1
|
Pérez HJV, de Souza CL, Passos F, Roman MB, Mora EJC. Co-digestion and co-treatment of sewage and organic waste in mainstream anaerobic reactors: operational insights and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58687-58719. [PMID: 39316211 DOI: 10.1007/s11356-024-34918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024]
Abstract
The global shift towards sustainable waste management has led to an intensified exploration of co-digestion and co-treatment of sewage and organic waste using anaerobic reactors. This review advocates for an integrated approach where organic waste is treated along with the sewage stream, as a promising solution to collect, treat, and dispose of organic waste, thereby reducing the environmental and economic burden on municipalities. Various efforts, ranging from laboratory to full-scale studies, have been undertaken to assess the feasibility and impacts of co-digestion or co-management of sewage and organic waste, using technologies such as up-flow anaerobic sludge blankets or anaerobic membrane bioreactors. However, there has been no consensus on a standardized definition of co-digestion, nor a comprehensive understanding of its impacts. In this paper, we present a comprehensive review of the state-of-the-art in liquid anaerobic co-digestion systems, which typically operate at 1.1% total solids. The research aims to investigate how the integration of organic waste into mainstream anaerobic-based sewage treatment plants has the potential to enhance the sustainability of both sewage and organic waste management. In addition, utilizing the surplus capacity of existing anaerobic reactors leads to significant increases in methane production ranging from 190 to 388% (v/v). However, it should be noted that certain challenges may arise, such as the necessity for the development of tailored strategies and regulatory frameworks to enhance co-digestion practices and address the inherent challenges.
Collapse
Affiliation(s)
- Henry Javier Vílchez Pérez
- School of Civil Engineering, University of Costa Rica (UCR), Research City, San Pedro, Montes de Oca, 11501, San José, Costa Rica.
| | - Cláudio Leite de Souza
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, Belo Horizonte, MG, 6627, Brazil
| | - Fabiana Passos
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, C/Jordi Girona, 1-3, Building D1, 08034, Barcelona, Spain
| | - Mauricio Bustamante Roman
- School of Biosystems Engineering, University of Costa Rica (UCR), Research City, San Pedro, Montes de Oca, 11501, San José, Costa Rica
| | - Erick Javier Centeno Mora
- School of Civil Engineering, University of Costa Rica (UCR), Research City, San Pedro, Montes de Oca, 11501, San José, Costa Rica
| |
Collapse
|
2
|
Shi Z, Long X, Zhang C, Chen Z, Usman M, Zhang Y, Zhang S, Luo G. Viral and Bacterial Community Dynamics in Food Waste and Digestate from Full-Scale Biogas Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13010-13022. [PMID: 38989650 DOI: 10.1021/acs.est.4c04109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Anaerobic digestion (AD) is commonly used in food waste treatment. Prokaryotic microbial communities in AD of food waste have been comprehensively studied. The role of viruses, known to affect microbial dynamics and metabolism, remains largely unexplored. This study employed metagenomic analysis and recovered 967 high-quality viral bins within food waste and digestate derived from 8 full-scale biogas plants. The diversity of viral communities was higher in digestate. In silico predictions linked 20.8% of viruses to microbial host populations, highlighting possible virus predators of key functional microbes. Lineage-specific virus-host ratio varied, indicating that viral infection dynamics might differentially affect microbial responses to the varying process parameters. Evidence for virus-mediated gene transfer was identified, emphasizing the potential role of viruses in controlling the microbiome. AD altered the specific process parameters, potentially promoting a shift in viral lifestyle from lysogenic to lytic. Viruses encoding auxiliary metabolic genes (AMGs) were involved in microbial carbon and nutrient cycling, and most AMGs were transcriptionally expressed in digestate, meaning that viruses with active functional states were likely actively involved in AD. These findings provided a comprehensive profile of viral and bacterial communities and expanded knowledge of the interactions between viruses and hosts in food waste and digestate.
Collapse
Affiliation(s)
- Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xinyi Long
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chao Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Muhammad Usman
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Yalei Zhang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| |
Collapse
|
3
|
Gu Y, Jin P, Shi X, Wang X. Microbial entropy change and external dissipation process of urban sewer ecosystem. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:307. [PMID: 38407658 DOI: 10.1007/s10661-024-12486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
As the initial stage of the sewage treatment system, the degradation of pollutants inevitably involves an entropy change process. Microorganisms play a vital role, where they interact with pollutants and constantly adjust own ecosystem. However, there is a lack of research on the entropy change and external dissipation processes within the sewer system. In this study, considering the characteristics of microbial population changes in the biofilm within the urban sewage pipe network, entropy theory is applied to characterize the attributes of different microorganisms. Through revealing the entropy change of the microbial population and chemical composition, a coupling relationship between the functional bacteria diversity, organic substances composition, and external dissipation in the pipeline network is proposed. The results show that the changes of nutrient availability, microbial community structure, and environmental conditions all affect the changes of information entropy in the sewer network. This study is critical for assessing the understanding of ecological dynamics and energy flows within these systems and can help researchers and operation managers develop strategies to optimize wastewater treatment processes, mitigate environmental impacts, and promote sustainable management practices.
Collapse
Affiliation(s)
- Yonggang Gu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi Province, Xi'an, 710055, China
- Beijing Water Science and Technology Institute, Beijing, 100048, China
| | - Pengkang Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Shaanxi Province, Xi'an, 710049, China.
| | - Xuan Shi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Shaanxi Province, Xi'an, 710049, China
| | - Xiaochang Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Shaanxi Province, Xi'an, 710055, China
| |
Collapse
|
4
|
Wang L, Lei X, Yuehua G, Zhou Y, Han JC, Huang Y, Li B, Mao XZ, Tang Z. A novel method of identifying estuary high-nutrient zones for water quality management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169578. [PMID: 38154631 DOI: 10.1016/j.scitotenv.2023.169578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Coastal shallow waters are highly vulnerable to pollution, often leading to the development of intricate eutrophication zones. However, accurately determining these areas poses a significant challenge due to the complex interplay of estuarine hydrodynamics and nutrient transformation. To address such issue, a novel method was proposed to identify high-nutrient zones through calculating the continuous zonation of released tracers when their instantaneous concentrations declined to 1/e of their initial values. The method was well tested using idealized estuary models with varying shape parameters, water depths and river discharges. The results consistently revealed that the boundaries of high-nutrient zones fell within the mixed zone, characterized by salinity levels of 10- 20 psu. In Shenzhen Bay, a typical shallow bay, distinct differences were observed in the concentrations of dissolved inorganic nitrogen (DIN) and PO43-. Both the 20 psu isohaline and the proposed method effectively identified the partition boundary of high DIN and PO43- in 2001-2010, but only the newly proposed method demonstrated accuracy in delineating the actual high-nutrient zone during the continuous nutrient reduction period from 2010 to 2020. This study provides a practical and feasible approach that can serve as an auxiliary decision-making tool for managing estuarine water environments, and it has potential to facilitate the implementation of timely and effective measures for pollution control.
Collapse
Affiliation(s)
- Linlin Wang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Lei
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Guo Yuehua
- CCCC First Navigation Bureau Ecological Engineering Co., Ltd., Shenzhen 518107, China
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yuefei Huang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Bing Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xian-Zhong Mao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhaozhao Tang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Daskiran F, Gulhan H, Kara E, Guven H, Ozgun H, Ersahin ME. Environmental impact of sewage sludge co-digestion with food waste and fat-oil-grease: Integrating plant-wide modeling with life cycle assessment approach. BIORESOURCE TECHNOLOGY 2024; 394:130198. [PMID: 38103751 DOI: 10.1016/j.biortech.2023.130198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/09/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Anaerobic co-digestion of fat-oil-grease (FOG) and food waste (FW) with sewage sludge (SS) in wastewater treatment plants is a method used to increase biogas production. In this study, digestion scenarios were compared using plant-wide modeling and life cycle assessment: Scenario-0 (mono-digestion of waste-activated sludge (WAS)), Scenario-1 (co-digestion of WAS with FOG), and Scenario-2 (co-digestion of WAS with FW). Scenario-0, with the highest energy use and landfilling of FOG/FW, has the worst environmental impact. Scenario-1 and Scenario-2 minimize the environmental load by energy recovery and avoiding landfilling of organic waste. Scenario-wise, the change in greenhouse gas (GHG) emissions from treatment was negligible. However, due to the impact of landfilling, GHG emissions in Scenario-0 were 21% and 30% higher than in Scenario-1 and 2, respectively. The environmental benefit of anaerobic co-digestion of FOG/FW with SS is not only in the contribution to energy production but also in the recycling of organic waste.
Collapse
Affiliation(s)
- Filiz Daskiran
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey.
| | - Hazal Gulhan
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey.
| | - Emircan Kara
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey.
| | - Huseyin Guven
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey.
| | - Hale Ozgun
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey.
| | - Mustafa Evren Ersahin
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey.
| |
Collapse
|
6
|
Wang S, Li X, Ji M, Zhang J, Tanveer M, Hu Z. Is constructed wetlands carbon source or carbon sink? Case analysis based on life cycle carbon emission accounting. BIORESOURCE TECHNOLOGY 2023; 388:129777. [PMID: 37722543 DOI: 10.1016/j.biortech.2023.129777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Constructed wetlands (CWs) are widely used to polish the effluent of wastewater treatment plants and micro-polluted river or lake water. However, the impact of large-scale applications of CWs on carbon emissions is unclear. In this study, the carbon footprints of two full-scale hybrid CWs were determined based on life cycle assessment (LCA). Results showed that the carbon emission of CW ranged from 0.10 to 0.14 kg CO2-eq/m3, and was significantly correlated with the influent chemical oxygen demand loads and electricity consumption. However, CW would approach carbon neutrality during the service period when taking plant carbon sequestration into consideration. Compared with other advanced wastewater treatment technologies, CWs showed significant low-carbon emission and cost-effective benefits. This study clarified the role of CWs in the carbon cycle and would provide guidance for the construction and management of CWs.
Collapse
Affiliation(s)
- Shuo Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Xiaokang Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Mingde Ji
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Muhammad Tanveer
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
7
|
Zaidalkilani AT, Farhan AM, Sayed IR, El-Sherbeeny AM, Al Zoubi W, Al-Farga A, Abukhadra MR. Steric and Energetic Studies on the Synergetic Enhancement Effect of Integrated Polyaniline on the Adsorption Properties of Toxic Basic and Acidic Dyes by Polyaniline/Zeolite-A Composite. Molecules 2023; 28:7168. [PMID: 37894656 PMCID: PMC10609255 DOI: 10.3390/molecules28207168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The synergetic enhancement effect of the polyaniline (PANI) integration process on the adsorption properties of the PANI/zeolite-A composite (PANI/ZA) as an adsorbent for malachite green and Congo red synthetic dyes was evaluated based on classic equilibrium modelling in addition to the steric and energetic parameters of advanced isotherm studies. The PANI/ZA composite displays enhanced adsorption capacities for both methylene blue (270.9 mg/g) and Congo red (235.5 mg/g) as compared to ZA particles (methylene blue (179.6 mg/g) and Congo red (140.3 mg/g)). The reported enhancement was illustrated based on the steric parameters of active site density (Nm) and the number of adsorbed dyes per active site (n). The integration of PANI strongly induced the quantities of the existing active sites that have enhanced affinities towards both methylene blue (109.2 mg/g) and Congo red (92.9 mg/g) as compared to the present sites on the surface of ZA. Every site on the surface of PANI/ZA can adsorb about four methylene blue molecules and five Congo red molecules, signifying the vertical orientation of their adsorbed ions and their uptake by multi-molecular mechanisms. The energetic investigation of the methylene blue (-10.26 to -16.8 kJ/mol) and Congo red (-9.38 to -16.49 kJ/mol) adsorption reactions by PANI/ZA suggested the operation of physical mechanisms during their uptake by PANI/ZA. These mechanisms might involve van der Waals forces, dipole bonding forces, and hydrogen bonding (<30 kJ/mol). The evaluated thermodynamic functions, including enthalpy, internal energy, and entropy, validate the exothermic and spontaneous behaviours of the methylene blue and Congo red uptake processes by PANI/ZA.
Collapse
Affiliation(s)
- Ayah T. Zaidalkilani
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | - Amna M. Farhan
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Islam R. Sayed
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| | - Ahmed M. El-Sherbeeny
- Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ammar Al-Farga
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mostafa R. Abukhadra
- Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
- Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65211, Egypt
| |
Collapse
|
8
|
Iqbal A, Zan F, Liu X, Chen G. Net zero greenhouse emissions and energy recovery from food waste: manifestation from modelling a city-wide food waste management plan. WATER RESEARCH 2023; 244:120481. [PMID: 37634458 DOI: 10.1016/j.watres.2023.120481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
Food waste (FW) being a major solid waste component and of degradable nature is the most challenging to manage and mitigate greenhouse gas emissions (GHEs). Policymakers seek innovative approaches to achieve net zero objectives and recover resources from the FW which requires a comparative and holistic investigation of contemporary treatment methods. This study assessed the lifecycle of six alternative scenarios for reducing net GHEs and energy use potential from FW management in a metropolis, taking Hong Kong as a reference. In both impact categories, the business-as-usual (landfilling) was the worst-case scenario. The combined anaerobic digestion and composting (ADC) technique was ranked best in the global warming impact but was more energy intensive than anaerobic digestion with sludge landfilling (ADL). Incineration ranked second in net GHEs but less favourable for energy recovery from FW alone. The proposed integration of FW and biological wastewater treatment represented an enticing alternative. Integration by co-disposal and treatment with wastewater (CoDT-WW) performed above average in both categories, while anaerobic co-digestion with sewage sludge (AnCoD-SS) ranked fourth. The sensitivity analysis further identified critical parameters inherent to individual scenarios along with biogenic carbon emission and sequestration, revealing their significance on the magnitude of GHEs and scenarios' ranking. Capacity assessment of the studied treatment facilities showed a FW diversion potential of ∼60% while reducing the net GHEs by ∼70% compared to the base-case, indicating potential of net zero carbon emissions and energy footprint by increasing treatment capacity. From this study, policymakers can gain insights and guidelines for low-carbon urban infrastructure development worldwide.
Collapse
Affiliation(s)
- Asad Iqbal
- Department of Civil and Environmental Engineering, Water Technology Centre, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, MOHURD, Huazhong University of Science and Technology (HUST), Key Laboratory of Water and Wastewater Treatment (HUST), Wuhan, 430074, China
| | - Xiaoming Liu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Guangdong, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Centre, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
9
|
Jiang W, Tao J, Luo J, Xie W, Zhou X, Cheng B, Guo G, Ngo HH, Guo W, Cai H, Ye Y, Chen Y, Pozdnyakov IP. Pilot-scale two-phase anaerobic digestion of deoiled food waste and waste activated sludge: Effects of mixing ratios and functional analysis. CHEMOSPHERE 2023; 329:138653. [PMID: 37044139 DOI: 10.1016/j.chemosphere.2023.138653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/22/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Anaerobic co-digestion of deoiled food waste (dFW) and waste activated sludge (WAS) can address the challenges derived from mono-digestion of FW. In the present study, a pilot-scale methanogenic bioreactor of a two-phase anaerobic digestion system was developed to explore the impact of dFW/WAS volatile solids ratios on the overall performance, microbial community, and metabolic pathways. Besides, the tech-economic of the system was analyzed. The results showed that the degradation efficiency of soluble chemical oxygen demand (SCOD) was more than 84.90% for all the dFW/WAS ratios (v/v) (1:0, 39:1, 29:1, 19:1 and 9:1). Moreover, the dominant genus of bacteria and archaea with different ratios were Lactobacillus (66.84-98.44%) and Methanosaeta (53.66-80.09%), respectively. Co-digestion of dFW and WAS (29: 1 in v/v ratios) obtained the highest yield of methane (0.41 L CH4/Ladded) with approximately 90% of SCOD being removed. In the pilot-scale experiment, the co-digestion of FW and WAS makes positive contribution to reusing solid waste for improving solid management.
Collapse
Affiliation(s)
- Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiale Tao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiwu Luo
- Central South Design and Research Institute of China Municipal Engineering Co., Ltd., Wuhan, Hubei, 430014, China
| | - Wengang Xie
- Central South Design and Research Institute of China Municipal Engineering Co., Ltd., Wuhan, Hubei, 430014, China
| | - Xiaojuan Zhou
- Central South Design and Research Institute of China Municipal Engineering Co., Ltd., Wuhan, Hubei, 430014, China
| | - Boyi Cheng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Hui Cai
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.
| | - Yiqun Chen
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| | - Ivan P Pozdnyakov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion, 3 Institutskaya Str., 630090, Novosibirsk, Russian Federation; Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russian Federation
| |
Collapse
|
10
|
Ghani LA, Mahmood NZ. Modeling domestic wastewater pathways on household system using the socio-MFA techniques. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
11
|
Lu X, Gao M, Yang S, Tang D, Yang F, Deng Y, Zhou Y, Wu X, Zan F. Effects of the aeration mode on nitrogen removal in a compact constructed rapid infiltration system for advanced wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74677-74687. [PMID: 35641746 DOI: 10.1007/s11356-022-21049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The configuration and the effective operation of constructed rapid infiltration (CRI) systems are of significance for advanced wastewater treatment. In this study, a novel CRI system was developed with a compact structure consisting of two stages, i.e., oxic and anoxic stages. The CRI system was continuously operated for about 140 days under different aeration modes, i.e., tidal flow, continuous aeration, and intermittent aeration. Nitrogen removal was not desirable with tidal flow due to the insufficient oxygen supply in the oxic stage for nitrification, while continuous aeration could achieve good performance for chemical oxygen demand (COD), ammonium, total nitrogen (TN), and total phosphorus (TP) removal. By comparison, the CRI system operated with intermittent aeration was more favorable due to the effective removal ability for pollutants and relatively lower energy demand. The microbial community analysis revealed that Proteobacteria was the dominant phylum in both oxic and anoxic stages of the developed CRI system. Functional microbial groups (Plasticicumulans, Pseudomonas, and Nitrospira in the oxic stage; Thauera, Candidatus_Competibacter, and Dechloromonas in the anoxic stage) were identified for the mediation of carbon, nitrogen, and phosphorus in the system. This study evaluated the feasibility and the optimal aeration mode of the developed CRI system for advanced wastewater treatment, which could satisfy the requirement for the high standard of effluent quality.
Collapse
Affiliation(s)
- Xiejuan Lu
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Minggang Gao
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Si Yang
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Dingding Tang
- China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan, China
| | - Fan Yang
- China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan, China
| | - Yangfan Deng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yan Zhou
- China Construction Third Bureau Green Industry Investment Co., Ltd, Wuhan, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Iqbal A, Zan F, Siddiqui MA, Nizamuddin S, Chen G. Integrated treatment of food waste with wastewater and sewage sludge: Energy and carbon footprint analysis with economic implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154052. [PMID: 35219653 DOI: 10.1016/j.scitotenv.2022.154052] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Food waste (FW) is a primary constituent of solid waste and its adequate management is a global challenge. Instead of disposal in landfills, integrated treatment of FW with wastewater (WW) can diminish both environmental and economic burdens. Utilizing steady-state modelling and life cycle assessment techniques, this study investigated the prospects of FW integration with biological WW treatment in terms of WW treatment performance, net energy and carbon footprint and economics of the process. The explored scenarios include co-disposal and treatment with WW by using FW disposers and anaerobic co-digestion with sewage sludge in Hong Kong. Compared to the existing WW and FW treatment, the integrated scenarios significantly improved the energy balance (~83-126%), net greenhouse gas emissions (~90%), and economics of operation, with permissible impact on WW treatment performance. Therefore, utilizing the surplus capacity of the existing WW treatment facilities, these integrated scenarios are a promising solution for sustainable development.
Collapse
Affiliation(s)
- Asad Iqbal
- Department of Civil and Environmental Engineering, Water Technology Centre, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China.
| | - Feixiang Zan
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Ahmar Siddiqui
- Department of Civil and Environmental Engineering, Water Technology Centre, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| | - Sabzoi Nizamuddin
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Centre, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
13
|
The effects of sulfite pretreatment on the biodegradability and solubilization of primary sludge: Biochemical methane potential, kinetics, and potential implications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Yang S, Xue W, Liu P, Lu X, Wu X, Sun L, Zan F. Revealing the methanogenic pathways for anaerobic digestion of key components in food waste: Performance, microbial community, and implications. BIORESOURCE TECHNOLOGY 2022; 347:126340. [PMID: 34780907 DOI: 10.1016/j.biortech.2021.126340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 05/23/2023]
Abstract
Anaerobic digestion (AD) process is widely considered the most sustainable technology for food waste (FW) disposal due to its advantage of biomethane recovery and beneficial environmental consequences. However, the effects of key components in FW (i.e. starchy food, vegetables, fruits, and meats) on AD process and their methanogenic pathways remain unclear. In this study, the biochemical methane potential (BMP) of cooked rice, cabbage, banana peel, pork and local FW was 288, 283, 254, 630, and 476 NmL CH4/g VSadded, with t80 (time required for 80% methane produced) of 3, 9, 3, 11 and 11 days, respectively. Kinetic analysis suggested diverse hydrolysis rates (0.104-0.679 d-1) and specific methane yields (39-119 NmL CH4/g VSadded/d). The relative abundances of key methanogens in the reactors were diverse, leading to the variation in acetoclastic and hydrogenotrophic methanogenic pathways. This study provides fundamental information for the operation of AD systems with different FW compositions.
Collapse
Affiliation(s)
- Si Yang
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Xue
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Pingbo Liu
- China Urban Construction Research Institute Limited, Beijing, China
| | - Xiejuan Lu
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Linquan Sun
- Shenzhen Green-Tech Institute of Applied Environmental Technology Co., Ltd, Shenzhen, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Zan F, Iqbal A, Lu X, Wu X, Chen G. "Food waste-wastewater-energy/resource" nexus: Integrating food waste management with wastewater treatment towards urban sustainability. WATER RESEARCH 2022; 211:118089. [PMID: 35074573 DOI: 10.1016/j.watres.2022.118089] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/11/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Sustainable food waste management is a global issue with high priority for improving food security and conserving natural resources and ecosystems. Diverting food waste from the solid waste stream to the wastewater stream is a promising way for food waste source separation, collection, treatment, and disposal. Given the advances in wastewater treatment, this integrated system has great potential for the concurrent recovery of water, resource, and energy. To this end, many efforts from lab-scale to full-scale studies have been devoted to evaluating the feasibility and associated impacts on both solid waste and wastewater systems. This paper summarizes the current status of food waste diversion from the aspects of principle and application. The impacts of food waste diversion on solid waste treatment, sewer system, wastewater treatment, and environmental benefits have been comprehensively reviewed and analysed. In the context of the critical review, this paper further identified the challenges of food waste diversion in unified definitions of the field, sewer network assessment, emerging wastewater treatment technologies, scale-up studies, and policy drivers. Perspectives on the contribution of food waste diversion to a food waste management hierarchy were discussed for initiating the nexus of "food waste-wastewater-energy/resource". We conclude that food waste diversion could facilitate sustainable urban development, but the area-specific factors (e.g., household practices, water resource, sewerage system condition, and treatment techniques) require adequate evaluations to determine the implementation. The outcomes of this study could contribute to the practice and policy-making of food waste management towards urban sustainability.
Collapse
Affiliation(s)
- Feixiang Zan
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China; Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Asad Iqbal
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiejuan Lu
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment (HUST), MOHURD, and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
16
|
Lu X, Wan Y, Zhong Z, Liu B, Zan F, Zhang F, Wu X. Integrating sulfur, iron(II), and fixed organic carbon for mixotrophic denitrification in a composite filter bed reactor for decentralized wastewater treatment: Performance and microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148825. [PMID: 34243004 DOI: 10.1016/j.scitotenv.2021.148825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Decentralized wastewater treatment in rural areas is an imperative challenge around the world, particularly in developing countries. The composite filter bed reactor is viable for decentralized wastewater treatment, but its performance on nitrogen removal often fluctuates with the unstable influent characteristics and loadings. Here, a composite filter bed reactor integrating sulfur, iron(II), and fixed organic carbon (shaddock peel) was developed and continuously operated under different conditions. The fixed organic carbon source promoted nitrogen removal with an efficiency higher than 90% and reduced effluent sulfate level by 40%, indicating that the integrated electron donors could improve the resistance and stability of the reactor. Moreover, sulfur-oxidizing bacteria (Thiomonas, Sulfuriferula, and Acidithiobacillus), iron-oxidizing bacteria (Ferritrophicum), and denitrifiers (Simplicispira and Hydrogenophaga) were identified in the anoxic/anaerobic layer of the reactor, suggesting that mixotrophic denitrification was stimulated by sulfur, iron(II), and fixed organic carbon. The findings of this study indicate that the developed reactor with the integrated electron donors could be reliable for carbon, nitrogen, and phosphorus removal and promising for the application of decentralized wastewater treatment.
Collapse
Affiliation(s)
- Xiejuan Lu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanlei Wan
- Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430015, China
| | - Zhenxing Zhong
- College of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Bo Liu
- China shipbuilding NDRI engineering Co. Ltd., Shanghai 200063, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Fugang Zhang
- Three Gorges Base Development, Co. Ltd., Yichang 443002, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
17
|
Zan F, Tang W, Jiang F, Chen G. Diversion of food waste into the sulfate-laden sewer: Interaction and electron flow of sulfidogenesis and methanogenesis. WATER RESEARCH 2021; 202:117437. [PMID: 34298275 DOI: 10.1016/j.watres.2021.117437] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/03/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Diverting food waste (FW) into the sulfate-laden sewer may pose a significant influence on the production of methane and sulfide in sewers. Identifying microbial electron utilization is essential to understanding the interaction of sulfidogenesis and methanogenesis in depth. Here, we reported sulfide and methane production from the sewer bioreactors receiving sulfate-laden wastewater (160 mg S/L), with and without FW addition. Long-term monitoring showed that the addition of FW (1 g/L) could boost both sulfide (by 39%) and methane (by 44%) production. As for the electrons used for sulfidogenesis and methanogenesis, about 98% flowed to sulfidogenesis. Cryosection-fluorescence in situ hybridization showed that high sulfate content suppressed the accumulation of methanogens in biofilm outer layer, whereas methanogens in the inner layer were enriched with FW addition. Moreover, the FW addition fostered the diversity of the fermentative bacteria and changed the type of methanogens in biofilms, and up-regulated the key enzymes expressions for sulfidogenesis and methanogenesis. A model-based investigation suggests that increased FW-to-sewage ratios would exert a significant impact on methane production than on sulfide production. The microbial electron flows were highly dependent on sulfate concentration and FW-to-sewage ratios. The findings of this study suggest that sulfate and substrate levels play a key role in microbial electron utilization for sulfide and methane production, and diverting FW into the sulfate-laden sewer may exert negative impacts on sewer management and the environment.
Collapse
Affiliation(s)
- Feixiang Zan
- School of Environmental Science and Engineering, Key Laboratory of Water & Wastewater Treatment, MOHURD, and Hubei Provincial Engineering Research Center for Water Quality Safety and Pollution Control, Huazhong University of Science and Technology, Wuhan, China; Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wentao Tang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Feng Jiang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou, China.
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
18
|
Zan F, Huang H, Guo G, Chen G. Sulfite pretreatment enhances the biodegradability of primary sludge and waste activated sludge towards cost-effective and carbon-neutral sludge treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146634. [PMID: 33774306 DOI: 10.1016/j.scitotenv.2021.146634] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 05/21/2023]
Abstract
Sulfite pretreatment is effective for enhancing the biodegradability of waste activated sludge (WAS). However, the mixture of primary sludge (PS) and WAS is normally collected and treated together, and the effect of sulfite on the sludge mixture remains unclear. Here, we reported that sulfite pretreatment could disintegrate the flocs of the sludge mixture and improve sludge biodegradability. The substrate release from the sludge mixture after sulfite pretreatment (100, 300, and 500 mg SO32--S/L) could be enhanced with soluble chemical oxygen demand by up to 1.58 times, soluble nitrogen by up to 1.38 times, soluble polysaccharides by up to 3.04 times and proteins by up to 6.08 times. Further analysis on flocs structure suggests that sulfite may destruct the functional groups of proteins and amino acids and lyse the main structure of sludge cell walls. Moreover, methane production from the sludge mixture could be enhanced by 16% after pretreated by sulfite at 500 mg S/L (i.e., 123.59 CH4/kg VSadded), whereas the digested sludge volume could be reduced by 1.51 times. Environmental implications suggest that sulfite pretreatment could save sludge treatment costs by 1.06 $/PE/y and reduce CO2-equivalent emissions by 5.19 kg CO2/PE/y, demonstrating its potential as a cost-effective and carbon-neutral technology for sludge management.
Collapse
Affiliation(s)
- Feixiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China; Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Hao Huang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Gang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
19
|
Cheng C, Zhu R, Thompson RG, Zhang L. Reliability analysis for multiple-stage solid waste management systems. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:650-658. [PMID: 33243600 DOI: 10.1016/j.wasman.2020.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Solid waste management (SWM) is a key issue for sustainable development and environment protection, and waste collection and transportation (WCT) is one of the most important steps in managing solid waste. A well-designed SWM system with optimised location and capacity of waste transfer stations (WTSs) and final disposal facilities (FDFs) plays a critical role in waste management. However, uncertainties are inevitable in a general SWM system, which could involve in any stage of the waste management. In this paper, we propose to use the reliability analysis method to manage the uncertainties for the multiple-stage SWM system. Furthermore, an optimisation model is developed to maximise the reliability of SWM systems by optimising the allocation of waste treatment demand between facilities. We also generated an event-tree to analyse the failure mode of the whole system. Finally, a case study was undertaken in Hong Kong to demonstrate the effectiveness of the methodology. The case study results indicate that the proposed method can: (i) estate the risk level of a SWM system, (ii) provide a solution to improve the system reliability or reduce the risk level, (iii) analyse the potential contributions of different policies on the reliability index, (iv) identify the critical facilities in a SWM system.
Collapse
Affiliation(s)
- Cheng Cheng
- Future Urban Mobility IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #09-02 CREATE Tower, Singapore 138602, Singapore
| | - Rui Zhu
- Future Urban Mobility IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #09-02 CREATE Tower, Singapore 138602, Singapore.
| | - Russell G Thompson
- Department of Infrastructure Engineering, The University of Melbourne, VIC 3010, Australia
| | - Lihai Zhang
- Department of Infrastructure Engineering, The University of Melbourne, VIC 3010, Australia
| |
Collapse
|
20
|
Iqbal A, Ekama GA, Zan F, Liu X, Chui HK, Chen GH. Potential for co-disposal and treatment of food waste with sewage: A plant-wide steady-state model evaluation. WATER RESEARCH 2020; 184:116175. [PMID: 32717494 DOI: 10.1016/j.watres.2020.116175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
The water, food and energy nexus is a vital subject to achieve sustainable development goals worldwide. Wastewater (WW) and food waste (FW) from municipal sources are the primary contributors of organic waste from cities. Along with the loss of these valuable natural resources, their treatment systems also consume a considerable amount of abiotic energy and resource input and make a perceptible contribution to global warming. Hence, the global paradigm has evolved from simple pollution mitigation to resource recovery systems. In this study, the prospects of FW co-disposal into the sewer system and treatment with municipal sewage were quantitatively investigated for Hong Kong's largest biological WW treatment plant (WWTP) by integrated plant-wide steady-state modelling (PWSSM) and lifecycle assessment (LCA) approaches. The investigation assessed the impacts on the design and operational capacity of the WWTP, effluent quality, sludge output, and its net energy and carbon footprint. The results revealed that even at a higher than normal FW to sewage ratio, the WWTP's organic load capacity and performance in terms of organics and nitrogen removal was not significantly degraded, in fact the denitrification efficiency was improved by the FW organics with low N/C ratio. The net energy balance was improved by 80-400%, the net carbon footprint was lowered by 37-63% (without biogenic emissions), while the sludge production was increased by ∼33%. The results are very sensitive and improved with greater influent FW concentration and solids capture in the primary settling unit of the WWTP. The differences in the results have to be seen in relation to uncontrolled methane emission and a faster filling rate if the FW were disposed to landfill. The study provides valuable insights and policy guidelines for the decision makers locally and a generic methodological template.
Collapse
Affiliation(s)
- Asad Iqbal
- Department of Civil and Environmental Engineering, Water Technology Centre, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| | - George A Ekama
- Water Research Group, Department of Civil Engineering, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Feixiang Zan
- Department of Civil and Environmental Engineering, Water Technology Centre, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| | - Xiaoming Liu
- Department of Civil and Environmental Engineering, Water Technology Centre, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| | - Ho-Kwong Chui
- Department of Civil and Environmental Engineering, Water Technology Centre, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, Water Technology Centre, Hong Kong Branch of Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China; Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|