1
|
Long DR, Kinser A, Olalde-Welling A, Brewer L, Lim J, Matheny D, Long B, Roossien DH. 5-HT1A regulates axon outgrowth in a subpopulation of Drosophila serotonergic neurons. Dev Neurobiol 2023; 83:268-281. [PMID: 37714743 DOI: 10.1002/dneu.22928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Serotonergic neurons produce extensively branched axons that fill most of the central nervous system, where they modulate a wide variety of behaviors. Many behavioral disorders have been correlated with defective serotonergic axon morphologies. Proper behavioral output therefore depends on the precise outgrowth and targeting of serotonergic axons during development. To direct outgrowth, serotonergic neurons utilize serotonin as a signaling molecule prior to it assuming its neurotransmitter role. This process, termed serotonin autoregulation, regulates axon outgrowth, branching, and varicosity development of serotonergic neurons. However, the receptor that mediates serotonin autoregulation is unknown. Here we asked if serotonin receptor 5-HT1A plays a role in serotonergic axon outgrowth and branching. Using cultured Drosophila serotonergic neurons, we found that exogenous serotonin reduced axon length and branching only in those expressing 5-HT1A. Pharmacological activation of 5-HT1A led to reduced axon length and branching, whereas the disruption of 5-HT1A rescued outgrowth in the presence of exogenous serotonin. Altogether this suggests that 5-HT1A is a serotonin autoreceptor in a subpopulation of serotonergic neurons and initiates signaling pathways that regulate axon outgrowth and branching during Drosophila development.
Collapse
Affiliation(s)
- Delaney R Long
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Ava Kinser
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | | - Luke Brewer
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Juri Lim
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Dayle Matheny
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | - Breanna Long
- Department of Biology, Ball State University, Muncie, Indiana, USA
| | | |
Collapse
|
2
|
Li Y, Walker LA, Zhao Y, Edwards EM, Michki NS, Cheng HPJ, Ghazzi M, Chen TY, Chen M, Roossien DH, Cai D. Bitbow Enables Highly Efficient Neuronal Lineage Tracing and Morphology Reconstruction in Single Drosophila Brains. Front Neural Circuits 2021; 15:732183. [PMID: 34744636 PMCID: PMC8564373 DOI: 10.3389/fncir.2021.732183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Identifying the cellular origins and mapping the dendritic and axonal arbors of neurons have been century old quests to understand the heterogeneity among these brain cells. Current Brainbow based transgenic animals take the advantage of multispectral labeling to differentiate neighboring cells or lineages, however, their applications are limited by the color capacity. To improve the analysis throughput, we designed Bitbow, a digital format of Brainbow which exponentially expands the color palette to provide tens of thousands of spectrally resolved unique labels. We generated transgenic Bitbow Drosophila lines, established statistical tools, and streamlined sample preparation, image processing, and data analysis pipelines to conveniently mapping neural lineages, studying neuronal morphology and revealing neural network patterns with unprecedented speed, scale, and resolution.
Collapse
Affiliation(s)
- Ye Li
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Logan A Walker
- Biophysics LS&A, University of Michigan, Ann Arbor, MI, United States
| | - Yimeng Zhao
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Erica M Edwards
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Nigel S Michki
- Biophysics LS&A, University of Michigan, Ann Arbor, MI, United States
| | - Hon Pong Jimmy Cheng
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Marya Ghazzi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Tiffany Y Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Maggie Chen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Douglas H Roossien
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Biophysics LS&A, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Vicenzi S, Foa L, Gasperini RJ. Serotonin functions as a bidirectional guidance molecule regulating growth cone motility. Cell Mol Life Sci 2021; 78:2247-2262. [PMID: 32939562 PMCID: PMC11072016 DOI: 10.1007/s00018-020-03628-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 02/02/2023]
Abstract
The neurotransmitter serotonin has been implicated in a range of complex neurological disorders linked to alterations of neuronal circuitry. Serotonin is synthesized in the developing brain before most neuronal circuits become fully functional, suggesting that serotonin might play a distinct regulatory role in shaping circuits prior to its function as a classical neurotransmitter. In this study, we asked if serotonin acts as a guidance cue by examining how serotonin alters growth cone motility of rodent sensory neurons in vitro. Using a growth cone motility assay, we found that serotonin acted as both an attractive and repulsive guidance cue through a narrow concentration range. Extracellular gradients of 50 µM serotonin elicited attraction, mediated by the serotonin 5-HT2a receptor while 100 µM serotonin elicited repulsion mediated by the 5-HT1b receptor. Importantly, high resolution imaging of growth cones indicated that these receptors signalled through their canonical pathways of endoplasmic reticulum-mediated calcium release and cAMP depletion, respectively. This novel characterisation of growth cone motility in response to serotonin gradients provides compelling evidence that secreted serotonin acts at the molecular level as an axon guidance cue to shape neuronal circuit formation during development.
Collapse
Affiliation(s)
- Silvia Vicenzi
- School of Medicine, University of Tasmania, Hobart, Australia
| | - Lisa Foa
- School of Psychological Sciences, University of Tasmania, Hobart, Australia
| | | |
Collapse
|
4
|
Carvajal-Oliveros A, Campusano JM. Studying the Contribution of Serotonin to Neurodevelopmental Disorders. Can This Fly? Front Behav Neurosci 2021; 14:601449. [PMID: 33510625 PMCID: PMC7835640 DOI: 10.3389/fnbeh.2020.601449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Serotonin is a biogenic amine that acts as neurotransmitter in different brain regions and is involved in complex behaviors, such as aggression or mood regulation. Thus, this amine is found in defined circuits and activates specific receptors in different target regions. Serotonin actions depend on extracellular levels of this amine, which are regulated by its synthetic enzymes and the plasma membrane transporter, SERT. Serotonin acts also as a neurotrophic signal in ontogeny and in the mature brain, controlling cell proliferation, differentiation, neurogenesis, and neural plasticity. Interestingly, early alterations in serotonergic signaling have been linked to a diversity of neurodevelopmental disorders, including autism spectrum disorder (ASD), attention deficit/hyperactivity disorder (ADHD), or mental illnesses like schizophrenia or depression. It has been proposed that given the complex and numerous actions of serotonin, animal models could better serve to study the complexity of serotonin actions, while providing insights on how hindering serotonergic signaling could contribute to brain disorders. In this mini-review, it will be examined what the general properties of serotonin acting as a neurotransmitter in animals are, and furthermore, whether it is possible that Drosophila could be used to study the contribution of this amine to neurodevelopmental and mental disorders.
Collapse
Affiliation(s)
- Angel Carvajal-Oliveros
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jorge M Campusano
- Laboratorio Neurogenética de la Conducta, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencia UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Honegger KS, Smith MAY, Churgin MA, Turner GC, de Bivort BL. Idiosyncratic neural coding and neuromodulation of olfactory individuality in Drosophila. Proc Natl Acad Sci U S A 2020; 117:23292-23297. [PMID: 31455738 PMCID: PMC7519279 DOI: 10.1073/pnas.1901623116] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Innate behavioral biases and preferences can vary significantly among individuals of the same genotype. Though individuality is a fundamental property of behavior, it is not currently understood how individual differences in brain structure and physiology produce idiosyncratic behaviors. Here we present evidence for idiosyncrasy in olfactory behavior and neural responses in Drosophila We show that individual female Drosophila from a highly inbred laboratory strain exhibit idiosyncratic odor preferences that persist for days. We used in vivo calcium imaging of neural responses to compare projection neuron (second-order neurons that convey odor information from the sensory periphery to the central brain) responses to the same odors across animals. We found that, while odor responses appear grossly stereotyped, upon closer inspection, many individual differences are apparent across antennal lobe (AL) glomeruli (compact microcircuits corresponding to different odor channels). Moreover, we show that neuromodulation, environmental stress in the form of altered nutrition, and activity of certain AL local interneurons affect the magnitude of interfly behavioral variability. Taken together, this work demonstrates that individual Drosophila exhibit idiosyncratic olfactory preferences and idiosyncratic neural responses to odors, and that behavioral idiosyncrasies are subject to neuromodulation and regulation by neurons in the AL.
Collapse
Affiliation(s)
- Kyle S Honegger
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138
- Computational Informatics and Visualization Laboratory, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611
| | - Matthew A-Y Smith
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Matthew A Churgin
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Benjamin L de Bivort
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138;
| |
Collapse
|
6
|
McKinney HM, Sherer LM, Williams JL, Certel SJ, Stowers RS. Characterization of Drosophila octopamine receptor neuronal expression using MiMIC-converted Gal4 lines. J Comp Neurol 2020; 528:2174-2194. [PMID: 32060912 DOI: 10.1002/cne.24883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 01/08/2023]
Abstract
Octopamine, the invertebrate analog of norepinephrine, is known to modulate a large variety of behaviors in Drosophila including feeding initiation, locomotion, aggression, and courtship, among many others. Significantly less is known about the identity of the neurons that receive octopamine input and how they mediate octopamine-regulated behaviors. Here, we characterize adult neuronal expression of MiMIC-converted Trojan-Gal4 lines for each of the five Drosophila octopamine receptors. Broad neuronal expression was observed for all five octopamine receptors, yet distinct differences among them were also apparent. Use of immunostaining for the octopamine neurotransmitter synthesis enzyme Tdc2, along with a novel genome-edited conditional Tdc2-LexA driver, revealed all five octopamine receptors express in Tdc2/octopamine neurons to varying degrees. This suggests autoreception may be an important circuit mechanism by which octopamine modulates behavior.
Collapse
Affiliation(s)
- Hannah M McKinney
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
| | - Lewis M Sherer
- Cellular, Molecular and Microbial Biology Graduate Program, The University of Montana, Missoula, Montana
| | - Jessica L Williams
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana.,Department of Plant Sciences, Montana State University, Bozeman, Montana
| | - Sarah J Certel
- Cellular, Molecular and Microbial Biology Graduate Program, The University of Montana, Missoula, Montana.,Division of Biological Sciences, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, Montana
| | - R Steven Stowers
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
| |
Collapse
|
7
|
Dombrovski M, Kim A, Poussard L, Vaccari A, Acton S, Spillman E, Condron B, Yuan Q. A Plastic Visual Pathway Regulates Cooperative Behavior in Drosophila Larvae. Curr Biol 2019; 29:1866-1876.e5. [PMID: 31130457 PMCID: PMC6615885 DOI: 10.1016/j.cub.2019.04.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/11/2019] [Accepted: 04/23/2019] [Indexed: 01/23/2023]
Abstract
Cooperative behavior emerges in biological systems through coordinated actions among individuals [1, 2]. Although widely observed across animal species, the cellular and molecular mechanisms underlying the establishment and maintenance of cooperative behaviors remain largely unknown [3]. To characterize the circuit mechanisms serving the needs of independent individuals and social groups, we investigated cooperative digging behavior in Drosophila larvae [4-6]. Although chemical and mechanical sensations are important for larval aggregation at specific sites [7-9], an individual larva's ability to participate in a cooperative burrowing cluster relies on direct visual input as well as visual and social experience during development. In addition, vision modulates cluster dynamics by promoting coordinated movements between pairs of larvae [5]. To determine the specific pathways within the larval visual circuit underlying cooperative social clustering, we examined larval photoreceptors (PRs) and the downstream local interneurons (lOLPs) using anatomical and functional studies [10, 11]. Our results indicate that rhodopsin-6-expressing-PRs (Rh6-PRs) and lOLPs are required for both cooperative clustering and movement detection. Remarkably, visual deprivation and social isolation strongly impact the structural and functional connectivity between Rh6-PRs and lOLPs, while at the same time having no effect on the adjacent rhodopsin-5-expressing PRs (Rh5-PRs). Together, our findings demonstrate that a specific larval visual pathway involved in social interactions undergoes experience-dependent modifications during development, suggesting that plasticity in sensory circuits could act as the cellular substrate for social learning, a possible mechanism allowing an animal to integrate into a malleable social environment and engage in complex social behaviors.
Collapse
Affiliation(s)
- Mark Dombrovski
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Anna Kim
- National Institute of Neurological Disorders and Stroke, NIH, 31 Center Drive, Bethesda, MD 20892, USA
| | - Leanne Poussard
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA
| | - Andrea Vaccari
- Department of Computer Science, Middlebury College, Bicentennial Way, Middlebury, VT 05753, USA
| | - Scott Acton
- Department of Electrical and Computer Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA 22901, USA
| | - Emma Spillman
- National Institute of Neurological Disorders and Stroke, NIH, 31 Center Drive, Bethesda, MD 20892, USA
| | - Barry Condron
- Department of Biology, University of Virginia, 90 Geldard Drive, Charlottesville, VA 22901, USA.
| | - Quan Yuan
- National Institute of Neurological Disorders and Stroke, NIH, 31 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Huser A, Eschment M, Güllü N, Collins KAN, Böpple K, Pankevych L, Rolsing E, Thum AS. Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae. PLoS One 2017; 12:e0181865. [PMID: 28777821 PMCID: PMC5544185 DOI: 10.1371/journal.pone.0181865] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects.
Collapse
Affiliation(s)
- Annina Huser
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Melanie Eschment
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nazli Güllü
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Kathrin Böpple
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Lyubov Pankevych
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Emilia Rolsing
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas S. Thum
- Department of Biology, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, University of Konstanz, Konstanz, Germany
- Department of Genetics, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
9
|
Stemme T, Stern M, Bicker G. Serotonin-containing neurons in basal insects: In search of ground patterns among tetraconata. J Comp Neurol 2017; 525:79-115. [PMID: 27203729 DOI: 10.1002/cne.24043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 11/08/2022]
Abstract
The ventral nerve cord of Tetraconata contains a comparably low number of serotonin-immunoreactive neurons, facilitating individual identification of cells and their characteristic neurite morphology. This offers the rather unique possibility of establishing homologies at the single cell level. Because phylogenetic relationships within Tetraconata are still discussed controversially, comparisons of individually identifiable neurons can help to unravel these issues. Serotonin immunoreactivity has been investigated in numerous tetraconate taxa, leading to reconstructions of hypothetical ground patterns for major lineages. However, detailed descriptions of basal insects are still missing, but are crucial for meaningful evolutionary considerations. We investigated the morphology of individually identifiable serotonin-immunoreactive neurons in the ventral nerve cord of Zygentoma (Thermobia domestica, Lepisma saccharina, Atelura formicaria) and Archaeognatha (Machilis germanica, Dilta hibernica). To improve immunocytochemical resolution, we also performed preincubation experiments with 5-hydroxy-L-tryptophan and serotonin. Additionally, we checked for immunolabeling of tryptophan hydroxylase, an enzyme associated with the synthesis of serotonin. Besides the generally identified groups of anterolateral, medial, and posterolateral neurons within each ganglion of the ventral nerve cord, we identified several other immunoreactive cells, which seem to have no correspondence in other tetraconates. Furthermore, we show that not all immunoreactive neurons produce serotonin, but have the capability for serotonin uptake. Comparisons with the patterns of serotonin-containing neurons in major tetraconate taxa suggest a close phylogenetic relationship of Remipedia, Cephalocarida, and Hexapoda, supporting the Miracrustacea hypothesis. J. Comp. Neurol., 2016. © 2016 Wiley Periodicals, Inc. J. Comp. Neurol. 525:79-115, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Torben Stemme
- University of Veterinary Medicine Hannover, Division of Cell Biology, D-30173, Hannover, Germany
| | - Michael Stern
- University of Veterinary Medicine Hannover, Division of Cell Biology, D-30173, Hannover, Germany
| | - Gerd Bicker
- University of Veterinary Medicine Hannover, Division of Cell Biology, D-30173, Hannover, Germany
| |
Collapse
|
10
|
Boyan GS, Liu Y. Development of the Neurochemical Architecture of the Central Complex. Front Behav Neurosci 2016; 10:167. [PMID: 27630548 PMCID: PMC5005427 DOI: 10.3389/fnbeh.2016.00167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/16/2016] [Indexed: 11/13/2022] Open
Abstract
The central complex represents one of the most conspicuous neuroarchitectures to be found in the insect brain and regulates a wide repertoire of behaviors including locomotion, stridulation, spatial orientation and spatial memory. In this review article, we show that in the grasshopper, a model insect system, the intricate wiring of the fan-shaped body (FB) begins early in embryogenesis when axons from the first progeny of four protocerebral stem cells (called W, X, Y, Z, respectively) in each brain hemisphere establish a set of tracts to the primary commissural system. Decussation of subsets of commissural neurons at stereotypic locations across the brain midline then establishes a columnar neuroarchitecture in the FB which is completed during embryogenesis. Examination of the expression patterns of various neurochemicals in the central complex including neuropeptides, a neurotransmitter and the gas nitric oxide (NO), show that these appear progressively and in a substance-specific manner during embryogenesis. Each neuroactive substance is expressed by neurons located at stereotypic locations in a given central complex lineage, confirming that the stem cells are biochemically multipotent. The organization of axons expressing the various neurochemicals within the central complex is topologically related to the location, and hence birthdate, of the neurons within the lineages. The neurochemical expression patterns within the FB are layered, and so reflect the temporal topology present in the lineages. This principle relates the neuroanatomical to the neurochemical architecture of the central complex and so may provide insights into the development of adaptive behaviors.
Collapse
Affiliation(s)
- George S. Boyan
- Developmental Neurobiology Group, Department of Biology II, Ludwig-Maximilians-UniversitätMunich, Germany
| | - Yu Liu
- Developmental Neurobiology Group, Department of Biology II, Ludwig-Maximilians-UniversitätMunich, Germany
| |
Collapse
|
11
|
Modulatory Action by the Serotonergic System: Behavior and Neurophysiology in Drosophila melanogaster. Neural Plast 2016; 2016:7291438. [PMID: 26989517 PMCID: PMC4773565 DOI: 10.1155/2016/7291438] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 01/13/2023] Open
Abstract
Serotonin modulates various physiological processes and behaviors. This study investigates the role of 5-HT in locomotion and feeding behaviors as well as in modulation of sensory-motor circuits. The 5-HT biosynthesis was dysregulated by feeding Drosophila larvae 5-HT, a 5-HT precursor, or an inhibitor of tryptophan hydroxylase during early stages of development. The effects of feeding fluoxetine, a selective serotonin reuptake inhibitor, during early second instars were also examined. 5-HT receptor subtypes were manipulated using RNA interference mediated knockdown and 5-HT receptor insertional mutations. Moreover, synaptic transmission at 5-HT neurons was blocked or enhanced in both larvae and adult flies. The results demonstrate that disruption of components within the 5-HT system significantly impairs locomotion and feeding behaviors in larvae. Acute activation of 5-HT neurons disrupts normal locomotion activity in adult flies. To determine which 5-HT receptor subtype modulates the evoked sensory-motor activity, pharmacological agents were used. In addition, the activity of 5-HT neurons was enhanced by expressing and activating TrpA1 channels or channelrhodopsin-2 while recording the evoked excitatory postsynaptic potentials (EPSPs) in muscle fibers. 5-HT2 receptor activation mediates a modulatory role in a sensory-motor circuit, and the activation of 5-HT neurons can suppress the neural circuit activity, while fluoxetine can significantly decrease the sensory-motor activity.
Collapse
|
12
|
Drosophila melanogaster as a genetic model system to study neurotransmitter transporters. Neurochem Int 2014; 73:71-88. [PMID: 24704795 DOI: 10.1016/j.neuint.2014.03.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 12/30/2022]
Abstract
The model genetic organism Drosophila melanogaster, commonly known as the fruit fly, uses many of the same neurotransmitters as mammals and very similar mechanisms of neurotransmitter storage, release and recycling. This system offers a variety of powerful molecular-genetic methods for the study of transporters, many of which would be difficult in mammalian models. We review here progress made using Drosophila to understand the function and regulation of neurotransmitter transporters and discuss future directions for its use.
Collapse
|
13
|
Serotonin and downstream leucokinin neurons modulate larval turning behavior in Drosophila. J Neurosci 2014; 34:2544-58. [PMID: 24523545 DOI: 10.1523/jneurosci.3500-13.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Serotonin (5-HT) is known to modulate motor outputs in a variety of animal behaviors. However, the downstream neural pathways of 5-HT remain poorly understood. We studied the role of 5-HT in directional change, or turning, behavior of fruit fly (Drosophila melanogaster) larvae. We analyzed light- and touch-induced turning and found that turning is a combination of three components: bending, retreating, and rearing. Serotonin transmission suppresses rearing; when we inhibited 5-HT neurons with Shibire or Kir2.1, rearing increased without affecting the occurrence of bending or retreating. Increased rearing in the absence of 5-HT transmission often results in slower or failed turning, indicating that suppression of rearing by 5-HT is critical for successful turning. We identified a class of abdominal neurons called the abdominal LK neurons (ABLKs), which express the 5-HT1B receptor and the neuropeptide leucokinin, as downstream targets of 5-HT that are involved in the control of turning. Increased rearing was observed when neural transmission or leucokinin synthesis was inhibited in these cells. Forced activation of ABLKs also increased rearing, suggesting that an appropriate level of ABLK activity is critical for the control of turning. Calcium imaging revealed that ABLKs show periodic activation with an interval of ∼15 s. The activity level of ABLKs increased and decreased in response to a 5-HT agonist and antagonist, respectively. Our results suggest that 5-HT modulates larval turning by regulating the activity level of downstream ABLK neurons and secretion of the neuropeptide leucokinin.
Collapse
|
14
|
Abstract
The serotonergic feeding circuit in Drosophila melanogaster larvae can be used to investigate neuronal substrates of critical importance during the development of the circuit. Using the functional output of the circuit, feeding, changes in the neuronal architecture of the stomatogastric system can be visualized. Feeding behavior can be recorded by observing the rate of retraction of the mouth hooks, which receive innervation from the brain. Locomotor behavior is used as a physiological control for feeding, since larvae use their mouth hooks to traverse across an agar substrate. Changes in feeding behavior can be correlated with the axonal architecture of the neurites innervating the gut. Using immunohistochemistry it is possible to visualize and quantitate these changes. Improper handling of the larvae during behavior paradigms can alter data as they are very sensitive to manipulations. Proper imaging of the neurite architecture innervating the gut is critical for precise quantitation of number and size of varicosities as well as the extent of branch nodes. Analysis of most circuits allow only for visualization of neurite architecture or behavioral effects; however, this model allows one to correlate the functional output of the circuit with the impairments in neuronal architecture.
Collapse
Affiliation(s)
- Parag K Bhatt
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine
| | | |
Collapse
|
15
|
Zieger E, Bräunig P, Harzsch S. A developmental study of serotonin-immunoreactive neurons in the embryonic brain of the marbled crayfish and the migratory locust: evidence for a homologous protocerebral group of neurons. ARTHROPOD STRUCTURE & DEVELOPMENT 2013; 42:507-520. [PMID: 24067539 DOI: 10.1016/j.asd.2013.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 08/19/2013] [Accepted: 08/23/2013] [Indexed: 06/02/2023]
Abstract
It is well established that the brains of adult malacostracan crustaceans and winged insects display distinct homologies down to the level of single neuropils such as the central complex and the optic neuropils. We wanted to know if developing insect and crustacean brains also share similarities and therefore have explored how neurotransmitter systems arise during arthropod embryogenesis. Previously, Sintoni et al. (2007) had already reported a homology of an individually identified cluster of neurons in the embryonic crayfish and insect brain, the secondary head spot cells that express the Engrailed protein. In the present study, we have documented the ontogeny of the serotonergic system in embryonic brains of the Marbled Crayfish in comparison to Migratory Locust embryos using immunohistochemical methods combined with confocal laser-scan microscopy. In both species, we found a cluster of early emerging serotonin-immunoreactive neurons in the protocerebrum with neurites that cross to the contralateral brain hemisphere in a characteristic commissure suggesting a homology of this cell cluster. Our study is a first step towards a phylogenetic analysis of neurotransmitter system development and shows that, as for the ventral nerve cord, traits related to neurogenesis in the brain can provide valuable hints for resolving the much debated question of arthropod phylogeny.
Collapse
Affiliation(s)
- Elisabeth Zieger
- Ernst Moritz Arndt Universität Greifswald, Fachbereich Biologie, Zoologisches Institut und Museum, AG Cytology und Evolutionsbiologie, Soldmannstrasse 23, D-17498 Greifswald, Germany.
| | - Peter Bräunig
- Unit for "Developmental Biology and Morphology of Animals", Institute for Biology II, RWTH Aachen University, Lukasstr. 1, D-52070 Aachen, Germany
| | - Steffen Harzsch
- Ernst Moritz Arndt Universität Greifswald, Fachbereich Biologie, Zoologisches Institut und Museum, AG Cytology und Evolutionsbiologie, Soldmannstrasse 23, D-17498 Greifswald, Germany
| |
Collapse
|
16
|
Dispensable, redundant, complementary, and cooperative roles of dopamine, octopamine, and serotonin in Drosophila melanogaster. Genetics 2012; 193:159-76. [PMID: 23086220 DOI: 10.1534/genetics.112.142042] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To investigate the regulation of Drosophila melanogaster behavior by biogenic amines, we have exploited the broad requirement of the vesicular monoamine transporter (VMAT) for the vesicular storage and exocytotic release of all monoamine neurotransmitters. We used the Drosophila VMAT (dVMAT) null mutant to globally ablate exocytotic amine release and then restored DVMAT activity in either individual or multiple aminergic systems, using transgenic rescue techniques. We find that larval survival, larval locomotion, and female fertility rely predominantly on octopaminergic circuits with little apparent input from the vesicular release of serotonin or dopamine. In contrast, male courtship and fertility can be rescued by expressing DVMAT in octopaminergic or dopaminergic neurons, suggesting potentially redundant circuits. Rescue of major aspects of adult locomotion and startle behavior required octopamine, but a complementary role was observed for serotonin. Interestingly, adult circadian behavior could not be rescued by expression of DVMAT in a single subtype of aminergic neurons, but required at least two systems, suggesting the possibility of unexpected cooperative interactions. Further experiments using this model will help determine how multiple aminergic systems may contribute to the regulation of other behaviors. Our data also highlight potential differences between behaviors regulated by standard exocytotic release and those regulated by other mechanisms.
Collapse
|
17
|
The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function. PLoS One 2012; 7:e47518. [PMID: 23082175 PMCID: PMC3474743 DOI: 10.1371/journal.pone.0047518] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/12/2012] [Indexed: 01/03/2023] Open
Abstract
The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed.
Collapse
|
18
|
Blenau W, Thamm M. Distribution of serotonin (5-HT) and its receptors in the insect brain with focus on the mushroom bodies: lessons from Drosophila melanogaster and Apis mellifera. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:381-394. [PMID: 21272662 DOI: 10.1016/j.asd.2011.01.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/05/2011] [Accepted: 01/14/2011] [Indexed: 05/30/2023]
Abstract
The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) plays a key role in regulating and modulating various physiological and behavioral processes in both protostomes and deuterostomes. The specific functions of serotonin are mediated by its binding to and subsequent activation of membrane receptors. The vast majority of these receptors belong to the superfamily of G-protein-coupled receptors. We report here the in vivo expression pattern of a recently characterized 5-HT(1) receptor of the honeybee Apis mellifera (Am5-HT(1A)) in the mushroom bodies. In addition, we summarize current knowledge on the distribution of serotonin and serotonin receptor subtypes in the brain and specifically in the mushroom bodies of the fruit fly Drosophila melanogaster and the honeybee. Functional studies in these two species have shown that serotonergic signaling participates in various behaviors including aggression, sleep, circadian rhythms, responses to visual stimuli, and associative learning. The molecular, pharmacological, and functional properties of identified 5-HT receptor subtypes from A. mellifera and D. melanogaster will also be summarized in this review.
Collapse
Affiliation(s)
- Wolfgang Blenau
- Institute of Biochemistry and Biology, University of Potsdam, Germany.
| | | |
Collapse
|
19
|
Liu SS, Li AY, Witt CM, Pérez de León AA. Immunohistological localization of serotonin in the CNS and feeding system of the stable fly Stomoxys calcitrans L. (Diptera: Muscidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 77:199-219. [PMID: 21678485 DOI: 10.1002/arch.20434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 05/28/2023]
Abstract
Serotonin, or 5-hydroxytryptamine (5-HT), plays critical roles as a neurotransmitter and neuromodulator that control or modulate many behaviors in insects, such as feeding. Neurons immunoreactive (IR) to 5-HT were detected in the central nervous system (CNS) of the larval and adult stages of the stable fly, Stomoxys calcitrans, using an immunohistological technique. The location and pattern of the 5-HT IR neurons are described and compared for these two different developmental stages. Anatomical features of the fly feeding system were analyzed in third instar larvae and adult flies using a combination of histological and immunohistological techniques. In third instar larvae, the cibarial dilator muscles were observed within the cibarial pump skeleton and innervated by 5-HT IR neurons in nerves arising from the brain. There were four pairs of nerves arising from the frontal surface of the larval brain that innervate the cibarial pump muscles, pharynx, and muscles controlling the mouth hooks. A strong serotoninergic innervation of the anterior stomatogastric system was observed, which suggests 5-HT may play a role in the coordination of different phases of food ingestion by larvae. Similarly, many 5-HT IR neurons were found in both the brain and the thoracico-abdominal ganglia in the adult, some of which innervate the cibarial pump dilator muscles and the stomatogastric muscles. This is tnhe first report describing neuromuscular structures of the stable fly feeding system. The results reported here suggest 5-HT may play a critical role in feeding behaviors of stable fly larvae and adults.
Collapse
Affiliation(s)
- Samuel S Liu
- USDA, ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, Texas 78028, USA
| | | | | | | |
Collapse
|
20
|
Herbert Z, Rauser S, Williams L, Kapan N, Güntner M, Walch A, Boyan G. Developmental expression of neuromodulators in the central complex of the grasshopper Schistocerca gregaria. J Morphol 2011; 271:1509-26. [PMID: 20960464 DOI: 10.1002/jmor.10895] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The central complex is a major integrative region within the insect brain with demonstrated roles in spatial orientation, the regulation of locomotor behavior, and sound production. In the hemimetabolous grasshopper, the central complex comprises the protocerebral bridge, central body (CB), ellipsoid body, noduli, and accessory lobes, and this modular organization develops entirely during embryogenesis. From a biochemical perspective, a range of neuroactive substances has been demonstrated in these modules of the adult central complex, but little is known about their developmental expression. In this study, we use matrix-assisted laser desorption/ionization-imaging mass spectrometry on single brain slices to confirm the presence of several peptide families (tachykinin, allatostatin, periviscerokinin/pyrokinin, FLRFamide, and neuropeptide F) in the adult central complex and then use immunohistochemistry and histology to examine their developmental expression, together with that of the indolamin serotonin, and the endogenous messenger nitric oxide (NO; via its synthesizing enzyme). We find that each neuromodulator is expressed according to a unique, stereotypic, pattern within the various modules making up the central complex. Neuropeptides such as tachykinin (55%) and allatostatin (65%), and the NO-synthesizing enzyme diaphorase (70%), are expressed earlier during embryonic development than the biogenic amine serotonin (80%), whereas periviscerokinin-like peptides and FLRFamide-like peptides begin to be expressed only postembryonically. Within the CB, these neuroactive substances are present in tangential projection neurons before they appear in columnar neurons. There is also no colocalization of serotonin-positive and peptide-positive projections up to the third larval instar during development, consistent with the clear dorsoventral layering of the neuropil we observe. Our results provide the first neurochemical fingerprint of the developing central complex in an hemimetabolous insect.
Collapse
Affiliation(s)
- Zsofia Herbert
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Pätschke A, Bicker G. Development of histamine-immunoreactivity in the Central nervous system of the two locust species Schistocerca gregaria and Locusta migratoria. Microsc Res Tech 2011; 74:946-56. [PMID: 21484940 DOI: 10.1002/jemt.20980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/19/2010] [Indexed: 11/11/2022]
Abstract
Locusts are attractive model preparations for cellular investigations of neurodevelopment. In this study, we investigate the immunocytochemical localization of histamine in the developing ventral nerve cord of two locust species, Schistocerca gregaria and Locusta migratoria. Histamine is the fast neurotransmitter of photoreceptor neurons in the compound eye of insects, but it is also synthesized in interneurons of the central nervous system. In the locust ventral nerve cord, the pattern of histamine-immunoreactive neurons follows a relatively simple bauplan. The histaminergic system comprises a set of single, ascending projection neurons that are segmentally arranged in almost every neuromere. The neurons send out their axons anteriorly, forming branches and varicosities throughout the adjacent ganglia. In the suboesophageal ganglion, the cell bodies lie in a posteriolateral position. The prothoracic ganglion lacks histaminergic neurons. In the posterior ganglia of the ventral nerve cord, the somata of the histaminergic neurons are ventromedially positioned. Histamine-immunoreactivity starts around 50% of embryonic development in interneurons of the brain. Subsequently, the neurons of the more posterior ganglia of the ventral nerve cord become immunoreactive. From 60% embryonic development, the pattern of soma staining in the nerve cord appears mature. Around 65% of embryonic development, the photoreceptor cells show histamine-immunoreactivity. The histaminergic innervation of the neuropile develops from the central branches toward the periphery of the ganglia and is completed right before hatching.
Collapse
Affiliation(s)
- Arne Pätschke
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, D-30173 Hannover, Germany
| | | |
Collapse
|
22
|
Daws LC, Gould GG. Ontogeny and regulation of the serotonin transporter: providing insights into human disorders. Pharmacol Ther 2011; 131:61-79. [PMID: 21447358 DOI: 10.1016/j.pharmthera.2011.03.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 12/17/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) was one of the first neurotransmitters for which a role in development was identified. Pharmacological and gene knockout studies have revealed a critical role for 5-HT in numerous processes, including cell division, neuronal migration, differentiation and synaptogenesis. An excess in brain 5-HT appears to be mechanistically linked to abnormal brain development, which in turn is associated with neurological disorders. Ambient levels of 5-HT are controlled by a vast orchestra of proteins, including a multiplicity of pre- and post-synaptic 5-HT receptors, heteroreceptors, enzymes and transporters. The 5-HT transporter (SERT, 5-HTT) is arguably the most powerful regulator of ambient extracellular 5-HT. SERT is the high-affinity uptake mechanism for 5-HT and exerts tight control over the strength and duration of serotonergic neurotransmission. Perturbation of its expression level or function has been implicated in many diseases, prominent among them are psychiatric disorders. This review synthesizes existing information on the ontogeny of SERT during embryonic and early postnatal development though adolescence, along with factors that influence its expression and function during these critical developmental windows. We integrate this knowledge to emphasize how inappropriate SERT expression or its dysregulation may be linked to the pathophysiology of psychiatric, cardiovascular and gastrointestinal diseases.
Collapse
Affiliation(s)
- Lynette C Daws
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7756, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
23
|
Fang H, Vickrey TL, Venton BJ. Analysis of biogenic amines in a single Drosophila larva brain by capillary electrophoresis with fast-scan cyclic voltammetry detection. Anal Chem 2011; 83:2258-64. [PMID: 21322586 PMCID: PMC3058613 DOI: 10.1021/ac103092z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Drosophila, the fruit fly, is a common model organism in biology; however, quantifying neurotransmitters in Drosophila is challenging because of the small size of the central nervous system (CNS). Here, we develop neurotransmitter quantification by capillary electrophoresis with fast-scan cyclic voltammetry (CE-FSCV) detection, which allows peak identification by both migration time and the cyclic voltammogram, in contrast to traditional amperometric detection which provides no chemical identification. Tissue content of biogenic amine neurotransmitters was determined in a single CNS dissected from a Drosophila larva. Low detection limits, 1 nM for dopamine and serotonin, 2.5 nM for tyramine, and 4 nM for octopamine, were achieved using field-amplified sample stacking by diluting the homogenized tissue with percholoric acid and acetonitrile. Two different strains of wild-type flies, Oregon R and Canton S, have similar dopamine and serotonin levels but different octopamine content. When flies are fed NSD-1015, which inhibits dopamine decarboxylase (Ddc) a synthesis enzyme in the dopamine and serotonin pathways, dopamine significantly decreases by 52%. A genetically altered driver line, Ddc-GAL4, had lower serotonin and dopamine content as did w(118) flies. When the Ddc-GAL4 line was used to produce flies overexpressing the serotonin synthesis enzyme tryptophan hydroxylase (Ddc-GAL4;UAS-Trh), the serotonin tissue content was greater than for Ddc-GAL4 but not significantly different than the wild-type. These results show that CE-FSCV is useful for monitoring the impact of genetic and pharmacological manipulations on the content of multiple neurotransmitters in a CNS from a Drosophila larva.
Collapse
Affiliation(s)
- Huaifang Fang
- Dept. of Chemistry, University of Virginia, Charlottesville, VA
| | | | - B. Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA
| |
Collapse
|
24
|
Boyan G, Niederleitner B. Patterns of dye coupling involving serotonergic neurons provide insights into the cellular organization of a central complex lineage of the embryonic grasshopper Schistocerca gregaria. Dev Genes Evol 2011; 220:297-313. [PMID: 21190117 DOI: 10.1007/s00427-010-0348-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
All eight neuroblasts from the pars intercerebralis of one protocerebral hemisphere whose progeny contribute fibers to the central complex in the embryonic brain of the grasshopper Schistocerca gregaria generate serotonergic cells at stereotypic locations in their lineages. The pattern of dye coupling involving these neuroblasts and their progeny was investigated during embryogenesis by injecting fluorescent dye intracellularly into the neuroblast and/or its progeny in brain slices. The tissue was then processed for anti-serotonin immunohistochemistry. A representative lineage, that of neuroblast 1-3, was selected for detailed study. Stereotypic patterns of dye coupling were observed between progeny of the lineage throughout embryogenesis. Dye injected into the soma of a serotonergic cell consistently spread to a cluster of between five and eight neighboring non-serotonergic cells, but never to other serotonergic cells. Dye injected into a non-serotonergic cell from such a cluster spread to other non-serotonergic cells of the cluster, and to the immediate serotonergic cell, but never to further serotonergic cells. Serotonergic cells tested from different locations within the lineage repeat this pattern of dye coupling. All dye coupling was blocked on addition of an established gap junctional blocker (n-heptanol) to the bathing medium. The lack of coupling among serotonergic cells in the lineage suggests that each, along with its associated cluster of dye-coupled non-serotonergic cells, represents an independent communicating pathway (labeled line) to the developing central complex neuropil. The serotonergic cell may function as the coordinating element in such a projection system.
Collapse
Affiliation(s)
- George Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| | | |
Collapse
|
25
|
Giang T, Ritze Y, Rauchfuss S, Ogueta M, Scholz H. The serotonin transporter expression in Drosophila melanogaster. J Neurogenet 2011; 25:17-26. [PMID: 21314480 DOI: 10.3109/01677063.2011.553002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The serotonin transporter is an important regulator of serotonergic signaling. In order to analyze where the Drosophila melanogaster ortholog of the mammalian serotonin transporter (dSERT) is expressed in the nervous system, a dSERT antibody serum was used. Ectopic expression studies and loss of function analysis revealed that the dSERT antibody serum specifically recognizes dSERT. It was shown that in the embryonic nervous system dSERT is expressed in a subset of Engrailed-positive neurons. In the larval brain, dSERT is exclusively expressed in serotonergic neurons, all of which express dSERT. dSERT-positive neurons surround almost all brain neuropiles. In the mushroom body of the adult brain, extrinsic serotonergic neurons expressing dSERT engulf the mushroom body lobes. These neurons show regional differences in dSERT and serotonin expression. At the presynaptic terminals, serotonin release is sterically linked to serotonin reuptake. In contrast to this, there are other areas in serotonergic neurons where dSERT expression and/or function are uncoupled from synaptic neurotransmitter recycling and serotonin release. The localization pattern of dSERT can be employed to further understanding and analysis of serotonergic networks.
Collapse
Affiliation(s)
- Thomas Giang
- Department of Animal Physiology, University of Cologne, Köln, Germany
| | | | | | | | | |
Collapse
|
26
|
Serotonin: a regulator of neuronal morphology and circuitry. Trends Neurosci 2010; 33:424-34. [PMID: 20561690 DOI: 10.1016/j.tins.2010.05.005] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 11/22/2022]
Abstract
Serotonin is an important neuromodulator associated with a wide range of physiological effects in the central nervous system. The exact mechanisms whereby serotonin influences brain development are not well understood, although studies in invertebrate and vertebrate model organisms are beginning to unravel a regulatory role for serotonin in neuronal morphology and circuit formation. Recent data suggest a developmental window during which altered serotonin levels permanently influence neuronal circuitry, however, the temporal constraints and molecular mechanisms responsible are still under investigation. Growing evidence suggests that alterations in early serotonin signaling contribute to a number of neurodevelopmental and neuropsychiatric disorders. Thus, understanding how altered serotonin signaling affects neuronal morphology and plasticity, and ultimately animal physiology and pathophysiology, will be of great significance.
Collapse
|
27
|
Alekseyenko OV, Lee C, Kravitz EA. Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS One 2010; 5:e10806. [PMID: 20520823 PMCID: PMC2875409 DOI: 10.1371/journal.pone.0010806] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/02/2010] [Indexed: 11/23/2022] Open
Abstract
Dopamine (DA) and serotonin (5HT) are reported to serve important roles in aggression in a wide variety of animals. Previous investigations of 5HT function in adult Drosophila behavior have relied on pharmacological manipulations, or on combinations of genetic tools that simultaneously target both DA and 5HT neurons. Here, we generated a transgenic line that allows selective, direct manipulation of serotonergic neurons and asked whether DA and 5HT have separable effects on aggression. Quantitative morphological examination demonstrated that our newly generated tryptophan hydroxylase (TRH)-Gal4 driver line was highly selective for 5HT-containing neurons. This line was used in conjunction with already available Gal4 driver lines that target DA or both DA and 5HT neurons to acutely alter the function of aminergic systems. First, we showed that acute impairment of DA and 5HT neurotransmission using expression of a temperature sensitive form of dynamin completely abolished mid- and high-level aggression. These flies did not escalate fights beyond brief low-intensity interactions and therefore did not yield dominance relationships. We showed next that manipulation of either 5HT or DA neurotransmission failed to duplicate this phenotype. Selective disruption of 5HT neurotransmission yielded flies that fought, but with reduced ability to escalate fights, leading to fewer dominance relationships. Acute activation of 5HT neurons using temperature sensitive dTrpA1 channel expression, in contrast, resulted in flies that escalated fights faster and that fought at higher intensities. Finally, acute disruption of DA neurotransmission produced hyperactive flies that moved faster than controls, and rarely engaged in any social interactions. By separately manipulating 5HT- and DA- neuron systems, we collected evidence demonstrating a direct role for 5HT in the escalation of aggression in Drosophila.
Collapse
Affiliation(s)
- Olga V Alekseyenko
- Neurobiology Department, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
28
|
Serotonergic dystrophy induced by excess serotonin. Mol Cell Neurosci 2010; 44:297-306. [PMID: 20394820 DOI: 10.1016/j.mcn.2010.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/18/2010] [Accepted: 04/02/2010] [Indexed: 01/15/2023] Open
Abstract
Administration of certain serotonin-releasing amphetamine derivatives (fenfluramine and/or 3,4-methylenedioxymethamphetamine, MDMA, 'ecstasy') results in dystrophic serotonergic morphology in the mammalian brain. In addition to drug administration, dystrophic serotonergic neurites are also associated with neurodegenerative disorders. We demonstrate here that endogenously elevated serotonin in the Drosophila CNS induces aberrant enlarged varicosities, or spheroids, that are morphologically similar to dystrophic mammalian serotonergic fibers. In Drosophila these spheroids are specific to serotonergic neurons, distinct from typical varicosities, and form only after prolonged increases in cytoplasmic serotonin. Our results also suggest that serotonin levels during early development determine later sensitivity of spheroid formation to manipulations of the serotonin transporter (SERT). Elevated serotonin also interacts with canonical protein aggregation and autophagic pathways to form spheroids. The data presented here support a model in which excess cytoplasmic neurotransmitter triggers a cell-specific pathway inducing aberrant morphology in fly serotonergic neurons that may be shared in certain mammalian pathologies.
Collapse
|
29
|
Biancardi VC, Campos RR, Stern JE. Altered balance of gamma-aminobutyric acidergic and glutamatergic afferent inputs in rostral ventrolateral medulla-projecting neurons in the paraventricular nucleus of the hypothalamus of renovascular hypertensive rats. J Comp Neurol 2010; 518:567-85. [PMID: 20034060 DOI: 10.1002/cne.22256] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An imbalance of excitatory and inhibitory functions has been shown to contribute to numerous pathological disorders. Accumulating evidence supports the idea that a change in hypothalamic gamma-aminobutyric acid (GABA)-ergic inhibitory and glutamatergic excitatory synaptic functions contributes to exacerbated neurohumoral drive in prevalent cardiovascular disorders, including hypertension. However, the precise underlying mechanisms and neuronal substrates are still not fully elucidated. In the present study, we combined quantitative immunohistochemistry with neuronal tract tracing to determine whether plastic remodeling of afferent GABAergic and glutamatergic inputs into identified RVLM-projecting neurons of the hypothalamic paraventricular nucleus (PVN-RVLM) contributes to an imbalanced excitatory/inhibitory function in renovascular hypertensive rats (RVH). Our results indicate that both GABAergic and glutamatergic innervation densities increased in oxytocin-positive, PVN-RVLM (OT-PVN-RVLM) neurons in RVH rats. Despite this concomitant increase, time-dependent and compartment-specific differences in the reorganization of these inputs resulted in an altered balance of excitatory/inhibitory inputs in somatic and dendritic compartments. A net predominance of excitatory over inhibitory inputs was found in OT-PVN-RVLM proximal dendrites. Our results indicate that, along with previously described changes in neurotransmitter release probability and postsynaptic receptor function, remodeling of GABAergic and glutamatergic afferent inputs contributes as an underlying mechanism to the altered excitatory/inhibitory balance in the PVN of hypertensive rats.
Collapse
|
30
|
Multipotent neuroblasts generate a biochemical neuroarchitecture in the central complex of the grasshopper Schistocerca gregaria. Cell Tissue Res 2010; 340:13-28. [DOI: 10.1007/s00441-009-0922-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/17/2009] [Indexed: 12/20/2022]
|
31
|
Borue X, Condron B, Venton BJ. Both synthesis and reuptake are critical for replenishing the releasable serotonin pool in Drosophila. J Neurochem 2010; 113:188-99. [PMID: 20070864 DOI: 10.1111/j.1471-4159.2010.06588.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The two main sources of serotonin available for release are expected to be newly synthesized serotonin and serotonin recycled after reuptake by the serotonin transporter. However, their relative importance for maintaining release and the time course of regulation are unknown. We studied serotonin signaling in the ventral nerve cord of the larval Drosophila CNS. Fast-scan cyclic voltammetry at implanted microelectrodes was used to detect serotonin elicited by channelrhodopsin2-mediated depolarization. The effects of reuptake were probed by incubating in cocaine, which is selective for the serotonin transporter in Drosophila. p-chlorophenylalanine, an inhibitor of tryptophan hydroxylase2, was used to investigate the effects of synthesis. Stimulations were repeated at various intervals to assess the time course of recovery of the releasable pool. Reuptake is important for the rapid replenishment of the releasable pool, on the 1 min time scale. Synthesis is critical to the longer-term replenishment (10 min) of the releasable pool, especially when reuptake is also inhibited. Concurrent synthesis and reuptake inhibition decreased both serotonin tissue content measured by immunohistochemistry (by 50%) and the initial amount of evoked serotonin (by 65%). Decreases in evoked serotonin are rescued by inhibiting action potential propagation with tetrodotoxin, implicating endogenous activity in the depletion. These results show synthesis is necessary to replenish part of the releasable serotonin pool that is depleted after reuptake inhibition, suggesting that regulation of synthesis may modulate the effects of serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Xenia Borue
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22904, USA
| | | | | |
Collapse
|
32
|
Vickrey TL, Condron B, Venton BJ. Detection of endogenous dopamine changes in Drosophila melanogaster using fast-scan cyclic voltammetry. Anal Chem 2009; 81:9306-13. [PMID: 19842636 PMCID: PMC2876717 DOI: 10.1021/ac901638z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Drosophila melanogaster, the fruit fly, is a commonly used model organism because of its homology to mammals and facile genetic manipulations. However, the size of the nervous system is very small. We report a method to evoke and detect rapid changes in extracellular dopamine in a single nerve cord isolated from a Drosophila larva. Flies were genetically modified to express Channelrhodopsin-2, a blue-light activated cation channel, in only dopaminergic neurons. Extracellular dopamine changes were measured with fast-scan cyclic voltammetry at an implanted carbon-fiber microelectrode. Stimulations of 7 s with blue light result in an average peak dopamine concentration of 810 +/- 60 nM, similar to electrically-stimulated release in mammals. Stimulations repeated at 15 min intervals are stable for 65 min, allowing pharmacological experiments in the same sample. Peak duration is extended after cocaine or nisoxetine, inhibitors of the dopamine transporter (DAT). Release was reduced upon exposure to reserpine, which inhibits vesicular packaging. Chronic administration of NSD-1015, a dopamine synthesis inhibitor, decreased dopamine release and inhibited pupation, showing a link between neurotransmission and physiology. This is the first method to measure endogenous dopamine in an intact larval Drosophila nervous system and will allow studies of genetic and pharmacological manipulations of dopamine release and uptake.
Collapse
Affiliation(s)
- Trisha L. Vickrey
- Dept. of Chemistry, University of Virginia, Charlottesville, VA 22904
| | - Barry Condron
- Dept. of Biology, University of Virginia, Charlottesville, VA 22904
| | - B. Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
33
|
Chen J, Condron BG. Drosophila serotonergic varicosities are not distributed in a regular manner. J Comp Neurol 2009; 515:441-53. [PMID: 19459220 DOI: 10.1002/cne.22088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neurons of the brain form complex tree-like structures that are critical for function. Here we examine the spatial pattern of serotonergic varicosities, the synaptic sites of serotonin release in the central nervous system (CNS). These varicosities are thought to form largely nonjunctional-type connections that partition in a grid-like manner in order to distribute evenly the neuromodulatory neurotransmitter serotonin. We describe the neuropil distribution of serotonergic varicosities in the brain and ventral nerve cord (VNC) of the larval Drosophila CNS. In the brain, we find evidence for avoidance between varicosities at distances lower than 1.75 microm. However, in the VNC, we find a clustered distribution. A similar clustered pattern is found in the Xenopus brain. This pattern produces many varicosities that are clustered together but also includes some varicosities that are very isolated. These isolated varicosities are not found along particular topological sections of the neurite tree or in particular locations in the CNS. In addition, the pattern breaks down when serotonergic branches of adjacent segments invade each other's territory. The pattern is similar to those described by a power law.
Collapse
Affiliation(s)
- John Chen
- Department of Biology, University of Virginia, Charlottesville, 22903, USA
| | | |
Collapse
|
34
|
Inositol 1,4,5- trisphosphate receptor function in Drosophila insulin producing cells. PLoS One 2009; 4:e6652. [PMID: 19680544 PMCID: PMC2721413 DOI: 10.1371/journal.pone.0006652] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 07/13/2009] [Indexed: 01/26/2023] Open
Abstract
The Inositol 1,4,5- trisphosphate receptor (InsP3R) is an intracellular ligand gated channel that releases calcium from intracellular stores in response to extracellular signals. To identify and understand physiological processes and behavior that depends on the InsP3 signaling pathway at a systemic level, we are studying Drosophila mutants for the InsP3R (itpr) gene. Here, we show that growth defects precede larval lethality and both are a consequence of the inability to feed normally. Moreover, restoring InsP3R function in insulin producing cells (IPCs) in the larval brain rescues the feeding deficit, growth and lethality in the itpr mutants to a significant extent. We have previously demonstrated a critical requirement for InsP3R activity in neuronal cells, specifically in aminergic interneurons, for larval viability. Processes from the IPCs and aminergic domain are closely apposed in the third instar larval brain with no visible cellular overlap. Ubiquitous depletion of itpr by dsRNA results in feeding deficits leading to larval lethality similar to the itpr mutant phenotype. However, when itpr is depleted specifically in IPCs or aminergic neurons, the larvae are viable. These data support a model where InsP3R activity in non-overlapping neuronal domains independently rescues larval itpr phenotypes by non-cell autonomous mechanisms.
Collapse
|
35
|
Seid MA, Goode K, Li C, Traniello JFA. Age- and subcaste-related patterns of serotonergic immunoreactivity in the optic lobes of the ant Pheidole dentata. Dev Neurobiol 2009; 68:1325-33. [PMID: 18666203 DOI: 10.1002/dneu.20663] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Serotonin, a biogenic amine known to be a neuromodulator of insect behavior, has recently been associated with age-related patterns of task performance in the ant Pheidole dentata. We identified worker age- and subcaste-related patterns of serotonergic activity within the optic lobes of the P. dentata brain to further examine its relationship to polyethism. We found strong immunoreactivity in the optic lobes of the brains of both minor and major workers. Serotonergic cell bodies in the optic lobes increased significantly in number as major and minor workers matured. Old major workers had greater numbers of serotonergic cell bodies than minors of a similar age. This age-related increase in serotonergic immunoreactivity, as well as the presence of diffuse serotonin networks in the mushroom bodies, antennal lobes, and central complex, occurs concomitantly with an increase in the size of worker task repertoires. Our results suggest that serotonin is associated with the development of the visual system, enabling the detection of task-related stimuli outside the nest, thus playing a significant role in worker behavioral development and colony-wide division of labor.
Collapse
Affiliation(s)
- Marc A Seid
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
36
|
Rodriguez Moncalvo VG, Campos AR. Role of serotonergic neurons in the Drosophila larval response to light. BMC Neurosci 2009; 10:66. [PMID: 19549295 PMCID: PMC2711092 DOI: 10.1186/1471-2202-10-66] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 06/23/2009] [Indexed: 11/24/2022] Open
Abstract
Background Drosophila larval locomotion consists of forward peristalsis interrupted by episodes of pausing, turning and exploratory behavior (head swinging). This behavior can be regulated by visual input as seen by light-induced increase in pausing, head swinging and direction change as well as reduction of linear speed that characterizes the larval photophobic response. During 3rd instar stage, Drosophila larvae gradually cease to be repelled by light and are photoneutral by the time they wander in search for a place to undergo metamorphosis. Thus, Drosophila larval photobehavior can be used to study control of locomotion. Results We used targeted neuronal silencing to assess the role of candidate neurons in the regulation of larval photobehavior. Inactivation of DOPA decarboxylase (Ddc) neurons increases the response to light throughout larval development, including during the later stages of the 3rd instar characterized by photoneutral response. Increased response to light is characterized by increase in light-induced direction change and associated pause, and reduction of linear movement. Amongst Ddc neurons, suppression of the activity of corazonergic and serotonergic but not dopaminergic neurons increases the photophobic response observed during 3rd instar stage. Silencing of serotonergic neurons does not disrupt larval locomotion or the response to mechanical stimuli. Reduced serotonin (5-hydroxytryptamine, 5-HT) signaling within serotonergic neurons recapitulates the results obtained with targeted neuronal silencing. Ablation of serotonergic cells in the ventral nerve cord (VNC) does not affect the larval response to light. Similarly, disruption of serotonergic projections that contact the photoreceptor termini in the brain hemispheres does not impact the larval response to light. Finally, pan-neural over-expression of 5-HT1ADro receptors, but not of any other 5-HT receptor subtype, causes a significant decrease in the response to light of 3rd instar larvae. Conclusion Our data demonstrate that activity of serotonergic and corazonergic neurons contribute to the control of larval locomotion by light. We conclude that this control is carried out by 5-HT neurons located in the brain hemispheres, but does not appear to occur at the photoreceptor level and may be mediated by 5-HT1ADro receptors. These findings provide new insights into the function of 5-HT neurons in Drosophila larval behavior as well as into the mechanisms underlying regulation of larval response to light.
Collapse
|
37
|
Borue X, Cooper S, Hirsh J, Condron B, Venton BJ. Quantitative evaluation of serotonin release and clearance in Drosophila. J Neurosci Methods 2009; 179:300-8. [PMID: 19428541 DOI: 10.1016/j.jneumeth.2009.02.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
Serotonin signaling plays a key role in the regulation of development, mood and behavior. Drosophila is well suited for the study of the basic mechanisms of serotonergic signaling, but the small size of its nervous system has previously precluded the direct measurements of neurotransmitters. This study demonstrates the first real-time measurements of changes in extracellular monoamine concentrations in a single larval Drosophila ventral nerve cord. Channelrhodopsin-2-mediated, neuronal type-specific stimulation is used to elicit endogenous serotonin release, which is detected using fast-scan cyclic voltammetry at an implanted microelectrode. Release is decreased when serotonin synthesis or packaging are pharmacologically inhibited, confirming that the detected substance is serotonin. Similar to tetanus-evoked serotonin release in mammals, evoked serotonin concentrations are 280-640nM in the fly, depending on the stimulation length. Extracellular serotonin signaling is prolonged after administering cocaine or fluoxetine, showing that transport regulates the clearance of serotonin from the extracellular space. When ChR2 is targeted to dopaminergic neurons, dopamine release is measured demonstrating that this method is broadly applicable to other neurotransmitter systems. This study shows that the dynamics of serotonin release and reuptake in Drosophila are analogous to those in mammals, making this simple organism more useful for the study of the basic physiological mechanisms of serotonergic signaling.
Collapse
Affiliation(s)
- Xenia Borue
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | | | |
Collapse
|
38
|
Cooper SE, Venton BJ. Fast-scan cyclic voltammetry for the detection of tyramine and octopamine. Anal Bioanal Chem 2009; 394:329-36. [PMID: 19189084 DOI: 10.1007/s00216-009-2616-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/23/2008] [Accepted: 01/09/2009] [Indexed: 11/29/2022]
Abstract
Tyramine and octopamine are biogenic amine neurotransmitters in invertebrates that have functions analogous to those of the adrenergic system in vertebrates. Trace amounts of these neurotransmitters have also been identified in mammals. The purpose of this study was to develop an electrochemical method using fast-scan cyclic voltammetry at carbon-fiber microelectrodes to detect fast changes in tyramine and octopamine. Because tyramine is known to polymerize and passivate electrode surfaces, waveform parameters were optimized to prevent passivation. No fouling was observed for octopamine when the electrode was scanned from 0.1 to 1.3 V and back at 600 V/s, while a small decrease of less than 10% of the signal was seen for 15 repeated exposures to tyramine. The technique has limits of detection of 18 nM for tyramine and 30 nM for octopamine, much lower than expected levels in insects and lower than basal levels in some brain regions of mammals. Current was linear with concentration up to 5 microM. This voltammetry technique should be useful for measuring tyramine and octopamine changes in insects, such as the fruit fly, Drosophila melanogaster.
Collapse
Affiliation(s)
- Stephanie E Cooper
- Department of Chemistry, University of Virginia, P.O. Box 400319, Charlottesville, VA 22904-4319, USA
| | | |
Collapse
|
39
|
Kaplan DD, Zimmermann G, Suyama K, Meyer T, Scott MP. A nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate insulin signaling and control body size. Genes Dev 2008; 22:1877-93. [PMID: 18628395 DOI: 10.1101/gad.1670508] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Growth and body size are regulated by the CNS, integrating the genetic developmental program with assessments of an animal's current energy state and environmental conditions. CNS decisions are transmitted to all cells of the animal by insulin/insulin-like signals. The molecular biology of the CNS growth control system has remained, for the most part, elusive. Here we identify NS3, a Drosophila nucleostemin family GTPase, as a powerful regulator of body size. ns3 mutants reach <60% of normal size and have fewer and smaller cells, but exhibit normal body proportions. NS3 does not act cell-autonomously, but instead acts at a distance to control growth. Rescue experiments were performed by expressing wild-type ns3 in many different cells of ns3 mutants. Restoring NS3 to only 106 serotonergic neurons rescued global growth defects. These neurons are closely apposed with those of insulin-producing neurons, suggesting possible communication between the two neuronal systems. In the brains of ns3 mutants, excess serotonin and insulin accumulate, while peripheral insulin pathway activation is low. Peripheral insulin pathway activation rescues the growth defects of ns3 mutants. The findings suggest that NS3 acts in serotonergic neurons to regulate insulin signaling and thus exert global growth control.
Collapse
Affiliation(s)
- Daniel D Kaplan
- Departments of Developmental Biology, Genetics, and Bioengineering, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, 94305, USA
| | | | | | | | | |
Collapse
|
40
|
Chen J, Condron BG. Branch architecture of the fly larval abdominal serotonergic neurons. Dev Biol 2008; 320:30-8. [PMID: 18561908 DOI: 10.1016/j.ydbio.2008.03.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 03/24/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
Abstract
In the metazoan central nervous system (CNS), serotonergic neurons send projections throughout the synaptic neuropil. Little is known about the rules that govern these widespread neuromodulatory branching patterns. In this study, we utilize the Drosophila as a model to examine serotonergic branching. Using single cell GFP labeling we show that within each segment of the Drosophila ventral nerve cord (VNC), each of two serotonergic neurons tiles distinct innervation patterns in the contralateral neuropil. In addition, branches extend only a short distance from the target segment. Through ablation-mediated isolation of serotonergic cells, we demonstrate that the distinct areas of innervation are not maintained through competition between neighboring like-serotonergic neurites. Furthermore, the basic branching pattern of serotonergic neurons within the neuropil remains unchanged despite alterations of initial axonal trajectories.
Collapse
Affiliation(s)
- John Chen
- Department of Biology, University of Virginia, Gilmer Hall 071 Box 400328, Charlottesville, VA 22903, USA
| | | |
Collapse
|
41
|
Neuroarchitecture of aminergic systems in the larval ventral ganglion of Drosophila melanogaster. PLoS One 2008; 3:e1848. [PMID: 18365004 PMCID: PMC2268740 DOI: 10.1371/journal.pone.0001848] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 02/12/2008] [Indexed: 12/24/2022] Open
Abstract
Biogenic amines are important signaling molecules in the central nervous system of both vertebrates and invertebrates. In the fruit fly Drosophila melanogaster, biogenic amines take part in the regulation of various vital physiological processes such as feeding, learning/memory, locomotion, sexual behavior, and sleep/arousal. Consequently, several morphological studies have analyzed the distribution of aminergic neurons in the CNS. Previous descriptions, however, did not determine the exact spatial location of aminergic neurite arborizations within the neuropil. The release sites and pre-/postsynaptic compartments of aminergic neurons also remained largely unidentified. We here used gal4-driven marker gene expression and immunocytochemistry to map presumed serotonergic (5-HT), dopaminergic, and tyraminergic/octopaminergic neurons in the thoracic and abdominal neuromeres of the Drosophila larval ventral ganglion relying on Fasciclin2-immunoreactive tracts as three-dimensional landmarks. With tyrosine hydroxylase- (TH) or tyrosine decarboxylase 2 (TDC2)-specific gal4-drivers, we also analyzed the distribution of ectopically expressed neuronal compartment markers in presumptive dopaminergic TH and tyraminergic/octopaminergic TDC2 neurons, respectively. Our results suggest that thoracic and abdominal 5-HT and TH neurons are exclusively interneurons whereas most TDC2 neurons are efferent. 5-HT and TH neurons are ideally positioned to integrate sensory information and to modulate neuronal transmission within the ventral ganglion, while most TDC2 neurons appear to act peripherally. In contrast to 5-HT neurons, TH and TDC2 neurons each comprise morphologically different neuron subsets with separated in- and output compartments in specific neuropil regions. The three-dimensional mapping of aminergic neurons now facilitates the identification of neuronal network contacts and co-localized signaling molecules, as exemplified for DOPA decarboxylase-synthesizing neurons that co-express crustacean cardioactive peptide and myoinhibiting peptides.
Collapse
|
42
|
Condron BG. A freeware java tool for spatial point analysis of neuronal structures. Neuroinformatics 2008; 6:57-61. [PMID: 18350260 DOI: 10.1007/s12021-008-9008-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/07/2008] [Indexed: 11/30/2022]
Abstract
Spatial point analysis is an analytical approach towards understanding patterns in the distribution of single points, such as synapses. To aid in this type of analysis of neuronal structures, a freeware tool, called PAJ, has been developed. This Java-based tool takes 3D Cartesian coordinates as input and performs a range of analyses to test for underlying patterns. In addition, Monte Carlo analysis is performed to compare experimental input with randomized input. This tool should be especially useful in determining whether neuronal structures are spatially patterned such that individual units interact with each other.
Collapse
Affiliation(s)
- Barry G Condron
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
43
|
Roy B, Singh AP, Shetty C, Chaudhary V, North A, Landgraf M, Vijayraghavan K, Rodrigues V. Metamorphosis of an identified serotonergic neuron in the Drosophila olfactory system. Neural Dev 2007; 2:20. [PMID: 17958902 PMCID: PMC2129096 DOI: 10.1186/1749-8104-2-20] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 10/24/2007] [Indexed: 11/23/2022] Open
Abstract
Background Odors are detected by sensory neurons that carry information to the olfactory lobe where they connect to projection neurons and local interneurons in glomeruli: anatomically well-characterized structures that collect, integrate and relay information to higher centers. Recent studies have revealed that the sensitivity of such networks can be modulated by wide-field feedback neurons. The connectivity and function of such feedback neurons are themselves subject to alteration by external cues, such as hormones, stress, or experience. Very little is known about how this class of central neurons changes its anatomical properties to perform functions in altered developmental contexts. A mechanistic understanding of how central neurons change their anatomy to meet new functional requirements will benefit greatly from the establishment of a model preparation where cellular and molecular changes can be examined in an identified central neuron. Results In this study, we examine a wide-field serotonergic neuron in the Drosophila olfactory pathway and map the dramatic changes that it undergoes from larva to adult. We show that expression of a dominant-negative form of the ecdysterone receptor prevents remodeling. We further use different transgenic constructs to silence neuronal activity and report defects in the morphology of the adult-specific dendritic trees. The branching of the presynaptic axonal arbors is regulated by mechanisms that affect axon growth and retrograde transport. The neuron develops its normal morphology in the absence of sensory input to the antennal lobe, or of the mushroom bodies. However, ablation of its presumptive postsynaptic partners, the projection neurons and/or local interneurons, affects the growth and branching of terminal arbors. Conclusion Our studies establish a cellular system for studying remodeling of a central neuromodulatory feedback neuron and also identify key elements in this process. Understanding the morphogenesis of such neurons, which have been shown in other systems to modulate the sensitivity and directionality of response to odors, links anatomy to the development of olfactory behavior.
Collapse
Affiliation(s)
- Bidisha Roy
- National Centre for Biological Sciences, TIFR, GKVK PO, Bangalore 560065, India.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hatakeyama D, Aonuma H, Ito E, Elekes K. Localization of glutamate-like immunoreactive neurons in the central and peripheral nervous system of the adult and developing pond snail, Lymnaea stagnalis. THE BIOLOGICAL BULLETIN 2007; 213:172-186. [PMID: 17928524 DOI: 10.2307/25066633] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We investigated the distribution and projection patterns of central and peripheral glutamate-like immunoreactive (GLU-LIR) neurons in the adult and developing nervous system of Lymnaea. Altogether, 50-60 GLU-LIR neurons are present in the adult central nervous system. GLU-LIR labeling is shown in the interganglionic bundle system and at the varicosities in neuropil of the central ganglia. In the periphery, the foot, lip, and tentacle contain numerous GLU-LIR bipolar sensory neurons. In the juvenile Lymnaea, GLU-LIR elements at the periphery display a pattern of distribution similar to that seen in adults, whereas labeled neurons increase in number in the different ganglia of the central nervous system from juvenile stage P1 up to adulthood. During embryogenesis, GLU-LIR innervation can be detected first at the 50% stage of embryonic development (the E50% stage) in the neuropil of the cerebral and pedal ganglia, followed by the emergence of labeled pedal nerve roots at the E75% stage. Before hatching, at the E90% stage, a few GLU-LIR sensory cells can be found in the caudal foot region. Our findings indicate a wide range of occurrence and a broad role for glutamate in the gastropod nervous system; hence they provide a basis for future studies on glutamatergic events in networks underlying different behaviors.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
45
|
Lee HK, Lundell MJ. Differentiation of the Drosophila serotonergic lineage depends on the regulation of Zfh-1 by Notch and Eagle. Mol Cell Neurosci 2007; 36:47-58. [PMID: 17702602 PMCID: PMC2716093 DOI: 10.1016/j.mcn.2007.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 05/28/2007] [Accepted: 05/31/2007] [Indexed: 11/18/2022] Open
Abstract
Elucidating mechanisms that differentiate motor neurons from interneurons are fundamental to understanding CNS development. Here we demonstrate that within the Drosophila NB 7-3/serotonergic lineage, different levels of Zfh-1 are required to specify unique properties of both motor neurons and interneurons. We present evidence that Zfh-1 is induced by Notch signaling and suppressed by the transcription factor Eagle. The antagonistic regulation of zfh-1 by Notch and Eagle results in Zfh-1 being expressed at low levels in the NB 7-3 interneurons and at higher levels in the NB 7-3 motor neurons. Furthermore, we present evidence that the induction of Zfh-1 by Notch occurs independently from canonical Notch signaling. We present a model where the differentiation of cell fates within the NB 7-3 lineage requires both canonical and non-canonical Notch signaling. Our observations on the regulation of Zfh-1 provide a new approach for examining the function of Zfh-1 in motor neurons and larval locomotion.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Genetically Modified
- Axons/physiology
- Behavior, Animal
- Cell Differentiation/physiology
- Cell Lineage/physiology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drosophila
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Embryo, Nonmammalian
- Gene Expression Regulation, Developmental/physiology
- Genes, Insect/physiology
- Models, Biological
- Motor Activity/physiology
- Motor Neurons/cytology
- Motor Neurons/physiology
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Serotonin/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Hyung-Kook Lee
- Department of Biology, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, 626-395-8353 phone,
| | - Martha J. Lundell
- Department of Biology, University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, TX 78249, 210-458-5769 phone, 210-458-5658 fax,
| |
Collapse
|
46
|
Daubert EA, Condron BG. A solid-phase immunostaining protocol for high-resolution imaging of delicate structures in the Drosophila larval central nervous system (CNS). ACTA ACUST UNITED AC 2007; 2007:pdb.prot4771. [PMID: 21357109 DOI: 10.1101/pdb.prot4771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTIONThis protocol describes a method for mounting and immunostaining Drosophila larval tissue in preparation for high-resolution fluorescent imaging of fine structures in the central nervous system (CNS). Affixing the tissue directly to the coverslip and then moving the coverslip between wash solutions provides a simple solid-phase method of immunostaining that assists in preserving fine structures. This method also easily allows for manipulations and/or viewing of the live sample prior to fixation if desired. Finally, putting the tissue in direct contact with the coverslip places fine structures immediately adjacent to the objective lens. We also briefly describe a method to create three-dimensional (3D) models of confocal Z-stacks in order to better characterize fine structures by measuring their volume and obtaining 3D Cartesian coordinates in space.
Collapse
Affiliation(s)
- Elizabeth A Daubert
- Department of Biology, University of Virginia, Charlottesville, Virginia 22903-4328, USA
| | | |
Collapse
|
47
|
Higa-Taniguchi KT, Silva FCP, Silva HMV, Michelini LC, Stern JE. Exercise training-induced remodeling of paraventricular nucleus (nor)adrenergic innervation in normotensive and hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1717-27. [PMID: 17218443 DOI: 10.1152/ajpregu.00613.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of oxytocin (OT)ergic projections from the hypothalamic paraventricular nucleus (PVN) to the nucleus tractus solitarii contributes to cardiovascular adjustments during exercise training (EXT). Moreover, a deficit in this central OTergic pathway is associated with altered cardiovascular function in hypertension. Since PVN catecholaminergic inputs, known to be activated during EXT, modulate PVN cardiovascular-related functions, we aimed here to determine whether remodeling of PVN (nor)adrenergic innervation occurs during EXT and whether this phenomenon is affected by hypertension. Confocal immunofluorescence microscopy and tract tracing were used to quantify changes in (nor)adrenergic innervation density in PVN subnuclei and in identified dorsal vagal complex (DVC) projecting neurons (PVN-DVC) in EXT normotensive [Wistar-Kyoto rat (WKY)] and hypertensive [spontaneously hypertensive rat (SHR)] rats. In WKY, EXT increased the density of PVN dopamine β-hydroxylase immunoreactivity (DBHir) (160%). Furthermore, the number and density of DBHir boutons overlapping PVN-DVC OTergic neurons were also increased during EXT (130%), effects that were blunted in SHR. Conversely, while DBHir in the medial parvocellular subnucleus (an area enriched in corticotropin-releasing hormone neurons) was not changed by EXT in WKY, a diminished DBHir was observed in trained SHR. Overall, these data support the concept that the PVN (nor)adrenergic innervation undergoes plastic remodeling during EXT, an effect that is differentially affected during hypertension. The functional implications of PVN (nor)adrenergic remodeling in relation to the central peptidergic control of cardiovascular function during EXT are discussed.
Collapse
Affiliation(s)
- Keila T Higa-Taniguchi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
48
|
Neckameyer WS, Coleman CM, Eadie S, Goodwin SF. Compartmentalization of neuronal and peripheral serotonin synthesis in Drosophila melanogaster. GENES BRAIN AND BEHAVIOR 2007; 6:756-69. [PMID: 17376153 DOI: 10.1111/j.1601-183x.2007.00307.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Drosophila, one enzyme (Drosophila tryptophan-phenylalanine hydroxylase, DTPHu) hydroxylates both tryptophan to yield 5-hydroxytryptophan, the first step in serotonin synthesis, and phenylalanine, to generate tyrosine. Analysis of the sequenced Drosophila genome identified an additional enzyme with extensive homology to mammalian tryptophan hydroxylase (TPH), which we have termed DTRHn. We have shown that DTRHn can hydroxylate tryptophan in vitro but displays differential activity relative to DTPHu when using tryptophan as a substrate. Recent studies in mice identified the presence of two TPH genes, Tph1 and Tph2, from distinct genetic loci. Tph1 represents the non-neuronal TPH gene, and Tph2 is expressed exclusively in the brain. In this article, we show that DTRHn is neuronal in expression and function and thus represents the Drosophila homologue of Tph2. Using a DTRHn-null mutation, we show that diminished neuronal serotonin affects locomotor, olfactory and feeding behaviors, as well as heart rate. We also show that DTPHu functions in vivo as a phenylalanine hydroxylase in addition to its role as the peripheral TPH in Drosophila, and is critical for non-neuronal developmental events.
Collapse
Affiliation(s)
- W S Neckameyer
- Department of Pharmacological and Physiological Science, St Louis, University School of Medicine, MO 63104, USA.
| | | | | | | |
Collapse
|
49
|
Stern M, Knipp S, Bicker G. Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust (Locusta migratoria). J Comp Neurol 2007; 501:38-51. [PMID: 17206618 DOI: 10.1002/cne.21235] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The enteric nervous system (ENS) of the locust consists of four ganglia (frontal and hypocerebral ganglion, and the paired ingluvial ganglia) located on the foregut, and nerve plexus innervating fore- and midgut. One of the major neurotransmitters of the ENS, serotonin, is known to play a vital role in gut motility and feeding. We followed the anatomy of the serotonergic system throughout embryonic development. Serotonergic neurons are generated in the anterior neurogenic zones of the foregut and migrate rostrally along the developing recurrent nerve to contribute to the frontal ganglion. They grow descending neurites, which arborize in all enteric ganglia and both nerve plexus. On the midgut, the neurites closely follow the leading migrating midgut neurons. The onset of serotonin synthesis occurs around halfway through development-the time of the beginning of midgut closure. Cells developing to serotonergic phenotype express the serotonin uptake transporter (SERT) significantly earlier, beginning at 40% of development. The neurons begin SERT expression during migration along the recurrent nerve, indicating that they are committed to a serotonergic phenotype before reaching their final destination. After completion of the layout of the enteric ganglia (at 60%) a maturational phase follows, during which serotonin-immunoreactive cell bodies increase in size and the fine arborizations in the nerve plexus develop varicosities, putative sites of serotonin release (at 80%). This study provides the initial step for future investigation of potential morphoregulatory functions of serotonin during ENS development.
Collapse
Affiliation(s)
- Michael Stern
- Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany.
| | | | | |
Collapse
|
50
|
Katz PS. Evolution and development of neural circuits in invertebrates. Curr Opin Neurobiol 2006; 17:59-64. [PMID: 17174546 DOI: 10.1016/j.conb.2006.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 12/07/2006] [Indexed: 01/06/2023]
Abstract
Developmental mechanisms can shed light on how evolutionary diversity has arisen. Invertebrate nervous systems offer a wealth of diverse structures and functions from which to relate development to evolution. Individual homologous neurons have been shown to have distinct roles in species with different behaviors. In addition, specific neurons have been lost or gained in some phylogenetic lineages. The ability to address the neural basis of behavior at the cellular level in invertebrates has facilitated discoveries showing that species-specific behavior can arise from differences in synaptic strength, in neuronal structure and in neuromodulation. The mechanisms involved in the development of neural circuits lead to these differences across species.
Collapse
Affiliation(s)
- Paul S Katz
- Department of Biology, Georgia State University, PO Box 4010, Atlanta, GA 30302-4010, USA.
| |
Collapse
|