1
|
Manikandan S, Jose PA, Karuppaiah A, Rahman H. The effect of physical stability and modified gastrointestinal tract behaviour of resveratrol-loaded NLCs encapsulated alginate beads. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9007-9021. [PMID: 38878088 DOI: 10.1007/s00210-024-03223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/04/2024] [Indexed: 10/30/2024]
Abstract
Nanostructured lipid carriers (NLC) have low storage and gastrointestinal stability, limiting their applicability. The work aimed to elevate the stability and behaviour of NLC in the alimentary tract by creating an alginate bead. Through the extrusion dropping procedure, Resveratrol (RES)-loaded NLC were efficiently integrated into alginate beads. The incorporation had no significant impact on the particle size, morphology, or inner structure of NLC, as assessed using DLS (Dynamic Light Scattering), SEM (Scanning Electron Microscopy), Differential Scanning Calorimetry (DSC) and FT-IR (Fourier Transform Infra-Red). Incorporating NLC into alginate beads improves its physical stability compared to dispersion of NLC as well as NLC-Sol. An in vitro release investigation found that the NLC-alginate beads released RES more slowly than optimized NLC formulation (RES-NLCs-opt) and NLC-alginate sol. Research on simulated in vitro digestive models revealed that just a small amount of integrated NLC may permeate stomach fluid due to its tiny size. The slow diffusion of NLC from alginate to intestinal fluid prevented aggregation and allowed for gentle hydrolysis of the lipid matrix. Incorporating NLC in alginate beads shows promise for improving stability, modifying gastrointestinal behaviour, and controlling release throughout the process of digestion.
Collapse
Affiliation(s)
- Sangeethkumar Manikandan
- Department of Pharmaceutics, PSG College of Pharmacy, Peelamedu, Coimbatore, 641004, Tamil Nadu, India
| | - Preethy Ani Jose
- Department of Pharmaceutics, MNR College of Pharmacy, MNR Nagar, Fasalwadi, Sangareddy, Hyderabad, 502294, Telangana, India
| | - Arjunan Karuppaiah
- Department of Pharmaceutics, PSG College of Pharmacy, Peelamedu, Coimbatore, 641004, Tamil Nadu, India.
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Habibur Rahman
- Department of Pharmaceutics, PSG College of Pharmacy, Peelamedu, Coimbatore, 641004, Tamil Nadu, India.
| |
Collapse
|
2
|
Chaudhuri A, Kumar DN, Srivastava SK, Kumar D, Patil UK, Parmar AS, Singh S, Agrawal AK. Combinatorial Delivery of Docetaxel- and Erlotinib-Loaded Functionalized Nanostructured Lipid Carriers for the Treatment of Triple-Negative Breast Cancer Using Quality-by-Design Approach. Pharmaceutics 2024; 16:926. [PMID: 39065626 PMCID: PMC11279545 DOI: 10.3390/pharmaceutics16070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
This study explored the combined administration of docetaxel (DOC) and erlotinib (ERL) using nanostructured lipid carriers (NLCs), with folic acid (FA) conjugation to enhance their synergistic anticancer efficacy against triple-negative breast cancer. NLCs were developed through hot melt homogenization-ultrasound dispersion, and optimized by a quality-by-design (QbD) approach using Plackett-Burman design and Box-Behnken design. Plots were generated based on maximum desirability. Spherical, nanosized dispersions (<200 nm) with zeta potential ranging from -16.4 to -14.15 mV were observed. These nanoformulations demonstrated ~95% entrapment efficiency with around 5% drug loading. Stability tests revealed that the NLCs remained stable for 6 months under storage conditions at 4 °C. In vitro release studies indicated sustained release over 24 h, following Higuchi and Korsmeyer-Peppas models for NLCs and FA NLCs, respectively. Additionally, an in vitro pH-stat lipolysis model exhibited a nearly fivefold increase in bioaccessibility compared to drug-loaded suspensions. The DOC-ERL-loaded formulations exhibited dose- and time-dependent cytotoxicity, revealing synergism at a 1:3 molar ratio in MDA-MB-231 and 4T1 cells, with combination indices of 0.35 and 0.37, respectively. Co-treatment with DOC-ERL-loaded FA NLCs demonstrated synergistic anticancer effects in various in vitro assays.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.K.); (S.S.)
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.K.); (S.S.)
| | | | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.K.); (S.S.)
| | - Umesh Kumar Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar 470003, India;
| | | | - Sanjay Singh
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.K.); (S.S.)
- Dr. Shakuntala Misra National Rehabilitation University, Lucknow 226017, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.K.); (S.S.)
| |
Collapse
|
3
|
Foudah AI, Ayman Salkini M, Alqarni MH, Alam A. Preparation and evaluation of antidiabetic activity of mangiferin-loaded solid lipid nanoparticles. Saudi J Biol Sci 2024; 31:103946. [PMID: 38384280 PMCID: PMC10879835 DOI: 10.1016/j.sjbs.2024.103946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
This study aimed to develop and optimize mangiferin-loaded solid lipid nanoparticles (MG-SLNs) using the microemulsion technique and ultrasonication. The MG-SLNs were composed of Labrafil M 2130 CS, MG, ethanol, Tween 80, and water. The optimized MG-SLNs exhibited a particle size of 138.37 ± 3.39 nm, polydispersity index of 0.247 ± 0.023, entrapment efficiency of 84.37 ± 2.43 %, and zeta potential of 18.87 ± 2.42 mV. Drug release studies showed a two-fold increase in the release of MG from SLNs compared to the solution. Confocal images indicated deeper permeation of MG-SLNs, highlighting their potential. Molecular docking confirmed mangiferin's inhibitory activity against α-amylase, consistent with previous findings. In vitro studies showed that MG-SLNs inhibited α-amylase activity by 55.43 ± 6.11 %, α-glucosidase activity by 68.76 ± 3.14 %, and exhibited promising antidiabetic activities. In a rat model, MG-SLNs significantly and sustainably reduced blood glucose levels for up to 12 h. Total cholesterol and triglycerides decreased, while high-density lipoprotein cholesterol increased. Both MG-SOL and MG-SLNs reduced SGOT and SGPT levels, with MG-SLNs showing a more significant reduction in SGOT compared to MG-SOL. Overall, the biochemical results indicated that both formulations improved diabetes-associated alterations. In conclusion, the study suggests that loading MG in SLNs using the newly developed approach could be an efficient oral treatment for diabetes, offering sustained blood glucose reduction and positive effects on lipid profiles and liver enzymes.
Collapse
Affiliation(s)
- Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Mohammad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
4
|
Aldawsari MF, Kamal MA, Balaha MF, Jawaid T, Jafar M, Hashmi S, Ganaie MA, Alam A. Optimized Ribociclib nanostructured lipid carrier for the amelioration of skin cancer: Inferences from ex-vivo skin permeation and dermatokinetic studies. Saudi Pharm J 2024; 32:101984. [PMID: 38384476 PMCID: PMC10879011 DOI: 10.1016/j.jsps.2024.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/04/2024] [Indexed: 02/23/2024] Open
Abstract
Current research focuses on explicitly developing and evaluating nanostructured lipidic carriers (NLCs) for the chemotherapeutic drug Ribociclib (RCB) via the topical route to surmount the inherent bioavailability shortcomings. The absolute oral bioavailability has not been determined, but using a physiologically based pharmacokinetic model it was predicted that 65.8 % of the standard dose of RCB (600 mg) would be absorbed mainly in the small intestine. RCB-NLCs were produced using the solvent evaporation method, and Box-Behnken Design (BBD) was employed to optimize composition. The prepared NLCs had an average PS of 79.29 ± 3.53 nm, PDI of 0.242 ± 0.021, and a %EE of 86.07 ± 3.14. The TEM analysis disclosed the spherical form and non-aggregative nature of the NLCs. The outcomes of an in-vitro release investigation presented cumulative drug release of 84.97 ± 3.37 % in 24 h, significantly higher than that from the RCB suspension (RCB-SUS). Ex-vivo skin permeation investigations on rodent (Swiss albino mice) revealed that RCB-NLCs have 1.91 times increases in skin permeability comparable to RCB-SUS. Compared to RCB-SUS, RCB-NLCs were able to penetrate deeper into the epidermis membrane than RCB-SUS as per the findings of confocal microscopy. In dermatokinetic study, higher amount of RCB was maintained in both the layers of mice's skin when treated with RCB-NLCs gel comparable to the RCB-SUS gel preparation. The in-vitro, ex-vivo, CLSM, and dermatokinetics data demonstrated a significant possibility for this novel RCB formulation to be effective against skin cancer.
Collapse
Affiliation(s)
- Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Mohamed F. Balaha
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Mohammed Jafar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| | - Sana Hashmi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Majid Ahmad Ganaie
- Department of Pharmacology & Toxicology, College of Dentistry and Pharmacy, Buraydah Colleges, 51418 Buraydah, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| |
Collapse
|
5
|
Muheem A, Wasim M, Aldosari E, Baboota S, Ali J. Fabrication of TPGS decorated Etravirine loaded lipidic nanocarriers as a neoteric oral bioavailability enhancer for lymphatic targeting. DISCOVER NANO 2024; 19:5. [PMID: 38175319 PMCID: PMC10766915 DOI: 10.1186/s11671-023-03954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Etravirine (ERVN) is a potential NNRTI (non-nucleoside reverse transcriptase inhibitor) in treating HIV infection. It possesses extremely low oral bioavailability. The present research aims to optimize the formulation and characterization of TPGS-enriched ERVN-loaded lipid-based nanocarriers (NLCs) for HIV-infected patients. The formulation, ERVN-TPGS-NLCs, was optimized by central composite rotational design using a modified-solvent emulsification process. Various characterization parameters of NLCs were evaluated, including globule size of 121.56 ± 2.174 nm, PDI of 0.172 ± 0.042, the zeta potential of - 7.32 ± 0.021 mV, %EE of 94.42 ± 8.65% of ERVN and %DL was 8.94 ± 0.759% of ERVN and spherical shape was revealed by TEM. PXRD was also performed to identify the crystallinity of the sample. In-vitro drug release showed % a cumulative drug release of 83.72 ± 8.35% at pH 1.2 and 90.61 ± 9.11% at pH 6.8, respectively, whereas the % cumulative drug release from drug suspension (ERVN-S) was found to be 21.13 ± 2.01% at pH 1.2 and 24.84 ± 2.51 at pH 6.8 at the end of 48 h. Further, the intestinal permeation study and confocal microscope showed approximately three-fold and two-fold increased permeation in ERVN-TPGS-NLCs and ERVN-NLCs across the gut sac compared to ERVN-S. Hemolysis compatibility and lipolysis studies were performed to predict the in-vivo fate of the formulation. The pharmacokinetic study revealed a 3.13-fold increment in the relative bioavailability, which agrees with the ex-vivo studies, and lymphatic uptake was validated by using cycloheximide along with designed formulation, which showed the impact of lymphatic uptake in AUC. This study ensures that ERVN-TPGS-NLCs take lymphatic uptake to minimize the first-pass metabolism followed by improved oral bioavailability of ERVN. Thus, the enhanced bioavailability of ERVN can reduce the high dose of ERVN to minimize the adverse effects related to dose-related burden.
Collapse
Affiliation(s)
- Abdul Muheem
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Wasim
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Eman Aldosari
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Saudi Arabia
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Saudi Arabia.
| |
Collapse
|
6
|
Alam M, Rizwanullah M, Mir SR, Amin S. Statistically Optimized Tacrolimus and Thymoquinone Co-Loaded Nanostructured Lipid Carriers Gel for Improved Topical Treatment of Psoriasis. Gels 2023; 9:515. [PMID: 37504393 PMCID: PMC10379417 DOI: 10.3390/gels9070515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
The aim of this investigation was to develop and analyze a tacrolimus and thymoquinone co-loaded nanostructured lipid carriers (TAC-THQ-NLCs)-based nanogel as a new combinatorial approach for the treatment of psoriasis. The NLCs were formulated by an emulsification-solvent-evaporation technique using glyceryl monostearate, Capryol 90 (oil), and a mixture of Tween 80 and Span 20 as a solid lipid, liquid lipid, and surfactant, respectively. Their combination was optimized using a three-factor and three-level Box-Behnken design (33-BBD). The optimized TAC-THQ-NLCs were observed to be smooth and spherical with a particle size of 144.95 ± 2.80 nm, a polydispersity index of 0.160 ± 0.021, a zeta potential of -29.47 ± 1.9 mV, and an entrapment efficiency of >70% for both drugs. DSC and PXRD studies demonstrated the amorphous state of TAC and THQ in the lipid matrix of the NLCs. An FTIR analysis demonstrated the excellent compatibility of the drugs with the excipients without interactions. The TAC-THQ-NLC-based nanogel (abbreviated as TAC-THQ-NG) exhibited a good texture profile and good spreadability. The in vitro release study demonstrated a sustained drug release for 24 h from the TAC-THQ-NG that followed the Korsmeyer-Peppas kinetic model with a Fickian diffusion mechanism. Moreover, the TAC-THQ-NG revealed significantly higher dose-dependent toxicity against an HaCaT cell line compared to a TAC-THQ suspension gel (abbreviated as TAC-THQ-SG). Furthermore, the developed formulations demonstrated antioxidant activity comparable to free THQ. Confocal microscopy revealed improved permeation depth of the dye-loaded nanogel in the skin compared to the suspension gel. Based on these findings, it was concluded that TAC-THQ-NG is a promising combinatorial treatment approach for psoriasis.
Collapse
Affiliation(s)
- Meraj Alam
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Md Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Showkat R Mir
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
7
|
Kim S, Abdella S, Abid F, Afinjuomo F, Youssef SH, Holmes A, Song Y, Vaidya S, Garg S. Development and Optimization of Imiquimod-Loaded Nanostructured Lipid Carriers Using a Hybrid Design of Experiments Approach. Int J Nanomedicine 2023; 18:1007-1029. [PMID: 36855538 PMCID: PMC9968428 DOI: 10.2147/ijn.s400610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Background Imiquimod (IMQ) is an immunomodulating drug that is approved for the treatment of superficial basal cell carcinoma, actinic keratosis, external genital warts and perianal warts. However, IMQ cream (Aldara®) has several drawbacks including poor skin permeation, local toxicity, and compromised patient compliance as a topical pharmacological option. Methods Our research aimed to develop and optimize nanostructured lipid carriers (NLCs) containing IMQ for the first time using a hybrid design of experiments approach. The optimized formulation was then incorporated into a matrix-type topical patch as an alternative dosage form for topical application and evaluated for IMQ deposition across different skin layers in comparison to the performance of the commercial product. Additionally, our work also attempted to highlight the possibility of implementing environment-friendly practices in our IMQ-NLCs formulation development by reviewing our analytical methods and experimental designs and reducing energy and solvent consumption where possible. Results In this study, stearyl alcohol, oleic acid, Tween® 80 (polysorbate 80), and Gelucire® 50/13 (Stearoyl polyoxyl-32 glycerides) were selected for formulation development. The formulation was optimized using a 2k factorial design and a central composite design. The optimized formulation achieved the average particle size, polydispersity index, and zeta potential of 75.6 nm, 0.235, and - 30.9 mV, respectively. Subsequently, a matrix-type patch containing IMQ-NLCs was developed and achieved a statistically significant improvement in IMQ deposition in the deeper skin layers. The IMQ deposition from the patch into the dermis layer and receptor chamber was 3.3 ± 0.9 µg/cm2 and 12.3 ± 2.2 µg/cm2, while the commercial cream only deposited 1.0 ± 0.8 µg/cm2 and 1.5 ± 0.5 µg/cm2 of IMQ, respectively. Conclusion In summary, IMQ-NLC-loaded patches represent great potential as a topical treatment option for skin cancer with improved patient compliance.
Collapse
Affiliation(s)
- Sangseo Kim
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Fatima Abid
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Franklin Afinjuomo
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Souha H Youssef
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Amy Holmes
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Sachin Vaidya
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville, SA, 5011, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia,Correspondence: Sanjay Garg, Tel +61 8 8302 1575, Email
| |
Collapse
|
8
|
Zafar A, Awad Alsaidan O, Alruwaili NK, Sarim Imam S, Yasir M, Saad Alharbi K, Singh L, Muqtader Ahmed M. Formulation of intranasal surface engineered nanostructured lipid carriers of rotigotine: Full factorial design optimization, in vitro characterization, and pharmacokinetic evaluation. Int J Pharm 2022; 627:122232. [PMID: 36155794 DOI: 10.1016/j.ijpharm.2022.122232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022]
Abstract
The objective of the present research was to develop, optimize, and evaluate rotigotine (RT)-loaded chitosan (CH) coated nanostructured lipid carriers (RT-CH-NLCs) for nose-to-brain delivery. The NLCs were prepared by homogenization and sonication technique as well as optimized by using three factors at three-level Box-Behnken design. The prepared NLCs were evaluated for particle size, zeta potential, entrapment efficiency, drug release, and ex vivo permeation. The pharmacokinetic study was conducted on albino Wistar rats to evaluate the bioavailability and neuropharmacokinetic parameters after intranasal administration of the optimized formulation (RT-CH-NLCs-OPT). The optimized formulation showed the particle size (170.48 ± 8.37 nm), PDI (0.19 ± 0.03), zeta potential (+ 26.73 mV), and entrapment efficiency (82.37 ± 2.48 %). In vitro drug release study displayed a sustained drug release pattern from RT-CH-NLCs-OPT (86.73±8.58 % in 24 h) in comparison to RT-Dis (98.61±7.24 % in 16 h). The permeability coefficient (PC) was found to be 11.39 ± 1.08×10-4 cm.h-1 and 2.34 folds higher than RT-Dis (4.85±1.53×10-4 cm.h-1). The relative bioavailability of RT from RT-CH-NLCs-OPT was 3.2-fold greater as compared to RT-Dis. The absolute bioavailability of RT after intranasal administration of RT-CH-NLCs-OPT was 2.1-fold higher than RT-CH-NLCs-OPT administered intravenously. The brain targeting and targeting potential was displayed by DTE (422.03 %) and DTP (76.03 %) after intranasal administration of RT-CH-NLCs-OPT as compared to RT-Dis (DTE 173.91 % and DTP 59.97 %). Furthermore, confocal laser scanning microscopy results confirmed better brain targeting for RT-CH-NLCs-OPT as compared to RT-Dis. From these findings, it could be concluded that RT-CH-NLCs could serve as a promising strategy for targeting RT through the intranasal route.
Collapse
Affiliation(s)
- Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia.
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella 396, Ethiopia
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, 72341, Al-Jouf, Saudi Arabia
| | - Lubhan Singh
- Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, UP 250005, India
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
9
|
Bajwa N, Mahal S, Naryal S, Singh PA, Baldi A. Development of Novel Solid Nanostructured Lipid Carriers for Bioavailability Enhancement Using a Quality by Design Approach. AAPS PharmSciTech 2022; 23:253. [DOI: 10.1208/s12249-022-02386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022] Open
|
10
|
Gilani SJ, Bin-Jumah MN, Imam SS, Zafar A, Yasir M, Alshehri S, Ghuneim MM. Formulation of Osimertinib Nano Lipid Carriers: Optimization, Characterization and Cytotoxicity Assessment. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Luo Q, Yang J, Xu H, Shi J, Liang Z, Zhang R, Lu P, Pu G, Zhao N, Zhang J. Sorafenib-loaded nanostructured lipid carriers for topical ocular therapy of corneal neovascularization: development, in-vitro and in vivo study. Drug Deliv 2022; 29:837-855. [PMID: 35277107 PMCID: PMC8920403 DOI: 10.1080/10717544.2022.2048134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sorafenib (SRB), a multikinase inhibitor, is effective in reducing experimental corneal neovascularization (CNV) after oral administration; however, its therapeutic use in ocular surface disorders is restricted due to poor solubility and limited bioavailability. This study aimed to develop and optimize SRB-loaded nanostructured lipid carriers (SRB-NLCs) for topical ocular delivery by a central composite design response surface methodology (CCD-RSM). It was spherical and uniform in morphology with an average particle size of 111.87 ± 0.93 nm and a narrow size distribution. The in vitro drug release from the released SRB-NLC formulation was well fitted to Korsmeyer Peppas release kinetics. The cell counting kit-8 (CCK-8) cell viability assay demonstrated that SRB-NLC was not obviously cytotoxic to human corneal epithelial cells (HCECs). An in vivo ocular irritation test showed that SRB-NLC was well tolerated by rabbit eyes. Ocular pharmacokinetics revealed 6.79-fold and 1.24-fold increase in the area under concentration-time curves (AUC0-12h) over 12 h in rabbit cornea and conjunctiva, respectively, treated with one dose of SRB-NLC compared with those treated with SRB suspension. Moreover, SRB-NLC (0.05% SRB) and dexamethasone (0.025%) similarly suppressed corneal neovascularization in mice. In conclusion, the optimized SRB-NLC formulation demonstrated excellent physicochemical properties and good tolerance, sustained release, and enhanced ocular bioavailability. It is safe and potentially effective for the treatment of corneal neovascularization.
Collapse
Affiliation(s)
- Qing Luo
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohang Xu
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jieran Shi
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Rui Zhang
- Department of Ophthalmology, Henan University People’s Hospital, Zhengzhou, China
| | - Ping Lu
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Guojuan Pu
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ningmin Zhao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
12
|
Alam T, Ansari MA, Baboota S, Ali J. Nanostructured lipid carriers of isradipine for effective management of hypertension and isoproterenol induced myocardial infarction. Drug Deliv Transl Res 2022; 12:577-588. [PMID: 33782898 DOI: 10.1007/s13346-021-00958-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
The objective of the present paper is to formulate nanostructured lipid carriers (NLCs) of a calcium channel blocker, isradipine, to enhance its oral bioavailability and prolong its antihypertensive effect apart from evaluating efficacy of the formulation in isoproterenol induced myocardial infarction in rats. Formulation was optimized using quality by design (QbD)-based approach. Three factors i.e., total lipid concentration (%), homogenization pressure (bar), and number of cycles were optimized through Box-Behnken design to estimate their effect on critical quality attributes (CQAs) viz., size (nm), % entrapment efficiency, and in vitro % drug release which were found to be 80.9 ± 1.7 nm, 83.51 ± 2.15%, and 83.3 ± 3.86% after 24 h, respectively. In vivo pharmacokinetic study indicated 4.207 and 1.907 times increase in the oral bioavailability of optimized nanostructured lipid carrier without and with cycloheximide (lymphatic transport inhibitor), respectively. Treatment with ISO (isoproterenol) significantly diverges the levels of antioxidant marker, TBARS (thiobarbituric acid), and ultrastructure of the cardiac tissue indicating significant myocardial damage. Pretreatment of nanostructured lipid carrier of isradipine (ISD-NLCs) significantly prevented the antioxidant status and ultrastructural changes in the heart. In conclusion, this study confirms that optimized NLCs can substantially improve oral bioavailability of isradipine and presents a promising strategy in the management of hypertension for longer duration of time apart from demonstrating its preclinical efficacy in cardioprotection.
Collapse
Affiliation(s)
- Tausif Alam
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
13
|
Ribociclib Nanostructured Lipid Carrier Aimed for Breast Cancer: Formulation Optimization, Attenuating In Vitro Specification, and In Vivo Scrutinization. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6009309. [PMID: 35155677 PMCID: PMC8831049 DOI: 10.1155/2022/6009309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/02/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022]
Abstract
Purpose The current investigation is on the explicit development and evaluation of nanostructured lipidic carriers (NLCs) through the oral route to overcome the inherent lacuna of chemotherapeutic drug, in which Ribociclib (RBO) was used for breast cancer to diminish the bioavailability issue. Method The RBO-NLCs were prepared using the solvent evaporation method and optimized method by the Box–Behnken design (BBD). Various assessment parameters characterized the optimized formulation and their in vivo study. Results The prepared NLCs exhibited mean particle size of 114.23 ± 2.75 nm, mean polydispersity index of 0.649 ± 0.043, and high entrapment efficiency of 87.7 ± 1.79%. The structural analysis by TEM revealed the spherical size of NLCs and uniform drug distribution. An in vitro drug release study was established through the 0.1 N HCl pH 1.2, acetate buffer pH 4.5, and phosphate buffer pH 6.8 with % cumulative drug release of 86.71 ± 8.14, 85.82 ± 4.58, and 70.98 ± 5.69%, was found respectively, compared with the RBO suspension (RBO-SUS). In vitro intestinal gut permeation studies unveiled a 1.95-fold gain in gut permeation by RBO-NLCs compared with RBO-SUS. In vitro lipolysis suggests the drug availability at the absorption site. In vitro haemolysis study suggests the compatibility of NLCs to red blood cells compared to the suspension of the pure drug. The confocal study revealed the depth of penetration of the drug into the intestine by RBO-NLCs which was enhanced compared to RBO-SUS. A cell line study was done in MCF-7 and significantly reduced the IC50 value compared to the pure drug. The in vivo parameters suggested the enhanced bioavailability by 3.54 times of RBO-NLCs as compared to RBO-SUS. Conclusion The in vitro, ex vivo, and in vivo results showed a prominent potential for bioavailability enhancement of RBO and effective breast cancer therapy.
Collapse
|
14
|
Kataria D, Zafar A, Ali J, Khatoon K, Khan S, Imam SS, Yasir M, Ali A. Formulation of Lipid-Based Nanocarriers of Lacidipine for Improvement of Oral Delivery: Box-Behnken Design Optimization, In Vitro, Ex Vivo, and Preclinical Assessment. Assay Drug Dev Technol 2022; 20:5-21. [DOI: 10.1089/adt.2021.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dheeraj Kataria
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Karishma Khatoon
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Yasir
- Department of Pharmacy, College of Health Science, Arsi University, Asella, Ethiopia
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
15
|
Javed MN, Akhter MH, Taleuzzaman M, Faiyazudin M, Alam MS. Cationic nanoparticles for treatment of neurological diseases. FUNDAMENTALS OF BIONANOMATERIALS 2022:273-292. [DOI: 10.1016/b978-0-12-824147-9.00010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
|
16
|
Quality-by-design in pharmaceutical development: From current perspectives to practical applications. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:497-526. [PMID: 36651549 DOI: 10.2478/acph-2021-0039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 01/19/2023]
Abstract
Current pharmaceutical research directions tend to follow a systematic approach in the field of applied research and development. The concept of quality-by-design (QbD) has been the focus of the current progress of pharmaceutical sciences. It is based on, but not limited, to risk assessment, design of experiments and other computational methods and process analytical technology. These tools offer a well-organized methodology, both to identify and analyse the hazards that should be handled as critical, and are therefore applicable in the control strategy. Once implemented, the QbD approach will augment the comprehension of experts concerning the developed analytical technique or manufacturing process. The main activities are oriented towards the identification of the quality target product profiles, along with the critical quality attributes, the risk management of these and their analysis through in silico aided methods. This review aims to offer an overview of the current standpoints and general applications of QbD methods in pharmaceutical development.
Collapse
|
17
|
Preparation and characterization of a thioctic acid nanostructured lipid carrier to enhance the absorption profile and limit the nephrotoxicity associated with allopurinol in the treatment of gout. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Qamar Z, Ashhar MU, Annu, Qizilibash FF, Sahoo PK, Ali A, Ali J, Baboota S. Lipid nanocarrier of selegiline augmented anti-Parkinson's effect via P-gp modulation using quercetin. Int J Pharm 2021; 609:121131. [PMID: 34563617 DOI: 10.1016/j.ijpharm.2021.121131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023]
Abstract
In the present study, SEL was loaded in a lipid nanocarrier (LNC) formulation with a P-gp pump inhibitor i.e., Quercetin (QUR) for improving the bioavailability of the SEL in the brain via the oral route. SEL-QUR LNC was formulated using modified emulsiosonication method and optimized using central composite rotatable design (CCRD) design. The results showed that optimized SEL-QUR LNC formulation was spherical with globule size, polydispersity index, entrapment efficiency and zeta potential within the range of 92.46-95.34 nm, 0.239-0.248, 88.94-91.26%, and -6.21 to -7.75 mV respectively. A 4-fold and 6-fold increase was observed in the permeation of SEL from SEL-QUR LNC across the gut sac in comparison with SEL-QUR and SEL suspensions respectively. CLSM images showed 2-fold deeper permeation of SEL across intestinal membrane demonstrating excellent in vivo prospect of the formulation. The behavioural studies including forced swimming, muscle coordination, locomotor activity, akinesia, and catalepsy were performed in the haloperidol-induced PD rats that demonstrated increased efficacy of the formulation in contrast to the SEL-QUR and SEL suspensions. These studies concluded that developed LNC formulation loaded SEL with P-gp inhibitor had the potential in improving bioavailability of SEL in the brain via oral route.
Collapse
Affiliation(s)
- Zufika Qamar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Muhammad Usama Ashhar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Annu
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Farheen Fatima Qizilibash
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Pravat Kumar Sahoo
- Delhi Institute of Pharmaceutical Science and Research (DIPSAR), Pushp Vihar, Sector III, MB Road, New Delhi 110017, India
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
19
|
Raju M, Kunde SS, Auti ST, Kulkarni YA, Wairkar S. Berberine loaded nanostructured lipid carrier for Alzheimer's disease: Design, statistical optimization and enhanced in vivo performance. Life Sci 2021; 285:119990. [PMID: 34592234 DOI: 10.1016/j.lfs.2021.119990] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 11/26/2022]
Abstract
Berberine, an isoquinoline alkaloid, is reported for the treatment of Alzheimer's disease. Despite having substantial therapeutic potential, it exhibits poor absorption, low oral bioavailability and limited penetration in the brain. In this study, berberine-loaded nanostructured lipid carriers (Berb-NLCs) were developed by melt-emulsification and ultrasonication using Geleol, Miglyol 812 N, Solutol HS 15 as a solid lipid, liquid lipid and surfactant, respectively. The Berb-NLC formulation was statistically optimized by a 32 factorial design in which the effect of surfactant and berberine concentration was assessed on particle size and entrapment efficiency of Berb-NLCs. Optimized Berb-NLCs (Trial-5) exhibited particle size of 186 nm, polydispersity index of 0.108, the zeta potential of -36.86 mV and 88% entrapment efficiency. The in vitro release of berberine from Batch-B5 was 82% in phosphate buffer at the end of 24 h. The comparative results of pharmacodynamic studies involving behavioral assessment by locomotor activity, passive avoidance test, elevated plus maze test and spatial memory assessment by Morris water maze demonstrated improved behavioral parameters in vivo by Berb-NLCs compared to pure berberine in Albino Wistar rats. Thus, berberine-loaded nanostructured lipid carriers have the potential of brain targeting and were effective in an animal model of Alzheimer's disease.
Collapse
Affiliation(s)
- Marina Raju
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Shalvi Sinai Kunde
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sandip T Auti
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
20
|
Zafar A, Alruwaili NK, Imam SS, Alsaidan OA, Alharbi KS, Yasir M, Elmowafy M, Mohammed EF, Al-Oanzi ZH. Formulation of Chitosan-Coated Piperine NLCs: Optimization, In Vitro Characterization, and In Vivo Preclinical Assessment. AAPS PharmSciTech 2021; 22:231. [PMID: 34477999 DOI: 10.1208/s12249-021-02098-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
In the present research work, surface-modified nanostructured lipid carriers (NLCs) with chitosan (CH) were prepared to improve the therapeutic efficacy of piperine (PP). NLCs were developed and optimized (CH-PP-NLCs-opt) by design expert software and the selected NLCs surface was coated with chitosan (0.2% w/v). CH-PP-NLCs-opt have shown a particle size of 149.34 ± 4.54 nm and entrapment efficiency of 80.65 ± 1.23%. The results of the solid-state characterization study exhibited that PP enclosed in lipids and present amorphous form. It might be due to the nanoparticle size of NLCs. The drug release study revealed PP-NLCs-opt and CH-PP-NLCs-opt exhibited significant (P < 0.05) difference in PP release (88.87 ± 5.23% and 76.34 ± 4.54%) as compared to pure PP (19.02 ± 2.87%). CH-PP-NLCs-opt exhibited strong bioadhesion than PP-NLCs-opt which has a positive influence the drug permeation and absorption. CH-PP-NLCs-opt showed higher permeation (1083.34 ± 34.15 μg/ cm2) than pure PP (106.65 ± 15.44 μg/cm2) and PP-NLCs-opt (732.45 ± 28.56 μg/ cm2). The significantly enhanced bioavailability of PP was observed from CH-PP-NLCs-opt (3.76- and 1.21-fold) than PP-dispersion and PP-NLCs-opt. The diabetes was induced in rats by a single intraperitoneal administration of streptozotocin (STZ, 40 mg/kg, citrate buffer pH 4.5), and results revealed that PP-NLCs-opt and CH-PP-NLCs-opt reduce the blood glucose level (28.26% and 36.52% respectively) as compared to PP-dispersion (10.87%). It also helps to maintain the altered biochemical parameters. In conclusion, CH-PP-NLC can be a novel oral nanocarrier for the management of diabetes.
Collapse
|
21
|
Nanostructured lipid carrier to overcome stratum corneum barrier for the delivery of agomelatine in rat brain; formula optimization, characterization and brain distribution study. Int J Pharm 2021; 607:121006. [PMID: 34391848 DOI: 10.1016/j.ijpharm.2021.121006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 01/22/2023]
Abstract
The current work attempted to achieve bypassed hepatic metabolism, controlled release, and boosted brain distribution of agomelatine by loading in NLC and administering via transdermal route. Agomelatine-loaded NLC (AG-NLC) was fabricated employing melt-emulsification technique and optimized using central composite design. The optimized AG-NLC had 183.16 ± 6.82 nm particle size, 0.241 ± 0.0236 polydispersity index, and 83.29 ± 2.76% entrapment efficiency. TEM and FESEM visually confirmed the size and surface morphology of AG-NLC, respectively. DSC thermogram confirmed the conversion of AG from crystalline to amorphous form, which indicates improved solubility of AG when loaded in NLC. For further stability and improved applicability, AG-NLC was converted into a hydrogel. The texture analysis of AG-NLC-Gel showed appropriate gelling property in terms of hardness (142.292 g), cohesiveness (0.955), and adhesiveness (216.55 g.sec). In comparison to AG-suspension-Gel (38.036 ± 6.058%), AG-NLC-Gel (89.440 ± 2.586%) exhibited significantly higher (P < 0.005) skin permeation profile during the 24 h study. In the CLSM study, Rhodamine-B loaded AG-NLC-Gel established skin penetration up to the depth of 45 µm, whereas AG-Suspension-Gel was restricted only to a depth of 25 µm. γ-scintigraphy in wistar rats revealed ~ 55.38% brain distribution potential of 99mTc-AG-NLC-Gel at 12 h, which was 6.31-fold higher than 99mTc-AG-Suspension-Gel. Overall, the gamma scintigraphy assisted brain distribution study suggests that NLC-Gel system may improve the brain delivery of agomelatine, when applied transdermally.
Collapse
|
22
|
Borderwala K, Rathod S, Yadav S, Vyas B, Shah P. Eudragit S-100 Surface Engineered Nanostructured Lipid Carriers for Colon Targeting of 5-Fluorouracil: Optimization and In Vitro and In Vivo Characterization. AAPS PharmSciTech 2021; 22:216. [PMID: 34386888 DOI: 10.1208/s12249-021-02099-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
5-Fluorouracil (5-FU) is the most preferred chemotherapeutic agent in the management of colon cancer but is associated with poor therapeutic efficacy and lack of site specificity. Hence, it was aimed to employ Eudragit S100 surface engineered 5-FU nanostructured lipid carriers for the spatial and temporal release of the drug for the treatment of colon cancer. Hot high-pressure homogenization (HPH) technique was employed in the preparation of 5-FU-NLCs. The optimization of 5-FU-NLCs was performed using a Quality by Design (QbD) approach. A 32 factorial design was employed wherein the relationship between independent variables [amount of oleic acid (X1) and concentration of Tween®80 (X2)] and dependent variables [particle size (Y1) and % entrapment efficiency (Y2)] was studied. Optimized 5-FU-NLCs were surface treated to obtain Eudragit S100-coated 5-FU-NLCs (EU-5-FU-NLCs). The evaluation parameters for 5-FU-NLCs and EU-5-FU-NLCs included surface morphology, particle size, PDI, and zeta potential. In vitro release from EU-5-FU-NLCs revealed a selective and controlled 5-FU release in the colonic region for 24 h. In vitro cytotoxicity (MTT assay) was performed against Caco-2 cancer cells, wherein EU-5-FU-NLCs exhibited a 2-fold greater cytotoxic potential in comparison to a 5-FU solution (5-FU-DS). Oral administration of EU-5-FU-NLCs in Albino Wistar rats depicted a higher Cmax (2.54 folds) and AUC (11 folds) as well as prolonged Tmax (16 folds) and MRT (4.32 folds) compared to 5-FU-DS confirming higher bioavailability along with the spatial and temporal release in the colonic region. Thus, a multifaceted strategy involving abridgement of nanotechnology along with surface engineering is introduced for effective chemotherapy of colon cancer via oral administration of 5-FU with uncompromised safety and higher efficacy.Graphical abstract.
Collapse
|
23
|
Okur NÜ, Siafaka PI, Gökçe EH. Challenges in Oral Drug Delivery and Applications of Lipid Nanoparticles as Potent Oral Drug Carriers for Managing Cardiovascular Risk Factors. Curr Pharm Biotechnol 2021; 22:892-905. [PMID: 32753006 DOI: 10.2174/1389201021666200804155535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/25/2020] [Accepted: 07/07/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND The oral application of drugs is the most popular route through which the systemic effect can be achieved. Nevertheless, oral administration is limited by difficulties related to the physicochemical properties of the drug molecule, including low aqueous solubility, instability, low permeability, and rapid metabolism, all of which result in low and irregular oral bioavailability. OBJECTIVE The enhancement of oral bioavailability of drug molecules with such properties could lead to extreme complications in drug preparations. Oral lipid-based nanoparticles seem to possess extensive advantages due to their ability to increase the solubility, simplifying intestinal absorption and decrease or eradicate the effect of food on the absorption of low soluble, lipophilic drugs and therefore improving the oral bioavailability. METHODS The present review provides a summary of the general theory of lipid-based nanoparticles, their preparation methods, as well as their oral applications. Moreover, oral drug delivery challenges are discussed. RESULTS According to this review, the most frequent types of lipid-based nanoparticle, the solid lipid nanoparticles and nanostructured lipid carriers are potent oral carriers due to their ability to penetrate the oral drug adsorption barriers. Moreover, such lipid nanoparticles can be beneficial drug carriers against cardiovascular risk disorders as diabetes, hypertension, etc. Conclusion: In this review, the most current and promising studies involving Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as oral drug carriers are reported aiming to assist researchers who focus their research on lipid-based nanoparticles.
Collapse
Affiliation(s)
- Neslihan Ü Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evren H Gökçe
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
24
|
Gurumukhi VC, Bari SB. Quality by design (QbD)-based fabrication of atazanavir-loaded nanostructured lipid carriers for lymph targeting: bioavailability enhancement using chylomicron flow block model and toxicity studies. Drug Deliv Transl Res 2021; 12:1230-1252. [PMID: 34110597 DOI: 10.1007/s13346-021-01014-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
Atazanavir (ATV) is widely used as anti-HIV agent having poor aqueous solubility needs to modulate novel drug delivery system to enhance therapeutic efficiency and safety. The main objective of the present work was to fabricate ATV-loaded nanostructured lipid carriers (NLCs) employing quality by design (QbD) approach to address the challenges of bioavailability and their safety after oral administration. Herein, the main objective was to identify the influencing variables for the production of quality products. Considering this objective, quality target product profile (QTPP) was assigned and a systematic risk assessment study was performed to identify the critical material attributes (CMAs) and critical process parameter (CPP) having an influence on critical quality attributes (CQAs). Lipid concentrations, surfactant concentrations, and pressure of high-pressure homogenizer were identified as CMAs and CPP. ATV-NLCs were prepared by emulsification-high pressure homogenization method and further lyophilized to obtain solid-state NLCs. The effect of formulation variables (CMAs and CPP) on responses like particle size (Y1), polydispersity index (Y2), and zeta potential (Y3) was observed by central composite rotatable design (CCRD). The data were statistically evaluated by ANOVA for confirmation of a significant level (p < 0.05). The optimal conditions of NLCs were obtained by generating design space and desirability value. The lyophilized ATV-NLCs were characterized by DSC, powder X-ray diffraction, and FT-IR analysis. The morphology of NLCs was revealed by TEM and FESEM. In vitro study suggested a sustained release pattern of drug (92.37 ± 1.03%) with a mechanism of Korsmeyer-Peppas model (r2 = 0.925, and n = 0.63). In vivo evaluation in Wistar rats showed significantly higher (p < 0.001) plasma drug concentration of ATV-NLCs as compared to ATV-suspension using chylomicron flow block model. The relative bioavailability of ATV-NLCs was obtained to be 2.54 folds. Thus, a safe and promising drug targeting system was successfully developed to improve bioavailability and avoiding first-pass effect ensures to circumvent the acute-toxicity of liver.
Collapse
Affiliation(s)
- Vishal C Gurumukhi
- Department of Pharmaceutics and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India.
| | - Sanjaykumar B Bari
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India
| |
Collapse
|
25
|
Tavares Luiz M, Santos Rosa Viegas J, Palma Abriata J, Viegas F, Testa Moura de Carvalho Vicentini F, Lopes Badra Bentley MV, Chorilli M, Maldonado Marchetti J, Tapia-Blácido DR. Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems. Eur J Pharm Biopharm 2021; 165:127-148. [PMID: 33992754 DOI: 10.1016/j.ejpb.2021.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/05/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology has been widely applied to develop drug delivery systems to improve therapeutic performance. The effectiveness of these systems is intrinsically related to their physicochemical properties, so their biological responses are highly susceptible to factors such as the type and quantity of each material that is employed in their synthesis and to the method that is used to produce them. In this context, quality-oriented manufacturing of nanoparticles has been an important strategy to understand and to optimize the factors involved in their production. For this purpose, Design of Experiment (DoE) tools have been applied to obtain enough knowledge about the process and hence achieve high-quality products. This review aims to set up the bases to implement DoE as a strategy to improve the manufacture of nanocarriers and to discuss the main factors involved in the production of the most common nanocarriers employed in the pharmaceutical field.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Santos Rosa Viegas
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Palma Abriata
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Viegas
- Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, Sao Paulo State University, Araraquara, SP, Brazil
| | | | - Delia Rita Tapia-Blácido
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
26
|
El-Laithy HM, Youssef A, El-Husseney SS, El Sayed NS, Maher A. Enhanced alveo pulmonary deposition of nebulized ciclesonide for attenuating airways inflammations: a strategy to overcome metered dose inhaler drawbacks. Drug Deliv 2021; 28:826-843. [PMID: 33928836 PMCID: PMC8812587 DOI: 10.1080/10717544.2021.1905747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ciclesonide (CIC), an inhaled corticosteroid for bronchial asthma is currently available as metered dose inhaler (CIC–MDI) which possesses a major challenge in the management of the elderly, critically ill patients and children. In this work, nebulized CIC nano-structure lipid particles (CIC-NLPs) were prepared and evaluated for their deep pulmonary delivery and cytotoxicity to provide additional clinical benefits to patients in controlled manner and lower dose. The bio-efficacy following nebulization in ovalbumin (OVA) induced asthma Balb/c mice compared to commercial (CIC–MDI) was also assessed. The developed NLPs of 222.6 nm successfully entrapped CIC (entrapment efficiency 93.3%) and exhibited favorable aerosolization efficiency (mass median aerodynamic diameter (MMAD) 2.03 μm and fine particle fraction (FPF) of 84.51%) at lower impactor stages indicating deep lung deposition without imparting any cytotoxic effect up to a concentration of 100 μg/ml. The nebulization of 40 µg dose of the developed CIC-NLPs revealed significant therapeutic impact in the mitigation of the allergic airways inflammations when compared to 80 µg dose of the commercial CIC–MDI inhaler (Alvesco®). Superior anti-inflammatory and antioxidative stress effects characterized by significant decrease (p< .0001) in inflammatory cytokines IL-4 and 13, serum IgE levels, malondialdehyde (MDA), nitric oxide (NO), TNF-α, and activated nuclear factor-κB (NF-κB) activity were obvious with concomitant increase in superoxide dismutase (SOD) activity. Histological examination with inhibition of inflammatory cell infiltration in the respiratory tract was correlated well with observed biochemical improvement.
Collapse
Affiliation(s)
- Hanan M El-Laithy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Amal Youssef
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | | | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed Maher
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| |
Collapse
|
27
|
Annu, Baboota S, Ali J. In vitro appraisals and ex vivo permeation prospect of chitosan nanoparticles designed for schizophrenia to intensify nasal delivery. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03598-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Abstract
The field of nanomedicine continues to grow with new technologies and formulations in development for several disease states. Much research focuses on the use of injectable nanomedicines for treatment of neoplasms; however, there are several formulations in development that use nanotechnology that can be administered enterally for noncancer indications. These nanomedicine treatments have been developed for systemic drug delivery or local drug delivery along the gastrointestinal tract. This Review gives a brief overview of the alimentary canal and highlights new research in nanomedicine in noncancer disease states delivered via enteral routes of administration. Relevant recent research is summarized on the basis of the targeted site of action or absorption, including the buccal, sublingual, stomach, small intestine, and large intestine areas of the alimentary canal. The benefits of nanodrug delivery are discussed as well as barriers and challenges for future development in the field.
Collapse
Affiliation(s)
- Brianna Cote
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States
| | - Deepa Rao
- School of Pharmacy, Pacific University, 222 SE 8th Avenue, Suite 451, Hillsboro, Oregon 97123, United States
| | - Adam W G Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States.,Biomedical Engineering Department, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States.,Knight Cancer Institute, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States
| |
Collapse
|
29
|
Makoni PA, Khamanga SM, Walker RB. Muco-adhesive clarithromycin-loaded nanostructured lipid carriers for ocular delivery: Formulation, characterization, cytotoxicity and stability. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Javed MN, Pottoo FH, Shamim A, Hasnain MS, Alam MS. Design of Experiments for the Development of Nanoparticles, Nanomaterials, and Nanocomposites. DESIGN OF EXPERIMENTS FOR PHARMACEUTICAL PRODUCT DEVELOPMENT 2021:151-169. [DOI: 10.1007/978-981-33-4351-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
31
|
Khan SA, Rehman S, Nabi B, Iqubal A, Nehal N, Fahmy UA, Kotta S, Baboota S, Md S, Ali J. Boosting the Brain Delivery of Atazanavir through Nanostructured Lipid Carrier-Based Approach for Mitigating NeuroAIDS. Pharmaceutics 2020; 12:pharmaceutics12111059. [PMID: 33172119 PMCID: PMC7694775 DOI: 10.3390/pharmaceutics12111059] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 01/12/2023] Open
Abstract
Atazanavir (ATZ) presents poor brain availability when administered orally, which poses a major hurdle in its use as an effective therapy for the management of NeuroAIDS. The utilization of nanostructured lipid carriers (NLCs) in conjunction with the premeditated use of excipients can be a potential approach for overcoming the limited ATZ brain delivery. Methods: ATZ-loaded NLC was formulated using the quality by design-enabled approach and further optimized by employing the Box–Behnken design. The optimized nanoformulation was then characterized for several in vitro and in vivo assessments. Results: The optimized NLC showed small particle size of 227.6 ± 5.4 nm, high entrapment efficiency (71.09% ± 5.84%) and high drug loading capacity (8.12% ± 2.7%). The release pattern was observed to be biphasic exhibiting fast release (60%) during the initial 2 h, then trailed by the sustained release. ATZ-NLC demonstrated a 2.36-fold increase in the cumulative drug permeated across the rat intestine as compared to suspension. Pharmacokinetic studies revealed 2.75-folds greater Cmax in the brain and 4-fold improvement in brain bioavailability signifying the superiority of NLC formulation over drug suspension. Conclusion: Thus, NLC could be a promising avenue for encapsulating hydrophobic drugs and delivering it to their target site. The results suggested that increase in bioavailability and brain-targeted delivery by NLC, in all plausibility, help in improving the therapeutic prospects of atazanavir.
Collapse
Affiliation(s)
- Saif Ahmad Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.A.K.); (S.R.); (B.N.); (N.N.); (S.B.)
| | - Saleha Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.A.K.); (S.R.); (B.N.); (N.N.); (S.B.)
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.A.K.); (S.R.); (B.N.); (N.N.); (S.B.)
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Nida Nehal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.A.K.); (S.R.); (B.N.); (N.N.); (S.B.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (S.K.); (S.M.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (S.K.); (S.M.)
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.A.K.); (S.R.); (B.N.); (N.N.); (S.B.)
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (S.K.); (S.M.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (S.A.K.); (S.R.); (B.N.); (N.N.); (S.B.)
- Correspondence: ; Tel.: +91-981-1312-247; Fax: +91-11-2605-9663
| |
Collapse
|
32
|
Rehman S, Nabi B, Baboota S, Ali J. Tailoring lipid nanoconstructs for the oral delivery of paliperidone: Formulation, optimization and in vitro evaluation. Chem Phys Lipids 2020; 234:105005. [PMID: 33144070 DOI: 10.1016/j.chemphyslip.2020.105005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The present research work involves Quality by Design (QbD)-based fabrication of lipid nanoconstructs (LNC) of paliperidone (PPD) bearing superior biopharmaceutical attributes. METHODS LNC of paliperidone was prepared by melt emulsification-probe sonication and high-pressure homogenization method followed by optimization using QbD approach. Preparing LNC by both these methods will give the benefit of identifying the best optimized formulation which will be further evaluated for in vitro studies. RESULTS The best optimized formulation was obtained using melt emulsification-probe sonication technique with small particle size (86.35 nm), high entrapment efficiency (90.07 %), and high loading capacity (8.49 %). The drug release from LNC was found to be 5, 8, and 9-folds greater than drug suspension in pH 1.2, 6.8, and 7.4 respectively (p < 0.001). Stability studies of LNC in simulated gastric fluid pH 1.2 and fasted state simulated intestinal fluid depicted no alteration in particle size and polydispersity index of LNC but were found to increase in fed state simulated intestinal fluid. The drug permeability through rat intestine for LNC was found to be approximately 6-folds (p < 0.05) greater as compared to the drug suspension which was further confirmed by confocal microscopy. The in vitro lipolysis study presented significantly highest solubilization (p < 0.001) in the aqueous phase thereby anticipating higher in vivo absorption. CONCLUSION Thus, it was concluded that LNC bears the knack of improving the solubilization and permeation potential of an otherwise hydrophobic drug, paliperidone."
Collapse
Affiliation(s)
- Saleha Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
33
|
Nabi B, Rehman S, Aggarwal S, Baboota S, Ali J. Quality by Design Adapted Chemically Engineered Lipid Architectonics for HIV Therapeutics and Intervention: Contriving of Formulation, Appraising the In vitro Parameters and In vivo Solubilization Potential. AAPS PharmSciTech 2020; 21:261. [PMID: 32974738 DOI: 10.1208/s12249-020-01795-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
The present research encompasses a quality by design approach for fabricating lipid architectonics (LA) of an antiretroviral drug (Elvitegravir: EVR) to overcome inherent challenges of EVR to curtail its bioavailability issues. Comparative development strategy employing Box-Behnken design was undertaken between high-pressure homogenization technique and melt emulsification followed by probe sonication method, wherein the later was selected for engineering the EVR-LA. Particle size, entrapment efficiency and drug loading for EVR-LA were 84.6 ± 2.3 nm, 90.7 ± 1.8% and 8.9 ± 0.7% respectively. In vitro release studies established the supremacy of EVR-LA when compared with drug suspension (EVR-DS) by having a cumulative drug release of 96.89 ± 2.5% in pH 1.2, 89.84 ± 2.4% in pH 6.8 and 86.64 ± 2.5% in pH 7.4. Gut permeation studies revealed 19-fold increment in permeation by EVR-LA attributable to intrinsic permeation enhancing and efflux protein inhibitory activity of the lipids and surfactants incorporated. The result was validated by confocal study which exhibited enhanced permeation by EVR-LA. Dissolution study, conducted in fasted state simulated intestinal fluid (FaSSIF) and fed state simulated intestinal fluid (FeSSIF) media to ascertain the effect of food, demonstrated boosted absorption from FeSSIF media. Stability study was conducted in SGF pH 1.2, FaSSIF and FeSSIF media. The lipolysis study, conducted to determine in vivo fate of EVR, revealed 27-fold increment in solubilization potential from EVR-LA (72.43 ± 2.6%). Thus, EVR-LA exhibited remarkable in vitro results by improving gut permeation and solubilization fate along with enhanced lymphatic uptake, thereby leading to prospective in vivo fate.
Collapse
|
34
|
Cunha S, Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Using the quality by design (QbD) approach to optimize formulations of lipid nanoparticles and nanoemulsions: A review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102206. [DOI: 10.1016/j.nano.2020.102206] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
|
35
|
Cunha S, Costa CP, Loureiro JA, Alves J, Peixoto AF, Forbes B, Sousa Lobo JM, Silva AC. Double Optimization of Rivastigmine-Loaded Nanostructured Lipid Carriers (NLC) for Nose-to-Brain Delivery Using the Quality by Design (QbD) Approach: Formulation Variables and Instrumental Parameters. Pharmaceutics 2020; 12:E599. [PMID: 32605177 PMCID: PMC7407548 DOI: 10.3390/pharmaceutics12070599] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 01/02/2023] Open
Abstract
Rivastigmine is a drug commonly used in the management of Alzheimer's disease that shows bioavailability problems. To overcome this, the use of nanosystems, such as nanostructured lipid carriers (NLC), administered through alternative routes seems promising. In this work, we performed a double optimization of a rivastigmine-loaded NLC formulation for direct drug delivery from the nose to the brain using the quality by design (QbD) approach, whereby the quality target product profile (QTPP) was the requisite for nose to brain delivery. The experiments started with the optimization of the formulation variables (or critical material attributes-CMAs) using a central composite design. The rivastigmine-loaded NLC formulations with the best critical quality attributes (CQAs) of particle size, polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE) were selected for the second optimization, which was related to the production methods (ultrasound technique and high-pressure homogenization). The most suitable instrumental parameters for the production of NLC were analyzed through a Box-Behnken design, with the same CQAs being evaluated for the first optimization. For the second part of the optimization studies, were selected two rivastigmine-loaded NLC formulations: one produced by ultrasound technique and the other by the high-pressure homogenization (HPH) method. Afterwards, the pH and osmolarity of these formulations were adjusted to the physiological nasal mucosa values and in vitro drug release studies were performed. The results of the first part of the optimization showed that the most adequate ratios of lipids and surfactants were 7.49:1.94 and 4.5:0.5 (%, w/w), respectively. From the second part of the optimization, the results for the particle size, PDI, ZP, and EE of the rivastigmine-loaded NLC formulations produced by ultrasound technique and HPH method were, respectively, 114.0 ± 1.9 nm and 109.0 ± 0.9 nm; 0.221 ± 0.003 and 0.196 ± 0.007; -30.6 ± 0.3 mV and -30.5 ± 0.3 mV; 97.0 ± 0.5% and 97.2 ± 0.3%. Herein, the HPH was selected as the most suitable production method, although the ultrasound technique has also shown effectiveness. In addition, no significant changes in CQAs were observed after 90 days of storage of the formulations at different temperatures. In vitro studies showed that the release of rivastigmine followed a non-Fickian mechanism, with an initial fast drug release followed by a prolonged release over 48 h. This study has optimized a rivastigmine-loaded NLC formulation produced by the HPH method for nose-to-brain delivery of rivastigmine. The next step is for in vitro and in vivo experiments to demonstrate preclinical efficacy and safety. QbD was demonstrated to be a useful approach for the optimization of NLC formulations for which specific physicochemical requisites can be identified.
Collapse
Affiliation(s)
- Sara Cunha
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
| | - Cláudia Pina Costa
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
| | - Joana A. Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | | | - Andreia F. Peixoto
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK;
| | - José Manuel Sousa Lobo
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
| | - Ana Catarina Silva
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
- UFP Energy, Environment and Health Research Unit (FP ENAS), Fernando Pessoa University, 4249-004 Porto, Portugal
| |
Collapse
|
36
|
Dong Z, Iqbal S, Zhao Z. Preparation of Ergosterol-Loaded Nanostructured Lipid Carriers for Enhancing Oral Bioavailability and Antidiabetic Nephropathy Effects. AAPS PharmSciTech 2020; 21:64. [PMID: 31932990 DOI: 10.1208/s12249-019-1597-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
In our previously studies, we confirmed that ergosterol could ameliorate diabetic nephropathy by suppressing the proliferation of mesangial cells and the accumulation of extracellular matrix (ECM). However, the therapeutic application of ergosterol may be confined due to poor aqueous solubility and low oral bioavailability. We aim to prepare ergosterol-loaded nanostructured lipid carriers (ERG-NLCs) to enhance the solubility and oral bioavailability of ergosterol. ERG-NLCs were prepared using glyceryl monostearate and decanoyl/octanoyl-glycerides by hot emulsification-ultrasonication method and characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) analysis, entrapment efficiency (EE), and drug loading (DL) capacity studies. The prepared ERG-NLCs were spherical, with particle size of 81.39 nm and negative zeta potential of 30.77 mV. Ergosterol was successfully encapsulated in NLCs with a high EE of 92.95% and a DL capacity of 6.51%. In pharmacokinetic study, Cmax and AUC0-∞ of ergosterol in ERG-NLCs were obviously enhanced, and the relative oral bioavailability of ERG-NLCs was 277.56% higher than that of raw ergosterol. Moreover, the in vitro pharmacodynamic study indicated that ERG-NLCs inhibited high-glucose-stimulated mesangial cells over proliferation and ECM accumulation more effectively compared to raw ergosterol. In conclusion, the validated ERG-NLCs showed that NLCs mediated delivery could be used as potential vehicle to enhance solubility, oral bioavailability and therapeutic efficacy of ergosterol.
Collapse
|
37
|
|
38
|
Waghule T, Rapalli VK, Singhvi G, Manchanda P, Hans N, Dubey SK, Hasnain MS, Nayak AK. Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Jazuli I, Annu, Nabi B, Moolakkadath T, Alam T, Baboota S, Ali J. Optimization of Nanostructured Lipid Carriers of Lurasidone Hydrochloride Using Box-Behnken Design for Brain Targeting: In Vitro and In Vivo Studies. J Pharm Sci 2019; 108:3082-3090. [PMID: 31077685 DOI: 10.1016/j.xphs.2019.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/16/2019] [Accepted: 05/02/2019] [Indexed: 01/24/2023]
Abstract
Intranasal nanostructured lipid carrier (NLC) of lurasidone hydrochloride (LRD) for brain delivery was prepared by the solvent evaporation method. The effects of independent variables, X1-lipid concentration, X-2 surfactant, and X-3 sonication times on dependent variables, Y1-particle size, Y-2 polydispersity index, and Y-3% entrapment efficiency were determined using Box-Behnken design. Optimized LRD-NLC was selected from the Box-Behnken design and evaluated for their morphological, physiological, nasal diffusion, and in vivo distribution in the brain after intranasal administration. Particle size, polydispersity index, and entrapment efficiency of optimized LRD-NLC were found to be 207.4 ± 1.5 nm, 0.392 ± 0.15, and 92.12 ± 1.0%, respectively. Transmission electron microscopy and scanning electron microscopy was used to determine the particle size and surface morphology of LRD-NLC. The prepared LRD-NLC follows biphasic in vitro drug release. Prepared NLC showed a 2-fold increase in LRD concentration in the brain when compared with the drug solution following intranasal administration. Results showed that intranasal route can be a good and efficient approach for delivering the drug directly to the brain and enhancing the drug efficacy in the brain for the management of schizophrenia and a good alternative to oral drug delivery.
Collapse
Affiliation(s)
- Imrana Jazuli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Annu
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Thasleem Moolakkadath
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Tausif Alam
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062 India.
| |
Collapse
|