 38932109 PMCID: PMC11209584 DOI: 10.3390/v16060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Climate change, unpredictable weather patterns, and droughts are depleting water resources in some parts of the globe, where recycling and reusing wastewater is a strategy for different purposes. To counteract this, the EU regulation for water reuse sets minimum requirements for the use of reclaimed water for agricultural irrigation, including a reduction in human enteric viruses. In the present study, the occurrence of several human enteric viruses, including the human norovirus genogroup I (HuNoV GI), HuNoV GII, and rotavirus (RV), along with viral fecal contamination indicator crAssphage was monitored by using (RT)-qPCR methods on influent wastewater and reclaimed water samples. Moreover, the level of somatic coliphages was also determined as a culturable viral indicator. To assess the potential viral infectivity, an optimization of a capsid integrity PMAxx-RT-qPCR method was performed on sewage samples. Somatic coliphages were present in 60% of the reclaimed water samples, indicating inefficient virus inactivation. Following PMAxx-RT-qPCR optimization, 66% of the samples tested positive for at least one of the analyzed enteric viruses, with concentrations ranging from 2.79 to 7.30 Log10 genome copies (gc)/L. Overall, most of the analyzed reclaimed water samples did not comply with current EU legislation and contained potential infectious viral particles.
Collapse
Affiliation(s)
| | | | | | | | | | - Gloria Sánchez
- VISAFELab, Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980 Valencia, Spain; (P.P.-C.); (A.D.-R.); (A.P.-C.)
| |
Collapse
|
11
|
Suh SH, Lee JS, Kim SH, Vinjé J, Kim SH, Park GW. Evaluation of crAssphages as a potential marker of human viral contamination in environmental water and fresh leafy greens. Front Microbiol 2024; 15:1374568. [PMID: 38618485 PMCID: PMC11010641 DOI: 10.3389/fmicb.2024.1374568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 04/16/2024] Open
Abstract
CrAssphages are human gut bacteriophages with potential use as an indicator of human fecal contamination in water and other environmental systems. We determined the prevalence and abundance of crAssphages in water, food, and fecal samples and compared these estimates with the prevalence of norovirus. Samples were tested using two crAssphage-specific qPCR assays (CPQ056 and TN201-203) and for norovirus using TaqMan realtime RT-PCR. CrAssphage was detected in 40% of human fecal specimens, 61% of irrigation water samples, 58.5% of stream water samples, and 68.5% of fresh leafy greens samples. Interestingly, across all sample categories, crAssphage concentrations were 2-3 log10 higher than norovirus concentrations. The correlation of detection of crAssphage and norovirus was significant for the irrigation water samples (r = 0.74, p = 7.4e-06). Sequences obtained from crAssphage positive samples from human fecal and stream water samples phylogenetically clustered with genotype I crAssphages, whereas sequences derived from irrigation water samples clustered differently from other genotypes. Our data show that crAssphages were prevalent in norovirus-positive water samples and in fresh leafy green samples, there was a strong correlation between the presence of crAssphage and norovirus. CrAssphage genomic copies were consistently higher than norovirus copies in all sample types. Overall, our findings suggest that crAssphages could be used as reliable indicators to monitor fecal-borne virus contamination within the food safety chain.
Collapse
Affiliation(s)
- Soo Hwan Suh
- Division of Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Jeong Su Lee
- Division of Emerging Virus Vector Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Republic of Korea
| | - Seung Hwan Kim
- Division of Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Jan Vinjé
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Soon Han Kim
- Division of Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Geun Woo Park
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
12
|
Farkas K, Mannion F, Sorby R, Winterbourn B, Allender S, Gregory CGM, Holding P, Thorpe JM, Malham SK, Le Vay L. Assessment of wastewater derived pollution using viral monitoring in two estuaries. MARINE POLLUTION BULLETIN 2024; 200:116081. [PMID: 38354589 DOI: 10.1016/j.marpolbul.2024.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Human wastewater-derived pollution of the environment is an emerging health risk that increases the number of waterborne and foodborne illnesses globally. To better understand and mitigate such health risks, we investigated the prevalence of faecal indicator bacteria, Escherichia coli, and indicator virus (crAssphage) along with human and animal enteric viruses (adenoviruses, noroviruses, sapoviruses, hepatitis E virus) in shellfish and water samples collected from two shellfish harvesting areas in the UK. Human noroviruses were detected at higher detection rates in oyster and water samples compared to mussels with peaks during the autumn-winter seasons. Human enteric viruses were sporadically detected during the warmer months, suggesting potential introduction by tourists following the relaxation of COVID-19 lockdown measures. Our results suggest that viral indicators are more suitable for risk assessment and source tracking than E. coli. The detection of emerging hepatitis and sapoviruses, support the need for comprehensive viral monitoring in shellfish harvesting areas.
Collapse
Affiliation(s)
- Kata Farkas
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK; School of Environment & Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, UK.
| | - Finn Mannion
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Rees Sorby
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Ben Winterbourn
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Susan Allender
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Charlie G M Gregory
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK; School of Environment & Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, UK
| | - Phoebe Holding
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Jamie M Thorpe
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| | - Lewis Le Vay
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK
| |
Collapse
|
13
|
Ramos-Barbero MD, Gómez-Gómez C, Vique G, Sala-Comorera L, Rodríguez-Rubio L, Muniesa M. Recruitment of complete crAss-like phage genomes reveals their presence in chicken viromes, few human-specific phages, and lack of universal detection. THE ISME JOURNAL 2024; 18:wrae192. [PMID: 39361891 PMCID: PMC11475920 DOI: 10.1093/ismejo/wrae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/25/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
The order Crassvirales, which includes the prototypical crAssphage (p-crAssphage), is predominantly associated with humans, rendering it the most abundant and widely distributed group of DNA phages in the human gut. The reported human specificity and wide global distribution of p-crAssphage makes it a promising human fecal marker. However, the specificity for the human gut as well as the geographical distribution around the globe of other members of the order Crassvirales remains unknown. To determine this, a recruitment analysis using 91 complete, non-redundant genomes of crAss-like phages in human and animal viromes revealed that only 13 crAss-like phages among the 91 phages analyzed were highly specific to humans, and p-crAssphage was not in this group. Investigations to elucidate whether any characteristic of the phages was responsible for their prevalence in humans showed that the 13 human crAss-like phages do not share a core genome. Phylogenomic analysis placed them in three independent families, indicating that within the Crassvirales group, human specificity is likely not a feature of a common ancestor but rather was introduced on separate/independent occasions in their evolutionary history. The 13 human crAss-like phages showed variable geographical distribution across human metagenomes worldwide, with some being more prevalent in certain countries than in others, but none being universally identified. The varied geographical distribution and the absence of a phylogenetic relationship among the human crAss-like phages are attributed to the emergence and dissemination of their bacterial host, the symbiotic human strains of Bacteroides, across various human populations occupying diverse ecological niches worldwide.
Collapse
Affiliation(s)
- María Dolores Ramos-Barbero
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Clara Gómez-Gómez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Gloria Vique
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Lorena Rodríguez-Rubio
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| |
Collapse
|
14
|
Wiesner-Friedman C, Brinkman NE, Wheaton E, Nagarkar M, Hart C, Keely SP, Varughese E, Garland J, Klaver P, Turner C, Barton J, Serre M, Jahne M. Characterizing Spatial Information Loss for Wastewater Surveillance Using crAssphage: Effect of Decay, Temperature, and Population Mobility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20802-20812. [PMID: 38015885 PMCID: PMC11479658 DOI: 10.1021/acs.est.3c05587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Populations contribute information about their health status to wastewater. Characterizing how that information degrades in transit to wastewater sampling locations (e.g., wastewater treatment plants and pumping stations) is critical to interpret wastewater responses. In this work, we statistically estimate the loss of information about fecal contributions to wastewater from spatially distributed populations at the census block group resolution. This was accomplished with a hydrologically and hydraulically influenced spatial statistical approach applied to crAssphage (Carjivirus communis) load measured from the influent of four wastewater treatment plants in Hamilton County, Ohio. We find that we would expect to observe a 90% loss of information about fecal contributions from a given census block group over a travel time of 10.3 h. This work demonstrates that a challenge to interpreting wastewater responses (e.g., during wastewater surveillance) is distinguishing between a distal but large cluster of contributions and a near but small contribution. This work demonstrates new modeling approaches to improve measurement interpretation depending on sewer network and wastewater characteristics (e.g., geospatial layout, temperature variability, population distribution, and mobility). This modeling can be integrated into standard wastewater surveillance methods and help to optimize sewer sampling locations to ensure that different populations (e.g., vulnerable and susceptible) are appropriately represented.
Collapse
Affiliation(s)
- Corinne Wiesner-Friedman
- Oak Ridge Institute for Science and Education, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Nichole E Brinkman
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Emily Wheaton
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Maitreyi Nagarkar
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Chloe Hart
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Scott P Keely
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Eunice Varughese
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Jay Garland
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Peter Klaver
- LimnoTech, 501 Avis Drive, Ann Arbor, Michigan 48108, United States
| | - Carrie Turner
- LimnoTech, 501 Avis Drive, Ann Arbor, Michigan 48108, United States
| | - John Barton
- Metropolitan Sewer District of Greater Cincinnati, 1081 Woodrow Street, Cincinnati, Ohio 45204, United States
| | - Marc Serre
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michael Jahne
- Office of Research and Development, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| |
Collapse
|
15
|
Alotaibi R, Eifan S, Hanif A, Nour I, Alkathiri A. Prevalence and Genetic Diversity of Cross-Assembly Phages in Wastewater Treatment Plants in Riyadh, Saudi Arabia. Microorganisms 2023; 11:2167. [PMID: 37764011 PMCID: PMC10535421 DOI: 10.3390/microorganisms11092167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The most common DNA virus found in wastewaters globally is the cross-assembly phage (crAssphage). King Saud University wastewater treatment plant (KSU-WWTP); Manfoha wastewater treatment plant (MN-WWTP); and the Embassy wastewater treatment plant (EMB-WWTP) in Riyadh, Saudi Arabia were selected, and 36 untreated sewage water samples during the year 2022 were used in the current study. The meteorological impact on crAssphage prevalence was investigated. CrAssphage prevalence was recorded using PCR and Sanger sequencing. The molecular diversity of crAssphage sequences was studied for viral gene segments from the major capsid protein (MCP) and membrane protein containing the peptidoglycan-binding domain (MP-PBD). KSU-WWTP and EMB-WWTP showed a higher prevalence of crAssphage (83.3%) than MN-WWTP (75%). Phylogenetic analysis of MCP and MP-PBD segments depicted a close relationship to the Japanese isolates. The MCP gene from the current study's isolate WW/2M/SA/2022 depicted zero evolutionary divergence from 3057_98020, 2683_104905, and 4238_99953 isolates (d = 0.000) from Japan. A significant influence of temporal variations on the prevalence of crAssphage was detected in the three WWTPs. CrAssphage displayed the highest prevalence at high temperatures (33-44 °C), low relative humidity (6-14%), and moderate wind speed (16-21 Km/h). The findings provided pioneering insights into crAssphage prevalence and its genetic diversity in WWTPs in Riyadh, Saudi Arabia.
Collapse
Affiliation(s)
| | | | - Atif Hanif
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
16
|
Martin NA, Sala-Comorera L, Gao G, Corkery A, Reynolds LJ, Nolan TM, Whitty M, O'Sullivan JJ, Meijer WG. Inclusion of hydrodynamic properties of bathing waters is critical in selecting faecal indicators to assess public health impacts of faecal contamination. WATER RESEARCH 2023; 242:120137. [PMID: 37300999 DOI: 10.1016/j.watres.2023.120137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
The EU Bathing Water Directive (BWD) requires member states to assess bathing water quality according to the levels of faecal indicator bacteria (FIB) in designated bathing areas. However, this criterion has two significant limitations given that the BWD does not; (i) account for differences in hydrodynamic properties of bathing waters and, (ii) assumes that all faecal pathogens decay equally in aquatic environments. This study simulated sewage discharge events in three hypothetical aquatic environments characterised by different advection and dispersion parameters in the solute transport equation. Temporal changes in the downstream concentration of six faecal indicators were determined in simulations that utilised measured decay rates of each faecal indicator from a programme of controlled microcosm experiments in fresh and seawater environments. The results showed that the decay rates of faecal indicators are not a critical parameter in advection dominant water bodies, such as in fast-flowing rivers. Therefore, faecal indicator selection is less important in such systems and for these, FIB remains the most cost-effective faecal indicator to monitor the public health impacts of faecal contamination. In contrast, consideration of faecal indicator decay is important when assessing dispersion and advection/dispersion dominant systems, which would pertain to transitional (estuarine) and coastal waterbodies. Results suggest that the inclusion of viral indicators, such as crAssphage and PMMoV, could improve the reliability of water quality modelling and minimise the risk of waterborne illnesses from faecal contamination.
Collapse
Affiliation(s)
- Niamh A Martin
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Laura Sala-Comorera
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Guanghai Gao
- UCD School of Civil Engineering, UCD Dooge Centre for Water Resources Research and UCD Earth Institute, University College Dublin, Dublin 4, Ireland
| | - Aisling Corkery
- UCD School of Civil Engineering, UCD Dooge Centre for Water Resources Research and UCD Earth Institute, University College Dublin, Dublin 4, Ireland
| | - Liam J Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Tristan M Nolan
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Megan Whitty
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - John J O'Sullivan
- UCD School of Civil Engineering, UCD Dooge Centre for Water Resources Research and UCD Earth Institute, University College Dublin, Dublin 4, Ireland
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
17
|
Ramos-Barbero MD, Gómez-Gómez C, Sala-Comorera L, Rodríguez-Rubio L, Morales-Cortes S, Mendoza-Barberá E, Vique G, Toribio-Avedillo D, Blanch AR, Ballesté E, Garcia-Aljaro C, Muniesa M. Characterization of crAss-like phage isolates highlights Crassvirales genetic heterogeneity and worldwide distribution. Nat Commun 2023; 14:4295. [PMID: 37463935 PMCID: PMC10354031 DOI: 10.1038/s41467-023-40098-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Crassvirales (crAss-like phages) are an abundant group of human gut-specific bacteriophages discovered in silico. The use of crAss-like phages as human fecal indicators is proposed but the isolation of only seven cultured strains of crAss-like phages to date has greatly hindered their study. Here, we report the isolation and genetic characterization of 25 new crAss-like phages (termed crAssBcn) infecting Bacteroides intestinalis, belonging to the order Crassvirales, genus Kehishuvirus and, based on their genomic variability, classified into six species. CrAssBcn phage genomes are similar to ΦCrAss001 but show genomic and aminoacidic differences when compared to other crAss-like phages of the same family. CrAssBcn phages are detected in fecal metagenomes around the world at a higher frequency than ΦCrAss001. This study increases the known crAss-like phage isolates and their abundance and heterogeneity open the question of what member of the Crassvirales group should be selected as human fecal marker.
Collapse
Affiliation(s)
- María Dolores Ramos-Barbero
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643. Annex. Floor 0, E-08028, Barcelona, Spain
| | - Clara Gómez-Gómez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643. Annex. Floor 0, E-08028, Barcelona, Spain
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643. Annex. Floor 0, E-08028, Barcelona, Spain
| | - Lorena Rodríguez-Rubio
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643. Annex. Floor 0, E-08028, Barcelona, Spain
| | - Sara Morales-Cortes
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643. Annex. Floor 0, E-08028, Barcelona, Spain
| | - Elena Mendoza-Barberá
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643. Annex. Floor 0, E-08028, Barcelona, Spain
| | - Gloria Vique
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643. Annex. Floor 0, E-08028, Barcelona, Spain
| | - Daniel Toribio-Avedillo
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643. Annex. Floor 0, E-08028, Barcelona, Spain
| | - Anicet R Blanch
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643. Annex. Floor 0, E-08028, Barcelona, Spain
| | - Elisenda Ballesté
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643. Annex. Floor 0, E-08028, Barcelona, Spain
| | - Cristina Garcia-Aljaro
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643. Annex. Floor 0, E-08028, Barcelona, Spain
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643. Annex. Floor 0, E-08028, Barcelona, Spain.
| |
Collapse
|
18
|
Sresung M, Paisantham P, Ruksakul P, Kongprajug A, Chyerochana N, Gallage TP, Srathongneam T, Rattanakul S, Maneein S, Surasen C, Passananon S, Mongkolsuk S, Sirikanchana K. Microbial source tracking using molecular and cultivable methods in a tropical mixed-use drinking water source to support water safety plans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162689. [PMID: 36898534 DOI: 10.1016/j.scitotenv.2023.162689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Microbial contamination deteriorates source water quality, posing a severe problem for drinking water suppliers worldwide and addressed by the Water Safety Plan framework to ensure high-quality and reliable drinking water. Microbial source tracking (MST) is used to examine different microbial pollution sources via host-specific intestinal markers for humans and different types of animals. However, the application of MST in tropical surface water catchments that provide raw water for drinking water supplies is limited. We analyzed a set of MST markers, namely, three cultivable bacteriophages and four molecular PCR and qPCR assays, together with 17 microbial and physicochemical parameters, to identify fecal pollution from general, human-, swine-, and cattle-specific sources. Seventy-two river water samples at six sampling sites were collected over 12 sampling events during wet and dry seasons. We found persistent fecal contamination via the general fecal marker GenBac3 (100 % detection; 2.10-5.42 log10 copies/100 mL), with humans (crAssphage; 74 % detection; 1.62-3.81 log10 copies/100 mL) and swine (Pig-2-Bac; 25 % detection; 1.92-2.91 log10 copies/100 mL). Higher contamination levels were observed during the wet season (p < 0.05). The conventional PCR screening used for the general and human markers showed 94.4 % and 69.8 % agreement with the respective qPCR results. Specifically, in the studied watershed, coliphage could be a screening parameter for the crAssphage marker (90.6 % and 73.7 % positive and negative predictive values; Spearman's rank correlation coefficient = 0.66; p < 0.001). The likelihood of detecting the crAssphage marker significantly increased when total and fecal coliforms exceeded 20,000 and 4000 MPN/100 mL, respectively, as Thailand Surface Water Quality Standards, with odds ratios and 95 % confidence intervals of 15.75 (4.43-55.98) and 5.65 (1.39-23.05). Our study confirms the potential benefits of incorporating MST monitoring into water safety plans, supporting the use of this approach to ensure high-quality drinking water supplies worldwide.
Collapse
Affiliation(s)
- Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Phongsawat Paisantham
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Pacharaporn Ruksakul
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Tharindu Pollwatta Gallage
- Program in Environmental Toxicology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Thitima Srathongneam
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Siriwara Maneein
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Chatsinee Surasen
- Water Resources and Environment Department, Metropolitan Waterworks Authority, Bangkok 10210, Thailand
| | - Somsak Passananon
- Line of Deputy Governor (Water Production), Metropolitan Waterworks Authority, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand.
| |
Collapse
|
19
|
Hamza IA, Abd-Elmaksoud S. Applicability of crAssphage as a performance indicator for viral reduction during activated sludge wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50723-50731. [PMID: 36800087 PMCID: PMC10104927 DOI: 10.1007/s11356-023-25824-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/05/2023] [Indexed: 04/16/2023]
Abstract
A major threat to water quality is the discharge of human-derived wastewater, which can cause waterborne illnesses associated with enteric viruses. A poor association exists between fecal indicator bacteria and virus fate in the environment, especially during wastewater treatment. In the current study, the potential of using a novel human gut bacteriophage crAssphage as a wastewater treatment process indicator was evaluated. Using qPCR, influent and effluent wastewater samples of two wastewater treatment plants were analyzed for crAssphage and human viruses including human bocavirus (HBoV), human adenovirus (HAdV), and human polyomavirus (HPyV). All samples were positive for crAssphage. The annual crAssphage concentrations varied between 1.45E + 04 and 2.39E + 08 gc/l in influent samples and from 1.25E + 04 to 7.88E + 06 gc/l in effluent samples. Human viruses concentrations were some orders of magnitude lower than that of crAssphage. Data demonstrated a significant correlation between crAssphage, HAdV, and HPyV during the wastewater treatment process, suggesting that crAssphage and human viral pathogens have similar removal mechanisms. Ultimately, this work concludes that crAssphage could be a performance indicator for viral reduction in the wastewater treatment process.
Collapse
Affiliation(s)
- Ibrahim Ahmed Hamza
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, 33 El Buhouth St., Giza, 12622, Dokki, Egypt.
| | - Sherif Abd-Elmaksoud
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, 33 El Buhouth St., Giza, 12622, Dokki, Egypt
| |
Collapse
|
20
|
Langeveld J, Schilperoort R, Heijnen L, Elsinga G, Schapendonk CEM, Fanoy E, de Schepper EIT, Koopmans MPG, de Graaf M, Medema G. Normalisation of SARS-CoV-2 concentrations in wastewater: The use of flow, electrical conductivity and crAssphage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161196. [PMID: 36581271 PMCID: PMC9791714 DOI: 10.1016/j.scitotenv.2022.161196] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 05/12/2023]
Abstract
Over the course of the Corona Virus Disease-19 (COVID-19) pandemic in 2020-2022, monitoring of the severe acute respiratory syndrome coronavirus 2 ribonucleic acid (SARS-CoV-2 RNA) in wastewater has rapidly evolved into a supplementary surveillance instrument for public health. Short term trends (2 weeks) are used as a basis for policy and decision making on measures for dealing with the pandemic. Normalisation is required to account for the dilution rate of the domestic wastewater that can strongly vary due to time- and location-dependent sewer inflow of runoff, industrial discharges and extraneous waters. The standard approach in sewage surveillance is normalisation using flow measurements, although flow based normalisation is not effective in case the wastewater volume sampled does not match the wastewater volume produced. In this paper, two alternative normalisation methods, using electrical conductivity and crAssphage have been studied and compared with the standard approach using flow measurements. For this, a total of 1116 24-h flow-proportional samples have been collected between September 2020 and August 2021 at nine monitoring locations. In addition, 221 stool samples have been analysed to determine the daily crAssphage load per person. Results show that, although crAssphage shedding rates per person vary greatly, on a population-level crAssphage loads per person per day were constant over time and similar for all catchments. Consequently, crAssphage can be used as a quantitative biomarker for populations above 5595 persons. Electrical conductivity is particularly suitable to determine dilution rates relative to dry weather flow concentrations. The overall conclusion is that flow normalisation is necessary to reliably determine short-term trends in virus circulation, and can be enhanced using crAssphage and/or electrical conductivity measurement as a quality check.
Collapse
Affiliation(s)
- Jeroen Langeveld
- Sanitary Engineering, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands; Partners4UrbanWater, Graafseweg 274, 6532 ZV Nijmegen, the Netherlands.
| | - Remy Schilperoort
- Partners4UrbanWater, Graafseweg 274, 6532 ZV Nijmegen, the Netherlands
| | - Leo Heijnen
- KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands
| | - Goffe Elsinga
- KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands
| | - Claudia E M Schapendonk
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Ewout Fanoy
- GGD Department public health, municipality Rotterdam, Schiedamsedijk 95, 3000 LP Rotterdam, the Netherlands
| | - Evelien I T de Schepper
- Department of General Practice, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Gertjan Medema
- Sanitary Engineering, Delft University of Technology, Stevinweg 1, 2628CN Delft, the Netherlands; KWR Water Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands; Natural resources, Michigan State University, 1405 S Harrison Rd, East-Lansing 48823, MI, USA
| |
Collapse
|
21
|
Kelmer GAR, Ramos ER, Dias EHO. Coliphages as viral indicators in municipal wastewater: A comparison between the ISO and the USEPA methods based on a systematic literature review. WATER RESEARCH 2023; 230:119579. [PMID: 36640612 DOI: 10.1016/j.watres.2023.119579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The use of traditional faecal indicator bacteria as surrogate organisms for pathogenic viruses in domestic wastewater has been noted as a problematic as concentrations and removal rates of bacteria and viruses do not seem to correlate. In this sense, bacteriophages (phages) emerge as potential viral indicators, as they are commonly found in wastewater in high levels, and can be quantified using simple, fast, low-cost methods. Somatic and F-specific coliphages comprise groups of phages commonly used as indicators of water quality. There are two internationally recognised methods to detect and enumerate coliphages in water samples, the International Standardization Organization (ISO) and the US Environmental Protection Agency (USEPA) methods. Both methods are based on the lysis of specific bacterial host strains infected by phages. Within this context, this systematic literature review aimed at gathering concentrations in raw and treated domestic wastewater (secondary, biological treatment systems and post-treatment systems), and removal efficiencies of somatic and F-specific coliphages obtained by ISO and USEPA methods, and then compare both methods. A total of 33 research papers were considered in this study. Results showed that the ISO method is more commonly applied than the USEPA method. Some discrepancies in terms of concentrations and removal efficiencies were observed between both methods. Higher removal rates were observed for both somatic and F-specific coliphages in activated sludge systems when using the USEPA method compared to the ISO method; in other secondary (biological) treatment systems, this was observed only for F-specific coliphages. The use of different standardised methods available might lead to difficulties in obtaining and comparing phage data in different conditions and locations. Future research comparing both ISO and USEPA methods as well as viral and bacterial pathogens and indicators in WWTP is recommended.
Collapse
Affiliation(s)
- Gisele A R Kelmer
- Postgraduate Programme in Civil Engineering (PEC), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil
| | - Elloís R Ramos
- Environmental and Sanitary Engineering Course, Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil
| | - Edgard H O Dias
- Postgraduate Programme in Civil Engineering (PEC), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil; Department of Sanitary and Environmental Engineering (ESA), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil.
| |
Collapse
|
22
|
Liang H, de Haan WP, Cerdà-Domènech M, Méndez J, Lucena F, García-Aljaro C, Sanchez-Vidal A, Ballesté E. Detection of faecal bacteria and antibiotic resistance genes in biofilms attached to plastics from human-impacted coastal areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120983. [PMID: 36596379 DOI: 10.1016/j.envpol.2022.120983] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Plastics have been proposed as vectors of bacteria as they act as a substrate for biofilms. In this study, we evaluated the abundance of faecal and marine bacteria and antibiotic resistance genes (ARGs) from biofilms adhered to marine plastics. Floating plastics and plastics from sediments were collected in coastal areas impacted by human faecal pollution in the northwestern Mediterranean Sea. Culture and/or molecular methods were used to quantify faecal indicators (E. coli, Enterococci and crAssphage), and the ARGs sulI, tetW and blaTEM and the 16S rRNA were detected by qPCR assays. Pseudomonas and Vibrio species and heterotrophic marine bacteria were also analysed via culture-based methods. Results showed that, plastic particles covered by bacterial biofilms, primarily consisted of marine bacteria including Vibrio spp. Some floating plastics had a low concentration of viable E. coli and Enterococci (42% and 67% of the plastics respectively). Considering the median area of the plastics, we detected an average of 68 cfu E. coli per item, while a higher concentration of E. coli was detected on individual plastic items, when compared with 100 ml of the surrounding water. Using qPCR, we quantified higher values of faecal indicators which included inactive and dead microorganisms, detecting up to 2.6 × 102 gc mm-2. The ARGs were detected in 67-88% of the floating plastics and in 29-57% of the sediment plastics with a concentration of up to 6.7 × 102 gc mm-2. Furthermore, enrichment of these genes was observed in biofilms compared with the surrounding water. These results show that floating plastics act as a conduit for both the attachment and transport of faecal microorganisms. In contrast, low presence of faecal indicators was detected in plastic from seafloor sediments. Therefore, although in low concentrations, faecal bacteria, and potential pathogens, were identified in marine plastics, further suggesting plastics act as a reservoir of pathogens and ARGs.
Collapse
Affiliation(s)
- Hongxia Liang
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, E-08028, Barcelona, Spain; College of Resources and Environment, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - William P de Haan
- GRC Geociències Marines, Departament de Dinàmica de La Terra I de L'Oceà, Facultat de Ciències de La Terra, Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Marc Cerdà-Domènech
- GRC Geociències Marines, Departament de Dinàmica de La Terra I de L'Oceà, Facultat de Ciències de La Terra, Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Javier Méndez
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| | - Francisco Lucena
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| | - Anna Sanchez-Vidal
- GRC Geociències Marines, Departament de Dinàmica de La Terra I de L'Oceà, Facultat de Ciències de La Terra, Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Elisenda Ballesté
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, E-08028, Barcelona, Spain.
| |
Collapse
|
23
|
Chen Z, Duan Y, Yin L, Chen Y, Xue Y, Wang X, Mao D, Luo Y. Unraveling the influence of human fecal pollution on antibiotic resistance gene levels in different receiving water bodies using crAssphage indicator gene. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130005. [PMID: 36179618 DOI: 10.1016/j.jhazmat.2022.130005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Discharged wastewater treatment plant (WWTP) effluents can contaminate receiving water bodies with human feces and alter the abundance of antibiotic resistance genes (ARGs). In this study, we examined the co-occurrence of ARGs, human fecal pollution indicator crAssphage, and antibiotics in human feces and a series of connected receiving water bodies affected by human feces, including water from different treatment units of a WWTP, river, lake, and tap waters. Results showed that crAssphage was detected in 68.2 % of the studied water bodies, confirming widespread human fecal contamination. Both ARG and crAssphage abundances exhibited a distance-decay effect from the emission source to the receiving environment. Interestingly, the detected ARG abundance in the water bodies was significantly correlated with crAssphage abundance but not with the residual antibiotic concentration, demonstrating that the presence of ARG could largely be explained by the extent of fecal pollution, with no clear signs of antibiotic selection. In addition, 14 ARGs co-shared by human feces and water bodies were significantly correlated with crAssphage. Furthermore, a close evolutionary relationship was observed between the blaTEM-1 gene from human feces and aquatic environments. These results imply a potential ARG exchange between human feces and receiving water bodies. Overall, this study provides important insights into the distribution and sources of ARGs in water bodies affected by human fecal contamination.
Collapse
Affiliation(s)
- Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yujing Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Lichun Yin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ying Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yingang Xue
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213003, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
24
|
Zhang Y, Li K, Wu Y, Liu Y, Wu R, Zhong Y, Xiao S, Mao H, Li G, Wang Y, Li W. Distribution and correlation between antibiotic resistance genes and host-associated markers before and after swine fever in the longjiang watershed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120101. [PMID: 36064059 DOI: 10.1016/j.envpol.2022.120101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance genes (ARGs) are abundantly shed in feces. Thus, it is crucial to identify their host sources so that ARG pollution can be effectively mitigated and aquatic ecosystems can be properly conserved. Here, spatiotemporal variations and sources of ARGs in the Longjiang watershed of South China were investigated by linking them with microbial source tracker (MST) indicators. The most frequently detected ARGs (>90%) were sulI, sulII, blaTEM, tetW, ermF, and the mobile element intI1. Spatial distribution analyses showed that tributaries contributed significantly more sulI, sulII, and ermF contamination to the Longjiang watershed than the main channel. MST indicator analysis revealed that the Longjiang watershed was contaminated mainly by human fecal pollution. Livestock- and poultry-associated fecal pollution significantly declined after the swine fever outbreak. The occurrence of most ARGs is largely explained by human fecal pollution. In contrast, pig fecal pollution might account for the prevalence of tetO. Moreover, combined human-pig fecal pollution contributed to the observed blaNDM-1 distribution in the Longjiang watershed. Subsequent analysis of the characteristics of MST markers disclosed that the relatively lower specificities of BacHum and Rum-2-Bac may lead to inaccurate results of tracking ARG pollution source. The present study determined spatiotemporal variations and ARG origins in the Longjiang watershed by combining MST markers. It also underscored the necessity of using multiple MST markers simultaneously to identify and characterize ARG pollution sources accurately.
Collapse
Affiliation(s)
- Yang Zhang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| | - Kaiming Li
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| | - Yongjie Wu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| | - Yi Liu
- Zhaoqing Municipal Ecology and Environment Bureau, Zhaoqing, 526060, PR China
| | - Renren Wu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China; Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China.
| | - Yi Zhong
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| | - Shijie Xiao
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Han Mao
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| | - Guodong Li
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| | - Yishu Wang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| | - Wenjing Li
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| |
Collapse
|
25
|
Nguyen KH, Smith S, Roundtree A, Feistel DJ, Kirby AE, Levy K, Mattioli MC. Fecal indicators and antibiotic resistance genes exhibit diurnal trends in the Chattahoochee River: Implications for water quality monitoring. Front Microbiol 2022; 13:1029176. [PMID: 36439800 PMCID: PMC9684717 DOI: 10.3389/fmicb.2022.1029176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
Water bodies that serve as sources of drinking or recreational water are routinely monitored for fecal indicator bacteria (FIB) by state and local agencies. Exceedances of monitoring thresholds set by those agencies signal likely elevated human health risk from exposure, but FIB give little information about the potential source of contamination. To improve our understanding of how within-day variation could impact monitoring data interpretation, we conducted a study at two sites along the Chattahoochee River that varied in their recreational usage and adjacent land-use (natural versus urban), collecting samples every 30 min over one 24-h period. We assayed for three types of microbial indicators: FIB (total coliforms and Escherichia coli); human fecal-associated microbial source tracking (MST) markers (crAssphage and HF183/BacR287); and a suite of clinically relevant antibiotic resistance genes (ARGs; blaCTX-M, blaCMY, MCR, KPC, VIM, NDM) and a gene associated with antibiotic resistance (intl1). Mean levels of FIB and clinically relevant ARGs (blaCMY and KPC) were similar across sites, while MST markers and intI1 occurred at higher mean levels at the natural site. The human-associated MST markers positively correlated with antibiotic resistant-associated genes at both sites, but no consistent associations were detected between culturable FIB and any molecular markers. For all microbial indicators, generalized additive mixed models were used to examine diurnal variability and whether this variability was associated with environmental factors (water temperature, turbidity, pH, and sunlight). We found that FIB peaked during morning and early afternoon hours and were not associated with environmental factors. With the exception of HF183/BacR287 at the urban site, molecular MST markers and intI1 exhibited diurnal variability, and water temperature, pH, and turbidity were significantly associated with this variability. For blaCMY and KPC, diurnal variability was present but was not correlated with environmental factors. These results suggest that differences in land use (natural or urban) both adjacent and upstream may impact overall levels of microbial contamination. Monitoring agencies should consider matching sample collection times with peak levels of target microbial indicators, which would be in the morning or early afternoon for the fecal associated indicators. Measuring multiple microbial indicators can lead to clearer interpretations of human health risk associated with exposure to contaminated water.
Collapse
Affiliation(s)
| | - Shanon Smith
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Alexis Roundtree
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Dorian J. Feistel
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Amy E. Kirby
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Karen Levy
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Mia Catharine Mattioli
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
- *Correspondence: Mia Catharine Mattioli,
| |
Collapse
|
26
|
Sabar MA, Honda R, Haramoto E. CrAssphage as an indicator of human-fecal contamination in water environment and virus reduction in wastewater treatment. WATER RESEARCH 2022; 221:118827. [PMID: 35820313 DOI: 10.1016/j.watres.2022.118827] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 05/14/2023]
Abstract
Viral indicators of human-fecal contamination in wastewaters and environmental waters have been getting much attention in the past decade. Cross-assembly phage (crAssphage) is the most abundant DNA virus in human feces. Recently, the usefulness of crAssphage as a microbial source tracking and water quality monitoring tool for human-fecal contamination has been highlighted. Here, we conducted a comprehensive review on crAssphage in water, focusing on detection methodology, concentration range in various waters and wastewaters, specificity to human-fecal contamination, and reduction in wastewater treatment systems. This review highlights that crAssphage is globally distributed in wastewaters and various fecal-contaminated water bodies at high concentrations without seasonal fluctuations. CrAssphage is highly specific to human-fecal contamination and is rarely found in animal feces. It also has a good potential as a performance indicator to ensure virus reduction in wastewater treatment systems. Accordingly, crAssphage could be an effective tool for monitoring of human-fecal contamination and potential presence of fecal pathogenic microbes in environmental waters. Bridging the research gaps highlighted in this review would make crAssphage a powerful tool to support the control of water-related health risks.
Collapse
Affiliation(s)
| | - Ryo Honda
- Faculty of Geoscience and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Eiji Haramoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Japan
| |
Collapse
|
27
|
Nam SJ, Hu WS, Koo OK. Evaluation of crAssphage as a human-specific microbial source-tracking marker in the Republic of Korea. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:367. [PMID: 35426058 DOI: 10.1007/s10661-022-09918-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
CrAssphage is a novel and by far the most abundant bacteriophage in the human gut and has been proposed as a human-specific microbial source tracking (MST) marker. However, its global use as a human-specific MST marker requires validation in more extensive regions. The purpose of this study was to evaluate the specificity and abundance of the human-specific MST marker crAssphage with PCR and RT-PCR assays in human and animal feces in Korea. The prevalence of crAssphage was confirmed in 94 human feces samples (subjects: 19 to 45 years old) and 56 animal feces samples (from birds, raccoons, squirrels, weasels, deer, wild boars, hares, cats, and dogs). CrAssphage showed sensitivity of 0.39 and specificity of 1.00 in Korea, with a sequencing analysis showing that genotype II was dominant at 71.9%. The quantitative analysis showed that crAssphage is sufficiently abundant in human feces given the high concentration range of 4.26 to 8.25 log gene copies (GC)/ng in human feces. In conclusion, this study confirmed the crAssphage as a specific and abundant MST marker with which to identify human fecal contamination in Korea.
Collapse
Affiliation(s)
- Su Jin Nam
- Department of Food and Nutrition, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Wen Si Hu
- Department of Food Science and Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Ok Kyung Koo
- Department of Food Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
28
|
Zhang J, Wu B, Zhang J, Zhai X, Liu Z, Yang Q, Liu H, Hou Z, Sano D, Chen R. Virus removal during sewage treatment by anaerobic membrane bioreactor (AnMBR): The role of membrane fouling. WATER RESEARCH 2022; 211:118055. [PMID: 35042072 DOI: 10.1016/j.watres.2022.118055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/29/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) is a low-energy and promising solution for sewage treatment. During the treatment, the fouled membrane of AnMBR is recognized as an important barrier against pathogenic viruses. Here, the role of membrane fouling of an AnMBR at room temperature in the virus removal was investigated using MS2 bacteriophage as a virus surrogate. Results revealed that the virus removal efficiency of AnMBR was in the range of 0.2 to 3.6 logs, gradually increasing with the course of AnMBR operation. Virus removal efficiency was found to be significantly correlated with transmembrane pressure (R2=0.92, p<0.01), especially in the rapid fouling stage, indicating that membrane fouling was the key factor in the virus removal. The proportion of virus decreased from 52.03% to 15.04% in the membrane foulants when membrane fouling was aggravating rapidly, yet increased from 0.74% to 21.52% in the mixed liquor. Meanwhile, the permeate flux dramatically dropped. These imply that the primary rejection mechanism of virus by membrane in the slow fouling stage is the virus adsorption onto membrane, while the sieving effect is the main reason in the rapid fouling stage. Ex-situ virus rejection test unveiled that the cake layer was the main contributor to the overall virus rejection, while the greatest resistance-specific virus rejection was provided by the organic pore blocking. This paper provides operation strategies to balance enhanced virus removal and high permeate flux by regulating the membrane fouling process.
Collapse
Affiliation(s)
- Jinfan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Baolei Wu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Jie Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Xuanyu Zhai
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Zhendong Liu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Qiqi Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Zhaoyang Hou
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
29
|
Garcia A, Le T, Jankowski P, Yanaç K, Yuan Q, Uyaguari-Diaz MI. Quantification of human enteric viruses as alternative indicators of fecal pollution to evaluate wastewater treatment processes. PeerJ 2022; 10:e12957. [PMID: 35186509 PMCID: PMC8852272 DOI: 10.7717/peerj.12957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/27/2022] [Indexed: 01/11/2023] Open
Abstract
We investigated the potential use and quantification of human enteric viruses in municipal wastewater samples of Winnipeg (Manitoba, Canada) as alternative indicators of contamination and evaluated the processing stages of the wastewater treatment plant. During the fall 2019 and winter 2020 seasons, samples of raw sewage, activated sludge, effluents, and biosolids (sludge cake) were collected from the North End Sewage Treatment Plant (NESTP), which is the largest wastewater treatment plant in the City of Winnipeg. DNA (Adenovirus and crAssphage) and RNA enteric viruses (Pepper mild mottle virus, Norovirus genogroups GI and GII, Rotavirus Astrovirus, and Sapovirus) as well as the uidA gene found in Escherichia coli were targeted in the samples collected from the NESTP. Total nucleic acids from each wastewater treatment sample were extracted using a commercial spin-column kit. Enteric viruses were quantified in the extracted samples via quantitative PCR using TaqMan assays. Overall, the average gene copies assessed in the raw sewage were not significantly different (p-values ranged between 0.1023 and 0.9921) than the average gene copies assessed in the effluents for DNA and RNA viruses and uidA in terms of both volume and biomass. A significant reduction (p-value ≤ 0.0438) of Adenovirus and Noroviruses genogroups GI and GII was observed in activated sludge samples compared with those for raw sewage per volume. Higher GCNs of enteric viruses were observed in dewatered sludge samples compared to liquid samples in terms of volume (g of sample) and biomass (ng of nucleic acids). Enteric viruses found in gene copy numbers were at least one order of magnitude higher than the E. coli marker uidA, indicating that enteric viruses may survive the wastewater treatment process and viral-like particles are being released into the aquatic environment. Viruses such as Noroviruses genogroups GI and GII, and Rotavirus were detected during colder months. Our results suggest that Adenovirus, crAssphage, and Pepper mild mottle virus can be used confidently as complementary viral indicators of human fecal pollution.
Collapse
Affiliation(s)
- Audrey Garcia
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tri Le
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Paul Jankowski
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kadir Yanaç
- Department of Civil Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
30
|
Sojobi AO, Zayed T. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. ENVIRONMENTAL RESEARCH 2022; 203:111609. [PMID: 34216613 DOI: 10.1016/j.envres.2021.111609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 05/09/2023]
Abstract
Sewer overflow (SO), which has attracted global attention, poses serious threat to public health and ecosystem. SO impacts public health via consumption of contaminated drinking water, aerosolization of pathogens, food-chain transmission, and direct contact with fecally-polluted rivers and beach sediments during recreation. However, no study has attempted to map the linkage between SO and public health including Covid-19 using scientometric analysis and systematic review of literature. Results showed that only few countries were actively involved in SO research in relation to public health. Furthermore, there are renewed calls to scale up environmental surveillance to safeguard public health. To safeguard public health, it is important for public health authorities to optimize water and wastewater treatment plants and improve building ventilation and plumbing systems to minimize pathogen transmission within buildings and transportation systems. In addition, health authorities should formulate appropriate policies that can enhance environmental surveillance and facilitate real-time monitoring of sewer overflow. Increased public awareness on strict personal hygiene and point-of-use-water-treatment such as boiling drinking water will go a long way to safeguard public health. Ecotoxicological studies and health risk assessment of exposure to pathogens via different transmission routes is also required to appropriately inform the use of lockdowns, minimize their socio-economic impact and guide evidence-based welfare/social policy interventions. Soft infrastructures, optimized sewer maintenance and prescreening of sewer overflow are recommended to reduce stormwater burden on wastewater treatment plant, curtail pathogen transmission and marine plastic pollution. Comprehensive, integrated surveillance and global collaborative efforts are important to curtail on-going Covid-19 pandemic and improve resilience against future pandemics.
Collapse
Affiliation(s)
| | - Tarek Zayed
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
31
|
Yasui M, Iso H, Torii S, Matsui Y, Katayama H. Applicability of pepper mild mottle virus and cucumber green mottle mosaic virus as process indicators of enteric virus removal by membrane processes at a potable reuse facility. WATER RESEARCH 2021; 206:117735. [PMID: 34673461 DOI: 10.1016/j.watres.2021.117735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 05/09/2023]
Abstract
Treatment of wastewater for potable reuse is increasingly becoming a suitable alternative water source to meet the growing urban water needs worldwide. Potable reuse requires reduction of enteric viruses to levels at which they do not pose a risk to human health. Advanced water treatment trains (e.g., microfiltration (MF), ultrafiltration (UF), reverse osmosis (RO), and ultraviolet light and advanced oxidation process (UV/AOP)) provide significant protection and reduce virus loads in highly treated final product waters. Even though viruses are a principal concern, the performance of virus removal by membrane processes is not easily determined. The objective of this study was to evaluate the applicability of Aichi virus (AiV), pepper mild mottle virus (PMMoV), cucumber green mottle mosaic virus (CGMMV), and cross-assembly phage (crAssphage) removal as possible process indicators for MF, UF, and RO. Virus log reduction values (LRVs) based on gene copies measured using molecular methods were determined for MF and UF. The median LRVs of all viruses obtained after MF and UF were 2.9 and 3.1, respectively. The LRVs of the proposed indicators were lower than those of human enteric viruses. The morphological and physicochemical difference among indicators was not found to affect LRVs. Therefore, all proposed indicator viruses were determined to be suitable candidates as process indicators for MF and UF. Regarding RO, most of the viruses measured in this study were undetectable in permeate. Only PMMoV and CGMMV were detected showing median LRVs of 2.8 and 2.5, respectively. PMMoV and CGMMV are recommended as good process indicators of physical virus removal for the overall water treatment process.
Collapse
Key Words
- AIV, aichi virus
- Abbreviation: MF, microfiltration
- AdV, adenovirus
- CGMMV, cucumber green mottle mosaic virus
- Crassphage, cross-assembly phage
- EF, effluent
- Human enteric virus
- LRV, log reduction value
- MME, molecular method efficiencies
- MNV, Murine Norovirus
- MPC, molecular process control
- Microfiltration
- NV GI, norovirus GI
- NV GII, norovirus GII
- ORSV, Odontoglossum Ringspot Virus
- PCE, primary concentration efficiency
- PMMOV, pepper mild mottle virus
- Process indicator
- RO, reverse osmosis
- Reverse osmosis
- UF, ultrafiltration
- UV/AOP, ultraviolet light and advanced oxidation process
- Ultrafiltration
- Water reuse
Collapse
Affiliation(s)
- Midori Yasui
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hikaru Iso
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shotaro Torii
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | - Hiroyuki Katayama
- Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
32
|
Li W, Liu Z, Hu B, Zhu L. Co-occurrence of crAssphage and antibiotic resistance genes in agricultural soils of the Yangtze River Delta, China. ENVIRONMENT INTERNATIONAL 2021; 156:106620. [PMID: 33989841 DOI: 10.1016/j.envint.2021.106620] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/01/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Agricultural soil is highly susceptible to manure contamination and thus is a potential source for the spread of pathogens and antibiotic resistance genes (ARGs). Routine monitoring fecal contamination in agricultural soil can reduce the manure-derived ARG contaminations. This study investigated the distribution of crAssphage, a highly human-specific indicator of fecal pollution, in agricultural soils in the Yangtze River Delta (YRD) of China, and its potential in serving as an indicator of soil ARGs. CrAssphage was indeed strongly correlated with the abundance of soil ARGs, and particularly tetracycline resistance gene tetW (rho = 0.55, p < 0.01). Meanwhile, with the increasing of crAssphage abundance, the frequency of multiple abundant ARGs is also increased. When the relative abundance of crAssphage in soil samples exceeded 4.94 × 10-4 copies per copy of the 16S rRNA gene, there would be more than three types of co-existing ARGs. Regional differences in crAssphage and ARGs abundances were observed for samples collected from Zhejiang, Shanghai, Jiangsu, and Anhui in the YRD, indicating different levels of fecal pollution therein. High sewage treatment capacity could contribute to the reduce of fecal pollution and the control ARG transmission in agricultural soils.
Collapse
Affiliation(s)
- Wen Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
33
|
Makkaew P, Kongprajug A, Chyerochana N, Sresung M, Precha N, Mongkolsuk S, Sirikanchana K. Persisting antibiotic resistance gene pollution and its association with human sewage sources in tropical marine beach waters. Int J Hyg Environ Health 2021; 238:113859. [PMID: 34655856 DOI: 10.1016/j.ijheh.2021.113859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are pollutants of worldwide concern that threaten human health and ecosystems. Anthropogenic activities and wastewater could be ARB and ARG pollution sources; however, research on ARG abundance and microbial source tracking (MST) of contamination in tropical marine waters is limited. This study examined spatiotemporal variations of six ARGs (blaNDM, blaTEM, blaVIM, mcr-1, sul1, and tetQ) against the widely used antibiotic groups and a class 1 integron-integrase gene (intI1) at two Thai tropical recreational beaches (n = 41). Correlations between ARGs and sewage-specific MST markers (i.e., crAssphage and human polyomaviruses [HPyVs]) and fecal indicator bacteria (i.e., total coliforms, fecal coliforms, and enterococci) were also investigated. BlaTEM, intI1, sul1, and tetQ were ubiquitous at both beaches (85.4-100% detection rate); intI1 was the most abundant (3-6 orders in log10 copies/100 mL), followed by blaTEM (2-4 orders), sul1 (2-3 orders), and tetQ (2-4 orders). BlaNDM was found in 7.3% (up to 4 orders), and no mcr-1 was detected. Interestingly, blaVIM was prevalent at one beach (2-5 orders; n = 17), but found in only one sample at the other (4 orders). Temporal, but not spatial, differences were noticed; blaTEM was at higher levels in the wet season. IntI1 correlated with sul1 and tetQ (Spearman's rho = 0.47-0.97), suggesting potential horizontal gene transfer. CrAssphage, but not HPyVs, correlated with intI1, sul1, and tetQ (Spearman's rho = 0.50-0.74). Higher numbers of ARGs tended to co-occur in samples with higher crAssphage concentrations, implying sewage contribution to the marine water, with a persisting ARG background. This study provides insight into the ARG pollution status of tropical coastal waters and suggests crAssphage as a proxy for ARG pollution, which could facilitate effective management policies to minimize ARG dissemination in marine environments.
Collapse
Affiliation(s)
- Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology EHT, Ministry of Education, Bangkok, 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology EHT, Ministry of Education, Bangkok, 10400, Thailand.
| |
Collapse
|
34
|
Sala-Comorera L, Reynolds LJ, Martin NA, Pascual-Benito M, Stephens JH, Nolan TM, Gitto A, O'Hare GMP, O'Sullivan JJ, García-Aljaro C, Meijer WG. crAssphage as a human molecular marker to evaluate temporal and spatial variability in faecal contamination of urban marine bathing waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147828. [PMID: 34052479 DOI: 10.1016/j.scitotenv.2021.147828] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/23/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Bathing water quality may be negatively impacted by diffuse pollution arising from urban and agricultural activities and wildlife, it is therefore important to be able to differentiate between biological and geographical sources of faecal pollution. crAssphage was recently described as a novel human-associated microbial source tracking marker. This study aimed to evaluate the performance of the crAssphage marker in designated bathing waters. The sensitivity and specificity of the crAss_2 marker was evaluated using faecal samples from herring gulls, dogs, sewage and a stream impacted by human pollution (n = 80), which showed that all human impacted samples tested positive for the marker while none of the animal samples did. The crAss_2 marker was field tested in an urban marine bathing water close to the discharge point of human impacted streams. In addition, the bathing water is affected by dog and gull fouling. Analysis of water samples taken at the compliance point every 30 min during a tidal cycle following a rain event showed that the crAss_2 and HF183 markers performed equally well (Spearman correlation ρ = 0.84). The levels of these marker and faecal indicators (Escherichia coli, intestinal enterococci, somatic coliphages) varied by up to 2.5 log10 during the day. Analysis of a high-tide transect perpendicular to the shoreline revealed high levels of localised faecal contamination 1 km offshore, with a concomitant spike in the gull marker. In contrast, both the crAss_2 and HF183 markers remained at a constant level, showing that human faecal contamination is homogenously distributed, while gull pollution is localised. Performance of the crAss_2 and HF183 assay was further evaluated in bimonthly compliance point samples over an 18-month period. The co-occurrence between the crAss_2 and HF183 markers in compliance sampling was 76%. A combination of both markers should be applied in low pollution impacted environments to obtain a high confidence level.
Collapse
Affiliation(s)
- Laura Sala-Comorera
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Ireland
| | - Liam J Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Ireland
| | - Niamh A Martin
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Ireland
| | - Míriam Pascual-Benito
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Jayne H Stephens
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Ireland
| | - Tristan M Nolan
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Ireland
| | - Aurora Gitto
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Ireland
| | - Gregory M P O'Hare
- UCD School of Computer Science and UCD Earth Institute, University College Dublin, Belfield Dublin 4, Ireland
| | - John J O'Sullivan
- UCD School of Civil Engineering, UCD Dooge Centre for Water Resources Research, UCD Earth Institute, University College Dublin, Dublin 4, Ireland
| | - Cristina García-Aljaro
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, UCD Conway Institute, University College Dublin, Ireland.
| |
Collapse
|
35
|
Kongprajug A, Chyerochana N, Rattanakul S, Denpetkul T, Sangkaew W, Somnark P, Patarapongsant Y, Tomyim K, Sresung M, Mongkolsuk S, Sirikanchana K. Integrated analyses of fecal indicator bacteria, microbial source tracking markers, and pathogens for Southeast Asian beach water quality assessment. WATER RESEARCH 2021; 203:117479. [PMID: 34365192 DOI: 10.1016/j.watres.2021.117479] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The degradation of coastal water quality from fecal pollution poses a health risk to visitors at recreational beaches. Fecal indicator bacteria (FIB) are a proxy for fecal pollution; however the accuracy of their representation of fecal pollution health risks at recreational beaches impacted by non-point sources is disputed due to non-human derivation. This study aimed to investigate the relationship between FIB and a range of culturable and molecular-based microbial source tracking (MST) markers and pathogenic bacteria, and physicochemical parameters and rainfall. Forty-two marine water samples were collected from seven sampling stations during six events at two tourist beaches in Thailand. Both beaches were contaminated with fecal pollution as evident from the GenBac3 marker at 88%-100% detection and up to 8.71 log10 copies/100 mL. The human-specific MST marker human polyomaviruses JC and BK (HPyVs) at up to 4.33 log10 copies/100 mL with 92%-94% positive detection indicated that human sewage was likely the main contamination source. CrAssphage showed lower frequencies and concentrations; its correlations with the FIB group (i.e., total coliforms, fecal coliforms, and enterococci) and GenBac3 diminished its use as a human-specific MST marker for coastal water. Human-specific culturable AIM06 and SR14 bacteriophages and general fecal indicator coliphages also showed less sensitivity than the human-specific molecular assays. The applicability of the GenBac3 endpoint PCR assay as a lower-cost prescreening step prior to the GenBac3 qPCR assay was supported by its 100% positive predictive value, but its limited negative predictive values required subsequent qPCR confirmation. Human enteric adenovirus and Vibrio cholerae were not found in any of the samples. The HPyVs related to Vibrio parahaemolyticus, Vibrio vulnificus, and 5-d rainfall records, all of which were more prevalent and concentrated during the wet season. More monitoring is therefore recommended during wet periods. Temporal differences but no spatial differences were observed, suggesting the need for a sentinel site at each beach for routine monitoring. The exceedance of FIB water quality standards did not indicate increased prevalence or concentrations of the HPyVs or Vibrio spp. pathogen group, so the utility of FIB as an indicator of health risks at tropical beaches maybe challenged. Accurate assessment of fecal pollution by incorporating MST markers could lead to developing a more effective water quality monitoring plan to better protect human health risks in tropical recreational beaches.
Collapse
Affiliation(s)
- Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Thammanitchpol Denpetkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, 10400 Bangkok, Thailand
| | - Watsawan Sangkaew
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Pornjira Somnark
- Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Yupin Patarapongsant
- Behavioral Research and Informatics in Social Sciences Research Unit, SASIN School of Management, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanokpon Tomyim
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok 10400, Thailand.
| |
Collapse
|
36
|
Gyawali P, Devane M, Scholes P, Hewitt J. Application of crAssphage, F-RNA phage and pepper mild mottle virus as indicators of human faecal and norovirus contamination in shellfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146848. [PMID: 33865125 DOI: 10.1016/j.scitotenv.2021.146848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Shellfish growing waters contaminated with inadequately treated human wastewater is a major source of norovirus in shellfish and poses a significant human health risk to consumers. Microbial source tracking (MST) markers have been widely used to identify the source (s) of faecal contamination in water but data are limited on their use for shellfish safety. This study evaluated the source specificity, sensitivity, occurrence and concentration of three viral MST markers i.e. cross-assembly phage (crAssphage), F-specific RNA bacteriophage genogroup II (F-RNA phage GII) and pepper mild mottle virus (PMMoV) using animal faeces (n = 119; 16 animal groups), influent wastewater (n = 12), effluent wastewater (n = 16) and shellfish (n = 33). CrAssphage, F-RNA phage GII and PMMoV had source specific values of 0.97, 0.99 and 0.91, respectively. The sensitivity of MST markers was confirmed by their 100% detection frequency in influent wastewaters. The frequency of detection in effluent wastewater ranged from 81.3% (F-RNA phage GII) to 100% (PMMoV). Concentration of F-RNA phage GII was one log10 (influent wastewater) and 2-3 log10 (effluent wastewater) lower than crAssphage and PMMoV, respectively. Despite lower prevalence of F-RNA phage GII in oysters and mussels compared to crAssphage and PMMoV, concentrations of the three MST markers were similar in mussels. As an indicator of norovirus contamination in shellfish, crAssphage and PMMoV had greater predictive sensitivity (100%; [95% CI; 81.5%-100%)]) and F-RNA phage GII had greater predictive specificity (93.3%; [95% CI; 68.1%-99.8%]). In contrast, crAssphage and F-RNA phage GII have similar accuracy for predicting norovirus in shellfish, however, PMMoV significantly overestimated its presence. Therefore, a combination of crAssphage and F-RNA phage GII analysis of shellfish could provide a robust estimation of the presence of human faecal and norovirus contamination.
Collapse
Affiliation(s)
- Pradip Gyawali
- Institute of Environmental Science and Research Ltd (ESR), Porirua 5240, New Zealand.
| | - Megan Devane
- Institute of Environmental Science and Research Ltd (ESR), Christchurch 8041, New Zealand
| | - Paula Scholes
- Institute of Environmental Science and Research Ltd (ESR), Christchurch 8041, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd (ESR), Porirua 5240, New Zealand.
| |
Collapse
|
37
|
Bacteriophages as Fecal Pollution Indicators. Viruses 2021; 13:v13061089. [PMID: 34200458 PMCID: PMC8229503 DOI: 10.3390/v13061089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages are promising tools for the detection of fecal pollution in different environments, and particularly for viral pathogen risk assessment. Having similar morphological and biological characteristics, bacteriophages mimic the fate and transport of enteric viruses. Enteric bacteriophages, especially phages infecting Escherichia coli (coliphages), have been proposed as alternatives or complements to fecal indicator bacteria. Here, we provide a general overview of the potential use of enteric bacteriophages as fecal and viral indicators in different environments, as well as the available methods for their detection and enumeration, and the regulations for their application.
Collapse
|
38
|
Ballesté E, Blanch AR, Mendez J, Sala-Comorera L, Maunula L, Monteiro S, Farnleitner AH, Tiehm A, Jofre J, García-Aljaro C. Bacteriophages Are Good Estimators of Human Viruses Present in Water. Front Microbiol 2021; 12:619495. [PMID: 34012424 PMCID: PMC8128106 DOI: 10.3389/fmicb.2021.619495] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
The detection of fecal viral pathogens in water is hampered by their great variety and complex analysis. As traditional bacterial indicators are poor viral indicators, there is a need for alternative methods, such as the use of somatic coliphages, which have been included in water safety regulations in recent years. Some researchers have also recommended the use of reference viral pathogens such as noroviruses or other enteric viruses to improve the prediction of fecal viral pollution of human origin. In this work, phages previously tested in microbial source tracking studies were compared with norovirus and adenovirus for their suitability as indicators of human fecal viruses. The phages, namely those infecting human-associated Bacteroides thetaiotaomicron strain GA17 (GA17PH) and porcine-associated Bacteroides strain PG76 (PGPH), and the human-associated crAssphage marker (crAssPH), were evaluated in sewage samples and fecal mixtures obtained from different animals in five European countries, along with norovirus GI + GII (NoV) and human adenovirus (HAdV). GA17PH had an overall sensitivity of ≥83% and the highest specificity (>88%) for human pollution source detection. crAssPH showed the highest sensitivity (100%) and specificity (100%) in northern European countries but a much lower specificity in Spain and Portugal (10 and 30%, respectively), being detected in animal wastewater samples with a high concentration of fecal indicators. The correlations between GA17PH, crAssPH, or the sum of both (BACPH) and HAdV or NoV were higher than between the two human viruses, indicating that bacteriophages are feasible indicators of human viral pathogens of fecal origin and constitute a promising, easy to use and affordable alternative to human viruses for routine water safety monitoring.
Collapse
Affiliation(s)
- Elisenda Ballesté
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Anicet R. Blanch
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Javier Mendez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Leena Maunula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Silvia Monteiro
- Laboratório Analises, Instituto Superior Tecnico, Universidade Lisboa, Lisbon, Portugal
| | - Andreas H. Farnleitner
- Institute of Chemical, Environmental and Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostics 166/5/3, TU Wien, Vienna, Austria
- Research Division Water Quality and Health, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Andreas Tiehm
- Department of Microbiology and Molecular Biology, DVGW-Technologiezentrum Wasser, Karlsruhe, Germany
| | - Joan Jofre
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
39
|
Zhu Y, Oishi W, Maruo C, Saito M, Chen R, Kitajima M, Sano D. Early warning of COVID-19 via wastewater-based epidemiology: potential and bottlenecks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:145124. [PMID: 33548842 PMCID: PMC7825884 DOI: 10.1016/j.scitotenv.2021.145124] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 05/18/2023]
Abstract
An effective early warning tool is of great administrative and social significance to the containment and control of an epidemic. Facing the unprecedented global public health crisis caused by COVID-19, wastewater-based epidemiology (WBE) has been given high expectations as a promising surveillance complement to clinical testing which had been plagued by limited capacity and turnaround time. In particular, recent studies have highlighted the role WBE may play in being a part of the early warning system. In this study, we briefly discussed the basics of the concept, the benefits and critical points of such an application, the challenges faced by the scientific community, the progress made so far, and what awaits to be addressed by future studies to make the concept work. We identified that the shedding dynamics of infected individuals, especially in the form of a mathematical shedding model, and the back-calculation of the number of active shedders from observed viral load are the major bottlenecks of WBE application in the COVID-19 pandemic that deserve more attention, and the sampling strategy (location, timing, and interval) needs to be optimized to fit the purpose and scope of the WBE project.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Wakana Oishi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Chikako Maruo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Mayuko Saito
- Department of Virology, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'a University of Architecture and Technology, Xi'an 710055, China
| | - Masaaki Kitajima
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, North-13 West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
40
|
Chen H, Liu C, Li Y, Teng Y. Integrating Metagenomic and Bayesian Analyses to Evaluate the Performance and Confidence of CrAssphage as an Indicator for Tracking Human Sewage Contamination in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4992-5000. [PMID: 33715349 DOI: 10.1021/acs.est.1c00071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, crAssphage has been proposed as a human-specific marker for tracking fecal contamination. However, its performance has always been validated in a limited number of host samples, which may obscure our understanding of its utility. Furthermore, few studies have quantified confidence of fecal contamination when using crAssphage. Here, we evaluate the performance and confidence of crAssphage by analyzing a large panel of metagenomic data sets combined with Bayesian analyses. Results demonstrate that crAssphage exhibits superior performance with high host sensitivity and specificity, indicating its suitability for tracking human fecal sources. With the marker, a high confidence (>90%) can be obtained and particularly, multiple samples with positive results provide a near certainty of confidence. The application of crAssphage in the sediments of three Chinese urban rivers shows a high confidence of >97% of human fecal contamination, suggesting the serious challenge of sewage pollution in these environments. Additionally, significant correlation is observed between crAssphage and antibiotic resistance genes (ARGs), expanding the utilization of crAssphage for pollution management of ARGs. This study highlights the benefit of using metagenomic-based analysis for evaluating the performance and confidence of microbial source tracking markers in the coming era of big data with increasing resources in available metagenomic data.
Collapse
Affiliation(s)
- Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, P. R. China
| | - Chang Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, P. R. China
| | - Yuezhao Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, P. R. China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, P. R. China
| |
Collapse
|
41
|
Zhang Y, Wu R, Li W, Chen Z, Li K. Occurrence and distributions of human-associated markers in an impacted urban watershed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116654. [PMID: 33582625 DOI: 10.1016/j.envpol.2021.116654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Numerous genetic markers for microbial source tracking (MST) have been evaluated by testing a panel of target and nontarget faecal samples. However, the performance of MST markers may vary between faecal and water samples, thereby resulting in inaccurate water quality assessment. In this study, a 30-day sampling study was conducted in an urban river impacted by human- and sewage-associated pollution to evaluate the performance of different human-associated markers in environmental water. Additionally, marker decay was assessed via a microcosms approach. Overall, Bacteroidales 16sRNA and crAssphage markers exhibited higher prevalence in the study area, and their detection frequencies exceeded 90%. In contrast, Bacteroidales protein markers exhibited poor detection frequencies compared to other markers, with the prevalence of Hum2 and Hum163 reaching only 63% and 84%, respectively. Regarding marker abundance, there was no significant difference in the detection concentrations between Bacteroidales 16sRNA and crAssphage markers (p > 0.05); however, the concentrations of Bacteroidales protein markers were nearly 1 order of magnitude lower than those of other MST markers. The microcosm experiments indicated that the decay rate of crAssphage markers was significantly lower than that of other bacterial target markers, which may improve their detectability when the pollution source is located far from the sampling site. Due to the observed differences in performance and decay patterns among Bacteroidales 16sRNA, crAssphage, and Bacteroidales protein markers, we recommend the simultaneous use of multiple markers from different target microorganisms to obtain a more comprehensive understanding of the pollution sources. This approach would also provide an accurate assessment of pollution levels and health risks.
Collapse
Affiliation(s)
- Yang Zhang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510530, PR China
| | - Renren Wu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510530, PR China.
| | - Wenjing Li
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510530, PR China
| | - Zhongying Chen
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510530, PR China
| | - Kaiming Li
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China
| |
Collapse
|
42
|
Tang A, Bi X, Li X, Li F, Liao X, Zou J, Sun W, Yuan B. The inactivation of bacteriophage MS2 by sodium hypochlorite in the presence of particles. CHEMOSPHERE 2021; 266:129191. [PMID: 33310358 DOI: 10.1016/j.chemosphere.2020.129191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The inactivation of bacteriophage MS2 by sodium hypochlorite was investigated to understand the effect of solution chemistry on the disinfection efficacy in the presence of particles. Kaolinite and Microcystis aeruginosa (M. aeruginosa) were used as the models of inorganic and organic particles to simulate high turbidity and algal cells, respectively, in drinking water sources. In both particle-containing solutions, lower pH, the presence of cations (di-valent Ca2+) and natural organic matters (NOM) were regarded as the main factors to influence the aggregation and inactivation of MS2. The results showed that MS2 aggregated in all solutions at pH 3.0, protecting the inner viruses. At pH 7.0, the presence of Na+ cations (0-200 mmol/L) did not affect the inactivation efficacy of MS2, which always followed the order of particles-free ≈ kaolinite > M. aeruginosa. The inactivation efficacy of MS2 in the presence of Ca2+ cations followed the order of kaolinite > particles-free > M. aeruginosa at 0-50 mmol/L Ca2+ cations, while the inactivation efficacy remained almost constant in the range of 100-200 mmol/L Ca2+ cations. By contrast, kaolinite offered not enough protection to adsorbed MS2, but MS2 aggregation decreased disinfection efficacy at a high concentration of Ca2+ cations. Moreover, the presence of humic acid as NOM decreased the inactivation of MS2 more significantly than M. aeruginosa due to the more consumption of free chlorine from humic acids. Therefore, the co-existence of NOM and di-valent Ca2+ cations are potential challenges for the inactivation of viruses by sodium hypochlorite in safe drinking water.
Collapse
Affiliation(s)
- Aixi Tang
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Xiaochao Bi
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Xiaoxue Li
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Fei Li
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Xiaobin Liao
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Jing Zou
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China
| | - Wenjie Sun
- Department of Civil and Environmental Engineering, Southern Methodist University, Dallas, TX, 75275, USA
| | - Baoling Yuan
- Xiamen Engineering & Technology Research Center for Urban Water Environment Planning and Remediation, College of Civil Engineering, Huaqiao University, Xiamen, Fujian, 361021, PR China.
| |
Collapse
|
43
|
Sangkaew W, Kongprajug A, Chyerochana N, Ahmed W, Rattanakul S, Denpetkul T, Mongkolsuk S, Sirikanchana K. Performance of viral and bacterial genetic markers for sewage pollution tracking in tropical Thailand. WATER RESEARCH 2021; 190:116706. [PMID: 33310444 DOI: 10.1016/j.watres.2020.116706] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Identifying sewage contamination via microbial source tracking (MST) marker genes has proven useful for effective water quality management worldwide; however, performance evaluations for these marker genes in tropical areas are limited. Therefore, this research evaluated four human-associated MST marker genes (human polyomaviruses (JC and BK viruses [HPyVs]), bacteriophage crAssphage (CPQ_056), Lachnospiraceae Lachno3, and Bacteroides BacV6-21) for tracking sewage pollution in aquatic environments of Thailand. The viral marker genes, HPyV and crAssphage were highly sensitive and specific to sewage from onsite wastewater treatment plants (OWTPs; n = 19), with no cross-detection in 120 composite swine, cattle, chicken, duck, goat, sheep, and buffalo fecal samples. The bacterial marker genes, Lachno3 and BacV6-21, demonstrated high sensitivity but moderate specificity; however, using both markers could improve specificity to >0.80 (max value of 1.00). The most abundant markers in OWTP samples were Lachno3 and BacV6-21 (5.42-8.02 and nondetect-8.05 log10 copies/100 mL), crAssphage (5.28-7.38 log10 copies/100 mL), and HPyVs (3.66-6.53 log10 copies/100 mL), respectively. Due to their increased specificity, the abundance of viral markers were further investigated in environmental waters, in which HPyVs showed greater levels (up to 4.33 log10 copies/100 mL) and greater detection rates (92.7%) in two coastal beaches (n = 41) than crAssphage (up to 3.51 log10 copies/100 mL and 56.1%). HPyVs were also found at slightly lower levels (up to 5.10 log10 copies/100 mL), but at higher detection rates (92.6%), in a freshwater canal (n = 27) than crAssphage (up to 5.21 log10 copies/100 mL and 88.9%). HPyVs and crAssphage marker genes were identified as highly sensitive and specific for tracking sewage pollution in aquatic environments of Thailand. This study underlines the importance of characterizing and validating MST markers in host groups and environmental waters before including them in a water quality management toolbox.
Collapse
Affiliation(s)
- Watsawan Sangkaew
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok, 10210, Thailand
| | - Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok, 10210, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok, 10210, Thailand
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Thammanitchpol Denpetkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, 272 Rama 6 Road, Ratchathevi, Bangkok, 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, 272 Rama 6 Road, Ratchathevi, Bangkok, 10400, Thailand.
| |
Collapse
|
44
|
Microbial source tracking using metagenomics and other new technologies. J Microbiol 2021; 59:259-269. [DOI: 10.1007/s12275-021-0668-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
|
45
|
A Novel Group of Promiscuous Podophages Infecting Diverse Gammaproteobacteria from River Communities Exhibits Dynamic Intergenus Host Adaptation. mSystems 2021; 6:6/1/e00773-20. [PMID: 33531404 PMCID: PMC7857530 DOI: 10.1128/msystems.00773-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Phages are generally described as species specific or even strain specific, implying an inherent limitation for some to be maintained and spread in diverse bacterial communities. Moreover, phage isolation and host range determination rarely consider the phage ecological context, likely biasing our notion on phage specificity. Here we isolated and characterized a novel group of six promiscuous phages, named Atoyac, existing in rivers and sewage by using a diverse collection of over 600 bacteria retrieved from the same environments as potential hosts. These podophages isolated from different regions in Mexico display a remarkably broad host range, infecting bacteria from six genera: Aeromonas, Pseudomonas, Yersinia, Hafnia, Escherichia, and Serratia Atoyac phage genomes are ∼42 kb long and highly similar to each other, but not to those currently available in genome and metagenome public databases. Detailed comparison of the phages' efficiency of plating (EOP) revealed variation among bacterial genera, implying a cost associated with infection of distant hosts, and between phages, despite their sequence similarity. We show, through experimental evolution in single or alternate hosts of different genera, that efficiency of plaque production is highly dynamic and tends toward optimization in hosts rendering low plaque formation. However, adaptation to distinct hosts differed between similar phages; whereas one phage optimized its EOP in all tested hosts, the other reduced plaque production in one host, suggesting that propagation in multiple bacteria may be key to maintain promiscuity in some viruses. Our study expands our knowledge of the virosphere and uncovers bacterium-phage interactions overlooked in natural systems.IMPORTANCE In natural environments, phages coexist and interact with a broad variety of bacteria, posing a conundrum for narrow-host-range phage maintenance in diverse communities. This context is rarely considered in the study of host-phage interactions, typically focused on narrow-host-range viruses and their infectivity in target bacteria isolated from sources distinct to where the phages were retrieved from. By studying phage-host interactions in bacteria and viruses isolated from river microbial communities, we show that novel phages with promiscuous host range encompassing multiple bacterial genera can be found in the environment. Assessment of hundreds of interactions in diverse hosts revealed that similar phages exhibit different infection efficiency and adaptation patterns. Understanding host range is fundamental in our knowledge of bacterium-phage interactions and their impact on microbial communities. The dynamic nature of phage promiscuity revealed in our study has implications in different aspects of phage research such as horizontal gene transfer or phage therapy.
Collapse
|
46
|
Greaves J, Stone D, Wu Z, Bibby K. Persistence of emerging viral fecal indicators in large-scale freshwater mesocosms. WATER RESEARCH X 2020; 9:100067. [PMID: 32995735 PMCID: PMC7516186 DOI: 10.1016/j.wroa.2020.100067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 05/18/2023]
Abstract
Fecal indicator bacteria (FIB) are typically used to monitor microbial water quality but are poor representatives of viruses due to different environmental fate. Viral fecal indicators have been proposed as alternatives to FIB; however, data evaluating the persistence of emerging viral fecal indicators under realistic environmental conditions is necessary to evaluate their potential application. In this study, we examined the persistence of five viral fecal indicators, including crAssphage and pepper mild mottle virus (PMMoV), and three bacterial fecal indicators (E. coli, enterococci and HF183/BacR287) in large-scale experimental ponds and freshwater mesocosms. Observed inactivation rate constants were highly variable and ranged from a minimum of -0.09 d-1 for PMMoV to a maximum of -3.5 d-1 for HF183/BacR287 in uncovered mesocosms. Overall, viral fecal indicators had slower inactivation than bacterial fecal indicators and PMMoV was inactivated more slowly than all other targets. These results demonstrate that bacterial fecal indicators inadequately represent viral fate following aging of sewage contaminated water due to differential persistence, and that currently used fecal indicator monitoring targets demonstrate highly variable persistence that should be considered during water quality monitoring and risk assessment.
Collapse
Affiliation(s)
- Justin Greaves
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN, 46556, USA
| | - Daniel Stone
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN, 46556, USA
| | - Zhenyu Wu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN, 46556, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN, 46556, USA
| |
Collapse
|
47
|
Jennings WC, Gálvez-Arango E, Prieto AL, Boehm AB. CrAssphage for fecal source tracking in Chile: Covariation with norovirus, HF183, and bacterial indicators. WATER RESEARCH X 2020; 9:100071. [PMID: 33083778 PMCID: PMC7552103 DOI: 10.1016/j.wroa.2020.100071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/20/2020] [Accepted: 09/26/2020] [Indexed: 05/12/2023]
Abstract
Anthropogenic fecal pollution in urban waterbodies can promote the spread of waterborne disease. The objective of this study was to test crAssphage, a novel viral human fecal marker not previously applied for fecal source tracking in Latin America, as a fecal pollution marker in an urban river in Chile. Human fecal markers crAssphage CPQ_064 and Bacteroides HF183, the human pathogen norovirus GII, and culturable fecal indicator bacteria (FIB) were quantified at six locations spanning reaches of the Mapocho River from upstream to downstream of Santiago, as well as in repeated sub-daily frequency samples at two urban locations. Norovirus showed positive correlation trends with crAssphage (τ = 0.57, p = 0.06) and HF183 (τ = 0.64, p = 0.03) in river water, but not with E. coli or enterococci. CrAssphage and HF183 concentrations were strongly linearly related (slope = 0.97, p < 0.001). Chlorinated wastewater effluent was an important source of norovirus GII genes to the Mapocho. Precipitation showed non-significant positive relationships with human and general fecal indicators. Concentrations of crAssphage and HF183 in untreated sewage were 8.35 and 8.07 log10 copy/100 ml, respectively. Preliminary specificity testing did not detect crAssphage or HF183 in bird or dog feces, which are predominant non-human fecal sources in the urban Mapocho watershed. This study is the first to test crAssphage for microbial source tracking in Latin America, provides insight into fecal pollution dynamics in a highly engineered natural system, and indicates river reaches where exposure to human fecal pollution may pose a public health risk.
Collapse
Affiliation(s)
- Wiley C. Jennings
- 473 Via Ortega, Room 189, Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Ana L. Prieto
- Departamento de Ingeniería Civil, Universidad de Chile, Av. Blanco Encalada 2002, 3er Piso, Santiago, Chile
| | - Alexandria B. Boehm
- 473 Via Ortega, Room 189, Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
- Corresponding author.
| |
Collapse
|
48
|
Pascual-Benito M, Ballesté E, Monleón-Getino T, Urmeneta J, Blanch AR, García-Aljaro C, Lucena F. Impact of treated sewage effluent on the bacterial community composition in an intermittent mediterranean stream. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115254. [PMID: 32721842 DOI: 10.1016/j.envpol.2020.115254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Water quality monitoring is essential to safeguard human and environmental health. The advent of next-generation sequencing techniques in recent years, which allow a more in-depth study of environmental microbial communities in the environment, could broaden the perspective of water quality monitoring to include impact of faecal pollution bacteria on ecosystem. In this study, 16 S rRNA amplicon sequencing was used to evaluate the impact of wastewater treatment plant (WWTP) effluent on autochthonous microbial communities of a temporary Mediterranean stream characterized by high flow seasonality (from 0.02 m3/s in winter to 0.006 m3/s in summer). Seven sampling campaigns were performed under different temperatures and streamflow conditions (winter and summer). Water samples were collected upstream (Upper) of the WWTP, the secondary effluent (EF) discharge and 75 m (P75) and 1000 m (P1000) downstream of the WWTP. A total of 5,593,724 sequences were obtained, giving rise to 20,650 amplicon sequence variants (ASV), which were further analysed and classified into phylum, class, family and genus. Each sample presented different distribution and abundance of taxa. Although taxon distribution and abundance differed in each sample, the microbial community structure of P75 resembled that of EF samples, and Upper and P1000 samples mostly clustered together. Alpha diversity showed the highest values for Upper and P1000 samples and presented seasonal differences, being higher in winter conditions of high streamflow and low temperature. Our results suggest the microbial ecology re-establishment, since autochthonous bacterial communities were able to recover from the impact of the WWTP effluent in 1 km. Alpha diversity results indicates a possible influence of environmental factors on the bacterial community structure. This study shows the potential of next-generation sequencing techniques as useful tools in water quality monitoring and management within the climate change scenario.
Collapse
Affiliation(s)
- Miriam Pascual-Benito
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - Elisenda Ballesté
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - Toni Monleón-Getino
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; BIOST3 (Research Group in Biostatistics, Bioinformatics and Data Science), GRBIO (Research Group in Biostatistics and Bioinformatics), Spain
| | - Jordi Urmeneta
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; Biodiversity Research Institute, University of Barcelona, Barcelona, Spain
| | - Anicet R Blanch
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - Cristina García-Aljaro
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain.
| | - Francisco Lucena
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| |
Collapse
|
49
|
Naidoo Y, Valverde A, Cason ED, Pierneef RE, Cowan DA. A clinically important, plasmid-borne antibiotic resistance gene (β-lactamase TEM-116) present in desert soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137497. [PMID: 32114220 DOI: 10.1016/j.scitotenv.2020.137497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
The exhaustive use of antibiotics in humans, animal farming and other agricultural practices has resulted in the frequent appearance of antibiotic resistant bacteria in human-impacted habitats. However, antibiotic resistance in natural (less-impacted) habitats is less understood. Using shotgun metagenomics we analysed soils from relatively low anthropogenic impact sites across the Namib Desert. We report the presence of a clinically significant extended spectrum β-lactamase (TEM-116), on a ColE1-like plasmid also carrying a metal resistance gene (arsC). The co-occurrence of resistance to antimicrobial drugs and metals encoded on a single mobile genetic element increases the probability of dissemination of these resistance determinants and the potential selection of multiple resistance mechanisms. In addition, the presence of a P7 entero-bacteriophage on the same plasmid, may represent a new vehicle for the propagation of TEM-116 in these soil communities. These findings highlight the role of the environment in the One Health initiative.
Collapse
Affiliation(s)
- Yashini Naidoo
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
| | - Angel Valverde
- Department of Microbial, Biochemical and Food Technology, University of the Free State, Nelson Mandela Drive, Bloemfontein 9300, South Africa
| | - Errol D Cason
- Department of Animal, Wildlife and Grassland Science, University of the Free State, Nelson Mandela Drive, Bloemfontein 9300, South Africa
| | - Rian E Pierneef
- Biotechnology Platform, Agricultural Research Council, Soutpan Road, Onderstepoort Campus, Pretoria 0110, South Africa
| | - Don A Cowan
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa.
| |
Collapse
|
50
|
Zhang Y, Wu R, Lin K, Wang Y, Lu J. Performance of host-associated genetic markers for microbial source tracking in China. WATER RESEARCH 2020; 175:115670. [PMID: 32171096 DOI: 10.1016/j.watres.2020.115670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Numerous genetic markers have been developed to establish microbial source tracking (MST) assays in the last decade. However, the selection of suitable markers is challenging due to a lack of understanding of fundamental factors such as sensitivity, specificity, and concentration in target/nontarget hosts, especially in East Asia. In this study, a total of 506 faecal samples comprised of human and 12 nonhuman hosts were collected from 28 cities across China and tested for marker performance characteristics. We firstly tested 40 host-associated markers based on a binary (presence/absence) criterion. Here, 15 markers (7 human-associated, 4 pig-associated, 3 ruminant-associated, and 1 poultry-associated) showed potential applicability in our study area. The selected 15 markers were then tested using qualitative and quantitative methods to characterise their performance. Overall, Bacteroidales markers presented higher sensitivity and concentrations in target samples compared to other bacterial or viral markers, but their specificity was low. Among nontarget samples, pets accounted for 43.7% and 35.7% of cross-reactivity with human-associated and poultry-associated markers, respectively. Noncommon animals, including horse and donkey, contributed 61.3% of cross-reactivity with ruminant-associated markers. When considering the quantitative distribution of markers, their concentration in nontarget samples were 1-3 orders of magnitude lower than in target samples. Moreover, a novel classification method was proposed to classify the nontarget hosts into four groups spanning "no cross-reactivity", "weak cross-reactivity", "moderate cross-reactivity", and "strong cross-reactivity" animal hosts. There were 77.9% nontarget samples identified as no cross-reactivity and weak cross-reactivity hosts, suggesting that these nontarget hosts produce little interference for corresponding markers. Our findings elucidate the performance of host-associated markers around China in a qualitative and quantitative manner, and reveal the interference degree of cross-reactivity from nontarget animals to genetic markers, which will facilitate tracking of multiple faecal pollution sources and planning timely remedial strategies in China.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Water Resources and Environment, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Renren Wu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510530, PR China.
| | - Kairong Lin
- Department of Water Resources and Environment, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Yishu Wang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510530, PR China
| | - Junqing Lu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510000, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510530, PR China
| |
Collapse
|