1
|
Tomita Y, Uehara S, Terada M, Yamamoto N, Nakamura M. Impaired SARS-CoV-2-specific responses via activated T follicular helper cells in immunocompromised kidney transplant recipients. Sci Rep 2024; 14:24571. [PMID: 39427014 PMCID: PMC11490627 DOI: 10.1038/s41598-024-76251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Activated T follicular helper (aTfh) cells are likely important in host immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination. We characterized the immune responses of aTfh cells to the second (D2) and third (booster; D3) doses of an mRNA vaccine in the peripheral blood of 40 kidney transplant recipients (KTRs) and 17 healthy control volunteers (HCs). A significant increase in SARS-CoV-2-specific IgG antibody was seen after D3 in the KTRs; nonetheless, the levels after D2 and D3 were significantly lower than in the HCs. After D2, dramatic increases in activated CD45RA-CXCR5+ICOS+PD1+ circulating Tfh (acTfh) cells were observed in the HCs, as well as the seropositive patients among the KTRs, when compared with the seronegative patients among the KTRs. Unlike the HCs, KTRs had less prominent immune responses, including the acTfh and T cells that produce interferon gamma, tumor necrosis factor alpha, and interleukin 21. In addition, the increase in acTfh cells was significantly associated with anti-IgG antibody levels after D3. These results indicate impaired SARS-CoV-2-specific responses via acTfh cells in KTRs, and they suggest that acTfh cells in peripheral blood may play an important role in antibody maintenance following SARS-CoV-2 mRNA vaccination.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Saeko Uehara
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Mari Terada
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Norio Yamamoto
- Department of Virology, Division of Host Defense Mechanism, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Michio Nakamura
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
2
|
Notarbartolo S. T-Cell Immune Responses to SARS-CoV-2 Infection and Vaccination. Vaccines (Basel) 2024; 12:1126. [PMID: 39460293 PMCID: PMC11511197 DOI: 10.3390/vaccines12101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The innate and adaptive immune systems collaborate to detect SARS-CoV-2 infection, minimize the viral spread, and kill infected cells, ultimately leading to the resolution of the infection. The adaptive immune system develops a memory of previous encounters with the virus, providing enhanced responses when rechallenged by the same pathogen. Such immunological memory is the basis of vaccine function. Here, we review the current knowledge on the immune response to SARS-CoV-2 infection and vaccination, focusing on the pivotal role of T cells in establishing protective immunity against the virus. After providing an overview of the immune response to SARS-CoV-2 infection, we describe the main features of SARS-CoV-2-specific CD4+ and CD8+ T cells, including cross-reactive T cells, generated in patients with different degrees of COVID-19 severity, and of Spike-specific CD4+ and CD8+ T cells induced by vaccines. Finally, we discuss T-cell responses to SARS-CoV-2 variants and hybrid immunity and conclude by highlighting possible strategies to improve the efficacy of COVID-19 vaccination.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
3
|
Tapela K, Prah DA, Tetteh B, Nuokpem F, Dosoo D, Coker A, Kumi-Ansah F, Amoako E, Assah KO, Kilba C, Nyakoe N, Quansah D, Languon S, Anyigba CA, Ansah F, Agyeman S, Owusu IA, Schneider K, Ampofo WK, Mutungi JK, Amegatcher G, Aniweh Y, Awandare GA, Quashie PK, Bediako Y. Cellular immune response to SARS-CoV-2 and clinical presentation in individuals exposed to endemic malaria. Cell Rep 2024; 43:114533. [PMID: 39052480 PMCID: PMC11372439 DOI: 10.1016/j.celrep.2024.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Ghana and other parts of West Africa have experienced lower COVID-19 mortality rates than other regions. This phenomenon has been hypothesized to be associated with previous exposure to infections such as malaria. This study investigated the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the influence of previous malaria exposure. Blood samples were collected from individuals with asymptomatic or symptomatic COVID-19 (n = 217). A variety of assays were used to characterize the SARS-CoV-2-specific immune response, and malaria exposure was quantified using Plasmodium falciparum ELISA. The study found evidence of attenuated immune responses to COVID-19 among asymptomatic individuals, with elevated proportions of non-classical monocytes and greater memory B cell activation. Symptomatic patients displayed higher P. falciparum-specific T cell recall immune responses, whereas asymptomatic individuals demonstrated elevated P. falciparum antibody levels. Summarily, this study suggests that P. falciparum exposure-associated immune modulation may contribute to reduced severity of SARS-CoV-2 infection among people living in malaria-endemic regions.
Collapse
Affiliation(s)
- Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Diana Ahu Prah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Becky Tetteh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Franklin Nuokpem
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Daniel Dosoo
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Amin Coker
- Accident and Emergency Unit, The Greater Accra Regional Hospital, Accra, Ghana
| | | | - Emmanuella Amoako
- Department of Pediatrics, Cape Coast Teaching Hospital, Cape Coast, Ghana; Yemaachi Biotech Inc., 222 Swaniker St., Accra, Ghana
| | - Kissi Ohene Assah
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Charlyne Kilba
- Department of Internal Medicine, Surgery, Pediatrics, and Emergency Medicine, Greater Accra Regional Hospital, Accra, Ghana
| | - Nancy Nyakoe
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Darius Quansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana; Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Sylvester Languon
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Claudia Adzo Anyigba
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Seth Agyeman
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana; Yemaachi Biotech Inc., 222 Swaniker St., Accra, Ghana
| | - Irene Amoakoh Owusu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Kristan Schneider
- Department of Mathematics, Hochschule Mittweida, University of Applied Sciences, Mittweida, Germany
| | - William K Ampofo
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Joe Kimanthi Mutungi
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Gloria Amegatcher
- Department of Medical Laboratory Science, School of Biomedical and Allied Sciences, University of Ghana, Accra, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Peter K Quashie
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK.
| | - Yaw Bediako
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana; Yemaachi Biotech Inc., 222 Swaniker St., Accra, Ghana; The Francis Crick Institute, 1 Midland Rd., London NW1 1AT, UK.
| |
Collapse
|
4
|
Kar M, Johnson KEE, Vanderheiden A, Elrod EJ, Floyd K, Geerling E, Stone ET, Salinas E, Banakis S, Wang W, Sathish S, Shrihari S, Davis-Gardner ME, Kohlmeier J, Pinto A, Klein R, Grakoui A, Ghedin E, Suthar MS. CD4 + and CD8 + T cells are required to prevent SARS-CoV-2 persistence in the nasal compartment. SCIENCE ADVANCES 2024; 10:eadp2636. [PMID: 39178263 PMCID: PMC11343035 DOI: 10.1126/sciadv.adp2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
SARS-CoV-2 infection induces the generation of virus-specific CD4+ and CD8+ effector and memory T cells. However, the contribution of T cells in controlling SARS-CoV-2 during infection is not well understood. Following infection of C57BL/6 mice, SARS-CoV-2-specific CD4+ and CD8+ T cells are recruited to the respiratory tract, and a vast proportion secrete the cytotoxic molecule granzyme B. Using depleting antibodies, we found that T cells within the lungs play a minimal role in viral control, and viral clearance occurs in the absence of both CD4+ and CD8+ T cells through 28 days postinfection. In the nasal compartment, depletion of both CD4+ and CD8+ T cells, but not individually, results in persistent, culturable virus replicating in the nasal epithelial layer through 28 days postinfection. Viral sequencing analysis revealed adapted mutations across the SARS-CoV-2 genome, including a large deletion in ORF6. Overall, our findings highlight the importance of T cells in controlling virus replication within the respiratory tract during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Meenakshi Kar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Katherine E. E. Johnson
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth J. Elrod
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Katharine Floyd
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - E. Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Eduardo Salinas
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Stephanie Banakis
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Wei Wang
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Shruti Sathish
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Swathi Shrihari
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Meredith E. Davis-Gardner
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Jacob Kohlmeier
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Amelia Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Robyn Klein
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Schulich School of Medicine and Dentistry, Western Institute of Neuroscience, Western University, London, Ontario, Canada
| | - Arash Grakoui
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Mehul S. Suthar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Ghanooni D, Flentje A, Hirshfield S, Horvath KJ, Moreno PI, Harkness A, Ross EJ, Dilworth SE, Pahwa S, Pallikkuth S, Carrico AW. Structural Determinants of Health and Markers of Immune Activation and Systemic Inflammation in Sexual Minority Men With and Without HIV. J Urban Health 2024; 101:867-877. [PMID: 38831153 PMCID: PMC11329474 DOI: 10.1007/s11524-024-00882-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/05/2024]
Abstract
Among sexual minority men (SMM), HIV and use of stimulants such as methamphetamine are linked with immune activation and systemic inflammation. Throughout the COVID-19 pandemic, SMM encountered financial challenges and structural obstacles that might have uniquely contributed to immune dysregulation and systemic inflammation, beyond the impacts of HIV and stimulant use. Between August 2020 and February 2022, 72 SMM with and without HIV residing in South Florida enrolled in a COVID-19 prospective cohort study. Multiple linear regression analyses examined unemployment, homelessness, and history of arrest as structural correlates of soluble markers of immune activation (i.e., sCD14 and sCD163) and inflammation (i.e., sTNF-α receptors I and II) at baseline after adjusting for HIV status, stimulant use, and recent SARS-CoV-2 infection. Enrolled participants were predominantly Latino (59%), gay-identified (85%), and with a mean age of 38 (SD, 12) years with approximately one-third (38%) of participants living with HIV. After adjusting for HIV status, SARS-CoV-2 infection, and recent stimulant use, unemployment independently predicted higher levels of sCD163 (β = 0.24, p = 0.04) and sTNF-α receptor I (β = 0.26, p = 0.02). Homelessness (β = 0.25, p = 0.02) and history of arrest (β = 0.24, p = 0.04) independently predicted higher levels of sCD14 after adjusting for HIV status, SARS-CoV-2 infection, and recent stimulant use. Independent associations exist between structural barriers and immune activation and systemic inflammation in SMM with and without HIV. Future longitudinal research should further elucidate complex bio-behavioral mechanisms linking structural factors with immune activation and inflammation.
Collapse
Affiliation(s)
- Delaram Ghanooni
- Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 S.W. 8Th Street, AHC5, #414, Miami, FL, 33199, USA.
| | - Annesa Flentje
- Community Health Systems, San Francisco School of Nursing and Alliance Health Project, School of Medicine, University of California, San Francisco, CA, USA
| | - Sabina Hirshfield
- Department of Medicine, STAR Program Brooklyn, State University of New York - Downstate Health Sciences University, Brooklyn, NY, USA
| | - Keith J Horvath
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Patricia I Moreno
- Miller School of Medicine, Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Audrey Harkness
- School of Nursing and Health Sciences, University of Miami, Coral Gables, FL, USA
| | - Emily J Ross
- Miller School of Medicine, Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Samantha E Dilworth
- Miller School of Medicine, Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Savita Pahwa
- Miller School of Medicine, Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Suresh Pallikkuth
- Miller School of Medicine, Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Adam W Carrico
- Health Promotion and Disease Prevention, Robert Stempel College of Public Health and Social Work, Florida International University, 11200 S.W. 8Th Street, AHC5, #414, Miami, FL, 33199, USA
| |
Collapse
|
6
|
Valiate BVS, Castro JTD, Marçal TG, Andrade LAF, Oliveira LID, Maia GBF, Faustino LP, Hojo-Souza NS, Reis MAAD, Bagno FF, Salazar N, Teixeira SR, Almeida GG, Gazzinelli RT. Evaluation of an RBD-nucleocapsid fusion protein as a booster candidate for COVID-19 vaccine. iScience 2024; 27:110177. [PMID: 38993669 PMCID: PMC11238127 DOI: 10.1016/j.isci.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Despite successful vaccines and updates, constant mutations of SARS-CoV-2 makes necessary the search for new vaccines. We generated a chimeric protein that comprises the receptor-binding domain from spike and the nucleocapsid antigens (SpiN) from SARS-CoV-2. Once SpiN elicits a protective immune response in rodents, here we show that convalescent and previously vaccinated individuals respond to SpiN. CD4+ and CD8+ T cells from these individuals produced greater amounts of IFN-γ when stimulated with SpiN, compared to SARS-CoV-2 antigens. Also, B cells from these individuals were able to secrete antibodies that recognize SpiN. When administered as a boost dose in mice previously immunized with CoronaVac, ChAdOx1-S or BNT162b2, SpiN was able to induce a greater or equivalent immune response to homologous prime/boost. Our data reveal the ability of SpiN to induce cellular and humoral responses in vaccinated human donors, rendering it a promising candidate.
Collapse
Affiliation(s)
- Bruno Vinicius Santos Valiate
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Julia Teixeira de Castro
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | | | - Luis Adan Flores Andrade
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Livia Isabela de Oliveira
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte 31.630-901, MG, Brazil
| | | | | | - Natalia S Hojo-Souza
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | | | - Flávia Fonseca Bagno
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Natalia Salazar
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Santuza R Teixeira
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Gregório Guilherme Almeida
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Ricardo Tostes Gazzinelli
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| |
Collapse
|
7
|
Wang C, Geng Y, Wang H, Ren Z, Hou Q, Fang A, Wu Q, Wu L, Shi X, Zhou M, Fu ZF, Lovell JF, Jin H, Zhao L. A broadly applicable protein-polymer adjuvant system for antiviral vaccines. EMBO Mol Med 2024; 16:1451-1483. [PMID: 38750307 PMCID: PMC11178928 DOI: 10.1038/s44321-024-00076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/16/2024] Open
Abstract
Although protein subunit vaccines generally have acceptable safety profiles with precise antigenic content, limited immunogenicity can lead to unsatisfactory humoral and cellular immunity and the need for vaccine adjuvants and delivery system. Herein, we assess a vaccine adjuvant system comprising Quillaja Saponaria-21(QS-21) and cobalt porphyrin polymeric micelles that enabling the display of His-tagged antigen on its surface. The nanoscale micelles promote antigen uptake and dendritic cell activation to induce robust cytotoxic T lymphocyte response and germinal center formation. Using the recombinant protein antigens from influenza A and rabies virus, the micelle adjuvant system elicited robust antiviral responses and protected mice from lethal challenge. In addition, this system could be combined with other antigens to induce high titers of neutralizing antibodies in models of three highly pathogenic viral pathogens: Ebola virus, Marburg virus, and Nipah virus. Collectively, our results demonstrate this polymeric micelle adjuvant system can be used as a potent nanoplatform for developing antiviral vaccine countermeasures that promote humoral and cellular immunity.
Collapse
Affiliation(s)
- Caiqian Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanyuan Geng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haoran Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeheng Ren
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingxiu Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - An Fang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiong Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liqin Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Kar M, Johnson KEE, Vanderheiden A, Elrod EJ, Floyd K, Geerling E, Stone ET, Salinas E, Banakis S, Wang W, Sathish S, Shrihari S, Davis-Gardner ME, Kohlmeier J, Pinto A, Klein R, Grakoui A, Ghedin E, Suthar MS. CD4+ and CD8+ T cells are required to prevent SARS-CoV-2 persistence in the nasal compartment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576505. [PMID: 38410446 PMCID: PMC10896337 DOI: 10.1101/2024.01.23.576505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and continues to pose a significant public health threat throughout the world. Following SARS-CoV-2 infection, virus-specific CD4+ and CD8+ T cells are rapidly generated to form effector and memory cells and persist in the blood for several months. However, the contribution of T cells in controlling SARS-CoV-2 infection within the respiratory tract are not well understood. Using C57BL/6 mice infected with a naturally occurring SARS-CoV-2 variant (B.1.351), we evaluated the role of T cells in the upper and lower respiratory tract. Following infection, SARS-CoV-2-specific CD4+ and CD8+ T cells are recruited to the respiratory tract and a vast proportion secrete the cytotoxic molecule Granzyme B. Using antibodies to deplete T cells prior to infection, we found that CD4+ and CD8+ T cells play distinct roles in the upper and lower respiratory tract. In the lungs, T cells play a minimal role in viral control with viral clearance occurring in the absence of both CD4+ and CD8+ T cells through 28 days post-infection. In the nasal compartment, depletion of both CD4+ and CD8+ T cells, but not individually, results in persistent and culturable virus replicating in the nasal compartment through 28 days post-infection. Using in situ hybridization, we found that SARS-CoV-2 infection persisted in the nasal epithelial layer of tandem CD4+ and CD8+ T cell-depleted mice. Sequence analysis of virus isolates from persistently infected mice revealed mutations spanning across the genome, including a deletion in ORF6. Overall, our findings highlight the importance of T cells in controlling virus replication within the respiratory tract during SARS-CoV-2 infection.
Collapse
|
9
|
Fischer A, Ehrlich A, Plotkin Y, Ouyang Y, Asulin K, Konstantinos I, Fan C, Nahmias Y, Willner I. Stimuli-Responsive Hydrogel Microcapsules Harnessing the COVID-19 Immune Response for Cancer Therapeutics. Angew Chem Int Ed Engl 2023; 62:e202311590. [PMID: 37675854 DOI: 10.1002/anie.202311590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
The combination of gene therapy and immunotherapy concepts, along recent advances in DNA nanotechnology, have the potential to provide important tools for cancer therapies. We present the development of stimuli-responsive microcapsules, loaded with a viral immunogenetic agent, harnessing the immune response against the Coronavirus Disease 2019, COVID-19, to selectively attack liver cancer cells (hepatoma) or recognize breast cancer or hepatoma, by expression of green fluorescence protein, GFP. The pH-responsive microcapsules, modified with DNA-tetrahedra nanostructures, increased hepatoma permeation by 50 %. Incorporation of a GFP-encoding lentivirus vector inside the tumor-targeting pH-stimulated miRNA-triggered and Alpha-fetoprotein-dictated microcapsules enables the demonstration of neoplasm selectivity, with approximately 5,000-, 8,000- and 50,000-fold more expression in the cancerous cells, respectively. The incorporation of the SARS-CoV-2 spike protein in the gene vector promotes specific recognition of the immune-evading hepatoma by the COVID-19-analogous immune response, which leads to cytotoxic and inflammatory activity, mediated by serum components taken from vaccinated or recovered COVID-19 patients, resulting in effective elimination of the hepatoma (>85 % yield).
Collapse
Affiliation(s)
- Amit Fischer
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yevgeni Plotkin
- The Department of Anesthesiology, Critical Care and Pain Medicine, Hadassah University Hospital, Jerusalem, 9112001, Israel
- Faculty of Medicine, Hebrew University of Jerusalem Jerusalem, 9112001, (Israel)
| | - Yu Ouyang
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Klil Asulin
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ioannidis Konstantinos
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
10
|
Roubidoux EK, Brigleb PH, Vegesana K, Souquette A, Whitt K, Freiden P, Green A, Thomas PG, McGargill MA, Wolf J, Schultz-Cherry S. Utility of nasal swabs for assessing mucosal immune responses towards SARS-CoV-2. Sci Rep 2023; 13:17820. [PMID: 37857783 PMCID: PMC10587113 DOI: 10.1038/s41598-023-44989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
SARS-CoV-2 has caused millions of infections worldwide since its emergence in 2019. Understanding how infection and vaccination induce mucosal immune responses and how they fluctuate over time is important, especially since they are key in preventing infection and reducing disease severity. We established a novel methodology for assessing SARS-CoV-2 cytokine and antibody responses at the nasal epithelium by using nasopharyngeal swabs collected longitudinally before and after either SARS-CoV-2 infection or vaccination. We then compared responses between mucosal and systemic compartments. We demonstrate that cytokine and antibody profiles differ between compartments. Nasal cytokines show a wound healing phenotype while plasma cytokines are consistent with pro-inflammatory pathways. We found that nasal IgA and IgG have different kinetics after infection, with IgA peaking first. Although vaccination results in low nasal IgA, IgG induction persists for up to 180 days post-vaccination. This research highlights the importance of studying mucosal responses in addition to systemic responses to respiratory infections. The methods described herein can be used to further mucosal vaccine development by giving us a better understanding of immunity at the nasal epithelium providing a simpler, alternative clinical practice to studying mucosal responses to infection.
Collapse
Affiliation(s)
| | - Pamela H Brigleb
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kasi Vegesana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kendall Whitt
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pamela Freiden
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amanda Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maureen A McGargill
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joshua Wolf
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
11
|
Santos CNO, Caldas GC, de Oliveira FA, da Silva AM, da Silva JS, da Silva RLL, de Jesus AR, Magalhães LS, de Almeida RP. COVID-19 recurrence is related to disease-early profile T cells while detection of anti-S1 IgG is related to multifunctional T cells. Med Microbiol Immunol 2023; 212:339-347. [PMID: 37488347 DOI: 10.1007/s00430-023-00776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
COVID-19 is caused by SARS-CoV-2 infection and leads from asymptomatic to severe outcomes. The recurrence of the COVID-19 has been described, however, mechanisms involved remains unclear. Thus, the work aimed to investigate the role of multifunctional T cells in patients with recurrent COVID-19. We evaluated clinical characteristics, presence of anti-S1 and anti-Nucleocapsid IgG in patients' sera, and multifunctional T cells (for IFN-γ, IL-2, and TNF-α) in patients with multiple episodes of COVID-19 and controls. Data demonstrate that patients with recurrent COVID-19 have a T cell pattern predominantly related to IFN-γ production. Also, patients with COVID-19 history and absence of anti-S1 IgG had lower levels of CD4+ IFN + IL-2 + TNF + T cells independently of number of disease episodes. Complementary, vaccination changed the patterns of T cells phenotypes and induced IgG seroconversion, despite not induce higher levels of multifunctional T cells in all patients. In conclusion, the data suggest that recurrent disease is related to early-disease T cell profile and absence of anti-S1 IgG is related to lower multifunctional CD4 T cell response, what suggests possibility of new episodes of COVID-19 in these patients.
Collapse
Affiliation(s)
- Camilla Natália O Santos
- Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Sergipe, Aracaju, Brazil
| | - Gustavo C Caldas
- Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe, Aracaju, Brazil
| | - Fabricia A de Oliveira
- Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil
| | - Angela Maria da Silva
- Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Sergipe, Aracaju, Brazil
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe, Aracaju, Brazil
| | - João S da Silva
- Plataforma de Medicina Translacional da Fundação Oswaldo Cruz e Faculdade de Medicina de Ribeirão Preto, Ribeirao Preto, Brazil
| | - Ricardo Luís L da Silva
- Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil
- Departamento de Educação em Saúde, Universidade Federal de Sergipe, Lagarto, Brazil
| | - Amélia R de Jesus
- Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Sergipe, Aracaju, Brazil
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe, Aracaju, Brazil
- Instituto de Investigação em Imunologia (iii), Instituto Nacional de Ciência e Tecnologia, São Paulo, Brazil
| | - Lucas S Magalhães
- Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Sergipe, Aracaju, Brazil.
- Setor de Parasitologia e Patologia, Instituto de Ciência Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil.
| | - Roque P de Almeida
- Laboratório de Imunologia e Biologia Molecular, Universidade Federal de Sergipe, Aracaju, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Sergipe, Aracaju, Brazil
- Departamento de Medicina, Hospital Universitário, Universidade Federal de Sergipe, Aracaju, Brazil
- Instituto de Investigação em Imunologia (iii), Instituto Nacional de Ciência e Tecnologia, São Paulo, Brazil
| |
Collapse
|
12
|
Roubidoux EK, Brigleb PH, Vegesana K, Souquette A, Whitt K, Freiden P, Green A, Thomas PG, McGargill MA, Wolf J, Schultz-Cherry S. Utility of nasal swabs for assessing mucosal immune responses towards SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548630. [PMID: 37503213 PMCID: PMC10370023 DOI: 10.1101/2023.07.12.548630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
SARS-CoV-2 has caused millions of infections worldwide since its emergence in 2019. Understanding how infection and vaccination induce mucosal immune responses and how they fluctuate over time is important, especially since they are key in preventing infection and reducing disease severity. We established a novel methodology for assessing SARS-CoV-2 cytokine and antibody responses at the nasal epithelium by using nasopharyngeal swabs collected longitudinally before and after either SARS-CoV-2 infection or vaccination. We then compared responses between mucosal and systemic compartments. We demonstrate that cytokine and antibody profiles differ markedly between compartments. Nasal cytokines show a wound healing phenotype while plasma cytokines are consistent with pro-inflammatory pathways. We found that nasal IgA and IgG have different kinetics after infection, with IgA peaking first. Although vaccination results in low nasal IgA, IgG induction persists for up to 180 days post-vaccination. This research highlights the importance of studying mucosal responses in addition to systemic responses to respiratory infections to understand the correlates of disease severity and immune memory. The methods described herein can be used to further mucosal vaccine development by giving us a better understanding of immunity at the nasal epithelium providing a simpler, alternative clinical practice to studying mucosal responses to infection. Teaser A nasopharyngeal swab can be used to study the intranasal immune response and yields much more information than a simple viral diagnosis.
Collapse
|
13
|
Mohandas S, Jagannathan P, Henrich TJ, Sherif ZA, Bime C, Quinlan E, Portman MA, Gennaro M, Rehman J. Immune mechanisms underlying COVID-19 pathology and post-acute sequelae of SARS-CoV-2 infection (PASC). eLife 2023; 12:e86014. [PMID: 37233729 PMCID: PMC10219649 DOI: 10.7554/elife.86014] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
With a global tally of more than 500 million cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections to date, there are growing concerns about the post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Recent studies suggest that exaggerated immune responses are key determinants of the severity and outcomes of the initial SARS-CoV-2 infection as well as subsequent PASC. The complexity of the innate and adaptive immune responses in the acute and post-acute period requires in-depth mechanistic analyses to identify specific molecular signals as well as specific immune cell populations which promote PASC pathogenesis. In this review, we examine the current literature on mechanisms of immune dysregulation in severe COVID-19 and the limited emerging data on the immunopathology of PASC. While the acute and post-acute phases may share some parallel mechanisms of immunopathology, it is likely that PASC immunopathology is quite distinct and heterogeneous, thus requiring large-scale longitudinal analyses in patients with and without PASC after an acute SARS-CoV-2 infection. By outlining the knowledge gaps in the immunopathology of PASC, we hope to provide avenues for novel research directions that will ultimately lead to precision therapies which restore healthy immune function in PASC patients.
Collapse
Affiliation(s)
- Sindhu Mohandas
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford UniversityStanfordUnited States
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Zaki A Sherif
- Department of Biochemistry & Molecular Biology, Howard University College of MedicineWashingtonUnited States
| | - Christian Bime
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Medicine, University of Arizona College of MedicineTucsonUnited States
| | - Erin Quinlan
- National Center for Complementary and Integrative Health, National Institutes of HealthBethesdaUnited States
| | - Michael A Portman
- Seattle Children’s Hospital, Division of Pediatric Cardiology, Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Marila Gennaro
- Public Health Research Institute and Department of Medicine, Rutgers New Jersey Medical SchoolNewarkUnited States
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of MedicineChicagoUnited States
| |
Collapse
|
14
|
Gao F, Mallajosyula V, Arunachalam PS, van der Ploeg K, Manohar M, Röltgen K, Yang F, Wirz O, Hoh R, Haraguchi E, Lee JY, Willis R, Ramachandiran V, Li J, Kathuria KR, Li C, Lee AS, Shah MM, Sindher SB, Gonzalez J, Altman JD, Wang TT, Boyd SD, Pulendran B, Jagannathan P, Nadeau KC, Davis MM. Spheromers reveal robust T cell responses to the Pfizer/BioNTech vaccine and attenuated peripheral CD8 + T cell responses post SARS-CoV-2 infection. Immunity 2023; 56:864-878.e4. [PMID: 36996809 PMCID: PMC10017386 DOI: 10.1016/j.immuni.2023.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/05/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
T cells are a critical component of the response to SARS-CoV-2, but their kinetics after infection and vaccination are insufficiently understood. Using "spheromer" peptide-MHC multimer reagents, we analyzed healthy subjects receiving two doses of the Pfizer/BioNTech BNT162b2 vaccine. Vaccination resulted in robust spike-specific T cell responses for the dominant CD4+ (HLA-DRB1∗15:01/S191) and CD8+ (HLA-A∗02/S691) T cell epitopes. Antigen-specific CD4+ and CD8+ T cell responses were asynchronous, with the peak CD4+ T cell responses occurring 1 week post the second vaccination (boost), whereas CD8+ T cells peaked 2 weeks later. These peripheral T cell responses were elevated compared with COVID-19 patients. We also found that previous SARS-CoV-2 infection resulted in decreased CD8+ T cell activation and expansion, suggesting that previous infection can influence the T cell response to vaccination.
Collapse
Affiliation(s)
- Fei Gao
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Vamsee Mallajosyula
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Kattria van der Ploeg
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
| | - Monali Manohar
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Katharina Röltgen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fan Yang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ramona Hoh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily Haraguchi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ji-Yeun Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard Willis
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Jiefu Li
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Karan Raj Kathuria
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Chunfeng Li
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra S Lee
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mihir M Shah
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sayantani B Sindher
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph Gonzalez
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - John D Altman
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Taia T Wang
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Scott D Boyd
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Prasanna Jagannathan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Kari C Nadeau
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA; Sean N. Parker Center for Allergy and Asthma Research, Stanford University and Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard, MA, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
La Rosa C, Chiuppesi F, Park Y, Zhou Q, Yang D, Gendzekhadze K, Ly M, Li J, Kaltcheva T, Ortega Francisco S, Gutierrez MA, Ali H, Otoukesh S, Amanam I, Salhotra A, Pullarkat VA, Aldoss I, Rosenzweig M, Aribi AM, Stein AS, Marcucci G, Dadwal SS, Nakamura R, Forman SJ, Al Malki MM, Diamond DJ. Functional SARS-CoV-2-specific T cells of donor origin in allogeneic stem cell transplant recipients of a T-cell-replete infusion: A prospective observational study. Front Immunol 2023; 14:1114131. [PMID: 36936918 PMCID: PMC10020189 DOI: 10.3389/fimmu.2023.1114131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
In the current post-pandemic era, recipients of an allogeneic hematopoietic stem cell transplant (HCT) deserve special attention. In these vulnerable patients, vaccine effectiveness is reduced by post-transplant immune-suppressive therapy; consequently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) is often associated with elevated morbidity and mortality. Characterizing SARS-CoV-2 adaptive immunity transfer from immune donors to HCT recipients in the context of immunosuppression will help identify optimal timing and vaccination strategies that can provide adequate protection to HCT recipients against infection with evolving SARS-CoV-2 variants. We performed a prospective observational study (NCT04666025 at ClinicalTrials.gov) to longitudinally monitor the transfer of SARS-CoV-2-specific antiviral immunity from HCT donors, who were either vaccinated or had a history of COVID-19, to their recipients via T-cell replete graft. Levels, function, and quality of SARS-CoV-2-specific immune responses were longitudinally analyzed up to 6 months post-HCT in 14 matched unrelated donor/recipients and four haploidentical donor/recipient pairs. A markedly skewed donor-derived SARS-CoV-2 CD4 T-cell response was measurable in 15 (83%) recipients. It showed a polarized Th1 functional profile, with the prevalence of central memory phenotype subsets. SARS-CoV-2-specific IFN-γ was detectable throughout the observation period, including early post-transplant (day +30). Functionally experienced SARS-CoV-2 Th1-type T cells promptly expanded in two recipients at the time of post-HCT vaccination and in two others who were infected and survived post-transplant COVID-19 infection. Our data suggest that donor-derived SARS-CoV-2 T-cell responses are functional in immunosuppressed recipients and may play a critical role in post-HCT vaccine response and protection from the fatal disease. Clinical trial registration clinicaltrials.gov, identifier NCT04666025.
Collapse
Affiliation(s)
- Corinna La Rosa
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Flavia Chiuppesi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Yoonsuh Park
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Qiao Zhou
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Dongyun Yang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Ketevan Gendzekhadze
- Histocompatibility Laboratory, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Minh Ly
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Jing Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Teodora Kaltcheva
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Sandra Ortega Francisco
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Miguel-Angel Gutierrez
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Haris Ali
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Salman Otoukesh
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Idoroenyi Amanam
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Amandeep Salhotra
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Vinod A. Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Michael Rosenzweig
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Ahmed M. Aribi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Anthony S. Stein
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | | | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Monzr M. Al Malki
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| | - Don J. Diamond
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, United States
| |
Collapse
|
16
|
Kongkamol C, Ingviya T, Chusri S, Surasombatpattana S, Kwanyuang A, Chaichulee S, Sophark I, Seesong C, Sorntavorn T, Detpreechakul T, Phaiboonpornpong P, Krainara K, Sathirapanya P, Sathirapanya C. Integrative Effects between a Bubble and Seal Program and Workers' Compliance to Health Advice on Successful COVID-19 Transmission Control in a Factory in Southern Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16391. [PMID: 36554271 PMCID: PMC9778696 DOI: 10.3390/ijerph192416391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Applying health measures to prevent COVID-19 transmission caused disruption of businesses. A practical plan to balance public health and business sustainability during the pandemic was needed. Herein, we describe a "Bubble and Seal" (B&S) program implemented in a frozen seafood factory in southern Thailand. We enrolled 1539 workers who lived in the factory dormitories. First, the workers who had a high fatality risk were triaged by RT-PCR tests, quarantined and treated if they had COVID-19. Newly diagnosed or suspected COVID-19 workers underwent the same practices. The non-quarantined workers were regulated to work and live in their groups without contact across the groups. Workers' personal hygiene and preventive measures were strongly stressed. Between the 6th and 9th weeks of the program, the post-COVID-19 infection status (PCIS) of all participants was evaluated by mass COVID-19 antibody or RT-PCR tests. Finally, 91.8% of the workers showed positive PCIS, which was above the number required for program exit. Although no workers had received a vaccination, there was only one case of severe COVID-19 pneumonia, and no evidence of COVID-19 spreading to the surrounding communities. Implementation of the B&S program and workers' adherence to health advice was the key to this success.
Collapse
Affiliation(s)
- Chanon Kongkamol
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
- Air Pollution and Health Effect Research Center, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Thammasin Ingviya
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
- Air Pollution and Health Effect Research Center, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Sarunyou Chusri
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Smonrapat Surasombatpattana
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Atichart Kwanyuang
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Sitthichok Chaichulee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Intouch Sophark
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Chaiwat Seesong
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Thanawan Sorntavorn
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Tanyawan Detpreechakul
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Pindanunant Phaiboonpornpong
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Kamol Krainara
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Pornchai Sathirapanya
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Chutarat Sathirapanya
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| |
Collapse
|
17
|
Dominelli F, Zingaropoli MA, Tartaglia M, Tortellini E, Guardiani M, Perri V, Pasculli P, Ciccone F, Malimpensa L, Baione V, Napoli A, Gaeta A, Lichtner M, Conte A, Mastroianni CM, Ciardi MR. Multiple sclerosis-disease modifying therapies affect humoral and T-cell response to mRNA COVID-19 vaccine. Front Immunol 2022; 13:1050183. [PMID: 36532061 PMCID: PMC9753571 DOI: 10.3389/fimmu.2022.1050183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022] Open
Abstract
Background The mRNA vaccines help protect from COVID-19 severity, however multiple sclerosis (MS) disease modifying therapies (DMTs) might affect the development of humoral and T-cell specific response to vaccination. Methods The aim of the study was to evaluate humoral and specific T-cell response, as well as B-cell activation and survival factors, in people with MS (pwMS) under DMTs before (T0) and after two months (T1) from the third dose of vaccine, comparing the obtained findings to healthy donors (HD). All possible combinations of intracellular IFNγ, IL2 and TNFα T-cell production were evaluated, and T-cells were labelled "responding T-cells", those cells that produced at least one of the three cytokines of interest, and "triple positive T-cells", those cells that produced simultaneously all the three cytokines. Results The cross-sectional evaluation showed no significant differences in anti-S antibody titers between pwMS and HD at both time-points. In pwMS, lower percentages of responding T-cells at T0 (CD4: p=0.0165; CD8: p=0.0022) and triple positive T-cells at both time-points compared to HD were observed (at T0, CD4: p=0.0007 and CD8: p=0.0703; at T1, CD4: p=0.0422 and CD8: p=0.0535). At T0, pwMS showed higher plasma levels of APRIL, BAFF and CD40L compared to HD (p<0.0001, p<0.0001 and p<0.0001, respectively) and at T1, plasma levels of BAFF were still higher in pwMS compared to HD (p=0.0022).According to DMTs, at both T0 and T1, lower anti-S antibody titers in the depleting/sequestering-out compared to the enriching-in pwMS subgroup were found (p=0.0410 and p=0.0047, respectively) as well as lower percentages of responding CD4+ T-cells (CD4: p=0.0394 and p=0.0004, respectively). Moreover, the depleting/sequestering-out subgroup showed higher percentages of IFNγ-IL2-TNFα+ T-cells at both time-points, compared to the enriching-in subgroup in which a more heterogeneous cytokine profile was observed (at T0 CD4: p=0.0187; at T0 and T1 CD8: p =0.0007 and p =0.0077, respectively). Conclusion In pwMS, humoral and T-cell response to vaccination seems to be influenced by the different DMTs. pwMS under depleting/sequestering-out treatment can mount cellular responses even in the presence of a low positive humoral response, although the cellular response seems qualitatively inferior compared to HD. An understanding of T-cell quality dynamic is needed to determine the best vaccination strategy and in general the capability of immune response in pwMS under different DMT.
Collapse
Affiliation(s)
- Federica Dominelli
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Maria Antonella Zingaropoli
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy,*Correspondence: Maria Antonella Zingaropoli,
| | - Matteo Tartaglia
- Department of Human Neurosciences, Multiple Sclerosis Centre, Sapienza, University of Rome, Rome, Italy
| | - Eeva Tortellini
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Mariasilvia Guardiani
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Valentina Perri
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Patrizia Pasculli
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Federica Ciccone
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Leonardo Malimpensa
- Department of Human Neurosciences, Multiple Sclerosis Centre, Sapienza, University of Rome, Rome, Italy
| | - Viola Baione
- Department of Human Neurosciences, Multiple Sclerosis Centre, Sapienza, University of Rome, Rome, Italy
| | - Anna Napoli
- Department of Molecular medicine, Sapienza, University of Rome, Rome, Italy
| | - Aurelia Gaeta
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| | - Miriam Lichtner
- Infectious Diseases Unit, Santa Maria Goretti Hospital, Sapienza, University of Rome, Latina, Italy,Department of Neurosciences Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Multiple Sclerosis Centre, Sapienza, University of Rome, Rome, Italy,Scientific Hospitalization and Treatment Institute, Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
| | | | - Maria Rosa Ciardi
- Department of Public Health and Infectious diseases, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
18
|
Shen S, Gong M, Wang G, Dua K, Xu J, Xu X, Liu G. COVID-19 and Gut Injury. Nutrients 2022; 14:nu14204409. [PMID: 36297092 PMCID: PMC9608818 DOI: 10.3390/nu14204409] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 01/28/2023] Open
Abstract
COVID-19 induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently a pandemic and it has led to more than 620 million patients with 6.56 million deaths globally. Males are more susceptible to COVID-19 infection and associated with a higher chance to develop severe COVID-19 than females. Aged people are at a high risk of COVID-19 infection, while young children have also increased cases. COVID-19 patients typically develop respiratory system pathologies, however symptoms in the gastrointestinal (GI) tract are also very common. Inflammatory cell recruitments and their secreted cytokines are found in the GI tract in COVID-19 patients. Microbiota changes are the key feature in COVID-19 patients with gut injury. Here, we review all current known mechanisms of COVID-19-induced gut injury, and the most acceptable one is that SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) receptor on host cells in the GI tract. Interestingly, inflammatory bowel disease (IBD) is an inflammatory disorder, but the patients with IBD do not have the increased risk to develop COVID-19. There is currently no cure for COVID-19, but anti-viruses and monoclonal antibodies reduce viral load and shorten the recovery time of the disease. We summarize current therapeutics that target symptoms in the GI tract, including probiotics, ACE2 inhibitors and nutrients. These are promising therapeutic options for COVID-19-induced gut injury.
Collapse
Affiliation(s)
- Sj Shen
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales, Sydney, NSW 2217, Australia
| | - Muxue Gong
- School of Clinical Medicine, Bengbu Medicine College, Bengbu 233030, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Jincheng Xu
- Stomatology Department, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- School of Dental Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Xiaoyue Xu
- School of Population Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gang Liu
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Centre for Inflammation, Centenary Institute, Camperdown, NSW 2050, Australia
- Correspondence:
| |
Collapse
|
19
|
Hu Z, van der Ploeg K, Chakraborty S, Arunachalam PS, Mori DAM, Jacobson KB, Bonilla H, Parsonnet J, Andrews JR, Holubar M, Subramanian A, Khosla C, Maldonado Y, Hedlin H, de la Parte L, Press K, Ty M, Tan GS, Blish C, Takahashi S, Rodriguez-Barraquer I, Greenhouse B, Butte AJ, Singh U, Pulendran B, Wang TT, Jagannathan P. Early immune markers of clinical, virological, and immunological outcomes in patients with COVID-19: a multi-omics study. eLife 2022; 11:77943. [PMID: 36239699 PMCID: PMC9566856 DOI: 10.7554/elife.77943] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023] Open
Abstract
Background The great majority of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infections are mild and uncomplicated, but some individuals with initially mild COVID-19 progressively develop more severe symptoms. Furthermore, there is substantial heterogeneity in SARS-CoV-2-specific memory immune responses following infection. There remains a critical need to identify host immune biomarkers predictive of clinical and immunological outcomes in SARS-CoV-2-infected patients. Methods Leveraging longitudinal samples and data from a clinical trial (N=108) in SARS-CoV-2-infected outpatients, we used host proteomics and transcriptomics to characterize the trajectory of the immune response in COVID-19 patients. We characterized the association between early immune markers and subsequent disease progression, control of viral shedding, and SARS-CoV-2-specific T cell and antibody responses measured up to 7 months after enrollment. We further compared associations between early immune markers and subsequent T cell and antibody responses following natural infection with those following mRNA vaccination. We developed machine-learning models to predict patient outcomes and validated the predictive model using data from 54 individuals enrolled in an independent clinical trial. Results We identify early immune signatures, including plasma RIG-I levels, early IFN signaling, and related cytokines (CXCL10, MCP1, MCP-2, and MCP-3) associated with subsequent disease progression, control of viral shedding, and the SARS-CoV-2-specific T cell and antibody response measured up to 7 months after enrollment. We found that several biomarkers for immunological outcomes are shared between individuals receiving BNT162b2 (Pfizer-BioNTech) vaccine and COVID-19 patients. Finally, we demonstrate that machine-learning models using 2-7 plasma protein markers measured early within the course of infection are able to accurately predict disease progression, T cell memory, and the antibody response post-infection in a second, independent dataset. Conclusions Early immune signatures following infection can accurately predict clinical and immunological outcomes in outpatients with COVID-19 using validated machine-learning models. Funding Support for the study was provided from National Institute of Health/National Institute of Allergy and Infectious Diseases (NIH/NIAID) (U01 AI150741-01S1 and T32-AI052073), the Stanford's Innovative Medicines Accelerator, National Institutes of Health/National Institute on Drug Abuse (NIH/NIDA) DP1DA046089, and anonymous donors to Stanford University. Peginterferon lambda provided by Eiger BioPharmaceuticals.
Collapse
Affiliation(s)
- Zicheng Hu
- Bakar Computational Health Sciences Institute, University of CaliforniaSan FranciscoUnited States
- Department of Microbiology and Immunology, University of CaliforniaSan FranciscoUnited States
| | | | | | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation, and Infection, Stanford UniversityStanfordUnited States
| | - Diego AM Mori
- Department of Medicine, Stanford UniversityStanfordUnited States
| | - Karen B Jacobson
- Department of Medicine, Stanford UniversityStanfordUnited States
| | - Hector Bonilla
- Department of Medicine, Stanford UniversityStanfordUnited States
| | - Julie Parsonnet
- Department of Medicine, Stanford UniversityStanfordUnited States
- Department of Epidemiology and Population Health, Stanford UniversityStanfordUnited States
| | - Jason R Andrews
- Department of Medicine, Stanford UniversityStanfordUnited States
| | - Marisa Holubar
- Department of Medicine, Stanford UniversityStanfordUnited States
| | | | | | - Yvonne Maldonado
- Department of Pediatrics, Stanford UniversityStanfordUnited States
| | - Haley Hedlin
- Quantitative Sciences Unit, Stanford UniversityStanfordUnited States
| | | | - Kathleen Press
- Department of Medicine, Stanford UniversityStanfordUnited States
| | - Maureen Ty
- Department of Medicine, Stanford UniversityStanfordUnited States
| | - Gene S Tan
- J. Craig Venter InstituteSan DiegoUnited States
- Division of Infectious Diseases, Department of Medicine, University of CaliforniaSan DiegoUnited States
| | - Catherine Blish
- Department of Medicine, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Saki Takahashi
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | | | - Bryan Greenhouse
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of CaliforniaSan FranciscoUnited States
| | - Upinder Singh
- Department of Medicine, Stanford UniversityStanfordUnited States
- Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - Bali Pulendran
- Institute for Immunity, Transplantation, and Infection, Stanford UniversityStanfordUnited States
- Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
- Department of Pathology, Stanford UniversityStanfordUnited States
| | - Taia T Wang
- Department of Medicine, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - Prasanna Jagannathan
- Department of Medicine, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
20
|
Xing H, Zhu L, Wang P, Zhao G, Zhou Z, Yang Y, Zou H, Yan X. Display of receptor-binding domain of SARS-CoV-2 Spike protein variants on the Saccharomyces cerevisiae cell surface. Front Immunol 2022; 13:935573. [PMID: 36032096 PMCID: PMC9412237 DOI: 10.3389/fimmu.2022.935573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/13/2022] [Indexed: 12/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), represents a significant global human health threat. The most effective way to end the pandemic is through timely vaccination. In this study, the receptor-binding domains (RBDs) of Spike protein of the initial strain of SARS-CoV-2 and its variants, B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.1 (Kappa), were successfully displayed on the surface of a Saccharomyces cerevisiae strain for development as a vaccine candidate. To rapidly express the recombinant protein and avoid the need for expensive galactose as an inducer, the gal80 gene of S. cerevisiae was knocked out, and the conventional 72-h culture period was thus successfully shortened to 24 h. Mice vaccinated against variant B.1.617.1 showed robust humoral and cellular immune responses. Moreover, the antiserum in the B.1.671.1 group had neutralizing activity against wild-type RBD and high binding titers against RBD mutants of variants B.1.351 and B.1.1.7. Double deglycosylation at N331Q and N343Q resulted in marked reduction of the affinity of RBD binding to angiotensin converting enzyme 2 (ACE2) and escaped antibody neutralization. This study demonstrates that yeast surface display technology can provide an alternative approach to rapid large-scale preparation of promising SARS-CoV-2 vaccine candidates at low cost.
Collapse
Affiliation(s)
- Hongguan Xing
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Chinese Academy of Science-Key Laboratory of Synthetic Biology, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Liyan Zhu
- Key Laboratory of Medical Molecular Virology of Ministry of Education/National Health Commission, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Process Technology, Zhejiang Hongguan Bio-pharma Co., Ltd., Jiaxing, China
| | - Pingping Wang
- Chinese Academy of Science-Key Laboratory of Synthetic Biology, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- Chinese Academy of Science-Key Laboratory of Synthetic Biology, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Medical Molecular Virology of Ministry of Education/National Health Commission, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhihua Zhou
- Chinese Academy of Science-Key Laboratory of Synthetic Biology, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yi Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hong Zou
- Chinese Academy of Sciences Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Hong Zou, ; Xing Yan,
| | - Xing Yan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Chinese Academy of Science-Key Laboratory of Synthetic Biology, Chinese Academy of Science Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Hong Zou, ; Xing Yan,
| |
Collapse
|