1
|
Wei L, Li Z, Hong T, Zhang Q, Luo L, Tang Y, Ji J, Kong J, Ding X. Electricity production and nutrient recovery from waste activated sludge via microbial fuel cell and subsequent struvite crystallization: Effect of low temperature thermo-alkaline pretreatment. BIORESOURCE TECHNOLOGY 2024; 414:131575. [PMID: 39370010 DOI: 10.1016/j.biortech.2024.131575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Microbial fuel cell (MFC) and subsequent struvite crystallization are available low-carbon environmental- friendly techniques for resource utilization of waste activated sludge (WAS). In this study, low temperature thermo-alkaline pretreatment (LTTAP) was innovatively proposed for enhancing MFC electricity generation and subsequent struvite crystallization from WAS. The results indicated that LTTAP at 75 °C and pH 10 not only substantially shortened the start-up time of MFC to 3-4 days, but also significantly increased maximum power density to 5.38 W/m3. Moreover, thermo-alkaline pretreated WAS effectively exhibited stable and high output voltage over long period, compared to unpretreated WAS. Furthermore, pretreated WAS can provide an effective pH buffering function for MFC operation. In addition, about 90 % of phosphate in the pretreated WAS supernatant was recovered by struvite crystallization. The findings herein provided a new route for enhancing electricity production and nutrient recovery from WAS, which can realize the full-scale applicationof WAS resource utilization.
Collapse
Affiliation(s)
- Lin Wei
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| | - Ziyue Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Tianqiu Hong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qiang Zhang
- Instrumental Analysis Center, Hefei University of Technology, Hefei 230009, China
| | - Lei Luo
- College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yiming Tang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Junjie Ji
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Jianyu Kong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Xiaoke Ding
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
2
|
Lu D, Song Y, Ge H, Peng H, Li H. Combination of magnetite and sodium percarbonate to enhance acetate-enriched short-chain fatty acids production during sludge anaerobic fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175854. [PMID: 39209173 DOI: 10.1016/j.scitotenv.2024.175854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Large amounts of waste activated sludge are generated daily worldwide, posing significant environmental challenges. Anaerobic fermentation is a promising method for sludge disposal, but it has two technical bottlenecks: the availability of short-chain fatty acids (SCFAs)-producing substrates and SCFAs consumption by methanogenesis. This study proposes a pretreatment strategy combining sodium percarbonate (SPC) and magnetite (Fe3O4) to address these issues. Under optimized conditions (20 mg Fe3O4/g TSS and 15 mg SPC/g TSS), SCFAs production increased to 3244.10 ± 216.31 mg COD/L, about 3.06 times the control (1057.29 ± 35.06 mg COD/L) and surpassing reported treatments. The combined pretreatment enhanced the disruption of extracellular polymeric substances, increased the release of biodegradable matters, improved acidogenesis enzyme activities, and inhibited methanogenesis. Additionally, it increased NH4+-N release in favor of the recovery of phosphorus from sludge residual. This study demonstrates an efficient pretreatment for high SCFAs production and resource recovery from WAS.
Collapse
Affiliation(s)
- Denglong Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Yang Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Huanying Ge
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Hongjia Peng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Haipu Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| |
Collapse
|
3
|
Wang Y, Zhang X, Chen Y. The enhancement of caproic acid synthesis from organic solid wastes: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123215. [PMID: 39504670 DOI: 10.1016/j.jenvman.2024.123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Organic solid waste (OSW) significantly harms the environment and threatens human health. Producing caproic acid (CA) from OSW presents a cost-effective, sustainable, and resource-efficient solution. This study comprehensively examines the various methods for synthesizing CA from OSW, focusing on waste material selection, pretreatment processes to improve dissolution and hydrolysis of OSW, key substrates, and optimization strategies. Using OSW resources has been extensively studied and applied across numerous industries, presenting a promising solution for reducing environmental pollution. This study provides insights into CA synthesis pathways and substrate selection while emphasizing the optimization of CA production from OSW. It also highlights key areas for future research.
Collapse
Affiliation(s)
- Yidan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
4
|
Chen J, Sun Y, Chen H. Enhancing methane production in anaerobic digestion of waste activated sludge by combined thermal hydrolysis and photocatalysis pretreatment. BIORESOURCE TECHNOLOGY 2024; 411:131353. [PMID: 39186988 DOI: 10.1016/j.biortech.2024.131353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Thermal hydrolysis (TH) is promising for sludge pretreatment, but the refractory substances generated at high temperatures inhibit anaerobic digestion. In this study, a novel combined TH and photocatalytic pretreatment method was proposed to improve the anaerobic digestion performance of waste activated sludge. The results showed that the combined pretreatment (170 °C, 0.5 g/L TiO2) increased methane yield by 66 % from 111 ± 5 m L/g VS to 185 ± 5 m L/g VS. After TH pretreatment, photocatalysis further promoted sludge solubilization by destroying extracellular polymeric substances, resulting in an increase in released soluble organic matter from 292 ± 16 mg/L to 4,091 ± 85 mg/L. In addition, photocatalysis improved the biodegradability of sludge by reducing the melanoidin and humic acid contents by 26 % and 20 %, respectively. The proposed novel pretreatment method effectively overcomes the bottleneck of TH technology and provides an alternative pretreatment technology for improving sludge resource recovery.
Collapse
Affiliation(s)
- Jian Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yihu Sun
- Hunan Diya Environmental Engineering Co., Ltd., Changsha 410007, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
5
|
Niu C, Zhang Z, Cai T, Pan Y, Lu X, Zhen G. Sludge bound-EPS solubilization enhance CH 4 bioconversion and membrane fouling mitigation in electrochemical anaerobic membrane bioreactor: Insights from continuous operation and interpretable machine learning algorithms. WATER RESEARCH 2024; 264:122243. [PMID: 39142046 DOI: 10.1016/j.watres.2024.122243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Bound extracellular polymeric substances (EPS) are complex, high-molecular-weight polymer mixtures that play a critical role in pore clogging, foulants adhesion, and fouling layer formation during membrane filtration, owing to their adhesive properties and gelation tendencies. In this study, a novel electrochemical anaerobic membrane bioreactor (EC-AnMBR) was constructed to investigate the effect of sludge bound-EPS solubilization on methane bioconversion and membrane fouling mitigation. During the 150-days' operation, the EC-AnMBR demonstrated remarkable performance, characterized by an exceptionally low fouling rate (transmembrane pressure (TMP) < 4.0 kPa) and high-quality effluent (COD removal > 98.2 %, protein removal > 97.7 %, and polysaccharide removal > 98.5 %). The highest methane productivity was up to 38.0 ± 3.1 mL/Lreactor/d at the applied voltage of 0.8 V with bound-EPS solubilization, 107.6 % higher than that of the control stage (18.3 ± 2.4 mL/Lreactor/d). Morphological and multiplex fluorescence labeling analyses revealed higher fluorescence intensities of proteins, polysaccharides, total cells and lipids on the surface of the fouling layer. In contrast, the interior exhibited increased compression density and reduced activity, likely attributable to compression effect. Under the synergistic influence of the electric field and bound-EPS solubilization, biomass characteristics exhibited a reduced propensity for membrane fouling. Furthermore, the bio-electrochemical regulation enhanced the electroactivity of microbial aggregates and enriched functional microorganisms, thereby promoting biofilm growth and direct interspecies electron transfer. Additionally, the potential hydrogenotrophic and methylotrophic methanogenesis pathways were enhanced at the cathode and anode surfaces, thereby increasing CH₄ productivity. The random forest-based machine learning model analyzed the nonlinear contributions of EPS characteristics on methane productivity and TMP values, achieving R² values of 0.879 and 0.848, respectively. Shapley additive explanations (SHAP) analysis indicated that S-EPSPS and S-EPSPN were the most critical factors affecting CH₄ productivity and membrane fouling, respectively. Partial dependence plot analysis further verified the marginal and interaction effects of different EPS layers on these outcomes. By combining continuous operation with interpretable machine learning algorithms, this study unveils the intricate impacts of EPS characteristics on methane productivity and membrane fouling behaviors, and provides new insights into sludge bound-EPS solubilization in EC-AnMBR.
Collapse
Affiliation(s)
- Chengxin Niu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Zhongyi Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Yang Pan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663N. Zhongshan Rd., Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
6
|
Sun SJ, Wang F, He ZW, Tang CC, Zhou AJ, Ren YX, Li Z, Liu W. Biochar alleviates inhibition effects of humic acid on anaerobic digestion: Insights to performances and mechanisms. ENVIRONMENTAL RESEARCH 2024; 259:119537. [PMID: 38960362 DOI: 10.1016/j.envres.2024.119537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
To recover methane from waste activated sludge through anaerobic digestion (AD) is one promising alternative to achieve carbon neutrality for wastewater treatment plants. However, humic acids (HAs) are one of the major compositions in waste activated sludge, and their accumulation performs inhibition effects on AD. This study investigated the potentials of biochar (BC) in alleviating inhibition effects of HAs on AD. Results showed that although the accumulated HAs reduced methane yield by 9.37% compared to control, the highest methane yield, 132.6 mL CH4/g VSS, was obtained after adding BC, which was 45.9% higher than that in HA group. Mechanism analysis showed that BC promoted the activities of hydrolase such as protease and α-glucosidase, which were 69.7% and 29.7% higher than those in HA group, respectively. The conversion of short-chain fatty acids was accelerated. In addition, the evolutions of electroactive microorganisms like Clostridium_sensu_stricto_13 and Methanosaeta were consistent with the activitiies of electron transfer and the contents of cytochrome c. Furthermore, parts of HAs rather than all of them were adsorbed by BC, and the remaining free HAs and BC formed synergistic effects on methanogenesis, then both CO2 reduction and acetoclastic methanogenesis pathways were improved. The findings may provide some solutions to alleviate inhibition effects of HAs on AD.
Collapse
Affiliation(s)
- Sheng-Jie Sun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fei Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhang-Wei He
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Cong-Cong Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yong-Xiang Ren
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
7
|
Li L, Li W, Xue Y, Wang Z, Wang Y, Li R, Deng M, Xu Y, Peng L, Song K. Perfluorooctanoic acid effect and microbial mechanism to methane production in anaerobic digestion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122412. [PMID: 39236608 DOI: 10.1016/j.jenvman.2024.122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/13/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Perfluorooctanoic acid (PFOA) as emerging pollutants was largely produced and stable in nature environment. Its fate and effect to the wasted sludge digestion process and corresponding microbial mechanism was rarely reported. This study investigated the different dose of PFOA to the wasted sludge digestion process, where the methane yield and microbial mechanism was illustrated. The PFOA added before digestion were 0-10000 μg/L, no significant variation in daily and accumulated methane production between each group. The 9th day methane yield was significantly higher than other days (p < 0.05). The soluble protein was significantly decreased after 76 days digestion (p < 0.001). The total PFOA in sludge (R2 = 0.8817) and liquid (R2 = 0.9083) phase after digestion was exponentially correlated with PFOA dosed. The PFOA in liquid phase was occupied 54.10 ± 18.38% of the total PFOA in all reactors. The dewatering rate was keep decreasing with the increase of PFOA added (R2 = 0.7748, p < 0.001). The mcrA abundance was significantly correlated with the pH value and organic matter concentration in the reactors. Chloroflexi was the predominant phyla, Aminicenantales, Bellilinea and Candidatus_Cloacimonas were predominant genera in all reactors. Candidatus_Methanofastidiosum and Methanolinea were predominant archaea in all reactors. The function prediction by FAPROTAX and Tax4fun implied that various PFOA dosage resulted in significant function variation. The fermentation and anaerobic chemoheterotrophy function were improved with the PFOA dose. Co-occurrence network implied the potent cooperation among the organic matter degradation and methanogenic microbe in the digestion system. PFOA has little impact to the methane generation while affect the microbe function significantly, its remaining in the digested sludge should be concerned to reduce its potential environmental risks.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkai Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Yunpeng Xue
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zezheng Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuren Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Zhejiang, 325035, China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Wang Y, Wang K, Zhou X, Dai B, Du D. Calcium oxide enhances the anaerobic co-digestion of excess sludge and plant waste: performance and mechanism. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1267-1279. [PMID: 39215737 DOI: 10.2166/wst.2024.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
The study investigates the effect of the oxidant calcium oxide (CaO) on the codigestion of excess sludge (ES) and plant waste (PW) under mesophilic anaerobic conditions to enhance methane production. The findings indicate that CaO significantly elevated methane yield in the codigestion system, with an optimum CaO addition of 6% resulting in a maximum methane production of 461 mL/g volatile solids, which is approximately 1.3 times that of the control group. Mechanistic exploration revealed that CaO facilitated the disintegration of organic matter, enhanced the release of soluble chemical oxygen demand, and increased the concentrations of soluble proteins and polysaccharides within the codigestion substrate. The presence of CaO was conducive to the generation and biological transformation of volatile fatty acids, with a notable accumulation of acetic acid, a smaller carboxylic acid within the VFAs. The proportion of acetate in the CaO-amended group increased to 32.6-36.9%. Enzymatic analysis disclosed that CaO enhanced the activity of hydrolytic and acidogenic enzymes associated with the ES and PW codigestion process but suppressed the activity of coenzyme F420. Moreover, CaO augmented the nutrient load in the fermentation liquid. The study provides an alternative scheme for the efficient resource utilization of ES and PW.
Collapse
Affiliation(s)
- Yongliang Wang
- Jiangsu Urban and Rural Construction Vocational College, Jiangsu Province Engineering Research Center of Low-carbon Building Materials and Urban and Rural Ecological, Changzhou 213147, China E-mail:
| | - Kang Wang
- Jiangsu Urban and Rural Construction Vocational College, Jiangsu Province Engineering Research Center of Low-carbon Building Materials and Urban and Rural Ecological, Changzhou 213147, China
| | - Xiaohui Zhou
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding 071001, China
| | - Bin Dai
- Suzhou Yuanke Ecological Construction Group, Suzhou 215123, China
| | - Daozhong Du
- Jiangsu Urban and Rural Construction Vocational College, Jiangsu Province Engineering Research Center of Low-carbon Building Materials and Urban and Rural Ecological, Changzhou 213147, China
| |
Collapse
|
9
|
Wu Y, Wu C, Liu X, Chen H, Deng Z, Wang D, Wu Z, Tang S, Huang X. The resistance of hydrogenotrophic methanogenic microorganisms to ofloxacin in sludge anaerobic digestion process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121522. [PMID: 38909576 DOI: 10.1016/j.jenvman.2024.121522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
Ofloxacin (OFL) is a commonly used antibiotic that can enter wastewater treatment plants and be adsorbed by the sludge, resulting in a high OFL concentration in sludge and affecting the subsequent sludge anaerobic digestion process. However, the micro mechanisms involved in this process have not been thoroughly studied. Therefore, this study focuses on the effect of OFL on the sludge anaerobic digestion of sludge to provide such support. The experimental results showed that the maximal methane yield decreased from 277.7 to 164.7 mL/g VSS with the OFL concentration increased from 0 to 300 mg/L. Additionally, OFL hindered the intermediate biochemical processes of hydrolysis, acidogenesis, acetogenesis, and acetoclastic methanogenesis. However, it promoted hydrogenotrophic methanogenesis process, using H2 as substrate, with the concentration of 300 mg/L OFL was 5.54 fold methane production of that in the control. Further investigation revealed that the negative effect of OFL was likely due to the induction of reactive oxygen species, which led to a decrease in cell activity and interference with the activity of key enzymes. Microbiological analysis revealed that OFL reduced the relative abundance of hydrolysis and acidogenesis bacteria, and Methanosaeta archaea, while increasing the relative abundance of hydrogenotrophic methanogenesis microorganism from 36.54% to 51.48% as the OFL concentration increase from 0 to 300 mg/L.
Collapse
Affiliation(s)
- Yanxin Wu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| | - Chao Wu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Zhiyi Deng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Zhixing Wu
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Shenglan Tang
- Testing Technology Company of Changsha Research Institute of Mining and Metallurgy Co.,LTD, Changsha 410082, China
| | - Xiaoding Huang
- College of Resources and Environment, Anqing Normal University, Anhui, 246011, China
| |
Collapse
|
10
|
Liang ZH, Wang Y, Zhao HY, Fu TT, Liu YQ, Zhang K, Wang YN, Ouyang HL, Yin JN. Improving water quality and mitigating CH 4 and N 2O production in urban landscape water simultaneously by optimizing calcium peroxide dosage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172270. [PMID: 38583627 DOI: 10.1016/j.scitotenv.2024.172270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Recent studies show that greenhouse gas (GHG) emissions from urban landscape water are significant and cannot be overlooked, underscoring the need to develop effective strategies for mitigating GHG production from global freshwater systems. Calcium peroxide (CaO2) is commonly used as an eco-friendly reagent for controlling eutrophication in water bodies, but whether CaO2 can reduce GHG emissions remains unclear. This study investigated the effects of CaO2 dosage on the production of methane (CH4) and nitrous oxide (N2O) in urban landscape water under anoxic conditions during summer. The findings reveal that CaO2 addition not only improved the physicochemical and organoleptic properties of simulated urban landscape water but also reduced N2O production by inhibiting the activity of denitrifying bacteria across various dosages. Moreover, CaO2 exhibited selective effects on methanogens. Specifically, the abundance of acetoclastic methanogen Methanosaeta and methylotrophic methanogen Candidatus_Methanofastidiosum increased whereas the abundance of the hydrogenotrophic methanogen Methanoregula decreased at low, medium, and high dosages, leading to higher CH4 production at increased CaO2 dosage. A comprehensive multi-objective evaluation indicated that an optimal dosage of 60 g CaO2/m2 achieved 41.21 % and 84.40 % reductions in CH4 and N2O production, respectively, over a 50-day period compared to the control. This paper not only introduces a novel approach for controlling the production of GHGs, such as CH4 and N2O, from urban landscape water but also suggests a methodology for optimizing CaO2 dosage, providing valuable insights for its practical application.
Collapse
Affiliation(s)
- Zhen-Hao Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hui-Ying Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tian-Tian Fu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Qiang Liu
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Kai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue-Ning Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hui-Long Ouyang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jia-Ni Yin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
11
|
Zhang P, Shen D, Shao J, He X, Zeng J, Wu SL, Long Y, Wei W, Ni BJ. Green synthesis of Fe 3O 4@ceramsite from sludge improving anaerobic digestion performance of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121085. [PMID: 38728986 DOI: 10.1016/j.jenvman.2024.121085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Anaerobic digestion (AD) is a promising technique for waste management, which can achieve sludge stabilization and energy recovery. This study successfully prepared Fe3O4@ceramsite from WAS and applied it as an additive in sludge digestion, aiming to improve the conversion of organics to biomethane efficiency. Results showed that after adding the Fe3O4@ceramsite, the methane production was enhanced by 34.7% compared with the control group (88.0 ± 0.1 mL/g VS). Further mechanisms investigation revealed that Fe3O4@ceramsite enhanced digesta stability by strong buffering capacity, improved sludge conductivity, and promoted Fe (III) reduction. Moreover, Fe3O4@ceramsite has a larger surface area and better porous structure, which also facilitated AD performance. Microbial community analysis showed that some functional anaerobes related to AD such as Spirochaeta and Smithella were enriched with Fe3O4@ceramsite treatment. Potential syntrophic metabolisms between syntrophic bacteria (Syntrophomonas, associated with DIET) and methanogens were also detected in the Fe3O4@ceramsite treatment AD system.
Collapse
Affiliation(s)
- Pengqu Zhang
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Jinyang Shao
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Xiaoyu He
- Hangzhou Guotai Environmental Protection Technology Co., Ltd, China
| | - Jianjun Zeng
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Shu-Lin Wu
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China.
| | - Yuyang Long
- School of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
12
|
Zhou P, Li D, Zhang C, Ping Q, Wang L, Li Y. Comparison of different sewage sludge pretreatment technologies for improving sludge solubilization and anaerobic digestion efficiency: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171175. [PMID: 38402967 DOI: 10.1016/j.scitotenv.2024.171175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Anaerobic digestion (AD) of sewage sludge reduces organic solids and produces methane, but the complex nature of sludge, especially the difficulty in solubilization, limits AD efficiency. Pretreatments, by destroying sludge structure and promoting disintegration and hydrolysis, are valuable strategies to enhance AD performance. There is a plethora of reviews on sludge pretreatments, however, quantitative comparisons from multiple perspectives across different pretreatments remain scarce. This review categorized various pretreatments into three groups: Physical (ultrasonic, microwave, thermal hydrolysis, electric decomposition, and high pressure homogenization), chemical (acid, alkali, Fenton, calcium peroxide, and ozone), and biological (microaeration, exogenous bacteria, and exogenous hydrolase) pretreatments. The optimal conditions of various pretreatments and their impacts on enhancing AD efficiency were summarized; the effects of different pretreatments on microbial community in the AD system were comprehensively compared. The quantitative comparison based on dissolution degree of COD (DDCOD) indicted that the sludge solubilization performance is in the order of physical, chemical, and biological pretreatments, although with each below 40 % DDCOD. Biological pretreatment, particularly microaeration and exogenous bacteria, excel in AD enhancement. Pretreatments alter microbial ecology, favoring Firmicutes and Methanosaeta (acetotrophic methanogens) over Proteobacteria and Methanobacterium (hydrogenotrophic methanogens). Most pretreatments have unfavorable energy and economic outcomes, with electric decomposition and microaeration being exceptions. On the basis of the overview of the above pretreatments, a full energy and economy assessment for sewage sludge treatment was suggested. Finally, challenges associated with sludge pretreatments and AD were analyzed, and future research directions were proposed. This review may broaden comprehension of sludge pretreatments and AD, and provide an objective basis for the selection of sludge pretreatment technologies.
Collapse
Affiliation(s)
- Pan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Dunjie Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Cong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
13
|
Xie Y, Liu X, Liu L, Zhou Y, Wang Z, Huang C, He H, Zhai Y. Deep eutectic solvents pretreatment enhances methane production from anaerobic digestion of waste activated sludge: Effectiveness evaluation and mechanism elucidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120615. [PMID: 38518499 DOI: 10.1016/j.jenvman.2024.120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Anaerobic digestion (AD) is a prevalent waste activated sludge (WAS) treatment, and optimizing methane production is a core focus of AD. Two DESs were developed in this study and significantly increased methane production, including choline chloride-urea (ChCl-Urea) 390% and chloride-ethylene glycol (ChCl-EG) 540%. Results showed that ChCl-Urea mainly disrupted extracellular polymeric substances (EPS) structures, aiding in initial sludge solubilization during pretreatment. ChCl-EG, instead, induced sludge self-driven organic solubilization and enhanced hydrolysis and acidification processes during AD process. Based on the extent to which the two DESs promoted AD for methane production, the AD process can be divided into stage Ⅰ and stage Ⅱ. In stage Ⅰ, ChCl-EG promoted methanogenesis more significantly, microbiological analysis showed both DESs enriched aceticlastic methanogens-Methanosarcina. Notably, ChCl-Urea particularly influenced polysaccharide-related metabolism, whereas ChCl-EG targeted protein-related metabolism. In stage Ⅱ, ChCl-Urea was more dominant than ChCl-EG, ChCl-Urea bolstered metabolism and ChCl-EG promoted genetic information processing in this stage. In essence, this study investigated the microbial mechanism of DES-enhanced sludge methanogenesis and provided a reference for future research.
Collapse
Affiliation(s)
- Yu Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xiaoping Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Liming Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China; Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto, 612-8135, Japan
| | - Yin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zhexian Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Cheng Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Hongkui He
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| |
Collapse
|
14
|
Ma M, Duan W, Huang X, Zeng D, Hu L, Gui W, Zhu G, Jiang J. Application of calcium peroxide in promoting resource recovery from municipal sludge: A review. CHEMOSPHERE 2024; 354:141704. [PMID: 38490612 DOI: 10.1016/j.chemosphere.2024.141704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The harmless disposal, resource recovery, and synergistic efficiency reduction of municipal sludge have been the research focuses for the last few years. Calcium peroxide (CaO2) is a multifunctional and safe peroxide that produces an alkaline oxidation environment to promote the fermentation of municipal sludge to produce hydrogen (H2) and volatile fatty acids (VFAs), thus realizing sludge resource recovery. This review outlines the research achievements of CaO2 in sludge resource recovery, improvement of sludge dewaterability, and removal of pollutants from sludge in recent years. Meanwhile, the mechanism of CaO2 and its influencing factors have also been comprehensively summarized. Finally, the future development direction of the application of CaO2 in municipal sludge is prospected. This review would provide theoretical reference for the potential engineering applications of CaO2 in improving sludge treatment in the future.
Collapse
Affiliation(s)
- Mengsha Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Weiyan Duan
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Daojing Zeng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Liangshan Hu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wenjing Gui
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Gaoming Zhu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jiahong Jiang
- New York University, New York, NY, 10012, United States
| |
Collapse
|
15
|
Jiang X, Li Z, Lin K, Zhao Y, Su L, Wu T, Zhou T. Enhancement of anaerobic digestion from food waste via inert substances based on metagenomic analysis: Oxidative phosphorylation and metabolism. ENVIRONMENTAL RESEARCH 2024; 246:118033. [PMID: 38157957 DOI: 10.1016/j.envres.2023.118033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The application of anaerobic digestion (AD) in the treatment of food waste (FW) has become widespread. However, the presence of inert substances, such as bones, ceramics, and shells, within FW introduces a degree of uncertainty into the AD process. To clarify this intricate issue, this study conducted an in-depth investigation into the influence of inert substances on AD. The results revealed that when inert substances were present at a concentration of 0.08 g/g VSS, methane productivity in the AD process was significantly augmented by 86%. Subsequent investigations suggested that this positive effect was primarily evident in various biochemical processes, including solubilization, hydrolysis acidification, methanogenesis, and the accumulation of extracellular polymeric substances. Metagenomic analysis showed that inert substances enhance the relative abundance of hydrolytic bacteria and have a pronounced impact on the relative abundance of hydrogenotrophic methanogens (Methanosarcina) and acetotrophic methanogens (Methanobacterium). Additionally, inert substances significantly increased the relative abundance of functional genes in oxidative phosphorylation, a pivotal pathway for ATP synthesis. Furthermore, inert substances had a substantial effect on the functional genes related to the metabolic pathways associated with methanogenesis (both hydrogenotrophic and acetotrophic). This comprehensive study shed light on the substantial impact of inert substances on the AD of food waste, contributing to an enhanced understanding of the underlying mechanisms of anaerobic fermentation.
Collapse
Affiliation(s)
- Xiupeng Jiang
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zongsheng Li
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Kunsen Lin
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Youcai Zhao
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Nanjing 210042, China
| | - Tong Wu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Tao Zhou
- The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, China.
| |
Collapse
|
16
|
Wang J, Zhang J, Cheng G, Shangguan Y, Yang G, Liu X. Feasibility and mechanism of removing Microcystis aeruginosa and degrading microcystin-LR by dielectric barrier discharge plasma. CHEMOSPHERE 2024; 352:141436. [PMID: 38360412 DOI: 10.1016/j.chemosphere.2024.141436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Harmful cyanobacterial bloom is one of the serious environmental problems worldwide. Microcystis aeruginosa is a representative harmful alga in cyanobacteria bloom. It is of great significance to develop new technologies for the removal of Microcystis aeruginosa and microcystins. The feasibility and mechanism of removing microcystis aeruginosa and degrading microcystins by dielectric barrier discharge (DBD) plasma were studied. The suitable DBD parameters obtained in this study are DBD (41.5 W, 40 min) and DBD (41.5 W, 50 min), resulting in algae removal efficiency of 77.4% and 80.4%, respectively; scanning electron microscope and LIVE-DEATH analysis demonstrate that DBD treatment can disrupt cell structure and lead to cell death; analysis of elemental composition and chemical state indicated that there are traces of oxidation of organic nitrogen and organic carbon in microcystis aeruginosa; further intracellular ROS concentration and antioxidant enzyme activity analysis confirm that DBD damage microcystis aeruginosa through oxidation. Meanwhile, DBD can effectively degrade the microcystin-LR released after cell lysis, the extracellular microcystin-LR concentration in the DBD (41.5 W) group decreased by 88.7% at 60 min compared to the highest concentration at 20 min; further toxicity analysis of degradation intermediates indicated that DBD can reduce the toxicity of microcystin-LR. The contribution of active substances to the inactivation of microcystis aeruginosa is eaq- > •OH > H2O2 > O3 > 1O2 > •O2- > ONOO-, while on the degradation of microcystin-LR is eaq- > •OH > H2O2 > O3 > •O2- > 1O2 > ONOO-. The application of DBD plasma technology in microcystis aeruginosa algae removal and detoxification has certain prospects for promotion and application.
Collapse
Affiliation(s)
- Jie Wang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai, 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai, 200092, China
| | - Jiahua Zhang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai, 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai, 200092, China
| | - Guofeng Cheng
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai, 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai, 200092, China
| | - Yuyi Shangguan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Guanyi Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai, 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai, 200092, China
| |
Collapse
|
17
|
Zhou Z, Ye G, Zong Y, Zhao Z, Wu D. Improvement of Fe(Ⅲ)/percarbonate system by molybdenum powder and tripolyphosphate: Co-catalytic performance, low oxidant consumption, pH-dependent mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132924. [PMID: 37984133 DOI: 10.1016/j.jhazmat.2023.132924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/10/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
The homogeneous sodium percarbonate (SPC) systems are limited by narrow pH range, ineffective consumption of oxidant, and weak reusability of catalyst. Herein, molybdenum (Mo) powder and sodium tripolyphosphate (STPP) were selected to overcome these challenges. Sulfamethoxazole (SMX), as a model contaminant, was almost completely degraded in 60 min with higher removal rate (0.1367 min-1) than the Mo or STPP-absent system. In addition, Mo/STPP-Fe(Ⅲ)/SPC system was cost-effective in terms of oxidant consumption, requiring only 0.2 mM SPC. About activation mechanism, the main active species for SMX degradation was pH-dependent, with hydroxyl radical (·OH) as the dominant active species at pHi = 7 and ·OH, carbonate radical (CO3·-), and superoxide radical (O2·-) derived from a series of chain reaction at pHi = 10, respectively. Due to the generation of various electrophilic free radical, the system exhibited excellent performance towards electron-rich pollutants under a wide pH range. Furthermore, Mo exhibited excellent stability and reusability. SMX was degraded through hydroxylation, N-S cleavage, amino and sulfanilamide oxidation into intermediates whose toxicities were evaluated by Toxicity Estimation Software Tool (T.E.S.T.) software. This work provided new insights to Fe/SPC system towards high-efficiency and low consumption treatment of practical application.
Collapse
Affiliation(s)
- Zhengwei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Guojie Ye
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhenyu Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
18
|
Zhang C, Chen W, Zhang T, Chen Z. Biocomposite based on graphene oxide immobilized Pseudomonas psychrotolerans for the recovery of Y(III) in acid mine drainage. CHEMOSPHERE 2024; 346:140589. [PMID: 37944763 DOI: 10.1016/j.chemosphere.2023.140589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Rare earth elements (REEs) recovery is a critical issue concerning both resource recovery and wastewater utilization. In this study, a new bio-composite was fabricated using graphene oxide immobilized Pseudomonas psychrotolerans (PP@GO), which was isolated from the soil of REEs mine. Results showed that 99.6% Y(III) was removed in 48 h and various characterization confirmed that S-S, -NH2, HPO42-, -OH and -COOH from extracellular polymeric substances (EPS) secreted by microorganisms formed complexation with Y(III). As well, the Y(III) adsorption best followed Freundlich isotherm and non-linear pseudo-second-order kinetic model having R2 of 0.985 and 0.996, respectively, demonstrating that the adsorption was governed by multilayered chemisorption. Additionally, the effectiveness of PP@GO was not limited to Y(III), where 27.9% of this substance was removed in acid mine drainage (AMD), also exhibited great adsorption for other REEs, such as Er (45.0%) and Ho (43.8%). Furthermore, the adsorption efficiency of Y(III) remained high (70.0%) after a 5th cycle, emphasizing the consistent stability of PP@GO. Finally, REEs adsorbed could be greatly desorbed by KNO3, like Sm (80.1%) and La (80.0%), which revealed that PP@GO has great potential to recover REEs in AMD. Overall, this study offers a promising strategy for the green and sustainable REEs recovery and wastewater treatment.
Collapse
Affiliation(s)
- Chenxin Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Wei Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Tao Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
19
|
Wang J, Ma D, Lou Y, Ma J, Xing D. Optimization of biogas production from straw wastes by different pretreatments: Progress, challenges, and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166992. [PMID: 37717772 DOI: 10.1016/j.scitotenv.2023.166992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Lignocellulosic biomass (LCB) presents a promising feedstock for carbon management due to enormous potential for achieving carbon neutrality and delivering substantial environmental and economic benefit. Bioenergy derived from LCB accounts for about 10.3 % of the global total energy supply. The generation of bioenergy through anaerobic digestion (AD) in combination with carbon capture and storage, particularly for methane production, provides a cost-effective solution to mitigate greenhouse gas emissions, while concurrently facilitating bioenergy production and the recovery of high-value products during LCB conversion. However, the inherent recalcitrant polymer crystal structure of lignocellulose impedes the accessibility of anaerobic bacteria, necessitating lignocellulosic residue pretreatment before AD or microbial chain elongation. This paper seeks to explore recent advances in pretreatment methods for LCB biogas production, including pulsed electric field (PEF), electron beam irradiation (EBI), freezing-thawing pretreatment, microaerobic pretreatment, and nanomaterials-based pretreatment, and provide a comprehensive overview of the performance, benefits, and drawbacks of the traditional and improved treatment methods. In particular, physical-chemical pretreatment emerges as a flexible and effective option for methane production from straw wastes. The burgeoning field of nanomaterials has provoked progress in the development of artificial enzyme mimetics and enzyme immobilization techniques, compensating for the intrinsic defect of natural enzyme. However, various complex factors, such as economic effectiveness, environmental impact, and operational feasibility, influence the implementation of LCB pretreatment processes. Techno-economic analysis (TEA), life cycle assessment (LCA), and artificial intelligence technologies provide efficient means for evaluating and selecting pretreatment methods. This paper addresses current issues and development priorities for the achievement of the appropriate and sustainable utilization of LCB in light of evolving economic and environmentally friendly social development demands, thereby providing theoretical basis and technical guidance for improving LCB biogas production of AD systems.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
20
|
Wang J, Cheng G, Zhang J, Shangguan Y, Lu M, Liu X. Feasibility and mechanism of recycling carbon resources from waste cyanobacteria and reducing microcystin toxicity by dielectric barrier discharge plasma. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132333. [PMID: 37634378 DOI: 10.1016/j.jhazmat.2023.132333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Recycling carbon resources from discarded cyanobacteria is a worthwhile research topic. This study focuses on the use of dielectric barrier discharge (DBD) plasma technology as a pretreatment for anaerobic fermentation of cyanobacteria. The DBD group (58.5 W, 45 min) accumulated the most short chain fatty acids (SCFAs) along with acetate, which were 3.0 and 3.3 times higher than the control. The DBD oxidation system can effectively collapse cyanobacteria extracellular polymer substances and cellular structure, improve the biodegradability of dissolved organic matter, enrich microorganisms produced by hydrolysis and SCFAs, reduce the abundance of SCFAs consumers, thereby promoting the accumulation of SCFAs and accelerating the fermentation process. The microcystin-LR removal rate of 39.8% was obtained in DBD group (58.5 W, 45 min) on day 6 of anaerobic fermentation. The toxicity analysis using the ECOSAR program showed that compared to microcystin-LR, the toxicity of degradation intermediates was reduced. The contribution order of functional active substances to cyanobacteria cracking was obtained as eaq- > •OH > 1O2 > •O2- > ONOO-, while the contribution order to microcystin-LR degradation was eaq- > •OH > •O2- > 1O2 > ONOO-. DBD has the potential to be a revolutionary pretreatment method for cyanobacteria anaerobic fermentation.
Collapse
Affiliation(s)
- Jie Wang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China
| | - Guofeng Cheng
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China
| | - Jiahua Zhang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China
| | - Yuyi Shangguan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ming Lu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, 63 Chifeng Road, Shanghai 200092, China.
| |
Collapse
|
21
|
Chandrasekaran S, Banu JR, Kumar G. Effect of thermal-calcium peroxide mediated exopolymer release on disperser pre-treatment for efficient anaerobic digestion. ENVIRONMENTAL RESEARCH 2023; 235:116635. [PMID: 37454801 DOI: 10.1016/j.envres.2023.116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The present study aimed to improve the hydrolysis potential of paper mill sludge through a two-phase disintegration process. In Particular, attention was focused on removal of extracellular polymeric substance (EPS) i.e. deflocculation of sludge in order to improve the efficiency of subsequent disperser disintegration. During deflocculation, carbohydrate, protein and deoxyribonucleic acids (DNA) were used as assessment parameters. During disintegration, soluble chemical oxygen demand (SCOD) and suspended solids (SS) reduction were used as assessment index to evaluate the efficiency of disintegration. A greater EPS removal was attained while deflocculating the sludge at calcium peroxide dosage of 0.05 g/g suspended solids (SS) and at a temperature of 70 °C. When comparing the disintegrated samples, a clear variation was noted in deflocculated and disintegrated sludge (19.2%) than the disintegrated sludge alone (13.5%). This clearly shows the need for deflocculation prior to disintegration. Likewise, a higher biomethane production of 0.214 L/g COD was achieved in deflocculated and disintegrated sludge than the pretreated sludge alone. Deflocculation reduces sludge management cost from 170 USD (Disperser alone (D alone disintegration)) to 51 USD (Thermal calcium peroxide mediated-Disperser (TCaO2-D disintegration), indicating the efficiency of the proposed disintegration.
Collapse
Affiliation(s)
- Sivaraman Chandrasekaran
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610005, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, South Korea; Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Forus 4036, Stavanger, Norway.
| |
Collapse
|
22
|
Yang J, Wang W, Yang X, Long S, Tian X, Chen L, Liu X, Yang Q, Zhou T, Wang D. Enhancing acidogenic fermentation of waste activated sludge via urea hydrogen peroxide pretreatment: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2023; 386:129483. [PMID: 37454957 DOI: 10.1016/j.biortech.2023.129483] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Improving the anaerobic treatment performance of waste activated sludge (WAS) to achieve resource recovery is an indispensable requirement to reduce carbon emissions, minimize and stabilize biosolids. In this study, a novel strategy by using urea hydrogen peroxide (UHP) to enhance SCFAs production through accelerating WAS disintegration, degrading recalcitrant substances and alleviating competitive suppression of methanogens. The SCFAs production and acetate proportion rose from 436.9 mg COD/L and 31.3% to 3102.6 mg COD/L and 54.1%, respectively, when UHP grew from 0 to 80 mg/g TSS. Mechanism investigation revealed that OH, O2 and urea were the major contributors to accelerate WAS disintegration with the sequence of OH> O2 > urea. Function microbes related to acidification and genes associated with acetate production ([EC:2.3.1.8] and [EC:2.7.2.1]) were upregulated while genes encoding propionic acid production ([EC:6.4.1.3] and [EC:6.2.1.1]) were downregulated. These results raised the application prospects of UHP in WAS resource utilization.
Collapse
Affiliation(s)
- Jingnan Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha 410208, PR China
| | - Xianli Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Sha Long
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xiaohang Tian
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Lizhen Chen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qiliang Yang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha 410208, PR China
| | - Tao Zhou
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha 410208, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
23
|
Erkurt FE, Mert A. Eco-friendly oxidation of a reactive textile dye by CaO 2: effects of specific independent parameters. ENVIRONMENTAL TECHNOLOGY 2023; 44:3294-3315. [PMID: 37376879 DOI: 10.1080/09593330.2023.2229943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Textile wastewater containing dyes poses significant risks to the environment. Advanced oxidation processes (AOPs) effectively eliminate dyes by converting them into harmless substances. However, AOPs have drawbacks such as sludge formation, metal toxicity, and high cost. As an alternative to AOPs, calcium peroxide (CaO2) offers an eco-friendly and potent oxidant for dye removal. Unlike certain AOPs that generate sludge, CaO2 can be directly employed without resulting in sludge formation. This study examines the use of CaO2 for oxidizing Reactive Black 5 (RB5) in textile wastewater without any activator. Various independent factors-pH, CaO2 dosage, temperature, and certain anions-were investigated for their influence on the oxidation process. The effects of these factors on dye oxidation were analyzed using the Multiple Linear Regression Method (MLR). CaO2 dosage was determined to be the most influential parameter for RB5 oxidation, while the optimal pH for oxidation with CaO2 was found to be 10. The study determined that 0.5 g of CaO2 achieved approximately 99% efficiency in oxidizing 100 mg/L of RB5. Additionally, the study revealed that the oxidation process is endothermic, with an activation energy (Ea) and standard enthalpy (ΔH°) for RB5 oxidation by CaO2 determined as 31.135 kJ mol-1 and 110.4 kJ mol-1, respectively. The presence of anions decreased RB5 oxidation, with decreasing effectiveness observed in the order of PO43-, SO42-, HCO3-, Cl-, CO32-, and NO3-. Overall, this research highlights CaO2 as an effective, easy-to-use, eco-friendly, and cost-efficient method for removing RB5 from textile wastewater.
Collapse
Affiliation(s)
- F Elcin Erkurt
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| | - Aslı Mert
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| |
Collapse
|
24
|
Kim DH, Kim HS, Im BG, Park JH. Repercussion of extracellular polymeric removal by low-temperature calcium peroxide pretreatment on bacterial fragmentation for enhancing biohydrogen production. BIORESOURCE TECHNOLOGY 2023:129479. [PMID: 37437814 DOI: 10.1016/j.biortech.2023.129479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
This study envisioned attaining the percipience of effective biohydrogen production from paper mill waste-activated sludge through low-temperature calcium peroxide-mediated bacterial pretreatment (TCP-BP). Floc dissociation with limited cell destruction was attained at a calcium peroxide dosage of 0.05 g/g suspended solids (SS) at 70 °C temperature. This TCP-BP method improves bacterial fragmentation, and very high SS solubilization was achieved at 42 h, with the solubilization and solid reduction of 18.6% and 14.1%, respectively. BP-only pretreatment shows lower solubilization efficiency of 9.4% than TCP-BP pretreatment due to the presence of flocs, which inhibit the enzymatic action during bacterial fragmentation. A biohydrogen test shows a high biohydrogen potential of 94.1 mL H2/gCOD for the TCP-BP sample, which is higher than that of the BP-only and control samples. According to the findings, low-temperature calcium peroxide-mediated bacterial fragmentation is validated to be an efficient process for sludge degradation and biohydrogen production.
Collapse
Affiliation(s)
- Do-Hyung Kim
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju, South Korea
| | - Han-Shin Kim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Baek-Gyu Im
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju, South Korea
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju, South Korea.
| |
Collapse
|
25
|
Liu L, Pan Y, Zhi X, Chen L, Zhu H. Bacterial antioxidant mechanism in calcium peroxide aided sludge anaerobic fermentation. BIORESOURCE TECHNOLOGY 2023; 384:129327. [PMID: 37328013 DOI: 10.1016/j.biortech.2023.129327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/13/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Although calcium peroxide (CaO2) can enhance the short-chain fatty acids (SCFAs) production in sludge anaerobic fermentation, the microbiological mechanisms underlying this process remain unclear. In this study, it is aimed to elucidate the bacterial protective mechanisms in response to the oxidative stress induced by CaO2. Results show that extracellular polymeric substance (EPS) and anti-oxidant enzymes play vital roles in protecting bacterial cells from CaO2. The addition of CaO2 resulted in increased relative abundances of genes exoP and SRP54, which are associated with EPS secretion and transportation. Superoxide dismutase (SOD) played a crucial in alleviating oxidative stress. The dosage of CaO2 significantly influences the succession of the bacterial community in the anaerobic fermentation system. With 0.3 g CaO2/g VSS, the net income was approximately 4 USD/ton of sludge treated. The CaO2-assisted anaerobic fermentation process has the potential to recover more resources from sludge and thus, benefit the environment.
Collapse
Affiliation(s)
- Li Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Pan
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaohan Zhi
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Long Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
26
|
Li H, Wang H, Yang X, Zhang Q, Wang Y. Effect of exogenous CaO addition on H 2S production from waste activated sludge and its influence mechanism. WATER RESEARCH 2023; 241:120171. [PMID: 37295227 DOI: 10.1016/j.watres.2023.120171] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2S) production from waste activated sludge (WAS) is the main reason for odor emission during anaerobic fermentation system. CaO has been reported to effectively improve the resources recovery of WAS, but its potential effect on H2S production in anaerobic fermentation process remains unrecognized. In present study, it was found that the addition of 60 mg/g VSS CaO greatly inhibited H2S production and the maximum yield of H2S was 60.1 ± 1.8% lower than the control. Mechanism investigation demonstrated that CaO destroyed sludge structure and increased the release of intracellular organic matter with hydrogen bonding networks destroying, but had a mild effect on the transformation of sulfur containing organic matters and inorganic sulfate reduction. Additionally, the enhancement in H+ and S2- consumption by alkaline condition and metal ions release was another reason for the inhibition of H2S production in CaO addition reactors. Furthermore, microbial analysis showed that CaO addition importantly reduced the hydrolysis microorganism, particularly denitrification hydrolytic bacterias (e.g., unclassified_f_Chitinophagaceae and Dechloromonas), sulfate reducing bacterias (SRBs) (e.g., unclassified_c_Deltaproteobacteria and Desulfosarcina) and genes (e.g., PepD, cysN/D, CysH/C and Sir) involved in organic sulfur hydrolysis and sulfate reduction. Results from this study provides theoretical insights into the practical applications of CaO.
Collapse
Affiliation(s)
- Hang Li
- Hebei Key Laboratory of close-to-Nature restoration technology of wetlands, School of Eco-Environment, Hebei university, Baoding 071002, China; Institute of Xiong'an New Area, Hebei university, Baoding 071002, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjie Wang
- Hebei Key Laboratory of close-to-Nature restoration technology of wetlands, School of Eco-Environment, Hebei university, Baoding 071002, China; School of life science, Hebei university, Baoding 071002, China; Institute of Xiong'an New Area, Hebei university, Baoding 071002, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xianglong Yang
- Hebei Key Laboratory of close-to-Nature restoration technology of wetlands, School of Eco-Environment, Hebei university, Baoding 071002, China; Institute of Xiong'an New Area, Hebei university, Baoding 071002, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Qiushuo Zhang
- Hebei Key Laboratory of close-to-Nature restoration technology of wetlands, School of Eco-Environment, Hebei university, Baoding 071002, China; Institute of Xiong'an New Area, Hebei university, Baoding 071002, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yali Wang
- Hebei Key Laboratory of close-to-Nature restoration technology of wetlands, School of Eco-Environment, Hebei university, Baoding 071002, China; School of life science, Hebei university, Baoding 071002, China; Institute of Xiong'an New Area, Hebei university, Baoding 071002, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
27
|
Xu Z, Sun S, Gao M, Zheng R, Mu H, Qiu L, Ma J. Degradation of tetracyclines via calcium peroxide activation by ultrasonic: Roles of reactive species, oxidation mechanism and toxicity evaluation. CHEMOSPHERE 2023; 334:139033. [PMID: 37244553 DOI: 10.1016/j.chemosphere.2023.139033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Tetracyclines (TC) frequently detected in the aqueous environment pose threats to humans and ecosystems. The synergistic technology coupling ultrasound (US) and calcium peroxide (CaO2) has a great potential to abate TC in wastewater. However, the degradation efficiency and detailed mechanism of TC removal in the US/CaO2 system is unclear. This work was carried out to assess the performance and mechanism of TC removal in the US/CaO2 system. The results demonstrated that 99.2% of TC was degraded by the combination of 15 mM CaO2 with ultrasonic power of 400 W (20 kHz), but only about 30% and 4.5% of TC was removed by CaO2 (15 mM) or US (400 W) alone process, respectively. Experiments using specific quenchers and electron paramagnetic resonance (EPR) analysis indicated that the generation of hydroxyl radicals (•OH), superoxide radicals (O2-•), and single oxygen (1O2) in the process, whereas •OH and 1O2 were mainly responsible for the degradation of TC. The removal of TC in the US/CaO2 system has a close relationship with the ultrasonic power, the dosage of CaO2 and TC, and the initial pH. The degradation pathway of TC in the US/CaO2 process was proposed based on the detected oxidation products, and it mainly included N,N-dedimethylation, hydroxylation, and ring-opening reactions. The presence of 10 mM common inorganic anions including chloridion (Cl-), nitrate ion (NO3-), sulfate ion (SO42-), and bicarbonate ion (HCO3-) showed negligible influences on the removal of TC in the US/CaO2 system. The US/CaO2 process could efficiently remove TC in real wastewater. Overall, this work firstly demonstrated that •OH and 1O2 mainly contributed to the removal of pollutants in the US/CaO2 system, which was remarkable for understanding the mechanisms of CaO2-based oxidation process and its future application.
Collapse
Affiliation(s)
- Zujun Xu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Shaofang Sun
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Mingchang Gao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Ruibin Zheng
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Haotian Mu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Liping Qiu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
28
|
Wang J, Lou Y, Ma D, Feng K, Chen C, Zhao L, Xing D. Co-treatment with free nitrous acid and calcium peroxide regulates microbiome and metabolic functions of acidogenesis and methanogenesis in sludge anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161924. [PMID: 36736410 DOI: 10.1016/j.scitotenv.2023.161924] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Wasted activated sludge (WAS) is a promising feedstock for carbon management because of its abundance and carbon-neutral features. Currently, the goal is to maximize the energy in WAS and avoid secondary toxic effects or accumulation of harmful substances in the environment. Chemical pretreatment is an effective strategy for enhancing WAS disintegration and production of short chain fatty acids (SCFAs). However, the role of pretreatment in shaping the core microbiome and functional metabolism of anaerobic microorganisms remains obscure. Here, the mechanisms of SCFA synthesis and microbiome response to free nitrous acid (FNA) and calcium peroxide (CaO2) co-treatment during sludge anaerobic digestion (AD) were investigated. The combination of FNA and CaO2 enriched acidogenic Macellibacteroides, Petrimonas, and Sedimentibacter to a relative abundance of 15.0%, 10.3%, and 7.3%, respectively, resulting in an apparent increase in SCFA production. Metagenome analysis indicated that FNA + CaO2 co-treatment facilitated glycolysis, phosphate acetyltransferase-acetate kinase pathway, amino acid metabolism, and acetate transport, but inhibited CO2 reduction and common pathway of methanogenesis compared with the untreated control. This work provides theoretical insights into the functional activity and interaction of microorganisms with ecological factors.
Collapse
Affiliation(s)
- Jing Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Lou
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Ma
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Feng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuan Chen
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
29
|
Liu X, Deng Q, Du M, Lu Q, Zhou W, Wang D. Microplastics decrease the toxicity of cadmium to methane production from anaerobic digestion of sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161780. [PMID: 36706993 DOI: 10.1016/j.scitotenv.2023.161780] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) and Cd have been proven to inhibit methane production from anaerobic digestion of sewage sludge. However, the published studies mainly focused on their single inhibition. This cannot reflect the real-world situations where MPs and Cd co-exist. This study therefore aims to reveal the combined effect of MPs and Cd on anaerobic digestion of sewage sludge. Experimental results showed that PVC-MPs at environmentally relevant levels (e.g., 1, 10 particles/g total solids (TS)) did not affect methane yield but decrease the toxicity of Cd. When PVC-MPs were 30 particles/g TS, the cumulative methane production recovered from 58.8 % (in the presence of 5 mg Cd/g TS) to 89.7 % of the control. Organic fluxes were significantly increased compared with the control, particularly affecting the content of dissolved substances and short-chain fatty acids during anaerobic digestion. Mechanistic exploration showed that the adsorption of Cd by PVC-MPs was higher than that of sludge-substrate, which reduced the bioavailability of Cd by anaerobes, as evidenced by the increased anaerobes driven carbon flux from solid-phase to bio-methane during anaerobic digestion. Overall, these findings identified important factors in determining the toxicity of pollutants on anaerobic digestion process, providing precise data for toxicity evaluation of MPs and metals in anaerobic environment.
Collapse
Affiliation(s)
- Xuran Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Qian Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenneng Zhou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
30
|
Li B, Wang Z, Xia S, Zhang B, Li W, Qiu W, Ma J, Ding A, He X. CaO2-based tablet for effective and green membrane cleaning without additional catalysts. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
31
|
Wang C, Wang Y, Chen Z, Wei W, Chen X, Mannina G, Ni BJ. A novel strategy for efficiently transforming waste activated sludge into medium-chain fatty acid using free nitrous acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160826. [PMID: 36502988 DOI: 10.1016/j.scitotenv.2022.160826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The global energy crisis is approaching due to rapid population growth and overexploitation of fossil fuels. Therefore, the development and use of new and renewable energy sources is already in the extreme urgency. This work developed a novel technology to efficiently produce renewable liquid bioenergy from discarded wastes, by effectively transforming sewage sludge into high-value medium chain fatty acids (MCFA). The maximum MCFA yield in the anaerobic sludge fermentation was revealed to be 10.6 times of control when utilizing sewage sludge with 1.78 mg-N/L free nitrous acid (FNA) pretreatment. The carbon flow from sewage sludge into MCFA in the fermentation system was significantly enhanced with appropriate levels (0.71-1.78 mg-N/L) of FNA pretreatment. Compared to FNA pretreatment, however, its direct addition severely inhibited total products (i.e., carboxylates and complex alcohols) generation because of the toxicity on live cells (decreasing to 8.3 %-13.9 %) in sludge. Kinetic models (one-substrate and two-substrate) were utilized to investigate the mechanism of MCFA promotion by FNA pretreatment on anaerobic sludge fermentation, in which linear relationship analysis between FNA-derived organic release and the fitted parameters were also performed. The results indicated that the conversion of refractory materials into rapidly bioavailable substrates for MCFA production contributed to increasing MCFA production rate and potential. Moreover, the relative abundances of functional microorganisms related to hydrolysis-acidification and chain elongation process increased under FNA pretreatment, further favoring the MCFA production. This study provides a novel and effective technology of sludge energy recovery that can achieve the next-generation sustainable sewage sludge management.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhijie Chen
- School of Civil and Environmental Engineering, Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wei Wei
- School of Civil and Environmental Engineering, Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian 350116, China
| | - Giorgio Mannina
- Engineering Department, Palermo University, Ed. 8 Viale delle Scienze, 90128 Palermo, Italy
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
32
|
Wang X, Wang Y, Zheng K, Tian L, Zhu T, Chen X, Zhao Y, Liu Y. Enhancing methane production from waste activated sludge with heat-assisted potassium ferrate (PF) pretreatment: Reaction kinetics and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160441. [PMID: 36436650 DOI: 10.1016/j.scitotenv.2022.160441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
This work proposed a novel strategy via heat-assisted potassium ferrate (PF) pretreatment to enhance methane production from waste activated sludge (WAS) during anaerobic digestion. In this research, five dosages of PF (i.e., 0, 0.05, 0.1, 0.3 and 0.5 g/g VSS) at two temperatures (i.e., 25 °C and 55 °C) were explored. Biochemical methane potential experiments illustrated that heat-assisted PF pretreatment improved cumulative methane production with the maximum yield up to 163.93 mL CH4/g VSS, 149.0 %, 119.6 % and 121.0 % of that in the control, individual 0.5 g PF/g VSS and individual heat (i.e., 55 °C) pretreatment digesters, respectively. The maximum methane potential (B0) was promoted by 63.2 % with heat-assisted PF pretreatment compared to the control, while the hydrolysis rate (k) changed slightly. Mechanism analysis revealed that heat-assisted PF pretreatment accelerated WAS solubilization and enhanced the biodegradability of released substances, providing more available matrix for bacteria during the following anaerobic digestion processes. Microbial community analysis exhibited that several microbes such as Proteiniclasticum sp., Sedimentibacter sp. and Methanosaeta sp. associated with hydrolysis, acidification and methanogenesis respectively were improved after heat-assisted PF pretreatment. In addition, the relative bioactivities of protease, butyrate kinase and acetate kinase were also increased. Furthermore, variation of dominant genes associated with methane production indicated that acetate-dependent methanogenesis was the main pathway while CO2-dependent methanogenesis pathway was inhibited by heat-assisted PF pretreatment.
Collapse
Affiliation(s)
- Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Kaixin Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Lixin Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian 350116, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
33
|
Wang Y, Wang X, Wang D, Zhu T, Zhang Y, Horn H, Liu Y. Ferrate pretreatment-anaerobic fermentation enhances medium-chain fatty acids production from waste activated sludge: Performance and mechanisms. WATER RESEARCH 2023; 229:119457. [PMID: 36521312 DOI: 10.1016/j.watres.2022.119457] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The rupture of cytoderm and extracellular polymeric substances (EPS), and competitive inhibition of methanogens are the main bottlenecks for medium-chain fatty acids (MCFAs) production from waste activated sludge (WAS). This study proposes a promising ferrate (Fe (VI))-based technique to enhance MCFAs production from WAS through accelerating WAS disintegration and substrates transformation, and eliminating competitive inhibition of methanogens, simultaneously. Results shows that the maximal MCFAs production attains 8106.3 mg COD/L under 85 mg Fe/g TSS, being 58.6 times that of without Fe (VI) pretreatment. Mechanism exploration reveals that Fe (VI) effectively destroys EPS and cytoderm through electron transfer, reactive oxygen species generation (i.e., OH, O2- and 1O2) and elevated alkalinity, resulting in the transfer of organics from solid to soluble phase and from macromolecules to intermediates. Generation and transformation of intermediates analyses illustrate that Fe (VI) facilitates hydrolysis, acidification and chain elongation (CE) but suppresses methanogenesis, promoting the targeted conversion of intermediates to MCFAs. Also, Fe (VI) pretreatment provides potential electron shuttles for chain elongation. Microbial community and functional genes encoding key enzymes analysis indicates that Fe (VI) screens key microorganisms and up-regulates functional genes expression involved in CE pathways. Overall, this technology avoids methanogens inhibitor addition and stimulates vivianite synthesis during MCFAs production from WAS.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P R China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Harald Horn
- Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, Karlsruhe 76131, Germany
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
34
|
Zheng K, Wang Y, Wang X, Zhu T, Chen X, Zhao Y, Sun P, Tong Y, Liu Y. Enhanced methane production from anaerobic digestion of waste activated sludge by combining ultrasound with potassium permanganate pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159331. [PMID: 36220480 DOI: 10.1016/j.scitotenv.2022.159331] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The influence of ultrasound (US) and potassium permanganate (KMnO4) co-pretreatment on anaerobic digestion of waste activated sludge (WAS) was investigated in this survey. Results showed that KMnO4 (0.3 g/g TSS) cooperated with US (1 W/mL, 15 min) pretreatment significantly increased the cumulative methane yield to 174.44 ± 3.65 mL/g VS compared to the control group (108.72 ± 2.56 mL/g VS), solo US (125.39 ± 2.56 mL/g VS), and solo KMnO4 pretreatment group (160.83 ± 1.61 mL/g VS). Mechanistic investigation revealed that US combined with KMnO4 pretreatment effectively disrupted the structure of extracellular polymeric substances and cell walls by generating reactive radicals, accelerating the release of organics and hydrolytic enzymes as well as improving the biodegradability of soluble organics. Modeling analysis illustrated that the biochemical methane potential and hydrolysis rate of WAS were enhanced under US + KMnO4 pretreatment. Microbial community distribution indicated that the co-pretreatment of US and KMnO4 elevated the total relative abundance of functional microorganisms associated with anaerobic digestion (22.01 %) compared to the control (10.69 %), US alone (12.24 %) and KMnO4 alone (16.20 %).
Collapse
Affiliation(s)
- Kaixin Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian 350116, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
35
|
Guo H, Tian L, Wang Y, Zheng K, Hou J, Zhao Y, Zhu T, Liu Y. Enhanced anaerobic digestion of waste activated sludge with periodate-based pretreatment. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100208. [PMID: 36388632 PMCID: PMC9640319 DOI: 10.1016/j.ese.2022.100208] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 05/04/2023]
Abstract
The potential of periodate (PI) in sludge anaerobic digestion is not tapped, although it has recently attracted great research interest in organic contaminants removal and pathogens inactivation in wastewater treatment. This is the first work to demonstrate significant improvement in methane generation from waste activated sludge (WAS) with PI pretreatment and to provide underlying mechanisms. Biochemical methane potential tests indicated that methane yield enhanced from 100.2 to 146.3 L per kg VS (VS, volatile solids) with PI dosages from 0 to 100 mg per g TS (TS, total solids). Electron spin resonance showed PI could be activated without extra activator addition, which might be attributed to the native transition metals (e.g., Fe2+) in WAS, thereby generating hydroxyl radical (•OH), superoxide radicals (•O2 -), and singlet oxygen (1O2). Further scavenging tests demonstrated all of them synergistically promoted WAS disintegration, and their contributions were in the order of •O2 - > •OH > 1O2, leading to the release of substantial biodegradable substances (i.e., proteins and polysaccharides) into the liquid phase for subsequent biotransformation. Moreover, fluorescence and ultraviolet spectroscopy analyses indicated the recalcitrant organics (especially lignocellulose and humus) could be degraded by reducing their aromaticity under oxidative stress of PI, thus readily for methanogenesis. Microbial community analysis revealed some microorganisms participating in hydrolysis, acidogenesis, and acetoclastic methanogenesis were enriched after PI pretreatment. The improved key enzyme activities and up-regulated metabolic pathways further provided direct evidence for enhanced methane production. This research was expected to broaden the application scope of PI and provide more diverse pretreatment choices for energy recovery through anaerobic digestion.
Collapse
|
36
|
Wang J, Xu J, Lu M, Shangguan Y, Liu X. Mechanism of dielectric barrier plasma technology to improve the quantity and quality of short chain fatty acids in anaerobic fermentation of cyanobacteria. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:65-76. [PMID: 36347162 DOI: 10.1016/j.wasman.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/01/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The recycling of high value carbon resources from cyanobacteria has become a research hotspot. This work investigated the possibility of dielectric barrier discharge (DBD) plasma pretreatment to improve the anaerobic fermentation performance of cyanobacteria. The maximum accumulations of short-chain fatty acids (SCFAs) and acetic acid in DBD group were 3.30 and 1.49 times of that in control group. The physical effects of DBD plasma and the oxidative stress response of cyanobacteria cells could improve the solubilization of cyanobacteria polymer. The destruction of humus by DBD plasma can reduce the negative impact of humus on the early stage of anaerobic fermentation, thus facilitating the rapid start of anaerobic fermentation. The contents of Bacteroidetes, Firmicutes and Chloroflexi in DBD group were higher than those in control group, while the content of Proteobacteria was on the contrary, which was conducive to the hydrolysis and acidification process. The decrease of Methanosaeta sp. and Methanosarcina sp. abundance in DBD group might be another reason for the increase of acetic acid ratio. Under the joint action of plasma chemical oxidation and microbial degradation, the degradation effect of microcystin-LR in the anaerobic fermentation supernatant of DBD group was better than that of the control group, which was conducive to the recycling of cyanobacteria anaerobic fermentation supernatant. Therefore, DBD pretreatment was conductive to recycling valuable carbon source from cyanobacteria and can be further developed as a potential new pretreatment technology.
Collapse
Affiliation(s)
- Jie Wang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China
| | - Junli Xu
- School of Ecology and Environment, Yellow River Conservancy Technical Institute, No. 1 Dongjing Road, Kaifeng, 475004, Henan Province, China
| | - Ming Lu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yuyi Shangguan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China.
| |
Collapse
|
37
|
Liu H, Xu Y, Li L, Dai X. Deciphering the underlying mechanism of MOF-808-based abiotic catalysis enhancing biodegradability of waste activated sludge: Insights from the effects on bioconversion of extracellular organic substances into methane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157855. [PMID: 35934029 DOI: 10.1016/j.scitotenv.2022.157855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Extracellular organic substances (EOSs) usually control sludge biodegradability. Metal-organic framework-808 (MOF-808), a catalyst with a high ability of catalytic hydrolysis and proton transfer, has great potential to enhance biodegradability of EOSs. In this study, the underlying mechanism of MOF-808 enhancing the biodegradability of EOSs via abiotic catalysis was investigated. Experimental results showed that protein-like and humic acid-like substances were the main organic components in EOSs, and the MOF-808 enhanced the disintegration of protein-like substances rather than humic acid-like substances. Analyses of the changes in the functional group, the secondary structure of protein-like substances, and the electron transfer of catalytically degraded EOS samples revealed that the MOF-808 enhanced the hydrolysis of EOSs protein-like substances, loosened their secondary structure, and improved the electron transfer in EOSs. Further analyses of the MOF-808 before and after the catalysis reaction revealed that the coordination of Zr sites with protein-like substance-specific active sites (such as ZrN) in the MOF-808 substantially contributed to the high-efficiency catalysis. Biochemical methane potential assays confirmed that MOF-808-based abiotic catalysis promoted the generation efficiency of methane from the EOSs. These findings can elucidate the abiotic catalytic effect of MOF-808 on sludge biodegradability during the anaerobic digestion process.
Collapse
Affiliation(s)
- Haoyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Lei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
38
|
Zheng K, Wang Y, Guo H, Zhu T, Zhao Y, Liu Y. Potassium permanganate pretreatment effectively improves methane production from anaerobic digestion of waste activated sludge: Reaction kinetics and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157402. [PMID: 35850326 DOI: 10.1016/j.scitotenv.2022.157402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 05/21/2023]
Abstract
As a powerful oxidizing agent, potassium permanganate (KMnO4) has attracted widespread interest in sludge treatment and contaminant removal. However, its effect on the anaerobic digestion of waste activated sludge (WAS) is ambiguous. This investigation was designed to provide perspectives into this problem. In comparison with the control, 0.3 g KMnO4/g TSS pretreatment enhanced the methane production by 78.82 %. Model analysis demonstrated that the KMnO4 pretreatment enhanced the biochemical methane potential (B0) of WAS. Mechanistic studies elucidated that the KMnO4 pretreatment process generated reactive radicals such as ·OH, ·O2- and 1O2, which contributed to sludge disintegration and biodegradation process of dissolved substances, thus resulting in more substances available for subsequent methane generation. Enzyme activity analysis indicated that KMnO4 pretreatment facilitated the activities of key enzymes associated with anaerobic digestion to various degrees. Microbial analysis illustrated that the relative abundance of functional microorganisms was significantly elevated after KMnO4 pretreatment, which was conducive to methane production.
Collapse
Affiliation(s)
- Kaixin Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
39
|
Tian L, Guo H, Wang Y, Hou J, Zhu T, Tong Y, Sun P, Liu Y. Unveiling the Mechanism of Urine Source Separation-Derived Pretreatment on Enhancing Short-Chain Fatty Acid Yields from Anaerobic Fermentation of Waste Activated Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16178-16188. [PMID: 36318116 DOI: 10.1021/acs.est.2c04170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A novel strategy employing urine wastewater derived from source separation technology, to pretreat waste activated sludge (WAS) for promoting yields of short-chain fatty acids (SCFAs), has been proposed in this study. It was found experimentally that SCFA production could ascend up to 305.4 mg COD/g VSS (volatile suspended solids) with a urine volumetric proportion of 1:2 to the whole reaction system, being 8.8 times that produced in the control. Exploration of the mechanism indicated that WAS disintegration was significantly enhanced due to the synergistic effect of urea and free ammonia (FA). Degradation rates of model organic substrates and measurements of critical enzymatic activities demonstrated that hydrolysis and acidogenesis were inhibited under high urine content (urine proportion of 1:2), while not significantly affected under low urine content (i.e., 1:4), which might be attributed to metal ions existing in urine wastes alleviating the inhibition induced by FA. In contrast, methanogenesis was negatively suppressed by any urine concentration owing to its higher sensitivity to the environmental variations. Shift of microbial population further elucidated the abundance of hydrolytic and acidogenic microbes were enriched in the fermenters with urine addition. The findings provide a new thought for recovering resources from wastes, potentially reducing the pressure of sewage and sludge treatment in wastewater treatment plants.
Collapse
Affiliation(s)
- Lixin Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin300072, P. R. China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin300072, P. R. China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin300072, P. R. China
| | - Jiaqi Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin300072, P. R. China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin300072, P. R. China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin300072, P. R. China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin300072, P. R. China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin300072, P. R. China
| |
Collapse
|
40
|
Tang Y, Hu J. Enhanced Methane Production from Sludge Anaerobic Digestion with the Addition of Potassium Permanganate. ACS OMEGA 2022; 7:39884-39894. [PMID: 36385801 PMCID: PMC9648141 DOI: 10.1021/acsomega.2c04132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
This work aims to reveal the effect of potassium permanganate (KMnO4) on the sludge anaerobic digestion process, as well as the relevant mechanisms. Experimental data showed that the biomethane production was gradually increased from 159.3 ± 3.0 to 211.5 ± 5.1 mL/g VSS (volatile suspended solids) when the KMnO4 content was increased from 0 to 0.08 g/g VSS, with an increasing rate of 32.8%. A further increase in the KMnO4 dosage however resulted in the decline of the methane yield. First-order kinetic model analysis indicated that higher methane production potentials and hydrolysis rates were achieved in KMnO4-added reactors than in the control. Mechanism analysis demonstrated that KMnO4 not only efficiently disintegrated the sludge flocs, which resulted in the increased contents of dissolved organics, but also enhanced the proportion of biodegradable substances in the sludge liquor. Meanwhile, the biodegradabilities of recalcitrant humus and lignocellulose substances were found to be promoted by KMnO4 treatment as higher methane yields were attained from KMnO4-treated model substrates. 16S rRNA analysis illustrated that the functional microbes participated in anaerobic digestion were largely enriched in the KMnO4-pretreated digestor. Furthermore, efficient inactivation of the fecal coliform was achieved by KMnO4 pretreatment.
Collapse
Affiliation(s)
- Yujia Tang
- School
of Environmental Science and Engineering, Institute of Environmental
Health and Pollution Control, Guangzhou Key Laboratory of Environmental
Catalysis and Pollution Control, Guangdong
University of Technology, Guangzhou510006, China
| | - Jiawei Hu
- State
Key Laboratory of Pollution Control and Resource Reuse, College of
Environmental Science and Engineering, Tongji
University, 1239 Siping Road, Shanghai200092, China
| |
Collapse
|
41
|
Wang W, Chang JS, Show KY, Lee DJ. Anaerobic recalcitrance in wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2022; 363:127920. [PMID: 36087651 DOI: 10.1016/j.biortech.2022.127920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic treatment is applied as an alternative to traditional aerobic treatment for recalcitrant compound degradation. This review highlighted the recalcitrant compounds in wastewaters and their pathways under aerobic and anaerobic conditions. Forty-one recalcitrant compounds commonly found in wastewater along with associated anaerobic removal performance were summarized from current research. Anaerobic degradability of wastewater could not be appropriately evaluated by BOD/COD ratio, which should only be suitable for determining aerobic degradability. Recalcitrant wastewaters with a low BOD/COD ratio may be handled by anaerobic treatments after the adaption and provision of sufficient electron donors. Novel indicator characterizing the anaerobic recalcitrance of wastewater is called for, essential for emergent needs to resource recovery from high-strength recalcitrant wastewater for fulfilling appeals of circular bioeconomy of modern societies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Kuan-Yeow Show
- Puritek Research Institute, Puritec Co., Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering & Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|
42
|
Xie J, Xin X, Ai X, Hong J, Wen Z, Li W, Lv S. Synergic role of ferrate and nitrite for triggering waste activated sludge solubilisation and acidogenic fermentation: Effectiveness evaluation and mechanism elucidation. WATER RESEARCH 2022; 226:119287. [PMID: 36323210 DOI: 10.1016/j.watres.2022.119287] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/15/2022] [Accepted: 10/21/2022] [Indexed: 05/26/2023]
Abstract
Enhancing anaerobic treatment efficiency of waste activated sludge (WAS) toward preferable resource recovery would be an important requirement for achieving carbon-emission reduction, biosolids minimization, stabilization and security concurrently. This study demonstrated the synergic effect of potassium ferrate (PF) and nitrite on prompting WAS solubilisation and acidogenic fermentation toward harvesting volatile fatty acids (VFAs). The results indicated the PF+NaNO2 co-pretreatment boosted 7.44 times and 1.32 times higher WAS solubilisation [peak soluble chemical oxygen demand (SCOD) of 2680 ± 52 mg/L] than that by the single nitrite- and PF-pretreatment, respectively, while about 2.77 times and 2.11 times higher VFAs production were achieved (maximum VFAs accumulation of 3536.25 ± 115.24 mg COD/L) as compared with the single pretreatment (nitrite and PF)-fermentations. Afterwards the WAS dewaterability was improved simultaneously after acidogenic fermentation. Moreover, a schematic diagram was established for illustrating mechanisms of the co-pretreatment of PF and nitrite for enhancing the VFAs generation via increasing key hydrolytic enzymes, metabolic functional genes expression, shifting microbial biotransformation pathways and elevating abundances of key microbes in acidogenic fermentation. Furthermore, the mechanistic investigations suggested that the PF addition was conducive to form a relatively conductive fermentation environment for enhancing electron transfer (ET) efficiency, which contributed to the VFAs biotransformation positively. This study provided an effective strategy for enhancing the biodegradation/bioconversion efficiency of WAS organic matters with potential profitable economic returns.
Collapse
Affiliation(s)
- Jiaqian Xie
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR. China; Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR. China
| | - Xiaodong Xin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR. China; Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR. China.
| | - Xiaohuan Ai
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR. China
| | - Junming Hong
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, PR. China
| | - Zhidan Wen
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR. China
| | - Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR. China
| | - Sihao Lv
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR. China
| |
Collapse
|
43
|
Li C, Liu X, Du M, Yang J, Lu Q, Fu Q, He D, Zhao J, Wang D. Peracetic acid promotes biohydrogen production from anaerobic dark fermentation of waste activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156991. [PMID: 35772535 DOI: 10.1016/j.scitotenv.2022.156991] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Peracetic acid (PAA), a widely used organic peroxide with strong disinfection and oxidizing effect, has recently attracted research interest in waste activated sludge (WAS) treatment to achieve sludge reduction and resource utilization. However, its impact on hydrogen accumulation from WAS dark fermentation has not been documented. This study therefore is intended to fill in this knowledge gap and clarify the underlying mechanism of PAA-promoted hydrogen generation. Batch experiments revealed that when raised PAA dosage from 0 to 8 mg/g TSS (total suspended solids), cumulative hydrogen production within 168 h fermentation increased from 1.3 to 14.2 mL/g VSS (volatile suspended solids), however, further increase PAA dosage to 10 mg/g TSS resulted in a slight decrease in hydrogen yield. Mechanism studies revealed that PAA was beneficial to sludge disintegration (10 mg/g TSS PAA increased SCOD (soluble chemical oxygen demand) by 254 %). Although PAA inhibited the activity of all microorganism involved in dark fermentation, the inhibitory effect on hydrogen consumers were much more serious than that on hydrogen producers (-45.8 % versus -5.1 % and - 7.3 %). The fermentation was found to shift from propionate type to acetate and butyrate type, favoring hydrogen production. Moreover, the methane production process was effectively inhibited by PAA, which meant less hydrogen consumption. Microbial community analysis results unveiled that PAA increased the abundances of hydrolytic bacteria (e.g., norank_f__Saprospiraceae) and hydrogen producers (e.g., Clostridium_sensu_stricto_10). These findings obtained in this work provide new insights into oxidants-involved sludge treatment process and might have important implication for WAS treatment and bioenergy production in the future.
Collapse
Affiliation(s)
- Chenxi Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| | - Xuran Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Mingting Du
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Jingnan Yang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Qi Lu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Qizi Fu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Dandan He
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| |
Collapse
|
44
|
Bao H, Chen Z, Wen Q, Wu Y, Fu Q. Effect of calcium peroxide dosage on organic matter degradation, humification during sewage sludge composting and application as amendment for Cu (II)-polluted soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129592. [PMID: 35872452 DOI: 10.1016/j.jhazmat.2022.129592] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/18/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
In this research, it was the first time to investigate the effect of two dosages (5% (T1) and 10% (T2), w/w) of calcium peroxide (CP) on organic matter degradation, humification during sewage sludge composting. Additionally, the complexation of Cu to humic substance (HS) derived from CP-compost compared to no CP addition-compost (CK) was also studied. Results showed that compared to CK, T1 and T2 significantly enhanced organic matter degradation and promoted the formation of HS. Two-dimensional correlation Fourier transform infrared spectroscopy (2D-FTIR-COS) and Parallel factor (PARAFAC) analysis revealed that the addition of CP accelerated the synthesis of HS with high aromatization degree and molecular weight than those in CK, owing to the oxidation of small molecules to form carboxyl. The stability constant (log KM) of Cu with CP-derived HS (log KM = 4.22-5.13) indicated a greater complexation ability than CK-derived HS (log KM = 4.05-4.45), due to the faster response of polysaccharides binding to Cu (II) and the higher humification degree of CP-derived HS. This study revealed the potential mechanisms of CP addition on the synthesis of HS and utilization of CP-compost product might provide an effective way to remedy Cu (II)-contaminated soils.
Collapse
Affiliation(s)
- Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yiqi Wu
- Research Institute of Standards and Norms, Ministry of Housing and Urban-Rural Development, Beijing 100835, PR China
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
45
|
Jiang N, He J, Zhang A, Zhou Y, Zheng M, Xu X, Clement Miruka A, Li X, Liu Y, Xue G. Synergistic improvement of short-chain fatty acid production from waste activated sludge via anaerobic fermentation by combined plasma-calcium peroxide process. BIORESOURCE TECHNOLOGY 2022; 361:127754. [PMID: 35952862 DOI: 10.1016/j.biortech.2022.127754] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
In this study, the combination of dielectric barrier discharge plasma (DBD) with calcium peroxide (CaO2) achieved significant synergistic effects in promoting hydrolysis of waste activated sludge (WAS) and short-chain fatty acid (SCFA) production during anaerobic fermentation. Compared with the control, DBD/CaO2 pretreatment increased SCFA production by 116 %, acetic acid ratio by 39 %, and sludge reduction by 30 % under the optimal conditions (discharge power = 76.5 W, CaO2 dosage = 0.05 g/g VSS). Mechanism investigations elucidated that DBD/CaO2 enhanced the generation of •OH, 1O2, and •O2-, synergistically promoted decomposing extracellular polymeric substances (EPS), lysing cells, releasing biodegradable substances, and enhancing acetic acid-enriched SCFA accumulation from fermentation. Meanwhile, Illumina MiSeq sequencing analysis revealed that the enrichment of hydrolytic and SCFAs-forming bacteria and the decrease in SCFAs-consuming bacteria by DBD/CaO2 treatment also contributed. This work provides an effective method to boost the SCFA production from WAS fermentation.
Collapse
Affiliation(s)
- Nan Jiang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Jinling He
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Shanghai institute of pollution control and ecological security, Shanghai 200092, China.
| | - Yongquan Zhou
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ming Zheng
- Department of Civil & Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; Key Laboratory of Organic Compound Pollution Control Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xianbao Xu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Andere Clement Miruka
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; School of Chemistry and Material Science, Technical University of Kenya, Nairobi 52428-00200, Kenya
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
46
|
Qiao Z, Xu S, Zhang W, Shi S, Zhang W, Liu H. Potassium ferrate pretreatment promotes short chain fatty acids yield and antibiotics reduction in acidogenic fermentation of sewage sludge. J Environ Sci (China) 2022; 120:41-52. [PMID: 35623771 DOI: 10.1016/j.jes.2022.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 06/15/2023]
Abstract
During the acidogenic fermentation converting waste activated sludge (WAS) into short-chain fatty acids (SCFA), hydrolysis of complex organic polymers is a limiting step and the transformation of harmful substances (such as antibiotics) during acidogenic fermentation is unknown. In this study, potassium ferrate (K2FeO4) oxidation was used as a pretreatment strategy for WAS acidogenic fermentation to increase the hydrolysis of sludge and destruct the harmful antibiotics. Pretreatment with K2FeO4 can effectively increase the SCFA production during acidogenic fermentation and change the distribution of SCFA components. With the dosage of 0.2 g/g TS, the maximum SCFA yield was 4823 mg COD/L, which is 28.3 times that of the control group; acetic acid accounts for more than 90% of the total SCFA. The higher dosage (0.5 g/g TS) can further increase the proportion of acetic acid, but inhibit the overall performance of SCFA production. Apart from the promotion of hydrolysis and acidogenesis, K2FeO4 pretreatment can also simultaneously oxidizes and degrades part of the antibiotics in the sludge. When the dosage is 0.5 g/g TS, the degradation efficacy of antibiotics is the most significant, and the contents of ofloxacin, azithromycin, and tetracycline in the sludge are reduced by 69%, 42%, and 50%, respectively. In addition, K2FeO4 pretreatment can also promote the release of antibiotics from sludge flocs, which is conducive to the simultaneous degradation of antibiotics in the subsequent biological treatment process.
Collapse
Affiliation(s)
- Zihao Qiao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Wanqiu Zhang
- Centillion Resource Recycling (Wuxi) Co. Ltd., Wuxi 214000, China
| | - Shuyin Shi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
47
|
Shi J, Dang Q, Zhang C, Zhao X. Insight into effects of polyethylene microplastics in anaerobic digestion systems of waste activated sludge: Interactions of digestion performance, microbial communities and antibiotic resistance genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119859. [PMID: 35944782 DOI: 10.1016/j.envpol.2022.119859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The environmental risks of microplastics (MPs) have raised an increasing concern. However, the effects of MPs in anaerobic digestion (AD) systems of waste activated sludge (WAS), especially on the fate of antibiotic resistance genes (ARGs), have not been clearly understood. Herein, the variation and interaction of digestion performance, microbial communities and ARGs during AD process of WAS in the presence of polyethylene (PE) MPs with two sizes, PE MPs-180μm and PE MPs-1mm, were investigated. The results showed that the presence of PE MPs, especially PE MPs-1mm, led to the increased hydrolysis of soluble polysaccharides and proteins and the accumulation of volatile fatty acids. The methane production decreased by 6.1% and 13.8% in the presence of PE MPs-180μm and PE MPs-1mm, respectively. Together with this process, hydrolytic bacteria and acidogens were enriched, and methanogens participating in acetoclastic methanogenesis were reduced. Meanwhile, ARGs were enriched obviously by the presence of PE MPs, the abundances of which in PE MPs-180μm and PE MPs-1mm groups were 1.2-3.0 times and 1.5-4.0 times higher than that in the control by the end of AD. That was associated with different co-occurrence patterns between ARGs and bacterial taxa and the enrichment of ARG-hosting bacteria caused by the presence of PE MPs. Together these results suggested the adverse effects of PE MPs on performance and ARGs removal during AD process of WAS through inducing the changes of microbial populations.
Collapse
Affiliation(s)
- Jianhong Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chuanyan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
48
|
Liu X, Wang D, Chen Z, Wei W, Mannina G, Ni BJ. Advances in pretreatment strategies to enhance the biodegradability of waste activated sludge for the conversion of refractory substances. BIORESOURCE TECHNOLOGY 2022; 362:127804. [PMID: 36007767 DOI: 10.1016/j.biortech.2022.127804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic digestion (AD) is a low-cost technology widely used to divert waste activated sludge (WAS) to renewable energy production, but is generally restricted by its poor biodegradability which mainly caused by the endogenous and exogenous refractory substances present in WAS. Several conventional methods such as thermal-, chemical-, and mechanical-based pretreatment have been demonstrated to be effective on organics release, but their functions on refractory substances conversion are overlooked. This paper firstly reviewed the presence and role of endogenous and exogenous refractory substances in anaerobic biodegradability of WAS, especially on their inhibition mechanisms. Then, the pretreatment strategies developed for enhancing WAS biodegradability by facilitating refractory substances conversion were comprehensively reviewed, with the conversion pathways and underlying mechanisms being emphasized. Finally, the future research needs were directed, which are supposed to improve the circular bioeconomy of WAS management from the point of removing the hindering barrier of refractory substances on WAS biodegradability.
Collapse
Affiliation(s)
- Xuran Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Giorgio Mannina
- Engineering Department - Palermo University, Ed. 8 Viale delle Scienze, 90128 Palermo, Italy
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
49
|
Shi J, Su J, Ali A, Xu L, Yan H, Su L, Qi Z. Newly isolated lysozyme-producing strain Proteus mirabilis sp. SJ25 reduced the waste activated sludge: Performance and mechanism. BIORESOURCE TECHNOLOGY 2022; 358:127392. [PMID: 35640815 DOI: 10.1016/j.biortech.2022.127392] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
To promote aerobic digestion of sludge, a lysozyme-producing strain was screened and identified as Proteus mirabilis sp. SJ25. The results of response surface methodology (RSM) showed that at the temperature of 30.8 °C, pH of 6.69, and the inoculum amount of 2.81%, the sludge reduced by 26.58%. Compared with the control group, the removal efficiency of suspended solids (SS) from sludge in the experimental group increased by 14.60%, the release of soluble chemical oxygen demand (SCOD) increased by 2.21 times, and the release of intracellular substances increased significantly. Actinobacteriota, Chloroflexi, Proteobacteria, Bacteroidota, and Firmicutes were the main phyla involved in the sludge reduction process. Strain SJ25 enhanced the degradation rate of sludge by releasing lysozyme lysis to lyse bacteria, enhancing the metabolism and membrane transport of carbohydrates and amino acids. This study provides a new perspective in the field of efficient degradation of waste sludge.
Collapse
Affiliation(s)
- Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lindong Su
- Xi'an Yiwei Putai Environmental Protection Co., Ltd., Xi'an 710055, China
| | - Zening Qi
- Xi'an Yiwei Putai Environmental Protection Co., Ltd., Xi'an 710055, China
| |
Collapse
|
50
|
Zhu L, Wu B, Liu Y, Zhang J, Deng R, Gu L. Strategy to enhance semi-continuous anaerobic digestion of food waste by combined use of calcium peroxide and magnetite. WATER RESEARCH 2022; 221:118801. [PMID: 35810635 DOI: 10.1016/j.watres.2022.118801] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/29/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Optimizing methane production from food waste (FW) efficiently is always a hot topic in the field of anaerobic digestion (AD). In this study we aimed to improve the conversion of organics to methane by using CaO2 and magnetite to enhance the semi-continuous AD of food waste. Under the organic load of 2.5 g VS/L·d-1, the specific methane yield was increased from 333.9 mL CH4/g·VS to 423.4 mL CH4/g·VS by adding 0.01 g/L CaO2 with 0.4 g/L magnetite, improving the production of methane from FW. We assessed reactor performance, ORP changes, mass balance, enzyme activities and characterized the metagenomic profile of microorganisms involved in digestion. These microorganisms showed rapid conversion of volatile fatty acids and increased expression of genes related to hydrolysis and acid production. Thus, the addition of CaO2 and magnetite optimized the relationship between fermentation bacteria and methanogenic archaea to enhance the overall production of methane. Microorganisms evolved unique adaptive mechanisms in the co-operative environment of CaO2 and magnetite, as their energy metabolism patterns combined those controlled by individual CaO2 and magnetite addition. This method of combining a micro-aeration environment with conductive materials provides a new perspective for optimizing the AD of FW.
Collapse
Affiliation(s)
- Lirong Zhu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Baocun Wu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Yongli Liu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Jianrui Zhang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China
| | - Rui Deng
- School of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, PR China.
| |
Collapse
|