1
|
Ding X, Yu Q, Xue H, Zhang W, Ren H, Geng J. Photochemical behavior of extracellular polymeric substances in intimately coupled TiO 2 photocatalysis and biodegradation system. BIORESOURCE TECHNOLOGY 2025; 416:131752. [PMID: 39515430 DOI: 10.1016/j.biortech.2024.131752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Photosensitization of extracellular polymeric substances (EPS) in aqueous environments is significant for pollutants degradation, but the synergistic effects in intimately coupled photocatalysis and biodegradation (ICPB) remain unknown. In this study, the pivotal role of EPS photosensitization in the degradation of 17β-estradiol 3-sulfate (E2-3S) was investigated in ICPB. Protein and polysaccharide contents in loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) increased by 16.6, 9.15 and 9.2, 2.2 times compared with R1 (biofilm with light without photocatalyst) and R2 (biofilm with photocatalyst without light), respectively. During irradiation tests, more reactive species were generated in LB-EPS, and achieving 99.8 % degradation efficiency of E2-3S; tryptophan-like protein in EPS firstly to be converted, while the tyrosine-like protein underwent greater conversion; furthermore, hydrophilic molecules with O/C < 0.45 in EPS decreased and unsaturated molecules with H/C = 0.7-1.5 and O/C = 0-0.1 increased. This study reveals the photosensitization reaction of EPS in ICPB, which provides new insights for pollutants degradation.
Collapse
Affiliation(s)
- Xiangwei Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Hongpu Xue
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Wei Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
2
|
Zhou T, Li J, Zhang W, Zeng Y, Gao Y, Li H, Yang W, Mai Y, Liu Q, Hu C, Wang C. Pollution characteristics and risk assessment of endocrine-disrupting chemicals in surface water of national (freshwater) aquatic germplasm resource reserves in Guangdong Province. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1898-1911. [PMID: 39329192 DOI: 10.1039/d4em00425f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The distribution, composition, and risk assessment of 8 EDCs in the surface water of 14 national aquatic germplasm resource reserves (freshwater) were investigated during dry and wet seasons. Bisphenol A (BPA), nonylphenol (NP), and octylphenol (OP) were the main contributors of the 8 EDCs. The concentrations of phenolic pollutants in surface water during the dry season were higher than those in the wet season. However, no significant seasonal differences were found among the steroid hormones. According to the evaluation of estrogenic activity (EEQ > 1.0), E2 and EE2 were the main contributors to estrogenic activity. EDC mixtures posed a higher risk to crustaceans and fish (RQ > 1.0) and a moderate to high risk to algae (RQ > 0.1). Fish were the most sensitive aquatic organisms. In the study areas, EE2, E1, BPA, NP, and E2 had a higher risk than the other three compounds and should be controlled as a priority.
Collapse
Affiliation(s)
- Tao Zhou
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China.
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Jie Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Weizhen Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China.
| | - Yanyi Zeng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Yuan Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Haiyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Wanling Yang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Qianfu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Caiqin Hu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Chao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| |
Collapse
|
3
|
Ding X, Yu Q, Ren H, Geng J. Degradation of conjugated estrogen in visible light-driven intimately coupled photocatalysis and biodegradation system. BIORESOURCE TECHNOLOGY 2024; 406:131045. [PMID: 38942213 DOI: 10.1016/j.biortech.2024.131045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Visible light-driven intimately coupled photocatalysis and biodegradation (VDICPB) is an efficient technology for removing recalcitrant contaminants, but the degradation pathway on 17β-estradiol 3-Sulfate (E2-3S) is still not clear. In this study, VDICPB based on N-doped TiO2 as a photocatalyst was established to investigate the removal and transformation of E2-3S in synthetic wastewater. VDICPB showed a satisfactory removal efficiency of 97.8 ± 0.4 %, which was much higher than that of independent photocatalysis (84.0 ± 2.2 %) or biodegradation system (71.4 ± 1.8 %). Steroid C/D-rings of E2-3S was broken in VDICPB since the transformation process reached terminal central pathway. Primary metabolites did not accumulate in VDICPB, resulting in a low expression of functional genes. E2-3S was mainly removed by cooperative interaction of photocatalysis and co-metabolism of biofilm. Photocatalysis led to deconjugation and microbes acted to mineralization. This study provides technical reference and theoretical support for the removal of new pollutants.
Collapse
Affiliation(s)
- Xiangwei Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Wu JL, Liu ZH, Ma QG, Wan YP, Dang Z, Liu Y, Liu Y. Combined collection systems of sewage and rainfall runoff seriously affect the spatial distributions of natural estrogens and their conjugates in river water: Insights from the Pearl River of China. WATER RESEARCH 2024; 256:121588. [PMID: 38636120 DOI: 10.1016/j.watres.2024.121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
So far, little has been known about how the combined collection systems of sewage and rainfall runoff (CCSs) affect emerging contaminants in river water. To fill up the knowledge gap, this study was conducted to investigate the spatial distributions of three natural estrogens (NEs, i.e., estrone (E1), 17β-estradiol (E2) and estriol (E3)) and their conjugates (C-NEs) in the Pearl River in the wet and dry seasons. Results showed that the respective average concentrations of NEs and C-NEs at different locations alongside the Pearl River in the wet season were 7.3 and 1.8 times those in the dry season. Based on estrogen equivalence (EEQ), the average estimated EEQ level in the Pearl River waters in the wet season was nearly 10 times that in the dry season. These seemed to imply that the CCSs in the wet season not only cause untreated sewage into the receiving water body, but greatly decrease the removal efficiency of NEs and C-NEs in wastewater treatment plant. Furthermore, the estimated annual loads of E1, E2, and E3 to the Pearl River in the wet season accounted for about 88.6 %, 100 %, and 99.3 % of the total annual loads. Consequently, this work for the first time demonstrated that the CCSs in cities with high precipitation are unfavorable for controlling of emerging contaminants.
Collapse
Affiliation(s)
- Jia-Le Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Qing-Guang Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yi-Ping Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China
| | - Yun Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, China
| | - Yu Liu
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Zhang J, Liu ZH, Wu JL, Ding YT, Ma QG, Hayat W, Liu Y, Wang PJ, Dang Z, Rittmann B. Deconjugation potentials of natural estrogen conjugates in sewage and wastewater treatment plant: New insights from model prediction and on-site investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172071. [PMID: 38554960 DOI: 10.1016/j.scitotenv.2024.172071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Natural estrogen conjugates play important roles in municipal wastewater treatment plant (WWTP), but their deconjugation potentials are poorly understood. This work is the first to investigate the relationships between the enzyme activities of arylsulfatase/β-glucuronidase and deconjugation potentials of natural estrogen conjugates. This work led to three important findings. First, the enzyme activity of β-glucuronidase in sewage is far higher than that of arylsulfatase, while their corresponding activities in activated sludge were similar. Second, a model based on β-glucuronidase could successfully predict the deconjugation potentials of natural estrogen glucuronide conjugates in sewage. Third, the enzyme activity of arylsulfatase in sewage was too low to lead to evident deconjugation of sulfate conjugates, which means that the deconjugation rate of estrogen sulfates can be regarded as zero. By comparing their theoretical removal based on enzyme activity and on-site investigation, it is reasonable to conclude that reverse deconjugation of estrogen conjugates (i.e., conjugation of natural estrogens to form conjugated estrogens) likely exist in WWTP, which explains well why natural estrogen conjugates cannot be effectively removed in WWTP. Meanwhile, this work provides new insights how to improve the removal performance of WWTP on natural estrogen conjugates. SYNOPSIS: This work is the first to show how arylsulfatase/β-glucuronidase could affect deconjugation of natural estrogen conjugates and possible way to enhance their removal in wastewater treatment plant.
Collapse
Affiliation(s)
- Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Labora tory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China.
| | - Jia-le Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yu-Ting Ding
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Qing-Guang Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Waseem Hayat
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yun Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Peng-Jie Wang
- Shijing Water Purification Branch, Guangzhou Water Purification Co. LTD, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Bruce Rittmann
- Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, Tempe 85287-5701, AZ, United States
| |
Collapse
|
6
|
Wu W, Zhang J, Zhu W, Zhao S, Gao Y, Li Y, Ding L, Ding H. Novel manganese and nitrogen co-doped biochar based on sodium bicarbonate activation for efficient removal of bisphenol A: Mechanism insight and role analysis of manganese and nitrogen by combination of characterizations, experiments and density functional theory calculations. BIORESOURCE TECHNOLOGY 2024; 399:130608. [PMID: 38499202 DOI: 10.1016/j.biortech.2024.130608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 03/20/2024]
Abstract
A novel porous manganese and nitrogen co-doped biochar (Mn-N@SBC) was synthesized via one-step pyrolysis, utilizing loofah agricultural waste as the precursor and NaHCO3 as the activator. The behavior of bisphenol A adsorbed on Mn-N@SBC was evaluated using static batch adsorption experiments. Compared to direct manganese-nitrogen co-doping, co-doping based on NaHCO3 activation significantly increased the specific surface area (231 to 1027 m2·g-1) and adsorption capacity (15 to 351 mg·g-1). Wide pH (2-10) and good resistance to cation/anion, humic acid and actual water demonstrated the robust adaptability of Mn-N@SBC to environmental factors. The significantly reduced specific surface area after adsorption, adverse effects of ethanol and phenanthrene on the removal of bisphenol A, and theoretically predicted interaction sites indicated the primary adsorption mechanisms involved pore filling, hydrophobicity, and π-π-electron-donor-acceptor interaction. This work presented an approach to create high-efficiency adsorbents from agricultural waste, offering theoretical and practical guidance for the removal of pollutants.
Collapse
Affiliation(s)
- Wenlong Wu
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243032, China
| | - Jinwei Zhang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Weijie Zhu
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Shouhui Zhao
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Yuchen Gao
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Yan Li
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China; Engineering Research Center of Biofilm Water Purification and Utilization Technology of Ministry of Education, Anhui University of Technology, Ma'anshan 243032, China.
| | - Heng Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China.
| |
Collapse
|
7
|
Narindri Rara Winayu B, Chu FJ, Sutopo CCY, Chu H. Bioprospecting photosynthetic microorganisms for the removal of endocrine disruptor compounds. World J Microbiol Biotechnol 2024; 40:120. [PMID: 38433170 DOI: 10.1007/s11274-024-03910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Endocrine disruption compounds can be found in various daily products, like pesticides, along with cosmetic and pharmaceutical commodities. Moreover, occurrence of EDCs in the wastewater alarms the urgency for their removal before discharge owing to the harmful effect for the environment and human health. Compared to implementation of physical and chemical strategies, cultivation of photosynthetic microorganisms has been acknowledged for their high efficiency and eco-friendly process in EDCs removal along with accumulation of valuable byproducts. During the process, photosynthetic microorganisms remove EDCs via photodegradation, bio-adsorption, -accumulation, and -degradation. Regarding their high tolerance in extreme environment, photosynthetic microorganisms have high feasibility for implementation in wastewater treatment plant. However, several considerations are critical for their scaling up process. This review discussed the potency of EDCs removal by photosynthetic microorganisms and focused on the efficiency, mechanism, challenge, along with the prospect. Details on the mechanism's pathway, accumulation of valuable byproducts, and recent progress in scaling up and application in real wastewater were also projected in this review.
Collapse
Affiliation(s)
| | - Feng-Jen Chu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, Anhui, China
| | - Christoper Caesar Yudho Sutopo
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
8
|
Liu S, Edara PC, Schäfer AI. Influence of organic matter on the photocatalytic degradation of steroid hormones by TiO 2-coated polyethersulfone microfiltration membrane. WATER RESEARCH 2023; 245:120438. [PMID: 37716301 DOI: 10.1016/j.watres.2023.120438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/18/2023]
Abstract
Water treatment in photocatalytic membrane reactors (PMR) holds great promise for removing micropollutants from aquatic environments. Organic matter (OM) that is present in any water matrix may significantly interfere with the degradation of steroid hormone (SH) micropollutants in PMRs. In this study, the interference of various OM types, humic acid (HA), Australian natural organic matter (AUS), worm farm extract (WF), tannic acid (TA), and gallic acid (GA) with the SH degradation at its environmentally relevant concentration (100 ng/L) in a flow-through PMR equipped with a polyethersulphone-titanium dioxide (PES-TiO2) membrane operated under UV light (365 nm) was investigated. Results of this study showed that OM effects are complex and depend on OM type and concentration. The removal of β-estradiol (E2) was enhanced by HA at its levels below 5 mgC/L while the enhancement was abated at higher HA concentrations. The E2 removal was inhibited by TA, and GA, while no significant interference observed for AUS, and WF. The data demonstrated diverse roles of OM that acts in PMRs as a light screening agent, a photoreactive species scavenger, an adsorption alteration trigger, and a photosensitizer. The time-resolved fluorescence measurement showed that HA, acting as a photosensitizer, promoted the sensitization of TiO2 by absorbing light energy and transferring energy/electron to the TiO2 substrate. This pathway dominated the mechanism of the enhanced E2 degradation by HA. The favorable effect of HA was augmented as increasing the light intensity from 0.5 to 10 mW/cm2 and was weakened at higher light intensities due to the increased scavenging reactions and the limited amount of HA. This work clarifies the underlying mechanism of the OM interference on photocatalytic degradation of E2 by the PES-TiO2 PMR.
Collapse
Affiliation(s)
- Siqi Liu
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Pattabhiramayya C Edara
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
9
|
Xiao Y, Han D, Currell M, Song X, Zhang Y. Review of Endocrine Disrupting Compounds (EDCs) in China's water environments: Implications for environmental fate, transport and health risks. WATER RESEARCH 2023; 245:120645. [PMID: 37769420 DOI: 10.1016/j.watres.2023.120645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/25/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
Endocrine Disrupting Compounds (EDCs) are ubiquitous in soil and water system and have become a great issue of environmental and public health concern since the 1990s. However, the occurrence and mechanism(s) of EDCs' migration and transformation at the watershed scale are poorly understood. A review of EDCs pollution in China's major watersheds (and comparison to other countries) has been carried out to better assess these issues and associated ecological risks, compiling a large amount of data. Comparing the distribution characteristics of EDCs in water environments around the world and analyzing various measures and systems for managing EDCs internationally, the significant insights of the review are: 1) There are significant spatial differences and concentration variations of EDCs in surface water and groundwater in China, yet all regions present non-negligible ecological risks. 2) The hyporheic zone, as a transitional zone of surface water and groundwater interaction, can effectively adsorb and degrade EDCs and prevent the migration of high concentrations of EDCs from surface water to groundwater. This suggests that more attention needs to be paid to the role played by critical zones in water environments, when considering the removal of EDCs in water environments. 3) In China, there is a lack of comprehensive and effective regulations to limit and reduce EDCs generated during human activities and their discharge into the water environment. 4) To prevent the deterioration of surface water and groundwater quality, the monitoring and management of EDCs in water environments should be strengthened in China. This review provides a thorough survey of scientifically valid data and recommendations for the development of policies for the management of EDCs in China's water environment.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Han
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Matthew Currell
- School of Engineering, RMIT University, Melbourne, VIC, 3001, SA; Australian Rivers Institute, Griffith University, Nathan, Queensland, 4111, SA
| | - Xianfang Song
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Zhang
- Chinese Academy of Surveying and Mapping, Beijing, 100036, China
| |
Collapse
|
10
|
Li Y, Wang J, Lin C, Wang A, He M, Liu X, Ouyang W. Socioeconomic and seasonal effects on spatiotemporal trends in estrogen occurrence and ecological risk within a river across low-urbanized and high-husbandry landscapes. ENVIRONMENT INTERNATIONAL 2023; 180:108246. [PMID: 37802008 DOI: 10.1016/j.envint.2023.108246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/30/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Estrogen pollution is a persistent issue in rivers. This study investigated the occurrence, spatiotemporal variation mechanisms, sources, and ecological risks of estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), diethylstilbestrol (DES), and bisphenol-A (BPA) in the waters of the Zijiang River, a tributary of the middle Yangtze River. The results revealed elevated detection frequencies and estrogen concentrations in the dry season compared to the wet season, mainly due to the precipitation dilution effect. Total estrogen concentration ranged from 21.2 to 97.5 ng/L in the dry season, which was significantly correlated to spatial distributions of animal husbandry and population. Among the estrogens studied in the river, E2, BPA, and EE2 were predominant. The collective sources of E1, E2, E3, and EE2 were traced back to human and husbandry excrement, whereas BPA emitted from daily life products, contributing to 55.5% and 42.7% of the total estrogen concentration, respectively. Particularly, the average and median E1, E2, and EE2 concentrations in the river exceeded the environmental quality standards of the European Union. The total estrogenic activity dominated by EE2 exceeded the 1 ng E2/L threshold, with levels exceeding 10 ng E2/L during the dry season. The risk quotients exhibited a high ecological risk of E1 and EE2 to fish and a moderate to high ecological risk of E1 to crustaceans, EE2 to mollusks, and E2 to fish. Therefore, E1, E2, and EE2 pollution of the river may lead to both high estrogenic potency and moderate or high ecological risk; thus, they should be considered priority pollutants in the river. These results yield valuable insights into the spatiotemporal change mechanisms, sources, and ecological risks of estrogens in river water of low-urbanization and rural watersheds.
Collapse
Affiliation(s)
- Yun Li
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jing Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Chunye Lin
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Aihua Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Tang Z, Liu ZH, Wang H, Wan YP, Dang Z, Guo PR, Song YM, Chen S. Twelve natural estrogens and ten bisphenol analogues in eight drinking water treatment plants: Analytical method, their occurrence and risk evaluation. WATER RESEARCH 2023; 243:120310. [PMID: 37473512 DOI: 10.1016/j.watres.2023.120310] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023]
Abstract
Bisphenol analogues (BPs) and natural estrogens (NEs) as two important groups of endocrine-disrupting compounds (EDCs) in drinking water treatment plants (DWTPs) have been hardly investigated except bisphenol A (BPA) and three major NEs including estrone (E1), 17β-estradiol (E2) and estriol (E3). In this study, a GC-MS analytical method was firstly established and validated for trace simultaneous determination of ten BPs and twelve NEs in drinking water, which included BPA, bisphenol B (BPB), bisphenol C (BPC), bisphenol E (BPE), bsiphenol F (BPF), bsiphenol P (BPP), bisphenol S (BPS), bisphenol Z (BPZ), bisphenol AF (BPAF), bisphenol AP (BPAP), E1, E2, E3, 17α-estradiol (17α-E2), 2-hydroestrone (2OHE1), 16hydroxyestrone (16α-OHE1), 4-hydroestrone (4OHE1), 2-hydroxyesstradiol (2OHE2), 4-hydroxyestradiol (4OHE2), 17-epiestriol (17epiE3), 16-epiestriol (16epiE3) and 16keto-estraiol (16ketoE2). This investigation showed that eighteen out of twenty-two targeted compounds were detected in drinking source waters of eight DWTPs with concentrations ranging from not detected to 142.8 ng/L. Although the conventional treatment process of DWTP could efficiently remove both BPs and NEs with respective removal efficiencies of 74.1%-90.9% and 74.5%-100%, BPA, BPS, BPE, BPZ, E1, 2OHE1, and 2OHE2 were found in the finished drinking waters. Chlorination could remove part of BPs and NEs, but the efficiency varied greatly with DWTP and the reason was unknown. In the finished drinking waters of eight DWTPs, the highest chemically calculated estrogen equivalence (EEQ) derived from BPs and NEs was up to 6.11 ngE2/L, which was over 22 times that could do harm to zebrafish, indicating a potential risk to human health. Given the fact that many chlorination products of BPs and NEs likely have higher estrogenic activities, the estrogenic effect of BPs and NEs in finished drinking water should be accurately examined urgently with the inclusion of BPs, NEs as well as their main chlorinated by-products. This study shed new light on the occurrence, removal, and potential estrogenic effects of BPs and NEs in DWTPs.
Collapse
Affiliation(s)
- Zhao Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
| | - Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yi-Ping Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Peng-Ran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Science, Guangzhou, 510070, China
| | - Yu-Mei Song
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Science, Guangzhou, 510070, China
| | - Sa Chen
- Zhongshan Public Water Co., LTD, Zhongshan 528403, China
| |
Collapse
|
12
|
Aleid GM, Alshammari AS, Alomari AD, Ahmad A, Alaysuy O, Ibrahim MNM. Biomass and domestic waste: a potential resource combination for bioenergy generation and water treatment via benthic microbial fuel cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-29430-8. [PMID: 37632620 DOI: 10.1007/s11356-023-29430-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
The benthic microbial fuel cell (BMFC) is one of the most efficient types of bioelectrochemical fuel cell systems. Modern bioelectrochemical fuel cells have several drawbacks, including an unstable organic substrate and a microorganism-unfriendly atmosphere. The recent literature to encounter such issues is one of the emerging talks. Researchers are focusing on the utilization of biomass and waste to encounter such challenges and make the technique more feasible at the pilot scale. This study investigated the combination of local bakery waste as an organic substrate with lignocellulosic biomass material. The whole experiment was conducted for 45 days. At an external resistance of 1000 ῼ and an internal resistance of 677 ῼ, the power density was found to be 3.51 mW/m2. Similarly, for Pb2+, Cd2+, Cr3+, Ni2+, and Co2+, the degradation efficiency was 84.40%, 81.21%, 80%, 89.50%, and 86.0%, respectively. The bacterial identification results showed that Liquorilactobacillus nagelii, Proteus mirabilis, Pectobacterium punjabense, and Xenorhabdus thuongxuanensis are the most prominent species found on anode biofilm. The method of electron generation in this study, which includes the degradation of metal ions, is also well described. Lastly, optimising the parameters showed that pH 7 provides a feasible environment for operation. A few future suggestions for practical steps are enclosed for the research community.
Collapse
Affiliation(s)
- Ghada Mohamed Aleid
- Department, Preparatory Year College, University of Ha'il, Hail, Saudi Arabia
| | - Anoud Saud Alshammari
- Department of Physics and Chemistry, Northern Border University, Rafha, Saudi Arabia
| | - Asma D Alomari
- Chemistry Department, Al-Qunfudah University College, Umm Al-Qura University, 1109, Al-7 Qunfudah, Saudi Arabia
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia.
| | - Omaymah Alaysuy
- Department of Chemistry, College of Science, University of Tabuk, 71474, Tabuk, Saudi Arabia
| | - Mohamad Nasir Mohamad Ibrahim
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
13
|
Wan YP, Ma QG, Hayat W, Liu ZH, Dang Z. Ten bisphenol analogues in Chinese fresh dairy milk: high contribution ratios of conjugated form, importance of enzyme hydrolysis and risk evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88049-88059. [PMID: 37438504 DOI: 10.1007/s11356-023-28737-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
This study investigated concentration levels of ten bisphenols (BPs) in 13 Chinese commercial fresh low temperature dairy milk samples (fresh milk) of main local and national brands with or without enzyme hydrolysis. The results showed that at least two BPs were detected in each fresh milk sample without enzyme hydrolysis and the respective mean concentrations of bisphenol AF (BPAF), bisphenol B (BPB), bisphenol C (BPC), bisphenol F (BPF), bisphenol A (BPA), bisphenol S (BPS), bisphenol AP (BPAP), bisphenol PP (BPP), bisphenol Z (BPZ), and bisphenol E (BPE) were 0.73, 0.61, 1.86, 0.87, 0.42, 0.11, 1.06, 1.42, 1.5, and 0.04 ng/mL, while their respective detection frequencies ranged from 23.1-92.3%. These results indicated the frequent detection of BPs in fresh milk samples. With enzyme hydrolysis, the respective mean concentrations of BPAF, BPA, BPB, BPC, BPF, BPS, and BPAP were increased 7.1-107.1%, indicating the long-ignored importance of enzyme hydrolysis. The respective average estimated daily intakes (EDIs) of BPA by adult and children in China via fresh milk were 32.5 and 37.5 ng/kg bw/d, indicating that BPA in fresh milk was a crucial source to human. Six out of nine other BPs had higher average EDIs than that of BPA, among which the EDI of BPAP was almost three times that of BPA, suggesting the widespread contamination of other BPs in Chinese fresh milk.
Collapse
Affiliation(s)
- Yi-Ping Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Qing-Guang Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Waseem Hayat
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
- Key Laboratory of Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
14
|
Long Z, Guo T, Chen C, Zhang G, Zhu J. Preparation and application of Ag plasmon Bi 3O 4Cl photocatalyst for removal of emerging contaminants under visible light. Front Microbiol 2023; 14:1210790. [PMID: 37362933 PMCID: PMC10289886 DOI: 10.3389/fmicb.2023.1210790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Photocatalytic degradation has been extensively investigated toward the removal emerging contaminants (ECs) from water. In this study, a series of Ag-Bi3O4Cl plasmon photocatalysts were synthesized through the photo-deposition of metallic Ag on the Bi3O4Cl surface. The effects of plasmon modification on the catalytic performance of bismuth oxychlorides were analyzed. Ag addition did not alter the morphology of Bi3O4Cl. With the increasing Ag content, the number of oxygen defects on the catalyst surface first increased and then decreased. Moreover, the surface plasmon resonance effect of Ag suppressed the recombination of electron-hole pairs, promoting the migration and separation of photocarriers and improving the light absorption efficiency. However, the addition of excessive Ag reduced the number of active sites on the Bi3O4Cl surface, hindering the catalytic degradation of pollutants. The optimal Ag-Bi3O4Cl photocatalyst (Ag ratio: 0.025; solution pH: 9; dosage: 0.8 g/L) achieved 93.8 and 94.9% removal of ciprofloxacin and tetrabromobisphenol A, respectively. The physicochemical and photoelectric properties of Ag-Bi3O4Cl were determined through various characterization techniques. This study demonstrates that introducing metallic Ag alters the electron transfer path of the catalyst, reduces the recombination rate of electron-hole pairs, and effectively improves the catalytic efficiency of Bi3O4Cl. Furthermore, the pathways of ciprofloxacin degradation products and their biotoxicity were revealed.
Collapse
Affiliation(s)
- Zeqing Long
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Tingting Guo
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Chao Chen
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Jia Zhu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|
15
|
Musa AM, Kiely J, Luxton R, Honeychurch KC. An Electrochemical Screen-Printed Sensor Based on Gold-Nanoparticle-Decorated Reduced Graphene Oxide-Carbon Nanotubes Composites for the Determination of 17-β Estradiol. BIOSENSORS 2023; 13:bios13040491. [PMID: 37185565 PMCID: PMC10136424 DOI: 10.3390/bios13040491] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
In this study, a screen-printed electrode (SPE) modified with gold-nanoparticle-decorated reduced graphene oxide-carbon nanotubes (rGO-AuNPs/CNT/SPE) was used for the determination of estradiol (E2). The AuNPs were produced through an eco-friendly method utilising plant extract, eliminating the need for severe chemicals, and remove the requirements of sophisticated fabrication methods and tedious procedures. In addition, rGO-AuNP serves as a dispersant for the CNT to improve the dispersion stability of CNTs. The composite material, rGO-AuNPs/CNT, underwent characterisation through scanning electron microscopy (SEM), ultraviolet-visible absorption spectroscopy (UV-vis), Fourier-transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The electrochemical performance of the modified SPE for estradiol oxidation was characterised using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The rGO-AuNPs/CNT/SPE exhibited a notable improvement compared to bare/SPE and GO-CNT/SPE, as evidenced by the relative peak currents. Additionally, we employed a baseline correction algorithm to accurately adjust the sensor response while eliminating extraneous background components that are typically present in voltammetric experiments. The optimised estradiol sensor offers linear sensitivity from 0.05-1.00 µM, with a detection limit of 3 nM based on three times the standard deviation (3δ). Notably, this sensing approach yields stable, repeatable, and reproducible outcomes. Assessment of drinking water samples indicated an average recovery rate of 97.5% for samples enriched with E2 at concentrations as low as 0.5 µM%, accompanied by only a modest coefficient of variation (%CV) value of 2.7%.
Collapse
Affiliation(s)
- Auwal M Musa
- Institute of Bio-Sensing Technology (IBST), University of the West of England, Bristol BS16 1QY, UK
| | - Janice Kiely
- Centre for Research in Biosciences (CRIB), School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Richard Luxton
- Centre for Research in Biosciences (CRIB), School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Kevin C Honeychurch
- Institute of Bio-Sensing Technology (IBST), University of the West of England, Bristol BS16 1QY, UK
- Centre for Research in Biosciences (CRIB), School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| |
Collapse
|
16
|
Aleid GM, Alshammari AS, Alomari AD, A. Almukhlifi H, Ahmad A, Yaqoob AA. Dual Role of Sugarcane Waste in Benthic Microbial Fuel to Produce Energy with Degradation of Metals and Chemical Oxygen Demand. Processes (Basel) 2023. [DOI: 10.3390/pr11041060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
One of the most advanced systems of microbial fuel cells is the benthic microbial fuel cell (BMFC). Despite several developments, this strategy still has a number of significant flaws, such as instable organic substrate. Waste material (sugarcane) is used as a substrate in this work to address the organic substrate instability. The process was operated continuously for 70 days. A level of 300 mV was achieved after 33 days of operation, while the degradation efficiencies of Pb (II), Cd (II), and Cr (III) were more than 90%. More than 90% of the removed chemical oxygen demand (COD) was also recorded. The measured power density was 3.571 mW/m2 at 1000 external resistance with 458 internal resistance. This demonstrates that electrons are effectively transported throughout the operation. The Bacillus strains are the most dominant bacterial community on the surface of the anode. This research’s mechanism, which involves metal ion degradation, is also explained. Finally, parameter optimization indicated that pH 7 works efficiently. In addition to that, there are some future perspectives and concluding remarks enclosed.
Collapse
Affiliation(s)
- Ghada Mohamed Aleid
- B.Sc. Department, Preparatory Year College, University of Ha’il, Hail 55475, Saudi Arabia
| | - Anoud Saud Alshammari
- Department of Physics and Chemistry, Northern Border University, Rafha 76313, Saudi Arabia
| | - Asma D. Alomari
- Chemistry Department, Al-Qunfudah University College, Umm Al-Qura University, Al-Qunfudah 28821, Saudi Arabia
| | - Hanadi A. Almukhlifi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | |
Collapse
|
17
|
Yuan X, Cui K, Chen Y, Xu W, Li P, He Y. Response of microbial community and biological nitrogen removal to the accumulation of nonylphenol in sequencing batch reactor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-12. [PMID: 36817166 PMCID: PMC9923645 DOI: 10.1007/s13762-023-04825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/23/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The widespread existence of nonylphenol in the environmental rendered from wastewater discharge has become a growing concern for its endocrine disrupting effects on microorganisms. In this study, the performance of nitrifying and denitrifying microbial community in a sequencing batch reactor (SBR) was investigated under different nonylphenol concentrations. The SBR was shown to be less effective in nitrogen removal at higher concentration of nonylphenol. Proteobacteria, Bacteroidetes, and Actinobacteria were characterized by 454 pyrosequencing as the dominant bacteria, nitrogen removal functional bacteria in these three phyla were inhibited by nonylphenol, and Proteobacteria and Actinobacteria were more sensitive to nonylphenol. With the accumulation of nonylphenol, the population of the most abundant denitrifying bacteria (Thauera spp.) and nitrifying bacteria (Nitrosomonas spp.) significantly reduced. Microbial diversity increased due to nonylphenol perturbation, which is indicated by the changes in microbial alpha diversity. Principal component analysis showed high similarity between microbial community in low and high concentration of nonylphenol, and the core genera involved in nitrogen removal had a low correlation with other genera shown in co-occurrence network. Moreover, linear discriminant analysis effect size analysis revealed intergroup differences in microorganisms. The mechanism of accumulated NP on the diversity and metabolism of the microbial community was examined. This paper established a theoretical foundation for the treatment of NP-containing wastewater and provided hints for further research about NP impact on biological nitrogen removal. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13762-023-04825-9.
Collapse
Affiliation(s)
- X. Yuan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 246011 China
| | - K. Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 246011 China
| | - Y. Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 246011 China
| | - W. Xu
- Zhejiang Lab, Hangzhou, 310012 China
| | - P. Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Y. He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
18
|
Wang H, Tang Z, Liu ZH, Zeng F, Zhang J, Dang Z. Ten bisphenol analogs were abundantly found in swine and bovine urines collected from two Chinese farms: concentration profiles and risk evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13407-13417. [PMID: 36131175 DOI: 10.1007/s11356-022-23089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol analogs (BPs) in livestock urine are important biomarkers to reflect the potential contaminants in food products derived from these animals. Nevertheless, little research has been done on their occurrence in farm animal urine. This work investigated ten BPs in swine and bovine urines collected from two Chinese farms. Results showed that all of these ten BPs were frequently detected in swine and bovine urines. The total mean concentration of the ten BPs (ΣBPs) in sow urines was 59.7 ng/mL, which was significantly higher than that of the boar urine with a mean concentration of 37.0 ng/mL (p < 0.05). On the other hand, the corresponding mean concentration of ΣBPs in dairy cattle urine was 59.6 ng/mL, which was significantly higher than that of the beef cattle urine with 37.0 ng/mL (p < 0.05). The respective mean concentration contribution ratios of BPA to ΣBPs in boar, sow, dairy, and beef cattle urines were only 14.9%, 21.4%, 9.0%, and 14.6%, which clearly indicated that BPA was no longer the dominant BP. The average daily urinary excretion rates of ΣBPs by boar, sow, dairy, and beef cattle were 37.0, 59.8, 167.0, and 36.8 times that of human, which suggested that swine and bovine likely encountered high dosage exposure of BPs in the two Chinese livestock farms. Our results showed that feeds and nutritional supplements as unintentionally added contaminants were the main sources of BPs to swine and bovine. As swine and bovine are important food sources for human being, part of BPs exposed to livestock eventually would enter human body via meat or milk. Therefore, quality controls of these feeds or nutritional supplements are quite important in order to guarantee welfare of livestock as well as protect health of our human beings.
Collapse
Affiliation(s)
- Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Zhao Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Feng Zeng
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
19
|
Zhao KM, Liu ZH, Zhang J, Zhong SS, Dang Z. Property of arylsulfatase and β-glucuronidase extracted from digestive tracts of Cipangopaludina chinensis and their cleavage performance on conjugated natural estrogens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64244-64251. [PMID: 35918583 DOI: 10.1007/s11356-022-22260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Arylsulfatase and β-glucuronidase are the two substantial enzymes having a significant role in the cleavage of conjugated natural estrogens (C-NEs). The present study reports that arylsulfatase and β-glucuronidase have been abundantly found in the digestive tracts of Cipangopaludina chinensis; in which, their corresponding activities were 60 and 5 U/g wet waste, respectively. The arylsulfatase from Cipangopaludina chinensis could show high activity at low temperatures. Hence, its activity still remained at 53.2% of maximal activity even at an extremely low temperature of 4 ℃; while the corresponding activities of arylsulfatase from Helix pomatia or activated sludge were less than 20% and 10%, respectively. The arylsulfatase and β-glucuronidase from Cipangopaludina chinensis could efficiently cleave C-NEs suggesting that they could be alternative enzymes derived from Helix pomatia that are used for cleavage of conjugated compounds in environmental or biological sample analysis. Meanwhile, they might also be used to enhance the cleavage of C-NEs in municipal wastewater.
Collapse
Affiliation(s)
- Ke-Meng Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
| | - Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shu-Shu Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
20
|
Yu Q, Yang X, Zhao F, Hu X, Guan L, Ren H, Geng J. Spatiotemporal variation and removal of selected endocrine-disrupting chemicals in wastewater treatment plants across China: Treatment process comparison. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155374. [PMID: 35461936 DOI: 10.1016/j.scitotenv.2022.155374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
In this study, the spatiotemporal variation in the occurrence of 19 endocrine-disrupting chemicals (EDCs) spanning four seasons in wastewater treatment plants (WWTPs) located in 17 Chinese cities was investigated. Removal efficiencies for selected EDCs in 17 WWTPs over four seasons were analyzed. Contributions of conventional and advanced process segments to the removal efficiency of EDCs were explored, which compared the removal efficacies of a variety of secondary and advanced processes for EDCs. Results showed that EDCs were extensively detected in WWTPs, with bisphenol A (BPA), dehydroepiandrosterone (DHRD), androstenedione (ADD), and pregnanediol (PD) being dominant in excess sludge and wastewater. Seasonally, the greatest seasonal differences were observed in the influent, with the concentrations of 12 EDCs varying significantly between seasons. Spatially, concentrations of BPA, DHRD, testosterone (TTR), and estriol (E3) in the influent significantly varied between the northern and southern WWTPs. Fourteen EDCs were removed steadily among the four seasons, while most EDCs had considerable removal differences between WWTPs. Contribution of the conventional process segment to the removal of individual EDCs was higher than that of the advanced process segment in WWTPs. Quantitative meta-analysis indicated that the anaerobic-anoxic-anaerobic (AAO) process in the various secondary processes had the highest removal of the target EDCs. Mass balance analysis further suggested that biodegradation in the aerobic tank of the AAO process was the major pathway for most EDCs removal. This study systematically depicts the spatiotemporal distribution of EDCs in WWTPs located across China and deepens the comprehension of EDCs removal in Chinese WWTPs from a treatment process perspective.
Collapse
Affiliation(s)
- Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xudong Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Fuzheng Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Anning West Road No. 88, Lanzhou 730070, PR China
| | - Xianda Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Linchang Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
21
|
Tang Z, Liu ZH, Wang H, Dang Z. 17α-Estradiol, an ignored endogenous natural estrogen in human: Updated estrogen metabolism pathways and its environmental risk analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154693. [PMID: 35318059 DOI: 10.1016/j.scitotenv.2022.154693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
E1 and E2 are considered as the parent natural estrogens (NEs) in human metabolism pathways of NEs, while the enantiomer of E2, αE2 was not included and ignored. In this study, αE2 along with the other eleven NEs with estrogenic activities were found in six healthy human urines with the total concentration levels of 62.9-99.3 μg/L. The concentration contributed ratios (CCRs) of αE2 to the total twelve NEs ranged from 4.7% to 11.0% with an average CCR of 7.0%. On the basis of the average CCR, αE2 was 1.5 times that of E2, which suggested that αE2 was one important NE in humans. As the main source of NEs in municipal wastewater was derived from human urine, αE2 should also be an important NE in municipal wastewater that can be proven by previous limited studies, in which the municipal effluent concentrations of αE2 ranged from not detection to 144.2 ng/L with an average concentration of 11.9 ng/L, indicating αE2 in municipal effluent was an important source to the natural environment. Although αE2 is a NE with weak estrogenic potency, the estrogenic effect of αE2 via municipal effluent to its receiving water body cannot be ignored because it can be bio-transformed into E2 under aerobic environment. This work is the first to indicate that αE2 is an ignored NE in human and its environmental risk via municipal effluent discharging cannot be ignored, which should be paid with attention.
Collapse
Affiliation(s)
- Zhao Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China.
| | - Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
22
|
Tang Z, Liu ZH, Chen W, Wang C, Wu YJ, Wang H, Dang Z, Liu Y. Twelve natural estrogens in urines of six threatened or endangered mammalian species in Zoo Park: implications and their potential risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49404-49410. [PMID: 35504991 DOI: 10.1007/s11356-022-20554-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
This work was the first to report twelve natural estrogens (NEs) in the urines of six threatened or endangered mammalians in a Zoo Park of Guangzhou (i.e., panda, gorilla, elephant, African lion, jaguar, and leopard). Ten out of twelve NEs were detected at least in one urine sample of the six mammalians studied, including the four major NEs (i.e., estrone (E1), 17β-estradiol (E2), 17α-estradiol (αE2), estriol (E3)), and six other NEs (i.e., 4-hydroxyestrone (4OHE1), 2-hydroxyestradiol (2OHE2), 4-hydroxyestradiol (4OHE2), 16α-hydroxyestrone (16α-OHE1), 16ketoestradiol (16ketoE2), and 17epiestriol (17epiE3)). The six studied mammalians, ranked in the order of high to low urinary concentration of total NEs, were jaguar, African lion, gorilla, elephant, panda, and leopard, with respective urinary concentrations of 110.4, 86.4, 71.4, 66.0, 55.9, and 52.8 ng/mL. According to the average urinary concentration of NE in the six mammalians ranked from high to low, the top five NEs detected were 16α-OHE1, 4OHE1, E1, E3, and 17epiE3, respectively. These clearly indicated the occurrence of NEs other than the four major types in urines of animals in a Zoo Park. Moreover, the daily excretion rates of the five detected NEs by one elephant ranged from 1162-2254 μg/d with a total daily excretion rate of 8260 μg/d, suggesting that the total urinary excretion of NEs by one adult elephant was equivalent to that by 170 premenopausal women or 506 adult men. Consequently, it appears from this study that NEs in the urines of zoo animals should be considered an emerging source of NEs.
Collapse
Affiliation(s)
- Zhao Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Chen Wang
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Ya-Jiang Wu
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
23
|
Carstensen L, Beil S, Börnick H, Stolte S. Structure-related endocrine-disrupting potential of environmental transformation products of benzophenone-type UV filters: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128495. [PMID: 35739676 DOI: 10.1016/j.jhazmat.2022.128495] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/15/2023]
Abstract
Benzophenone-type UV filters (BPs) represent a very diverse group of chemicals that are used across a range of industrial sectors around the world. They are found within different environmental compartments (e.g. surface water, groundwater, wastewater, sediments and biota) at concentrations ranging from ng/L to mg/L. Some are known as endocrine disruptors and are currently within the scope of international regulations. A structural alert for high potential of endocrine disrupting activity was assigned to 11 BP derivatives. Due to the widespread use, distribution and disruptive effects of some BPs, knowledge of their elimination pathways is required. This review demonstrates that biodegradation and photolytic decomposition are the major elimination processes for BP-type UV filters in the environment. Under aerobic conditions, transformation pathways have only been reported for BP, BP-3 and BP-4, which are also the most common derivatives. Primary biodegradation mainly results in the formation of hydroxylated BPs, which exhibit a structure-related increase in endocrine activity when compared to their parent substances. By combining 76 literature-based transformation products (TPs) with in silico results relating to their receptor activity, it is demonstrated that 32 TPs may retain activity and that further knowledge of the degradation of BPs in the environment is needed.
Collapse
Affiliation(s)
- Lale Carstensen
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Hilmar Börnick
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| |
Collapse
|
24
|
Developing the large-area manganese-based catalytic ceramic membrane for peroxymonosulfate activation: Applications in degradation of endocrine disrupting compounds in drinking water. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Zhang J, Wan YP, Liu ZH, Wang H, Dang Z, Liu Y. Stability properties of natural estrogen conjugates in different aqueous samples at room temperature and tips for sample storage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24589-24598. [PMID: 34825329 DOI: 10.1007/s11356-021-17377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
It is important to keep natural estrogen conjugates (C-NEs) intact in aqueous environmental sample before sample preparation; otherwise, this may influence the accurate determination of NEs. Therefore, this work thoroughly investigated the stability of C-NEs in three different aqueous environmental samples under four different storage conditions, room temperature, low temperature of 4 °C, low pH of 3, and addition of HgCl2 at 2 g/L. Results showed that C-NEs in aqueous sample were easily deconjugated under low temperature of 4 °C, which has been widely used in sample collection and storage. Both the low pH of 3 and addition of HgCl2 at 2 g/L under room temperature could keep C-NEs intact in domestic wastewaters and river water within 36 h, but the latter could keep C-NEs stable longer. This work is the first to show that low pH of 3 alone could keep C-NEs intact, which suggested that the combined condition at low temperature of 4 °C that has been widely used could be omitted. Meanwhile, compared to pH adjustment, addition of 2 g/L HgCl2 into aqueous sample is more convenient and practical for 24-h composite sampling, which may be widely applied.
Collapse
Affiliation(s)
- Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yi-Ping Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
26
|
Zhao KM, Zhong SS, Zhang J, Zhang CS, Dang Z, Liu ZH. Activity measurement of arylsulfatase and β-glucuronidase in activated sludge: HPLC-based versus classical spectrophotometric method. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10704. [PMID: 35373470 DOI: 10.1002/wer.10704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Arylsulfatase and β-glucuronidase are two important enzymes in wastewater and surface water, which play important roles on cleavage of sulfate/glucuronide estrogens. In this work, a high-performance liquid chromatography (HPLC)-based new method was firstly established for arylsulfatase/β-glucuronidase with determination of p-nitrophenyl sulfate (pNPS)/p-nitrophenyl-β-D-glucuronide (pNPG). The limits of detections (LODs) of the developed method for pNPS and pNPG were 0.164 and 0.098 μM, respectively. Intraday and interday reproducibility expressed as relative standard deviation (RSD) values of retention times and peak areas was 0.39%-3.68% and 0.23%-4.74%, respectively. The respective recovery efficiencies of this HPLC-based method spiking at three different concentrations for p-nitrophenol (pNP), pNPS, and pNPG in activated sludge were 76.5%-88.1%, 79.2%-93.1%, and 84.2%-96.1%, with RSD below 3.9%. The HPLC-based method was finally applied to estimate the enzyme activity of arylsulfatase/β-glucuronidase in one activated sludge system and along which the classical spectrophotometric method was also evaluated. Compared with the classic spectrophotometric analytical method, the HPLC-based new method could simultaneously measure arylsulfatase/β-glucuronidase one time, which was convenient and time-saving. Moreover, the developed method could effectively avoid possible underestimation that the spectrophotometric method might encounter. PRACTITIONER POINTS: A new HPLC-based method for activity estimation of arylsulfatase and β-glucuronidase was developed. The HPLC-based method can simultaneously estimate enzyme activity of both arylsulfatase and β-glucuronidase. The HPLC-based method can avoid possible underestimation that spectrophotometric method may encounter.
Collapse
Affiliation(s)
- Ke-Meng Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Shu-Shu Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, China
- Key Lab Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, China
| | - Cun-Sheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
- Key Lab Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, China
| |
Collapse
|
27
|
Wan YP, Chai BW, Wei Q, Hayat W, Dang Z, Liu ZH. 17α-ethynylestradiol and its two main conjugates in seven municipal wastewater treatment plants: Analytical method, their occurrence, removal and risk evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152489. [PMID: 34942255 DOI: 10.1016/j.scitotenv.2021.152489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/18/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
This work shows the existence of both 17-ethinylestradiol-3-sulfate (EE2-3S) and 17-ethinylestradiol-3-glucuronide (EE2-3G) in seven municipal WWTPs with substantial concentrations (n.d-50.10 ng/L). The calculated removal efficiencies of 17-ethinylestradiol (EE2) in the seven municipal WWTPs ranged from 40.8%-100% with an average removal efficiency of 83.3%. However, upon the inclusion of EE2 concentration transformed from EE2-3S and EE2-3G, the corresponding removal efficiencies were increased to 91.4%-100% with an average removal efficiency of 97.3%. This work is the first to clearly illustrate that EE2 conjugates in raw wastewater could greatly underestimate the removal effectiveness of municipal WWTPs on EE2, indicating the importance of the EE2 conjugates in municipal wastewater having been hardly paid with attention. The EE2-derived estrogen equivalence (EEQ) values in the effluents of seven WWTPs ranged from 0 to 0.98 ng E2/L having an average level of 0.45 ng E2/L, which were relatively low. However, upon the inclusion of EE2 transformable from EE2-3S and EE2-3G in effluents, the EE2-derived EEQ values in effluents would be increased to 0.77-4.85 ng E2/L having an average level of 2.71 ng E2/L, which clearly suggested that ignorance of EE2 conjugates in effluent would largely underestimate EE2's environmental risk to receiving water bodies.
Collapse
Affiliation(s)
- Yi-Ping Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Bing-Wen Chai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Qiang Wei
- Medical Devices Research and Testing Center, South China University of Technology, Guangzhou 510006, People's Republic of China.
| | - Waseem Hayat
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, People's Republic of China; Key Laboratory of Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, People's Republic of China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
28
|
Zhang J, Zhong SS, Zhao KM, Liu ZH, Dang Z, Liu Y. Sulfite may disrupt estrogen homeostasis in human via inhibition of steroid arylsulfatase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19913-19917. [PMID: 35098465 DOI: 10.1007/s11356-021-18416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Steroid arylsulfatase is an important enzyme in human, which plays an important role in dynamic equilibrium of natural estrogens. On the other hand, sulfite can be endogenously produced as a consequence of human body's metabolism of sulfur-containing amino acids, while its main sources to human are mainly derived from food as it is a widely used additive. Sulfite-sensitivity is a well-known phenomenon to a small proportion of populations. However, its potential adverse effects on healthy individuals have been hardly reported. It was for the first time reported in this study that sulfite could effectively inhibit arylsulfatase, and its IC50 values for the snail- and human urine-derived arylsulfatase were determined to be 71.9 and 142.8 µM, which were lower than the concentration of sulfite in some healthy population. Consequently, it appears that sulfite might disrupt estrogen homeostasis in human, and this deserves further investigation.
Collapse
Affiliation(s)
- Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shu-Shu Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ke-Meng Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
29
|
Wang Q, Lv G, Cao Y, Chen Z, Jia J, Qin Y, Lin Z, Xie X, Wang Z. Rational design of 2D ultrathin BiO(HCOO)xI1-x composite nanosheets: The synergistic effect of ultrathin structure and hybridization in the effective elimination of BPA under visible light irradiation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Tang Z, Wan YP, Liu ZH, Wang H, Dang Z, Liu Y. Twelve natural estrogens in urines of swine and cattle: Concentration profiles and importance of eight less-studied. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:150042. [PMID: 34525709 DOI: 10.1016/j.scitotenv.2021.150042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Although four major natural estrogens (i.e., estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-estradiol (αE2)) have been commonly found in livestock urine, this study reports the occurrence of eight other less-studied natural estrogens in urine of swine and cattle, i.e. 2-hydroxyestone (2OHE1), 4-hydroxyestrone (4OHE1), 2-hydroxyestradiol (2OHE2), 4-hydroxyestradiol (4OHE2), 16-epiestriol (16epiE3), 16α-hydroxyestrone (16αE1), 16-ketoestradiol (16ketoE2), and 17epiestriol (17epiE3). Results showed that each estrogen was found in at least one urine sample, and 6 of 8 the less-studied estrogens were present at frequencies of ≥90% in boars, ≥70% in sows, and ≥50% in dairy cattle. Five of eight the less-studied estrogens were present at frequencies of ≥33.3% in four beef cattle and one bull. On a concentration basis, the 8 less-studied natural estrogens represented 73.2%, 85.2%, 39.9%, 47.7%, 26.9%, 56.0% and 44.1% of total concentrations of the twelve natural estrogens when combining data from all animals. Similar results were observed based on estrogen equivalence, which indicated these newly detected eight less-studied natural estrogens were not negligible. This work is the first to figure out the importance of these less-studied natural estrogens in livestock urine, and their potential environmental risks associated with discharge of livestock wastewater should be urgently assessed in a holistic manner.
Collapse
Affiliation(s)
- Zhao Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yi-Ping Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China.
| | - Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
31
|
Sojobi AO, Zayed T. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. ENVIRONMENTAL RESEARCH 2022; 203:111609. [PMID: 34216613 DOI: 10.1016/j.envres.2021.111609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 05/09/2023]
Abstract
Sewer overflow (SO), which has attracted global attention, poses serious threat to public health and ecosystem. SO impacts public health via consumption of contaminated drinking water, aerosolization of pathogens, food-chain transmission, and direct contact with fecally-polluted rivers and beach sediments during recreation. However, no study has attempted to map the linkage between SO and public health including Covid-19 using scientometric analysis and systematic review of literature. Results showed that only few countries were actively involved in SO research in relation to public health. Furthermore, there are renewed calls to scale up environmental surveillance to safeguard public health. To safeguard public health, it is important for public health authorities to optimize water and wastewater treatment plants and improve building ventilation and plumbing systems to minimize pathogen transmission within buildings and transportation systems. In addition, health authorities should formulate appropriate policies that can enhance environmental surveillance and facilitate real-time monitoring of sewer overflow. Increased public awareness on strict personal hygiene and point-of-use-water-treatment such as boiling drinking water will go a long way to safeguard public health. Ecotoxicological studies and health risk assessment of exposure to pathogens via different transmission routes is also required to appropriately inform the use of lockdowns, minimize their socio-economic impact and guide evidence-based welfare/social policy interventions. Soft infrastructures, optimized sewer maintenance and prescreening of sewer overflow are recommended to reduce stormwater burden on wastewater treatment plant, curtail pathogen transmission and marine plastic pollution. Comprehensive, integrated surveillance and global collaborative efforts are important to curtail on-going Covid-19 pandemic and improve resilience against future pandemics.
Collapse
Affiliation(s)
| | - Tarek Zayed
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
32
|
Ma M, Wu S, Liu J, Chen Y, Jiang X, Pi X, Li H, Li X, Jiang F. Preparation and Characterization of Bi
2
Fe
4
O
9
/Ag
3
PO
4
Composite Photocatalyst for Degradation of EE2. ChemistrySelect 2021. [DOI: 10.1002/slct.202103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Min Ma
- School of Chemical Science and Technology Yunnan University Kunming P. R. China
| | - Shenglan Wu
- School of Chemical Science and Technology Yunnan University Kunming P. R. China
| | - Jie Liu
- School of Chemical Science and Technology Yunnan University Kunming P. R. China
| | - Yu Chen
- School of Chemical Science and Technology Yunnan University Kunming P. R. China
| | - Xiaomei Jiang
- School of Chemical Science and Technology Yunnan University Kunming P. R. China
| | - Xiaolin Pi
- School of Chemical Science and Technology Yunnan University Kunming P. R. China
| | - Huiying Li
- School of Chemical Science and Technology Yunnan University Kunming P. R. China
| | - Xiaomei Li
- Faculty of Chemistry and Chemical Engineering Yunnan Normal University Kunming P. R. China
| | - Fengzhi Jiang
- School of Chemical Science and Technology Yunnan University Kunming P. R. China
| |
Collapse
|
33
|
Jia XX, Yao ZY, Liu S, Gao ZX. Suspension array for multiplex immunoassay of five common endocrine disrupter chemicals. Mikrochim Acta 2021; 188:290. [PMID: 34355262 DOI: 10.1007/s00604-021-04905-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/19/2021] [Indexed: 10/20/2022]
Abstract
A low cost and effective indirect competitive method is reported to detect five EDCs, 17-beta-estradiol (E2), estriol (E3), bisphenol A (BPA), diethylstilbestrol (DES), and nonylphenol (NP) simultaneously, based on suspension array technology (SAT). Five kinds of complete antigens (E2-BSA, E3-BSA, BPA-BSA, DES-BPA, NP-BSA) were coupled to different encoding microspheres using purpose-made solutions in our laboratory instead of commercially available amino coupling kits; the method was further optimized for determination and reducing the cost. Encoding and signaling fluorescence of the particles are determined at 635/532 nm emission wavelengths. High-throughput curves of five EDCs were draw and the limit of detection (LOD) were between 0.0010 ng mL-1 ~ 0.0070 ng mL-1. Compared with traditional ELISA methods, the SAT exhibited better specificity and sensitivity. Experiments using spiked milk and tap water samples were also carried out, and the recovery was between 85 and 110%; the results also confirmed good repeatability and reproducibility. It illustrated great potential of the present strategy in the detection of EDCs in actual samples.
Collapse
Affiliation(s)
- Xue-Xia Jia
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, 1 Da Li Road, Tianjin, 300050, People's Republic of China
| | - Zi-Yi Yao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, 1 Da Li Road, Tianjin, 300050, People's Republic of China
| | - Sha Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, 1 Da Li Road, Tianjin, 300050, People's Republic of China
| | - Zhi-Xian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, 1 Da Li Road, Tianjin, 300050, People's Republic of China.
| |
Collapse
|
34
|
Electricity generation and heavy metal remediation by utilizing yam (Dioscorea alata) waste in benthic microbial fuel cells (BMFCs). Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108067] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
[Research progress on lyophilization for pretreatment of emerging organic contaminants in environmental samples]. Se Pu 2021; 39:827-834. [PMID: 34212583 PMCID: PMC9404103 DOI: 10.3724/sp.j.1123.2021.02034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
有机新污染物是一类在先进分析技术帮助下新鉴定的、现有法规未管制的、人为源的有机污染物。有机新污染物主要包括药品与个人护理、农药、全氟化合物、内分泌干扰物等,其会产生内分泌干扰效应、诱发抗性基因传播,还对人类和野生生物的生存与发展构成潜在威胁,因此检测环境样品中的有机新污染物浓度对生态环境和人体健康具有重大意义。由于环境样品中的有机新污染物浓度较低,为了达到检测仪器的检测要求,通常需要对环境样品进行前处理,包括样品的净化和浓缩。冷冻干燥技术是一种在真空干燥条件下通过升华方式去除水分的前处理技术,主要包括样品冷冻、初级干燥和再干燥3个阶段,常用于食品和药品行业。在药品行业中,冷冻干燥技术能维持药品的生物活性和化学活性,保持药品的物理化学特性。近年来,冷冻干燥技术逐步用于环境水样中有机新污染物的前处理。其主要的操作步骤包括水样预处理、冷冻干燥、洗脱、吹干、过滤、定容和上机检测。冷冻干燥技术具有操作简单、低成本、样品处理体积少、样品易保存和处理过程中样品损失少等优点,具有广泛应用于环境样品中有机新污染物监测的潜力。该文综述了环境样品中有机新污染物常见的种类,并重点介绍冷冻干燥技术的原理及其在环境样品前处理过程中的应用,提出了冷冻干燥技术在环境分析中的应用前景,为环境样品中有机新污染物的监测提供了参考。
Collapse
|
36
|
Tang Z, Liu ZH, Wang H, Dang Z, Liu Y. Occurrence and removal of 17α-ethynylestradiol (EE2) in municipal wastewater treatment plants: Current status and challenges. CHEMOSPHERE 2021; 271:129551. [PMID: 33453480 DOI: 10.1016/j.chemosphere.2021.129551] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/30/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
As a synthetic estrogen, 17α-ethynylestradiol (EE2) has been known to show the strong estrogenic potency. This work critically reviewed the occurrence and removal of EE2 in municipal wastewater treatment plants (WWTPs). Based on the on-site investigations from 282 municipal WWTPs across 29 countries, the concentrations of EE2 in influent and effluent ranged from n.d-7890 and n.d-549 ng/L, with respective average concentrations of 78.4 and 12.3 ng/L. The average effluent concentration of EE2 was more than 61 times higher than the reported lowest-observed-effect concentration, indicating an urgent need for removing EE2 in WWTPs. The calculated removal efficiencies of EE2 in different wastewater treatment processes varied from -100%-100%. Averagely, 47.5% of EE2 was removed in the primary treatment process, 55.3% by biological filter treatment, 59.4% by lagoon and 71.5% by activated sludge process. The observed removal of EE2 in municipal WWTP could be mainly attributed to adsorption and biodegradation, which could be predicted according to its solid-water distribution coefficients and biodegradation rate constants. However, it should be noted that the predicted removal of EE2 was found to deviate from the in-plant observation, likely attributing to the existence of EE2 conjugates in raw municipal wastewater. Therefore, the effect of EE2 conjugates on the EE2 removal in WWTPs should be taken into account in future.
Collapse
Affiliation(s)
- Zhao Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yu Liu
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
37
|
Zhong SS, Zhang J, Liu ZH, Dang Z, Liu Y. Inhibition Properties of Arylsulfatase and β-Glucuronidase by Hydrogen Peroxide, Hypochlorite, and Peracetic Acid. ACS OMEGA 2021; 6:8163-8170. [PMID: 33817475 PMCID: PMC8014925 DOI: 10.1021/acsomega.0c06060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/01/2021] [Indexed: 05/04/2023]
Abstract
Arylsulfatase and β-glucuronidase are two important enzymes in humans, which play an important role in the dynamic equilibrium of steroidal estrogens. This work probably for the first time reported that hydrogen peroxide (H2O2), hypochlorite, and peracetic acid (PAA) could effectively inhibit the activities of arylsulfatase and/or β-glucuronidase. The 50% of inhibitions (IC50) of H2O2, hypochlorite, and PAA on arylsulfatase were found to be 142.90 ± 9.00, 91.83 ± 10.01, and 43.46 ± 2.92 μM, respectively. The corresponding IC50 values of hypochlorite and PAA on β-glucuronidase were 704.90 ± 41.40 and 23.26 ± 0.82 μM, whereas H2O2 showed no inhibition on β-glucuronidase. The inhibitions of arylsulfatase and/or β-glucuronidase by these three chemicals were pH-dependent. It was further revealed that the inhibitions of hypochlorite on both arylsulfatase and β-glucuronidase were irreversible. On the contrary, the inhibitions by H2O2 and PAA were reversible. In addition, the inhibition by H2O2 was competitive and that by PAA was noncompetitive. In general, H2O2 and hypochlorite can be endogenously produced in humans, which suggested that the two compounds are potential endocrine disruption compounds (EDCs) as they can cause endocrine disruption via the inhibition of arylsulfatase and β-glucuronidase. This work further indicated that any agent that can induce the production of H2O2 or hypochlorite in humans is a potential EDC, which explains why some EDCs with very weak or no estrogenic potency can cause endocrine disruption, which is confirmed in epidemiological studies.
Collapse
Affiliation(s)
- Shu-Shu Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
- Key Laboratory Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China
- Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yu Liu
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, CleanTech One, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
38
|
Jia XX, Yao ZY, Gao ZX, Fan ZC. The Role of Suspension Array Technology in Rapid Detection of Foodborne Pollutants: Applications and Future Challenges. Crit Rev Anal Chem 2021; 52:1408-1421. [PMID: 33611988 DOI: 10.1080/10408347.2021.1882833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food safety is an important livelihood issue, which has always been focused attention by countries and governments all over the world. As food supply chains are becoming global, food quality control is essential for consumer protection as well as for the food industry. In recent years, a great part of food analysis is carried out using new techniques for rapid detection. As the first biochip technology that has been approved by the Food and Drug Administration (FDA), there is an increasing interest in suspension array technology (SAT) for food and environmental analysis with advantages of rapidity, high accuracy, sensitivity, and throughput. Therefore, it is important for researchers to understand the development and application of this technology in food industry. Herein, we summarized the principle and composition of SAT and its application in food safety monitoring. The utility of SAT in detection of foodborne microorganisms, residues of agricultural and veterinary drugs, genetically modified food and allergens in recent years is elaborated, and the further development direction of SAT is envisaged.
Collapse
Affiliation(s)
- Xue-Xia Jia
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China.,Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zi-Yi Yao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| |
Collapse
|
39
|
Wang H, Liu ZH, Tang Z, Zhang J, Dang Z, Liu Y. Possible overestimation of bisphenol analogues in municipal wastewater analyzed with GC-MS. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116505. [PMID: 33484998 DOI: 10.1016/j.envpol.2021.116505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
This work for the first time showed that sulfated BPA could be directly analyzed as BPA with GC-MS after the derivatization with N,O-bis-(trimethylsilyl) trifluoroacetamide (BSTFA)+1% trimethylchlorosilane (TMCS), i.e. the deconjugation step was not necessary. This was because sulfated BPA indeed could be simultaneously deconjugated and derivatized to BPA derivative during derivatization, suggesting that any co-elution of BPA and sulfated BPA during sample extraction led to BPA overestimation in the GC-MS method with BSTFA +1% TMCS as the derivative reagent. Using BPA 4,4'-disulfates (BPA diS) as the pure standard, the co-elution phenomena of sulfated BPA was confirmed with two widely used elution solvents (i.e. methanol and ethyl acetate) or their mixed solutions with different ratios, which further suggested if only sulfated BPA existed in any wastewater sample, BPA was likely over-determined. To further confirm this finding, both influent and effluent samples collected from a local municipal wastewater treatment plant were analyzed, which clearly showed the overestimation of BPA in the two wastewaters due to co-existence of sulfated BPA in the wastewater samples. In addition to BPA, the results also showed the overestimation of other nine bisphenol analogues. As sulfated micropollutants including estrogens, androgens, phytoestrogens, etc., have been widely found in municipal wastewater, the overestimating phenomenon observed in this study may also be extended to determination of other micropollutants, which should be addressed in future.
Collapse
Affiliation(s)
- Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006; Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Zhao Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yu Liu
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, CleanTech One, 637141, Singapore; School of Civil and Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|