1
|
Chen Y, Xue Y, Liu Z, Wang Y, Ren H, Xu K. Enhanced treatment of multiphase extraction wastewater from contaminated sites with Cu-Ce modified GAC three-dimensional electrodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123979. [PMID: 39756277 DOI: 10.1016/j.jenvman.2024.123979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/06/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
A three-dimensional (3D) electrode system is widely recognized as an effective technology for enhancing electrocatalytic effect. In this study, Cu-Ce modified granular activated carbon (GAC) particle electrodes were prepared using the impregnation method and applied to handle multiphase extraction wastewater. Structural and electrochemical characterization revealed that while the specific surface area of Cu-Ce/GAC decreased by 13.94%, the active area was 2.6 times greater than that of GAC. In addition, the influences of distinct impregnation concentrations, calcination temperatures, and calcination times on the performance of Cu-Ce/GAC electrodes were investigated. The results suggested the optimal preparation conditions of 15 mmol/L, 500 °C and 2 h. Under these conditions, the Cu-Ce/GAC electrode achieved a 92.39% removal of chemical oxygen demand (COD) from a multi-extract of groundwater, with an energy consumption of 13.44 kWh/(kg∙COD). The degradation efficiency improved by 62% compared to the conventional 2D system, while energy consumption decreased by 60%. The main organic pollutants in the multiple extracts, including benzene, toluene, dichloromethane, trichloromethane, were removed at rates exceeding 90% after 60 min treatment. This study yields a methodological and engineering approach for treating multiple extracts wastewater from contaminated groundwater.
Collapse
Affiliation(s)
- Yongsheng Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yi Xue
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Zhengqing Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
2
|
Wang S, Wang C, Feng C, Zheng W, Dong H, Guan X. Electrochemically producing high-valent iron-oxo species for phenolics-laden high chloride wastewater pretreatment. WATER RESEARCH 2024; 261:122068. [PMID: 39003879 DOI: 10.1016/j.watres.2024.122068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Electrochemical advanced oxidation processes (EAOPs) have shown great promise for treating industrial wastewater contaminated with phenolic compounds. However, the presence of chloride in the wastewater leads to the production of undesirable chlorinated organic and inorganic byproducts, limiting the application of EAOPs. To address this challenge, we investigated the potential of incorporating Fe(II) and Fe(III) into the EAOPs with a boron-doped diamond (BDD) anode under near-neutral conditions. Our findings revealed that both Fe(II) and Fe(III) facilitated the generation of high-valent iron-oxo species (Fe(IV) and Fe(V)) in the anodic compartment, thereby reducing the oxidation contribution of reactive chlorine species. Remarkably, the addition of 1000 μM Fe(II) under high chloride conditions resulted in over a 2.8-fold increase in the oxidation rate of 50 μM phenolic contaminants at pH 6.5. Furthermore, 1000 μM Fe(II) contributed to a reduction of more than 66% in the formation of chlorinated byproducts, consequently enhancing the biodegradability of the treated water. Additionally, transitioning from batch mode to continuous flow mode further amplified the positive effects of Fe(II) on the EAOPs. Overall, this study presents a modified electrochemical approach that simultaneously enhanced the degradation of phenolic contaminants and improved the biodegradability of wastewater with high chloride concentrations.
Collapse
Affiliation(s)
- Shuchang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Chengjin Wang
- Department of Civil Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6, Canada
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Hongyu Dong
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
3
|
Liu H, Li X, Lu S, Li X, Zhang G, Feng C. Overlooked competition and promotion effects in electrochemical oxidation of humic acid and ammonia in landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134732. [PMID: 38805814 DOI: 10.1016/j.jhazmat.2024.134732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
Electrochemical oxidation (EO) can effectively reduce the degree of humification and toxicity of landfill leachate by generating highly active oxidative species in situ. However, the selective and competitive oxidation of humic acid (HA) and ammonia (NH4+) and the role of different oxidative species during the EO process in complex aqueous conditions remain unclear. In this study, a nanostructured tin-antimony electrode (Ti/Sb-SnO2 NFs) was prepared and compared with three types of commercial electrodes (Ti/Ir-RuO2, Ti4O7, Ti/Sb-SnO2) in terms of electrochemical properties and electrocatalytic oxidation of HA and NH4+. The de-humification capacity, interactive effects of HA and NH4+ on each other's oxidation by different oxidative species, as well as the related oxidation byproducts were investigated. The differences in pollutant electrooxidation among the different electrodes were found to be insignificant. The presence of HA was found to be detrimental to NH4+ degradation while reducing the N2 conversion rate. Interestingly, NH4+ initially inhibited the degradation rates of HA while promoted the degradation and reduced the accumulation of organic chlorine during the later EO process. A proposed mechanism accounts for both competitive and promotional effects for simultaneous HA and NH4+ oxidation during the EO process.
Collapse
Affiliation(s)
- Huiyuan Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China
| | - Xuechuan Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China
| | - Sen Lu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China
| | - Xiao Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen (HITSZ), Shenzhen 518055, PR China.
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Patel RVP, Raval H. Comparative assessment of treatment technologies for minimizing reverse osmosis concentrate volume for industrial applications: A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:314-343. [PMID: 39007322 DOI: 10.2166/wst.2024.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/09/2024] [Indexed: 07/16/2024]
Abstract
Desalination of seawater, brackish water, and reclaimed water is becoming increasingly prevalent worldwide to supplement and diversify fresh water supplies. However, particularly for industrial wastewater, the need for environment-friendly and economically viable alternatives for concentrate management is the major impediment to deploying large-scale desalination. This review covers various strategies and technologies for managing reverse osmosis concentrate (ROC) and also includes their disposal, treatment, and potential applications. Developing energy-efficient, economical, and ecologically sound ROC management systems is essential if desalination and wastewater treatment are being implemented for a sustainable water future, particularly for industrial wastewater. The limitations and benefits of various concentrate management strategies are examined in this review. Moreover, it explores the potential of innovative technologies in reducing concentrate volume, enhancing water recovery, eliminating organic pollutants, and extracting valuable resources. This review critically discusses concentrate management approaches and technologies, including disposal, treatment, and reuse, including new technologies for reducing concentrate volume, boosting water recovery, eliminating organic contaminants, recovering valuable commodities, and minimizing energy consumption.
Collapse
Affiliation(s)
- Raj Vardhan Prasad Patel
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hiren Raval
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India E-mail:
| |
Collapse
|
5
|
Hu P, Li H, Tan Y, Adeleye AS, Hao T. Enhanced electrochemical treatment of humic acids and metal ions in leachate concentrate: Experimental and molecular mechanism investigations. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132774. [PMID: 37839382 DOI: 10.1016/j.jhazmat.2023.132774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Membrane technologies are effective for treating leachate, but they generate leachate concentrates (LCs), which contain elevated humic acids (HAs) and metals. LCs are very challenging and expensive to treat; but in-situ coagulation-electrochemical oxidation (CO-EO) treatment is promising. We previously hypothesized and proved that substituting the widely used graphite cathode with an Al cathode will generate Al(OH)3 floccules that would enhance HAs removal in CO-EO systems. However, the fundamental mechanisms are unclear. Here, we examined this hypothesis using laboratory experiments (using an Al cathode and a Ti/Ti4O7 anode CO-EO system) and performed molecular dynamics (MD) simulation to investigate the underlying mechanisms. Up to 84.2% HAs was removed by the Al-cathode system, which is ∼10% higher than a graphite cathode-based system. Based on MD simulation we found that enhanced HAs removal occurred via two steps: (1) degradation by oxidants produced at the anode, and (2) subsequent coagulation with the Al(OH)3 generated from the Al cathode. This finding challenges the current belief that whole HAs and Al(OH)3 directly flocculate. Meanwhile, metal removal efficiency by the graphite cathode system was only 0.8-13.9%, which increased up to 13-folds at most when in the Al cathode system. This work provides new molecular-level insights into an efficient electrochemical treatment of LC.
Collapse
Affiliation(s)
- Peng Hu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Huankai Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Yunkai Tan
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| |
Collapse
|
6
|
Lu W, Chen N, Feng C, An N, Dong Y. Peracetic acid-based electrochemical treatment of sulfamethoxazole and real antibiotic wastewater: Different role of anode and cathode. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132819. [PMID: 39491988 DOI: 10.1016/j.jhazmat.2023.132819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/23/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Although has high oxidation capacity and low toxic by-product formation potential, the feasibility, mechanism, and antibiotic treatment performance of peracetic acid (PAA)-based electrochemical system remains unknown. This work systematically studied the electro-activation process of PAA, and distinguished the different mechanisms of anode and cathode. In the PAA-based electrochemical system, the anode mainly produces BDD(•OH), and the cathode is mainly the R-O• (especially CH3CO3•). These differences lead to different degradation pathway and toxicity evolution of sulfamethoxazole (SMX). The anode transformation products (TPs) show negative toxicity and are difficult to be further removed, while TPs from PAA-dominated cathode posed electron-donating effect and a tapering ecological risk. The BDD(•OH) can well mineralize the TPs produced from cathode. Moreover, the active chlorine produced by the anode can effectively avoid the accumulation of NH4+- N released by antibiotic degradation. In an undivided cell, PAA-based treatment for real antibiotic wastewater achieved 73.9%, 59.4%, 76.9%, and 31.7% of COD, TOC, NH4+- N, and TN removal, respectively. More importantly, when PAA existed in this system, the active chlorine and AOCl accumulation are inhibited (inhibition ratio 83.5% and 82.7%, respectively). This study provides theoretical and technical support for the practical application of PAA-based electrochemical system.
Collapse
Affiliation(s)
- Wang Lu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Ning An
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| | - Yanyan Dong
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China
| |
Collapse
|
7
|
Li Q, Liu GH, Qi L, Wang H, Xian G. Chlorine-mediated electrochemical advanced oxidation process for ammonia removal: Mechanisms, characteristics and expectation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165169. [PMID: 37400024 DOI: 10.1016/j.scitotenv.2023.165169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Chlorine-Mediated Electrochemical Advanced Oxidation (Cl-EAO) technology is a promising approach for ammonia removal from wastewater due to its numerous advantages, including small infrastructure, short processing time, easy operation, high security, and high nitrogen selectivity. This paper provides a review of the ammonia oxidation mechanisms, characteristics, and anticipated applications of Cl-EAO technology. The mechanisms of ammonia oxidation encompass breakpoint chlorination and chlorine radical oxidation, although the contributions of active chlorine, Cl, and ClO remain uncertain. This study critically examines the limitations of existing research and suggests that a combination of determining free radical concentration and simulating a kinetic model would help elucidate the contributions of active chlorine, Cl, and ClO to ammonia oxidation. Furthermore, this review comprehensively summarizes the characteristics of ammonia oxidation, including kinetic properties, influencing factors, products, and electrodes. The amalgamation of Cl-EAO technology with photocatalytic and concentration technologies has the potential to enhance ammonia oxidation efficiency. Future research should concentrate on clarifying the contributions of active chlorine, Cl, and ClO to ammonia oxidation, the production of chloramines and other byproducts, and the development of more efficient anodes for the Cl-EAO process. The main objective of this review is to enhance the understanding of the Cl-EAO process. The findings presented herein contribute to the advancement of Cl-EAO technology and provide a foundation for future studies in this field.
Collapse
Affiliation(s)
- Qiangang Li
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China.
| | - Lu Qi
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China
| | - Hongchen Wang
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China
| | - Guang Xian
- Logistics Command Department, Army Logistics Academy, Chongqing 401331, China
| |
Collapse
|
8
|
Zhao Z, Zhang Y, Yu L, Hou D, Wu X, Li K, Wang J. Fenton pretreatment to mitigate membrane distillation fouling during treatment of landfill leachate membrane concentrate: Performance and mechanism. WATER RESEARCH 2023; 244:120517. [PMID: 37666152 DOI: 10.1016/j.watres.2023.120517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Membrane distillation (MD) is regarded as a promising technology for treatment of landfill leachate membrane concentrate (LLMC) due to its merits of low cost and high rejection of non-volatile components. However, the high concentration of pollutants in the wastewater will cause severe membrane fouling, resulting in costly cleaning and maintenance. In this study, Fenton pretreatment was applied to alleviate membrane fouling during MD treatment of LLMC. Compared to rapid flux decline of 88.2% at concentration factor (CF) of 3 for raw LLMC, MD flux only decreased by 17.4% at CF = 6 for treating acidic Fenton effluent without subsequent pH adjustment (Fe2+ and H2O2 concentration were 600 mg/L and 1457 mg/L, respectively). The pH neutralization of Fenton effluent or merely acidification of LLMC could not achieve such excellent fouling mitigation. It was concluded that both oxidation and acidification were critical and the collaboration mechanism was revealed to explain low membrane fouling. Firstly, Fenton oxidation removed organic contaminants, reduced the hydrophobicity of organic substances and increased the percentage of carboxylic group within LLMC. Thus, hydrophobic (HP) attraction was weakened but multivalent cation bridging became dominant fouling mechanism for neutral Fenton effluent. Then, acidification weakened multivalent cation bridging by inhibiting the deprotonation of carboxylic group, further mitigating membrane fouling. However, acidification of LLMC caused more severe organic fouling due to decrease in electrostatic (EL) repulsion. In addition to low membrane fouling, satisfactory total organic carbon (TOC) rejection rate of 96.23% was achieved during combined Fenton-MD process. This study demonstrated that Fenton pretreatment without pH neutralization could effectively alleviate MD fouling and elucidated the synergistic mechanism between oxidation and acidification for fouling mitigation.
Collapse
Affiliation(s)
- Zhichao Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ling Yu
- Institute of Oceanic and Environmental Chemical Engineering, Center for Membrane and Water Science &Technology, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Deyin Hou
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kuiling Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Costa JM. Considerations on Electrochemical Technologies for Water Purification and Wastewater Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6140. [PMID: 37372727 DOI: 10.3390/ijerph20126140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Water scarcity and pollution are global issues caused by factors, such as population growth, industrialization, and the utilization of water resources [...].
Collapse
Affiliation(s)
- Josiel Martins Costa
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| |
Collapse
|
10
|
Xiao H, Xu F, Chen J, Hao Y, Guo Y, Zhu C, Luo S, Jiang B. Electrogenerated oxychlorides induced overlooked negative effects on electro-oxidation wastewater treatment in terms of over-evaluated COD removal efficiency and biotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131667. [PMID: 37236107 DOI: 10.1016/j.jhazmat.2023.131667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The high-efficiency and environmentally-friendly electro-oxidation (EO) would lose its competitive edge because of the production of oxychloride by-products (ClOx-), which has not yet drawn significant attention in academic and engineering communities. In this study, the negative effects of the electrogenerated ClOx- were compared among four commonly used anode materials (BDD, Ti4O7, PbO2 and Ru-IrO2) in terms of ClOx- interference on the evaluation of electrochemical COD removal performance and biotoxicity. Apparently, the COD removal performance of various EO systems were highly enhanced with increasing current density in the presence of Cl-, e.g., the amounts of COD removed by various EO systems from the phenol solution with an initial COD content of 280 mg L-1 at 40 mA cm-2 within 120 min decreased in the order: Ti4O7 of 265 mg L-1 > BDD of 257 mg L-1 > PbO2 of 202 mg L-1 > Ru-IrO2 of 118 mg L-1, which was different from the case with the absence of Cl- (BDD of 200 mg L-1 > Ti4O7 of 112 mg L-1 > PbO2 of 108 mg L-1 > Ru-IrO2 of 80 mg L-1) and the results after removing ClOx- by anoxic sulfite-based method (BDD of 205 mg L-1 > Ti4O7 of 160 mg L-1 > PbO2 of 153 mg L-1 > Ru-IrO2 of 99 mg L-1). These results can be ascribed to the ClOx- interference on COD evaluation, the extent of which decreased in the order: ClO3- > ClO- (where ClO4- cannot impact COD test). The highest overrated electrochemical COD removal performance of Ti4O7 may be associated with its relatively high production of ClO3- and the low mineralization extent. The chlorella inhibition ratio of ClOx- decreased in the order: ClO- > ClO3- >> ClO4-, which accounted for the biotoxicity increasement of the treated water (PbO2 68%, Ti4O7 56%, BDD 53%, Ru-IrO2 25%). Generally, the inevitable problems of overrated electrochemical COD removal performance and biotoxicity increasement induced by ClOx- should deserve significant attention and effective countermeasures should be also developed when employing EO process for wastewater treatment.
Collapse
Affiliation(s)
- Huiji Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Fengqi Xu
- SunRui Marine Environment Engineering Company Ltd, Qingdao 266033, PR China
| | - Jinghua Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yongjie Hao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yu Guo
- SunRui Marine Environment Engineering Company Ltd, Qingdao 266033, PR China
| | - Chaosheng Zhu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466000, PR China
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| |
Collapse
|
11
|
Li Q, Cui H, Li Y, Song X, Liu W, Wang Y, Hou H, Zhang H, Li Y, Wang F, Song J, Ye H, Song S, Che T, Shao S, Kong D, Liang B. Challenges and engineering application of landfill leachate concentrate treatment. ENVIRONMENTAL RESEARCH 2023; 231:116028. [PMID: 37150383 DOI: 10.1016/j.envres.2023.116028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
Landfill leachate concentrate (LLC) is a concentrated waste stream from landfill leachate treatment systems and has been recognized as a key challenge due to its high concentration of salts, heavy metals, organic matters, etc. Improper management of LLC (e.g. reinjection) would exacerbate the performance of upstream treatment processes and pose risks to the surrounding environments near landfill sites. Addressing the challenge and recovering resources from LLC have thus been attracting considerable attention. Although many LLC treatment technologies have been developed, a comprehensive discussion about the challenges still lacks. This review critically evaluates mainstream LLC treatment technologies, namely incineration, coagulation, advanced oxidation, evaporation and solidification/stabilization. We then introduce a geopolymer-based solidification (GS) process as a promising technology owning to its simple casting process and reusable final product and summarizes engineering applications in China. Finally, we suggest investigating hybrid systems to minimize LLC production and achieve the on-site reuse of LLC. Collectively, this review provides useful information to guide the selection of LLC treatment technologies and suggests a sustainable alternative for large-scale application, while also highlighting the need of joint efforts in the industry to achieve efficient, ecofriendly and economical on-site management of landfill waste streams.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yihao Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Xin Song
- Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment, Beijing, 100029, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yongxuan Wang
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China
| | - Haimeng Hou
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China
| | - Hongbo Zhang
- Everbright Environmental Protection (China) Co. Ltd., Shenzhen, 518000, China
| | - You Li
- Everbright Environmental Protection (China) Co. Ltd., Shenzhen, 518000, China
| | - Fan Wang
- Liaoning HaiTianGe Enviromental Protection Technology Co. Ltd., Fushun, 113122, China
| | - Jun Song
- Liaoning HaiTianGe Enviromental Protection Technology Co. Ltd., Fushun, 113122, China
| | - Hanfeng Ye
- Liaoning HaiTianGe Enviromental Protection Technology Co. Ltd., Fushun, 113122, China
| | - Sirui Song
- Liaoning HaiTianGe Enviromental Protection Technology Co. Ltd., Fushun, 113122, China
| | - Tong Che
- Liaoning HaiTianGe Enviromental Protection Technology Co. Ltd., Fushun, 113122, China
| | - Shuai Shao
- Liaoning HaiTianGe Enviromental Protection Technology Co. Ltd., Fushun, 113122, China
| | - Deyong Kong
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China; Liaoning HaiTianGe Enviromental Protection Technology Co. Ltd., Fushun, 113122, China.
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Genethliou C, Tatoulis T, Charalampous N, Dailianis S, Tekerlekopoulou AG, Vayenas DV. Treatment of raw sanitary landfill leachate using a hybrid pilot-scale system comprising adsorption, electrocoagulation and biological process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117129. [PMID: 36584456 DOI: 10.1016/j.jenvman.2022.117129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The effectiveness of a three-stage pilot approach using adsorption (AD), electrocoagulation (EC) and biological (BIO) processes for the treatment of raw sanitary landfill leachate (SLL) was investigated. SLL is loaded with hazardous substances such as organic load and heavy metals with high ammonium nitrogen (NH4+-N) concentrations and is also produced in large quantities, causing serious risks to both living organisms and the environment. In this study, column adsorption experiments were initially performed to examine the removal of toxic NH4+-N using different initial NH4+-N concentrations and recirculation flow rates. The adsorption process was then examined as a pre-treatment step in two sequential treatment scenarios, i.e., AD-EC-BIO and AD-BIO-EC, to determine which achieved the highest removal of pollutants and leachate toxic potential, thus ensuring the biosafety of these processes during the release of the respective effluents into surface waters. The overall removal efficiencies of NH4+-N, color, dissolved chemical oxygen demand (d-COD), manganese (Mn), nickel (Ni), zinc (Zn) and iron (Fe) achieved after the application of the AD-EC-BIO system were 95.5 ± 0.1%, 98.8 ± 0.1%, 85.7 ± 0.8%, 100 ± 0.1%, 71.4 ± 1.7%, 63.8 ± 1.9% and 94.2 ± 0.2%, respectively, while the values for the AD-BIO-EC system were 98.5 ± 0.2%, 98.7 ± 0.1%, 85.7 ± 0.4%, 98.9 ± 1.2%, 67.7 ± 1.7%, 76.1 ± 1.6% and 94.8 ± 0.1%, respectively. In accordance with the latter, the assessment of leachate toxic potential using a Thamnocephalus platyurus bioassay revealed that the AD-EC-BIO system could be considered a promising treatment strategy for the purification of raw SLL.
Collapse
Affiliation(s)
- C Genethliou
- Department of Chemical Engineering, University of Patras, GR-26504, Rion, Patras, Greece
| | - T Tatoulis
- Department of Environmental Engineering, University of Patras, 2 G. Seferi Str., GR-30100, Agrinio, Greece
| | - N Charalampous
- Department of Biology, University of Patras, GR-26500, Rion, Patras, Greece
| | - S Dailianis
- Department of Biology, University of Patras, GR-26500, Rion, Patras, Greece
| | - A G Tekerlekopoulou
- Department of Environmental Engineering, University of Patras, 2 G. Seferi Str., GR-30100, Agrinio, Greece.
| | - D V Vayenas
- Department of Chemical Engineering, University of Patras, GR-26504, Rion, Patras, Greece; Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), GR-26504, Patras, Greece
| |
Collapse
|
13
|
Turan A, Kobya M, Iskurt C, Gengec E, Khataee A. A techno-economical assessment of treatment by coagulation-flocculation with aluminum and iron-bases coagulants of landfill leachate membrane concentrates. CHEMOSPHERE 2023; 314:137750. [PMID: 36608493 DOI: 10.1016/j.chemosphere.2023.137750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Landfill leachate treatment involved with the membrane bioreactor (MBR) combined with membrane treatment via nanofiltration (NF) and/or reverse osmosis (RO) is widely used in Turkey. This treatment produces landfill leachate membrane concentrates (LLMCs) with an undesirably high concentration of contaminants. In the study, two different nanofiltration concentrates of leachate were coagulated. Coagulant dosages from 0.10 to 5.0 g of Me3+/L (Me3+: Al3+ or Fe3+), and the pH values ranged from 4.0 to 8.0 and 3.0-9.0 for Al-based and Fe-based coagulants, respectively. The most efficient pH values were 5.0 and 4.0 for Al3+ and Fe3+, respectively. These pH values are lower than those known to be effective in coagulants. The reason for this is the presence of humic substances in the wastewater. The cost of Fe2(SO4)3.xH2O was the lowest than other coagulants at the end of the cost analyses obtained from İstanbul region landfill leachate NF concentrate (NFCL-1) and Kocaeli region landfill leachate NF concentrate (NFCL-2). Under optimum conditions, the costs for NFCL-1 and NFCL-2 were calculated as 0.55 and 0.46 $/removed kg COD, respectively.
Collapse
Affiliation(s)
- Ayşenur Turan
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Mehmet Kobya
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Kyrgyz-Turkish Manas University, Department of Environmental Engineering, Bishkek, Kyrgyzstan.
| | - Cisel Iskurt
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Erhan Gengec
- Department of Environmental Protection, University of Kocaeli, 41275, Izmit, Kocaeli, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
14
|
Du J, Waite TD, Biesheuvel PM, Tang W. Recent advances and prospects in electrochemical coupling technologies for metal recovery from water. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130023. [PMID: 36155294 DOI: 10.1016/j.jhazmat.2022.130023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 05/27/2023]
Abstract
With the development of our society, the desire to recover valuable metal resources from metal-containing wastewaters or natural water bodies is becoming increasingly stronger nowadays. To overcome the limitations of single techniques, coupling technologies with synergistic effects are attracting increasing attention regarding metal resource recovery from water with particular interest in electrochemical coupling technologies in view of the advantages of electrochemical methods. This state-of-the-art review comprehensively presented the mechanisms and performance of electrochemical coupling systems for metal recovery from water. To give a clear overview of current research trends, technologies coupled with electrochemical processes can be categorized into six main types: electrochemical techniques, membrane modules, adsorption/extraction techniques, sonication technologies, energy supply techniques and others. The electrochemical coupling system has shown synergistic advantages (e.g., improving metal recovery efficiency, reducing energy consumption) over single technologies. We then discuss the remaining challenges, present corresponding solutions, and put forward future directions for current electrochemical coupled systems towards metal recovery. This review is conducive to broadening the potential applications of electrochemical coupling processes for metal recovery and sustainable water treatment.
Collapse
Affiliation(s)
- Jiaxin Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - T David Waite
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - P M Biesheuvel
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8911 MA Leeuwarden, the Netherlands
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
15
|
Yan W, Chen J, Wu J, Li Y, Liu Y, Yang Q, Tang Y, Jiang B. Investigation on the adverse impacts of electrochemically produced ClO x- on assessing the treatment performance of dimensionally stable anode (DSA) for Cl --containing wastewater. CHEMOSPHERE 2023; 310:136848. [PMID: 36243090 DOI: 10.1016/j.chemosphere.2022.136848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The presence of chloride ions can facilitate the COD removal efficiency due to the involvement of active chlorine species in the electro-oxidation process, but few attentions have been paid to the negative effect of the electro-generated oxychlorides on electro-oxidation performance. In this study, the effects of oxychlorides were investigated as functions of current density and phenol concentration using DSA anodes in terms of the evaluation of the COD removal performance and the biological toxicity. The results show that oxychlorides formed in the electro-oxidation system could result in the over-evaluation of the COD removal performance. Increasing current density (15-50 mA cm-2) aggravated the over-evaluation of COD removal (4%-18%), owing to the enhancement in the electrochemical generation of oxychlorides. The increase of phenol concentration inhibited the production of oxychlorides, but the effect of oxychlorides on COD values at phenol concentration of 200 mg L-1 (82 mg L-1) was higher than that at 100 mg L-1 (51 mg L-1). The ClO3- was predominantly responsible for over-evaluation of the COD removal. In addition, bioassays with chlorella indicated that the electro-generated oxychlorides significantly increased the biological toxicity of the treated Cl--containing wastewater. This work provides new guidance for the correct evaluation of COD treatment performance and highlight the importance of minimizing toxic inorganic chlorinated byproducts during electro-oxidation of Cl--containing wastewater.
Collapse
Affiliation(s)
- Wei Yan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Jinghua Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Jingli Wu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yifan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yijie Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Qipeng Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yizhen Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| |
Collapse
|
16
|
Bipolar membrane electrodialysis for sustainable utilization of inorganic salts from the reverse osmosis concentration of real landfill leachate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Zhu J, Ba X, Guo X, Zhang Q, Qi Y, Li Y, Wang J, Sun H, Jiang B. Oxychlorides induced over-evaluation of electrochemical COD removal performance over dimensionally stable anode (DSA): The roles of cathode materials. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Maqbool T, Ly QV, He K, Cui L, Zhang Y, Sun M, Zhang Z. Reactive electrochemical ceramic membrane for effective removal of high concentration humic acid: Insights of different performance and mechanisms. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Ulfa M, Masykur A, Nofitasari AF, Sholeha NA, Suprapto S, Bahruji H, Prasetyoko D. Controlling the Size and Porosity of Sodalite Nanoparticles from Indonesian Kaolin for Pb2+ Removal. MATERIALS 2022; 15:ma15082745. [PMID: 35454437 PMCID: PMC9024775 DOI: 10.3390/ma15082745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 01/16/2023]
Abstract
Mesoporous sodalite nanoparticles were directly synthesized from Indonesian kaolin with the addition of CTABr as a mesopore template. The studies highlighted the importance of aging time (3–12 h) and temperature (50–80 °C) on increasing surface area and mesoporosity of sodalite. Indonesian kaolin was used without pre-treatment and transformed to sodalite following the initial molar composition of 10 Na2O: 2 SiO2: Al2O3: 128 H2O. Characterization data revealed the formation of high surface area sodalite with mesoporosity at increasing aging temperatures and times. The presence of CTABr as templates produced sodalites nanoparticles with smaller aggregates than the non-template sodalite. The sodalite sample obtained at 80 °C of crystallization temperature for 9 h (S80H9) displayed the highest mesopore volume (0.07612 cm3/g) and the highest adsorption capacity of Pb2+ (212.24 mg/g). Pb2+ was suggested to adsorb via ion exchange with the Na+ counter cation and physical adsorption.
Collapse
Affiliation(s)
- Maria Ulfa
- Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Surakarta 57126, Indonesia
- Correspondence: (M.U.); or (D.P.)
| | - Abu Masykur
- Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Surakarta 57126, Indonesia
| | - Amanah Firdausa Nofitasari
- Department of Chemistry, Science Faculty, Sebelas Maret University, Jl Ir Sutami 36A, Surakarta 57126, Indonesia;
| | - Novia Amalia Sholeha
- Department of Chemistry, Science Faculty, Sebelas Maret University, Jl Ir Sutami 36A, Surakarta 57126, Indonesia;
| | - Suprapto Suprapto
- Department of Chemistry, Science Faculty, Sebelas Maret University, Jl Ir Sutami 36A, Surakarta 57126, Indonesia;
| | - Hasliza Bahruji
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Keputih, Sukolilo, Surabaya 60111, Indonesia; (A.F.N.); (N.A.S.); (S.S.)
| | - Didik Prasetyoko
- Department of Chemistry, Science Faculty, Sebelas Maret University, Jl Ir Sutami 36A, Surakarta 57126, Indonesia;
- Correspondence: (M.U.); or (D.P.)
| |
Collapse
|
20
|
Mineralization of High-Concentration Aqueous Aniline by Hybrid Process. WATER 2022. [DOI: 10.3390/w14040630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The efficient mineralization of high-concentration aqueous aniline (HCAA) is an issue needing to be resolved. In this study, a hybrid process of ozonation and electrochemical oxidation (ECO) was proposed for improving the mineralization of HCAA (1000 mg·L−1). The results indicated that chemical oxygen demand (COD) removal by the hybrid process was far greater than that of a single ozonation or ECO process, revealing that the hybrid process might avoid low efficiency in late ozonation and initial ECO. Thus, a subsequent combination effect clearly existed. In this hybrid process, ozonation stage time was selected as 60 min for optimal COD removal. The main products of the ozonation stage were maleic and succinic acids, with declining pH which was beneficial to the following ECO stage. Nitrite and nitrate formed during ozonation, which acted as electrolytes for the ECO stage, in which maleic and succinic acids were fully degraded and pH thus increased. Moreover, the aniline degradation mechanism of the hybrid process was deduced, demonstrating the superiority of this hybrid process. Finally, more than 95% COD removal was achieved, which met the COD limit requirement and achieved pH control simultaneously, according to the discharge standards of water pollutants for dyeing and finishing of the textile industry in China (GB 4287–2012).
Collapse
|
21
|
Investigating the Electrocoagulation Treatment of Landfill Leachate by Iron/Graphite Electrodes: Process Parameters and Efficacy Assessment. WATER 2022. [DOI: 10.3390/w14020205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Electrocoagulation is a widely used method for treating leachate since it is cost effective and eco-friendly. In the present study, the electrocoagulation process was employed to remove chemical oxygen demand (COD), NH4+, total dissolved solids (TDS), total suspended solids (TSS), turbidity, and color from landfill leachate. At first, lime was used as a pretreatment, then the Fe/Gr and Ti/PbO2/steel electrodes were used, and the optimum electrode was selected. Afterwards, the effects of some variables, including pH, current density, temperature, the inter-electrode distance, and the type of electrolyte were investigated. Results showed that COD, NH4+, TSS, TDS, electrical conductivity (EC), turbidity, color, and pH of effluent pretreatment chemical reached 22,371, 385, 884, 21,820 (mg/L), 13.8 (ms/cm3), 1355 (NTU), 8500 (TCU) and 10, respectively (the removal efficiency was 0, 20.37, 32.4, 61.99, 59.18, and 56.6 percent). With the Fe/Gr electrode, the optimal condition was observed as follows: pH of 7.5, current density of 64 mA/cm2, inter-electrode distance was equal to 1.5 cm, temperature at 20 °C, and retention time 2–4 h. Overall, the electrocoagulation with the Fe/Gr electrode was a suitable technology for landfill leachate treatment due to its effectiveness for the removal of both COD and NH4+, with advantageous performance indicators.
Collapse
|
22
|
Zhang Z, Jiang S, Chen H, Qi H, Chen Y, Chen Y, Deng Q, Wang S. Efficient Solar-Driven Water Purification Based on Biochar with Multi-Level Pore Bundle Structure for Preparation of Drinking Water. Foods 2021; 10:foods10123087. [PMID: 34945638 PMCID: PMC8701808 DOI: 10.3390/foods10123087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Water is an important source for humankind. However, the amount of available clean water has rapidly reduced worldwide. To combat this issue, the solar-energy-driven evaporation technique is newly proposed to produce clean water. Here, biochar derived from sorghum stalk with a multi-level pore bundle structure is utilized to fabricate a solar-driven evaporator for the first time. The biochar displays rapid water transfer and low thermal conductivity (ca. 0.0405 W m−1 K−1), which is vitally important for such an application purpose. The evaporation rate and energy conversion efficiency of the solar evaporator based on carbonized sorghum stalk can achieve up to 3.173 kg m−2 h−1 and 100%, respectively, which are better than most of the previously reported biomass materials. Furthermore, the carbonized sorghum stalk also displays good resistance to salt crystallization, anti-acidic/basic, and organic pollutants by producing drinking water using seawater, acidic/basic waste water, and organic polluted water, respectively. The direct application of processed water in food production was also investigated. The present solar steam evaporator based on the carbonized sorghum stalk has the potential to create practical drinking water production by using various water sources.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; (Z.Z.); (S.J.); (H.C.); (H.Q.); (Y.C.); (Y.C.); (Q.D.)
| | - Shizheng Jiang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; (Z.Z.); (S.J.); (H.C.); (H.Q.); (Y.C.); (Y.C.); (Q.D.)
| | - Haonan Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; (Z.Z.); (S.J.); (H.C.); (H.Q.); (Y.C.); (Y.C.); (Q.D.)
| | - Hao Qi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; (Z.Z.); (S.J.); (H.C.); (H.Q.); (Y.C.); (Y.C.); (Q.D.)
| | - Yali Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; (Z.Z.); (S.J.); (H.C.); (H.Q.); (Y.C.); (Y.C.); (Q.D.)
| | - Yujie Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; (Z.Z.); (S.J.); (H.C.); (H.Q.); (Y.C.); (Y.C.); (Q.D.)
| | - Qiliang Deng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; (Z.Z.); (S.J.); (H.C.); (H.Q.); (Y.C.); (Y.C.); (Q.D.)
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; (Z.Z.); (S.J.); (H.C.); (H.Q.); (Y.C.); (Y.C.); (Q.D.)
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|