1
|
Aimino MA, Humenik J, Parisi MJ, Duhart JC, Mosca TJ. SynLight: a bicistronic strategy for simultaneous active zone and cell labeling in the Drosophila nervous system. G3 (BETHESDA, MD.) 2023; 13:jkad221. [PMID: 37757863 PMCID: PMC10627267 DOI: 10.1093/g3journal/jkad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
At synapses, chemical neurotransmission mediates the exchange of information between neurons, leading to complex movement, behaviors, and stimulus processing. The immense number and variety of neurons within the nervous system make discerning individual neuron populations difficult, necessitating the development of advanced neuronal labeling techniques. In Drosophila, Bruchpilot-Short and mCD8-GFP, which label presynaptic active zones and neuronal membranes, respectively, have been widely used to study synapse development and organization. This labeling is often achieved via the expression of 2 independent constructs by a single binary expression system, but expression can weaken when multiple transgenes are expressed by a single driver. Recent work has sought to circumvent these drawbacks by developing methods that encode multiple proteins from a single transcript. Self-cleaving peptides, specifically 2A peptides, have emerged as effective sequences for accomplishing this task. We leveraged 2A ribosomal skipping peptides to engineer a construct that produces both Bruchpilot-Short-mStraw and mCD8-GFP from the same mRNA, which we named SynLight. Using SynLight, we visualized the putative synaptic active zones and membranes of multiple classes of olfactory, visual, and motor neurons and observed the correct separation of signal, confirming that both proteins are being generated separately. Furthermore, we demonstrate proof of principle by quantifying synaptic puncta number and neurite volume in olfactory neurons and finding no difference between the synapse densities of neurons expressing SynLight or neurons expressing both transgenes separately. At the neuromuscular junction, we determined that the synaptic puncta number labeled by SynLight was comparable to the endogenous puncta labeled by antibody staining. Overall, SynLight is a versatile tool for examining synapse density in any nervous system region of interest and allows new questions to be answered about synaptic development and organization.
Collapse
Affiliation(s)
- Michael A Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Jesse Humenik
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael J Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Aimino MA, Humenik J, Parisi MJ, Duhart JC, Mosca TJ. SynLight: a dicistronic strategy for simultaneous active zone and cell labeling in the Drosophila nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549367. [PMID: 37502901 PMCID: PMC10370149 DOI: 10.1101/2023.07.17.549367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
At synapses, chemical neurotransmission mediates the exchange of information between neurons, leading to complex movement behaviors and stimulus processing. The immense number and variety of neurons within the nervous system makes discerning individual neuron populations difficult, necessitating the development of advanced neuronal labeling techniques. In Drosophila , Bruchpilot-Short and mCD8-GFP, which label presynaptic active zones and neuronal membranes, respectively, have been widely used to study synapse development and organization. This labeling is often achieved via expression of two independent constructs by a single binary expression system, but expression can weaken when multiple transgenes are expressed by a single driver. Ensuring adequate expression of each transgene is essential to enable more complex experiments; as such, work has sought to circumvent these drawbacks by developing methods that encode multiple proteins from a single transcript. Self-cleaving peptides, specifically 2A peptides, have emerged as effective sequences for accomplishing this task. We leveraged 2A ribosomal skipping peptides to engineer a construct that produces both Bruchpilot-Short and mCD8-GFP from the same mRNA, which we named SynLight. Using SynLight, we visualized the putative synaptic active zones and membranes of multiple classes of olfactory, visual, and motor neurons and observed correct separation of signal, confirming that both proteins are being generated separately. Furthermore, we demonstrate proof-of-principle by quantifying synaptic puncta number and neurite volume in olfactory neurons and finding no difference between the synapse densities of neurons expressing SynLight or neurons expressing both transgenes separately. At the neuromuscular junction, we determined that synaptic puncta number labeled by SynLight was comparable to endogenous puncta labeled by antibody staining. Overall, SynLight is a versatile tool for examining synapse density in any nervous system region of interest and allows new questions to be answered about synaptic development and organization.
Collapse
Affiliation(s)
- Michael A. Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| | - Jesse Humenik
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| | - Michael J. Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| | - Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107
| |
Collapse
|
3
|
Duhart JC, Mosca TJ. Genetic regulation of central synapse formation and organization in Drosophila melanogaster. Genetics 2022; 221:6597078. [PMID: 35652253 DOI: 10.1093/genetics/iyac078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
A goal of modern neuroscience involves understanding how connections in the brain form and function. Such a knowledge is essential to inform how defects in the exquisite complexity of nervous system growth influence neurological disease. Studies of the nervous system in the fruit fly Drosophila melanogaster enabled the discovery of a wealth of molecular and genetic mechanisms underlying development of synapses-the specialized cell-to-cell connections that comprise the essential substrate for information flow and processing in the nervous system. For years, the major driver of knowledge was the neuromuscular junction due to its ease of examination. Analogous studies in the central nervous system lagged due to a lack of genetic accessibility of specific neuron classes, synaptic labels compatible with cell-type-specific access, and high resolution, quantitative imaging strategies. However, understanding how central synapses form remains a prerequisite to understanding brain development. In the last decade, a host of new tools and techniques extended genetic studies of synapse organization into central circuits to enhance our understanding of synapse formation, organization, and maturation. In this review, we consider the current state-of-the-field. We first discuss the tools, technologies, and strategies developed to visualize and quantify synapses in vivo in genetically identifiable neurons of the Drosophila central nervous system. Second, we explore how these tools enabled a clearer understanding of synaptic development and organization in the fly brain and the underlying molecular mechanisms of synapse formation. These studies establish the fly as a powerful in vivo genetic model that offers novel insights into neural development.
Collapse
Affiliation(s)
- Juan Carlos Duhart
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Voelzmann A, Sanchez-Soriano N. Drosophila Primary Neuronal Cultures as a Useful Cellular Model to Study and Image Axonal Transport. Methods Mol Biol 2022; 2431:429-449. [PMID: 35412291 DOI: 10.1007/978-1-0716-1990-2_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of primary neuronal cultures generated from Drosophila tissue provides a powerful model for studies of transport mechanisms. Cultured fly neurons provide similarly detailed subcellular resolution and applicability of pharmacology or fluorescent dyes as mammalian primary neurons. As an experimental advantage for the mechanistic dissection of transport, fly primary neurons can be combined with the fast and highly efficient combinatorial genetics of Drosophila, and genetic tools for the manipulation of virtually every fly gene are readily available. This strategy can be performed in parallel to in vivo transport studies to address relevance of any findings. Here we will describe the generation of primary neuronal cultures from Drosophila embryos and larvae, the use of external fluorescent dyes and genetic tools to label cargo, and the key strategies for live imaging and subsequent analysis.
Collapse
Affiliation(s)
- André Voelzmann
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - Natalia Sanchez-Soriano
- Department of Molecular Physiology & Cell Signalling, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
5
|
Tavosanis G. Dendrite enlightenment. Curr Opin Neurobiol 2021; 69:222-230. [PMID: 34134010 DOI: 10.1016/j.conb.2021.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022]
Abstract
Neuronal dendrites acquire complex morphologies during development. These are not just the product of cell-intrinsic developmental programs; rather they are defined in close interaction with the cellular environment. Thus, to understand the molecular cascades that yield appropriate morphologies, it is essential to investigate them in vivo, in the actual complex tissue environment encountered by the differentiating neuron in the developing animal. Particularly, genetic approaches have pointed to factors controlling dendrite differentiation in vivo. These suggest that localized and transient molecular cascades might underlie the formation and stabilization of dendrite branches with neuron type-specific characteristics. Here, I highlight the need for studies of neuronal dendrite differentiation in the animal, the challenges provided by such an approach, and the promising pathways that have recently opened.
Collapse
Affiliation(s)
- Gaia Tavosanis
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, Bonn, 53127, Germany; LIMES Institute, University of Bonn, Carl-Troll-Str. 3, Bonn, 53115, Germany.
| |
Collapse
|
6
|
Fendl S, Vieira RM, Borst A. Conditional protein tagging methods reveal highly specific subcellular distribution of ion channels in motion-sensing neurons. eLife 2020; 9:62953. [PMID: 33079061 PMCID: PMC7655108 DOI: 10.7554/elife.62953] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022] Open
Abstract
Neurotransmitter receptors and ion channels shape the biophysical properties of neurons, from the sign of the response mediated by neurotransmitter receptors to the dynamics shaped by voltage-gated ion channels. Therefore, knowing the localizations and types of receptors and channels present in neurons is fundamental to our understanding of neural computation. Here, we developed two approaches to visualize the subcellular localization of specific proteins in Drosophila: The flippase-dependent expression of GFP-tagged receptor subunits in single neurons and ‘FlpTag’, a versatile new tool for the conditional labelling of endogenous proteins. Using these methods, we investigated the subcellular distribution of the receptors GluClα, Rdl, and Dα7 and the ion channels para and Ih in motion-sensing T4/T5 neurons of the Drosophila visual system. We discovered a strictly segregated subcellular distribution of these proteins and a sequential spatial arrangement of glutamate, acetylcholine, and GABA receptors along the dendrite that matched the previously reported EM-reconstructed synapse distributions.
Collapse
Affiliation(s)
- Sandra Fendl
- Max Planck Institute of Neurobiology, Martinsried, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Martinsried, Germany
| | | | - Alexander Borst
- Max Planck Institute of Neurobiology, Martinsried, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Martinsried, Germany
| |
Collapse
|
7
|
Prokop A. Cytoskeletal organization of axons in vertebrates and invertebrates. J Cell Biol 2020; 219:e201912081. [PMID: 32369543 PMCID: PMC7337489 DOI: 10.1083/jcb.201912081] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The maintenance of axons for the lifetime of an organism requires an axonal cytoskeleton that is robust but also flexible to adapt to mechanical challenges and to support plastic changes of axon morphology. Furthermore, cytoskeletal organization has to adapt to axons of dramatically different dimensions, and to their compartment-specific requirements in the axon initial segment, in the axon shaft, at synapses or in growth cones. To understand how the cytoskeleton caters to these different demands, this review summarizes five decades of electron microscopic studies. It focuses on the organization of microtubules and neurofilaments in axon shafts in both vertebrate and invertebrate neurons, as well as the axon initial segments of vertebrate motor- and interneurons. Findings from these ultrastructural studies are being interpreted here on the basis of our contemporary molecular understanding. They strongly suggest that axon architecture in animals as diverse as arthropods and vertebrates is dependent on loosely cross-linked bundles of microtubules running all along axons, with only minor roles played by neurofilaments.
Collapse
Affiliation(s)
- Andreas Prokop
- School of Biology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Goaillard JM, Moubarak E, Tapia M, Tell F. Diversity of Axonal and Dendritic Contributions to Neuronal Output. Front Cell Neurosci 2020; 13:570. [PMID: 32038171 PMCID: PMC6987044 DOI: 10.3389/fncel.2019.00570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
Our general understanding of neuronal function is that dendrites receive information that is transmitted to the axon, where action potentials (APs) are initiated and propagated to eventually trigger neurotransmitter release at synaptic terminals. Even though this canonical division of labor is true for a number of neuronal types in the mammalian brain (including neocortical and hippocampal pyramidal neurons or cerebellar Purkinje neurons), many neuronal types do not comply with this classical polarity scheme. In fact, dendrites can be the site of AP initiation and propagation, and even neurotransmitter release. In several interneuron types, all functions are carried out by dendrites as these neurons are devoid of a canonical axon. In this article, we present a few examples of "misbehaving" neurons (with a non-canonical polarity scheme) to highlight the diversity of solutions that are used by mammalian neurons to transmit information. Moreover, we discuss how the contribution of dendrites and axons to neuronal excitability may impose constraints on the morphology of these compartments in specific functional contexts.
Collapse
Affiliation(s)
- Jean-Marc Goaillard
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
| | - Estelle Moubarak
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
| | - Mónica Tapia
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
| | - Fabien Tell
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
| |
Collapse
|
9
|
Fan L, Kovacevic I, Heiman MG, Bao Z. A multicellular rosette-mediated collective dendrite extension. eLife 2019; 8:38065. [PMID: 30767892 PMCID: PMC6400498 DOI: 10.7554/elife.38065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Coordination of neurite morphogenesis with surrounding tissues is crucial to the establishment of neural circuits, but the underlying cellular and molecular mechanisms remain poorly understood. We show that neurons in a C. elegans sensory organ, called the amphid, undergo a collective dendrite extension to form the sensory nerve. The amphid neurons first assemble into a multicellular rosette. The vertex of the rosette, which becomes the dendrite tips, is attached to the anteriorly migrating epidermis and carried to the sensory depression, extruding the dendrites away from the neuronal cell bodies. Multiple adhesion molecules including DYF-7, SAX-7, HMR-1 and DLG-1 function redundantly in rosette-to-epidermis attachment. PAR-6 is localized to the rosette vertex and dendrite tips, and promotes DYF-7 localization and dendrite extension. Our results suggest a collective mechanism of neurite extension that is distinct from the classical pioneer-follower model and highlight the role of mechanical cues from surrounding tissues in shaping neurites.
Collapse
Affiliation(s)
- Li Fan
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Ismar Kovacevic
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| | - Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, United States
| |
Collapse
|
10
|
Yoong LF, Pai YJ, Moore AW. Stages and transitions in dendrite arbor differentiation. Neurosci Res 2019; 138:70-78. [DOI: 10.1016/j.neures.2018.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022]
|
11
|
Abstract
The activity and maintenance of neurons requires substantial metabolic energy, resulting in selective pressure to decrease resource consumption by the nervous system. The wiring economy principle proposes that animals have evolved mechanisms that wire circuits efficiently by minimizing neurite length. Computational modeling of neuronal morphology, microcircuit organization, and neural networks reveals that wiring economy is a significant determinant of nervous system layout. The strategies for reducing wiring costs are shared across phyla and point to the possibility of generalizable rules that specify the development of efficient nervous systems. As the developmental mechanisms underpinning wiring economy are only now being elucidated, whether the molecular basis of this phenomenon is the result of conserved genetic programs or convergent evolution remains to be determined.
Collapse
Affiliation(s)
- Irving E Wang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Voelzmann A, Liew YT, Qu Y, Hahn I, Melero C, Sánchez-Soriano N, Prokop A. Drosophila Short stop as a paradigm for the role and regulation of spectraplakins. Semin Cell Dev Biol 2017; 69:40-57. [DOI: 10.1016/j.semcdb.2017.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
|
13
|
Luo J, Liu Y, Nässel DR. Transcriptional Reorganization of Drosophila Motor Neurons and Their Muscular Junctions toward a Neuroendocrine Phenotype by the bHLH Protein Dimmed. Front Mol Neurosci 2017; 10:260. [PMID: 28855860 PMCID: PMC5557793 DOI: 10.3389/fnmol.2017.00260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/31/2017] [Indexed: 01/13/2023] Open
Abstract
Neuroendocrine cells store and secrete bulk amounts of neuropeptides, and display morphological and molecular characteristics distinct from neurons signaling with classical neurotransmitters. In Drosophila the transcription factor Dimmed (Dimm), is a prime organizer of neuroendocrine capacity in a majority of the peptidergic neurons. These neurons display large cell bodies and extensive axon terminations that commonly do not form regular synapses. We ask which molecular compartments of a neuron are affected by Dimm to generate these morphological features. Thus, we ectopically expressed Dimm in glutamatergic, Dimm-negative, motor neurons and analyzed their characteristics in the central nervous system and the neuromuscular junction. Ectopic Dimm results in motor neurons with enlarged cell bodies, diminished dendrites, larger axon terminations and boutons, as well as reduced expression of synaptic proteins both pre and post-synaptically. Furthermore, the neurons display diminished vesicular glutamate transporter, and signaling components known to sustain interactions between the developing axon termination and muscle, such as wingless and frizzled are down regulated. Ectopic co-expression of Dimm and the insulin receptor augments most of the above effects on the motor neurons. In summary, ectopic Dimm expression alters the glutamatergic motor neuron phenotype toward a neuroendocrine one, both pre- and post-synaptically. Thus, Dimm is a key organizer of both secretory capacity and morphological features characteristic of neuroendocrine cells, and this transcription factor affects also post-synaptic proteins.
Collapse
Affiliation(s)
- Jiangnan Luo
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| | - Yiting Liu
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm UniversityStockholm, Sweden
| |
Collapse
|
14
|
Gainer H, House S, Kim DS, Chin H, Pant HC. Squid Giant Axon Contains Neurofilament Protein mRNA but does not Synthesize Neurofilament Proteins. Cell Mol Neurobiol 2017; 37:475-486. [PMID: 27207029 DOI: 10.1007/s10571-016-0382-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/06/2016] [Indexed: 12/16/2022]
Abstract
When isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells. In this paper, we reexamine this issue by studying the synthesis of endogenous neurofilament (NF) proteins in the axon. Our laboratory previously showed that NF mRNA and protein are present in the squid giant axon, but not in the surrounding adaxonal glia. Therefore, if the isolated squid axon could be shown to contain newly synthesized NF protein de novo, it could not arise from the adaxonal glia. The results of experiments in this paper show that abundant 3H-labeled NF protein is synthesized in the squid giant fiber lobe containing the giant axon's neuronal cell bodies, but despite the presence of NF mRNA in the giant axon no labeled NF protein is detected in the giant axon. This lends support to the glia-axon protein transfer hypothesis which posits that the squid giant axon obtains newly synthesized protein by Schwann cell transfer and not through intra-axonal protein synthesis, and further suggests that the NF mRNA in the axon is in a translationally repressed state.
Collapse
Affiliation(s)
- Harold Gainer
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| | - Shirley House
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Dong Sun Kim
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Department of Anatomy, College of Medicine, Kyungbuk National University, Daegu, South Korea
| | - Hemin Chin
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Division of Extramural Research, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Harish C Pant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| |
Collapse
|
15
|
Qu Y, Hahn I, Webb SED, Pearce SP, Prokop A. Periodic actin structures in neuronal axons are required to maintain microtubules. Mol Biol Cell 2016; 28:296-308. [PMID: 27881663 PMCID: PMC5231898 DOI: 10.1091/mbc.e16-10-0727] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022] Open
Abstract
Drosophila genetics is combined with high-resolution microscopy and a number of functional readouts to demonstrate key factors required for the presence of regularly spaced rings of cortical actin in axons. The data suggest important roles for the actin rings in microtubule regulation, most likely by sustaining their polymerization. Axons are cable-like neuronal processes wiring the nervous system. They contain parallel bundles of microtubules as structural backbones, surrounded by regularly spaced actin rings termed the periodic membrane skeleton (PMS). Despite being an evolutionarily conserved, ubiquitous, highly ordered feature of axons, the function of PMS is unknown. Here we studied PMS abundance, organization, and function, combining versatile Drosophila genetics with superresolution microscopy and various functional readouts. Analyses with 11 actin regulators and three actin-targeting drugs suggest that PMS contains short actin filaments that are depolymerization resistant and sensitive to spectrin, adducin, and nucleator deficiency, consistent with microscopy-derived models proposing PMS as specialized cortical actin. Upon actin removal, we observed gaps in microtubule bundles, reduced microtubule polymerization, and reduced axon numbers, suggesting a role of PMS in microtubule organization. These effects become strongly enhanced when carried out in neurons lacking the microtubule-stabilizing protein Short stop (Shot). Combining the aforementioned actin manipulations with Shot deficiency revealed a close correlation between PMS abundance and microtubule regulation, consistent with a model in which PMS-dependent microtubule polymerization contributes to their maintenance in axons. We discuss potential implications of this novel PMS function along axon shafts for axon maintenance and regeneration.
Collapse
Affiliation(s)
- Yue Qu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ines Hahn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Stephen E D Webb
- Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot OX11 0QX, United Kingdom
| | - Simon P Pearce
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom.,School of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Andreas Prokop
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
16
|
van de Willige D, Hoogenraad CC, Akhmanova A. Microtubule plus-end tracking proteins in neuronal development. Cell Mol Life Sci 2016; 73:2053-77. [PMID: 26969328 PMCID: PMC4834103 DOI: 10.1007/s00018-016-2168-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
Abstract
Regulation of the microtubule cytoskeleton is of pivotal importance for neuronal development and function. One such regulatory mechanism centers on microtubule plus-end tracking proteins (+TIPs): structurally and functionally diverse regulatory factors, which can form complex macromolecular assemblies at the growing microtubule plus-ends. +TIPs modulate important properties of microtubules including their dynamics and their ability to control cell polarity, membrane transport and signaling. Several neurodevelopmental and neurodegenerative diseases are associated with mutations in +TIPs or with misregulation of these proteins. In this review, we focus on the role and regulation of +TIPs in neuronal development and associated disorders.
Collapse
Affiliation(s)
- Dieudonnée van de Willige
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Schneider-Mizell CM, Gerhard S, Longair M, Kazimiers T, Li F, Zwart MF, Champion A, Midgley FM, Fetter RD, Saalfeld S, Cardona A. Quantitative neuroanatomy for connectomics in Drosophila. eLife 2016; 5. [PMID: 26990779 PMCID: PMC4811773 DOI: 10.7554/elife.12059] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 01/31/2016] [Indexed: 12/18/2022] Open
Abstract
Neuronal circuit mapping using electron microscopy demands laborious proofreading or reconciliation of multiple independent reconstructions. Here, we describe new methods to apply quantitative arbor and network context to iteratively proofread and reconstruct circuits and create anatomically enriched wiring diagrams. We measured the morphological underpinnings of connectivity in new and existing reconstructions of Drosophila sensorimotor (larva) and visual (adult) systems. Synaptic inputs were preferentially located on numerous small, microtubule-free 'twigs' which branch off a single microtubule-containing 'backbone'. Omission of individual twigs accounted for 96% of errors. However, the synapses of highly connected neurons were distributed across multiple twigs. Thus, the robustness of a strong connection to detailed twig anatomy was associated with robustness to reconstruction error. By comparing iterative reconstruction to the consensus of multiple reconstructions, we show that our method overcomes the need for redundant effort through the discovery and application of relationships between cellular neuroanatomy and synaptic connectivity. DOI:http://dx.doi.org/10.7554/eLife.12059.001 The nervous system contains cells called neurons, which connect to each other to form circuits that send and process information. Each neuron receives and transmits signals to other neurons via very small junctions called synapses. Neurons are shaped a bit like trees, and most input synapses are located in the tiniest branches. Understanding the architecture of a neuron’s branches is important to understand the role that a particular neuron plays in processing information. Therefore, neuroscientists strive to reconstruct the architecture of these branches and how they connect to one another using imaging techniques. One imaging technique known as serial electron microscopy generates highly detailed images of neural circuits. However, reconstructing neural circuits from such images is notoriously time consuming and error prone. These errors could result in the reconstructed circuit being very different than the real-life circuit. For example, an error that leads to missing out a large branch could result in researchers failing to notice many important connections in the circuit. On the other hand, some errors may not matter much because the neurons share other synapses that are included in the reconstruction. To understand what effect errors have on the reconstructed circuits, neuroscientists need to have a more detailed understanding of the relationship between the shape of a neuron, its synaptic connections to other neurons, and where errors commonly occur. Here, Schneider-Mizell, Gerhard et al. study this relationship in detail and then devise a faster reconstruction method that uses the shape and other properties of neurons without sacrificing accuracy. The method includes a way to include data from the shape of neurons in the circuit wiring diagrams, revealing circuit patterns that would otherwise go unnoticed. The experiments use serial electron microscopy images of neurons from fruit flies and show that, from the tiniest larva to the adult fly, neurons form synapses with each other in a similar way. Most errors in the reconstruction only affect the tips of the smallest branches, which generally only host a single synapse. Such omissions do not have a big effect on the reconstructed circuit because strongly connected neurons make multiple synapses onto each other. Schneider-Mizell, Gerhard et al.'s approach will help researchers to reconstruct neural circuits and analyze them more effectively than was possible before. The algorithms and tools developed in this study are available in an open source software package so that they can be used by other researchers in the future. DOI:http://dx.doi.org/10.7554/eLife.12059.002
Collapse
Affiliation(s)
| | - Stephan Gerhard
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Institute of Neuroinformatics, University of Zurich, Zürich, Switzerland.,Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Mark Longair
- Institute of Neuroinformatics, University of Zurich, Zürich, Switzerland.,Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Tom Kazimiers
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Maarten F Zwart
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Andrew Champion
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Frank M Midgley
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Richard D Fetter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
18
|
Bernardo-Garcia FJ, Fritsch C, Sprecher SG. The transcription factor Glass links eye field specification with photoreceptor differentiation in Drosophila. Development 2016; 143:1413-23. [PMID: 26952983 DOI: 10.1242/dev.128801] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/22/2016] [Indexed: 12/12/2022]
Abstract
Eye development requires an evolutionarily conserved group of transcription factors, termed the retinal determination network (RDN). However, little is known about the molecular mechanism by which the RDN instructs cells to differentiate into photoreceptors. We show that photoreceptor cell identity in Drosophila is critically regulated by the transcription factor Glass, which is primarily expressed in photoreceptors and whose role in this process was previously unknown. Glass is both required and sufficient for the expression of phototransduction proteins. Our results demonstrate that the RDN member Sine oculis directly activates glass expression, and that Glass activates the expression of the transcription factors Hazy and Otd. We identified hazy as a direct target of Glass. Induced expression of Hazy in the retina partially rescues the glass mutant phenotype. Together, our results provide a transcriptional link between eye field specification and photoreceptor differentiation in Drosophila, placing Glass at a central position in this developmental process.
Collapse
Affiliation(s)
| | - Cornelia Fritsch
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
19
|
Hesse J, Schreiber S. Externalization of neuronal somata as an evolutionary strategy for energy economization. Curr Biol 2016; 25:R324-5. [PMID: 25898099 DOI: 10.1016/j.cub.2015.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Janina Hesse
- Department of Biology, Institute for Theoretical Biology (ITB), Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Bernstein Center for Computational Neuroscience, 10115 Berlin, Germany
| | - Susanne Schreiber
- Department of Biology, Institute for Theoretical Biology (ITB), Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Bernstein Center for Computational Neuroscience, 10115 Berlin, Germany.
| |
Collapse
|
20
|
Abstract
Polarized distribution of signaling molecules to axons and dendrites facilitates directional information flow in complex vertebrate nervous systems. The topic we address here is when the key aspects of neuronal polarity evolved. All neurons have a central cell body with thin processes that extend from it to cover long distances, and they also all rely on voltage-gated ion channels to propagate signals along their length. The most familiar neurons, those in vertebrates, have additional cellular features that allow them to send directional signals efficiently. In these neurons, dendrites typically receive signals and axons send signals. It has been suggested that many of the distinct features of axons and dendrites, including the axon initial segment, are found only in vertebrates. However, it is now becoming clear that two key cytoskeletal features that underlie polarized sorting, a specialized region at the base of the axon and polarized microtubules, are found in invertebrate neurons as well. It thus seems likely that all bilaterians generate axons and dendrites in the same way. As a next step, it will be extremely interesting to determine whether the nerve nets of cnidarians and ctenophores also contain polarized neurons with true axons and dendrites, or whether polarity evolved in concert with the more centralized nervous systems found in bilaterians.
Collapse
Affiliation(s)
- Melissa M Rolls
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Timothy J Jegla
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
21
|
Lovick JK, Kong A, Omoto JJ, Ngo KT, Younossi-Hartenstein A, Hartenstein V. Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain. Dev Neurobiol 2015; 76:434-51. [PMID: 26178322 DOI: 10.1002/dneu.22325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 11/10/2022]
Abstract
The Drosophila brain consists of a relatively small number of invariant, genetically determined lineages which provide a model to study the relationship between gene function and neuronal architecture. In following this long-term goal, we reconstruct the morphology (projection pattern and connectivity) and gene expression patterns of brain lineages throughout development. In this article, we focus on the secondary phase of lineage morphogenesis, from the reactivation of neuroblast proliferation in the first larval instar to the time when proliferation ends and secondary axon tracts have fully extended in the late third larval instar. We have reconstructed the location and projection of secondary lineages at close (4 h) intervals and produced a detailed map in the form of confocal z-projections and digital three-dimensional models of all lineages at successive larval stages. Based on these reconstructions, we could compare the spatio-temporal pattern of axon formation and morphogenetic movements of different lineages in normal brain development. In addition to wild type, we reconstructed lineage morphology in two mutant conditions. (1) Expressing the construct UAS-p35 which rescues programmed cell death we could systematically determine which lineages normally lose hemilineages to apoptosis. (2) so-Gal4-driven expression of dominant-negative EGFR ablated the optic lobe, which allowed us to conclude that the global centrifugal movement normally affecting the cell bodies of lateral lineages in the late larva is causally related to the expansion of the optic lobe, and that the central pattern of axonal projections of these lineages is independent of the presence or absence of the optic lobe.
Collapse
Affiliation(s)
- Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Angel Kong
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Jaison J Omoto
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Kathy T Ngo
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Amelia Younossi-Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
22
|
Current techniques for high-resolution mapping of behavioral circuits in Drosophila. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:895-909. [DOI: 10.1007/s00359-015-1010-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
|
23
|
Ajjuri RR, Hall M, Reiter LT, O’Donnell JM. Drosophila. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
24
|
Razzell W, Wood W, Martin P. Recapitulation of morphogenetic cell shape changes enables wound re-epithelialisation. Development 2014; 141:1814-20. [PMID: 24718989 PMCID: PMC3994776 DOI: 10.1242/dev.107045] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Wound repair is a fundamental, conserved mechanism for maintaining tissue homeostasis and shares many parallels with embryonic morphogenesis. Small wounds in simple epithelia rapidly assemble a contractile actomyosin cable at their leading edge, as well as dynamic filopodia that finally knit the wound edges together. Most studies of wound re-epithelialisation have focused on the actin machineries that assemble in the leading edge of front row cells and that resemble the contractile mechanisms that drive morphogenetic episodes, including Drosophila dorsal closure, but, clearly, multiple cell rows back must also contribute for efficient repair of the wound. Here, we examine the role of cells back from the wound edge and show that they also stretch towards the wound and cells anterior-posterior to the wound edge rearrange their junctions with neighbours to drive cell intercalation events. This process in anterior-posterior cells is active and dependent on pulses of actomyosin that lead to ratcheted shrinkage of junctions; the actomyosin pulses are targeted to breaks in the cell polarity protein Par3 at cell vertices. Inhibiting actomyosin dynamics back from the leading edge prevents junction shrinkage and inhibits the wound edge from advancing. These events recapitulate cell rearrangements that occur during germband extension, in which intercalation events drive the elongation of tissues.
Collapse
Affiliation(s)
- William Razzell
- Schools of Biochemistry and, Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
25
|
|
26
|
Wong DC, Lovick JK, Ngo KT, Borisuthirattana W, Omoto JJ, Hartenstein V. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Dev Biol 2013; 384:258-89. [PMID: 23872236 PMCID: PMC3928077 DOI: 10.1016/j.ydbio.2013.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 01/13/2023]
Abstract
The Drosophila central brain is largely composed of lineages, units of sibling neurons derived from a single progenitor cell or neuroblast. During the early embryonic period, neuroblasts generate the primary neurons that constitute the larval brain. Neuroblasts reactivate in the larva, adding to their lineages a large number of secondary neurons which, according to previous studies in which selected lineages were labeled by stably expressed markers, differentiate during metamorphosis, sending terminal axonal and dendritic branches into defined volumes of the brain neuropil. We call the overall projection pattern of neurons forming a given lineage the "projection envelope" of that lineage. By inducing MARCM clones at the early larval stage, we labeled the secondary progeny of each neuroblast. For the supraesophageal ganglion excluding mushroom body (the part of the brain investigated in the present work) we obtained 81 different types of clones. Based on the trajectory of their secondary axon tracts (described in the accompanying paper, Lovick et al., 2013), we assigned these clones to specific lineages defined in the larva. Since a labeled clone reveals all aspects (cell bodies, axon tracts, terminal arborization) of a lineage, we were able to describe projection envelopes for all secondary lineages of the supraesophageal ganglion. This work provides a framework by which the secondary neurons (forming the vast majority of adult brain neurons) can be assigned to genetically and developmentally defined groups. It also represents a step towards the goal to establish, for each lineage, the link between its mature anatomical and functional phenotype, and the genetic make-up of the neuroblast it descends from.
Collapse
Affiliation(s)
- Darren C. Wong
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer K. Lovick
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathy T. Ngo
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wichanee Borisuthirattana
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jaison J. Omoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Volker Hartenstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
The Drosophila transcription factor Adf-1 (nalyot) regulates dendrite growth by controlling FasII and Staufen expression downstream of CaMKII and neural activity. J Neurosci 2013; 33:11916-31. [PMID: 23864680 DOI: 10.1523/jneurosci.1760-13.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Memory deficits in Drosophila nalyot mutants suggest that the Myb family transcription factor Adf-1 is an important regulator of developmental plasticity in the brain. However, the cellular functions for this transcription factor in neurons or molecular mechanisms by which it regulates plasticity remain unknown. Here, we use in vivo 3D reconstruction of identifiable larval motor neuron dendrites to show that Adf-1 is required cell autonomously for dendritic development and activity-dependent plasticity of motor neurons downstream of CaMKII. Adf-1 inhibition reduces dendrite growth and neuronal excitability, and results in motor deficits and altered transcriptional profiles. Surprisingly, analysis by comparative chromatin immunoprecipitation followed by sequencing (ChIP-Seq) of Adf-1, RNA Polymerase II (Pol II), and histone modifications in Kc cells shows that Adf-1 binding correlates positively with high Pol II-pausing indices and negatively with active chromatin marks such as H3K4me3 and H3K27ac. Consistently, the expression of Adf-1 targets Staufen and Fasciclin II (FasII), identified through larval brain ChIP-Seq for Adf-1, is negatively regulated by Adf-1, and manipulations of these genes predictably modify dendrite growth. Our results imply mechanistic interactions between transcriptional and local translational machinery in neurons as well as conserved neuronal growth mechanisms mediated by cell adhesion molecules, and suggest that CaMKII, Adf-1, FasII, and Staufen influence crucial aspects of dendrite development and plasticity with potential implications for memory formation. Further, our experiments reveal molecular details underlying transcriptional regulation by Adf-1, and indicate active interaction between Adf-1 and epigenetic regulators of gene expression during activity-dependent neuronal plasticity.
Collapse
|
28
|
Karsai G, Pollák E, Wacker M, Vömel M, Selcho M, Berta G, Nachman RJ, Isaac RE, Molnár L, Wegener C. Diverse in- and output polarities and high complexity of local synaptic and non-synaptic signaling within a chemically defined class of peptidergic Drosophila neurons. Front Neural Circuits 2013; 7:127. [PMID: 23914156 PMCID: PMC3729985 DOI: 10.3389/fncir.2013.00127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/12/2013] [Indexed: 12/31/2022] Open
Abstract
Peptidergic neurons are not easily integrated into current connectomics concepts, since their peptide messages can be distributed via non-synaptic paracrine signaling or volume transmission. Moreover, the polarity of peptidergic interneurons in terms of in- and out-put sites can be hard to predict and is very little explored. We describe in detail the morphology and the subcellular distribution of fluorescent vesicle/dendrite markers in CCAP neurons (NCCAP), a well defined set of peptidergic neurons in the Drosophila larva. NCCAP can be divided into five morphologically distinct subsets. In contrast to other subsets, serial homologous interneurons in the ventral ganglion show a mixed localization of in- and output markers along ventral neurites that defy a classification as dendritic or axonal compartments. Ultrastructurally, these neurites contain both pre- and postsynaptic sites preferably at varicosities. A significant portion of the synaptic events are due to reciprocal synapses. Peptides are mostly non-synaptically or parasynaptically released, and dense-core vesicles and synaptic vesicle pools are typically well separated. The responsiveness of the NCCAP to ecdysis-triggering hormone may be at least partly dependent on a tonic synaptic inhibition, and is independent of ecdysteroids. Our results reveal a remarkable variety and complexity of local synaptic circuitry within a chemically defined set of peptidergic neurons. Synaptic transmitter signaling as well as peptidergic paracrine signaling and volume transmission from varicosities can be main signaling modes of peptidergic interneurons depending on the subcellular region. The possibility of region-specific variable signaling modes should be taken into account in connectomic studies that aim to dissect the circuitry underlying insect behavior and physiology, in which peptidergic neurons act as important regulators.
Collapse
Affiliation(s)
- Gergely Karsai
- Department of Comparative Anatomy and Developmental Biology, Institute of Biology, Faculty of Science, University of Pécs Pécs, Hungary ; Neurobiology and Genetics, Biocenter, Theodor-Boveri-Institute, University of Würzburg Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Prokop A, Beaven R, Qu Y, Sánchez-Soriano N. Using fly genetics to dissect the cytoskeletal machinery of neurons during axonal growth and maintenance. J Cell Sci 2013; 126:2331-41. [PMID: 23729743 DOI: 10.1242/jcs.126912] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The extension of long slender axons is a key process of neuronal circuit formation, both during brain development and regeneration. For this, growth cones at the tips of axons are guided towards their correct target cells by signals. Growth cone behaviour downstream of these signals is implemented by their actin and microtubule cytoskeleton. In the first part of this Commentary, we discuss the fundamental roles of the cytoskeleton during axon growth. We present the various classes of actin- and microtubule-binding proteins that regulate the cytoskeleton, and highlight the important gaps in our understanding of how these proteins functionally integrate into the complex machinery that implements growth cone behaviour. Deciphering such machinery requires multidisciplinary approaches, including genetics and the use of simple model organisms. In the second part of this Commentary, we discuss how the application of combinatorial genetics in the versatile genetic model organism Drosophila melanogaster has started to contribute to the understanding of actin and microtubule regulation during axon growth. Using the example of dystonin-linked neuron degeneration, we explain how knowledge acquired by studying axonal growth in flies can also deliver new understanding in other aspects of neuron biology, such as axon maintenance in higher animals and humans.
Collapse
Affiliation(s)
- Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|
30
|
Kuehn C, Duch C. Putative excitatory and putative inhibitory inputs are localised in different dendritic domains in a Drosophila flight motoneuron. Eur J Neurosci 2013; 37:860-75. [PMID: 23279094 PMCID: PMC3604049 DOI: 10.1111/ejn.12104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 12/24/2022]
Abstract
Input-output computations of individual neurons may be affected by the three-dimensional structure of their dendrites and by the location of input synapses on specific parts of their dendrites. However, only a few examples exist of dendritic architecture which can be related to behaviorally relevant computations of a neuron. By combining genetic, immunohistochemical and confocal laser scanning methods this study estimates the location of the spike-initiating zone and the dendritic distribution patterns of putative synaptic inputs on an individually identified Drosophila flight motorneuron, MN5. MN5 is a monopolar neuron with > 4,000 dendritic branches. The site of spike initiation was estimated by mapping sodium channel immunolabel onto geometric reconstructions of MN5. Maps of putative excitatory cholinergic and of putative inhibitory GABAergic inputs on MN5 dendrites were created by charting tagged Dα7 nicotinic acetylcholine receptors and Rdl GABAA receptors onto MN5 dendritic surface reconstructions. Although these methods provide only an estimate of putative input synapse distributions, the data indicate that inhibitory and excitatory synapses were located preferentially on different dendritic domains of MN5 and, thus, computed mostly separately. Most putative inhibitory inputs were close to spike initiation, which was consistent with sharp inhibition, as predicted previously based on recordings of motoneuron firing patterns during flight. By contrast, highest densities of putative excitatory inputs at more distant dendritic regions were consistent with the prediction that, in response to different power demands during flight, tonic excitatory drive to flight motoneuron dendrites must be smoothly translated into different tonic firing frequencies.
Collapse
Affiliation(s)
- Claudia Kuehn
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | |
Collapse
|
31
|
Okray Z, Hassan BA. Genetic approaches in Drosophila for the study neurodevelopmental disorders. Neuropharmacology 2012; 68:150-6. [PMID: 23067575 DOI: 10.1016/j.neuropharm.2012.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/31/2012] [Accepted: 09/07/2012] [Indexed: 12/16/2022]
Abstract
The fruit fly Drosophila melanogaster is one of the premier genetic model organisms used in biomedical research today owing to the extraordinary power of its genetic tool-kit. Made famous by numerous seminal discoveries of basic developmental mechanisms and behavioral genetics, the power of fruit fly genetics is becoming increasingly applied to questions directly relevant to human health. In this review we discuss how Drosophila research is applied to address major questions in neurodevelopmental disorders. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Zeynep Okray
- Laboratory of Neurogenetics, VIB Center for the Biology of Disease, VIB, Herestraat 49, Leuven, Belgium
| | | |
Collapse
|
32
|
Tripodi M, Arber S. Regulation of motor circuit assembly by spatial and temporal mechanisms. Curr Opin Neurobiol 2012; 22:615-23. [PMID: 22417941 DOI: 10.1016/j.conb.2012.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/13/2012] [Accepted: 02/19/2012] [Indexed: 01/12/2023]
Affiliation(s)
- Marco Tripodi
- Biozentrum, University of Basel, Department of Cell Biology, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
33
|
Prokop A, Küppers-Munther B, Sánchez-Soriano N. Using Primary Neuron Cultures of Drosophila to Analyze Neuronal Circuit Formation and Function. NEUROMETHODS 2012. [DOI: 10.1007/978-1-61779-830-6_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Meinertzhagen IA, Lee CH. The genetic analysis of functional connectomics in Drosophila. ADVANCES IN GENETICS 2012; 80:99-151. [PMID: 23084874 DOI: 10.1016/b978-0-12-404742-6.00003-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fly and vertebrate nervous systems share many organizational features, such as layers, columns and glomeruli, and utilize similar synaptic components, such as ion channels and receptors. Both also exhibit similar network features. Recent technological advances, especially in electron microscopy, now allow us to determine synaptic circuits and identify pathways cell-by-cell, as part of the fly's connectome. Genetic tools provide the means to identify synaptic components, as well as to record and manipulate neuronal activity, adding function to the connectome. This review discusses technical advances in these emerging areas of functional connectomics, offering prognoses in each and identifying the challenges in bridging structural connectomics to molecular biology and synaptic physiology, thereby determining fundamental mechanisms of neural computation that underlie behavior.
Collapse
Affiliation(s)
- Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2.
| | | |
Collapse
|
35
|
Broadie K, Baumgartner S, Prokop A. Extracellular matrix and its receptors in Drosophila neural development. Dev Neurobiol 2011; 71:1102-30. [PMID: 21688401 PMCID: PMC3192297 DOI: 10.1002/dneu.20935] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance, and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable, and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: (1) neural progenitor proliferation, (2) axonal growth and pathfinding, and (3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions.
Collapse
Affiliation(s)
- Kendal Broadie
- Departments of Biological Sciences and Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232 USA
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, BMC B12, 22184 Lund, Sweden
| | - Andreas Prokop
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
36
|
Venken KJ, Simpson JH, Bellen HJ. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 2011; 72:202-30. [PMID: 22017985 PMCID: PMC3232021 DOI: 10.1016/j.neuron.2011.09.021] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2011] [Indexed: 12/26/2022]
Abstract
Research in the fruit fly Drosophila melanogaster has led to insights in neural development, axon guidance, ion channel function, synaptic transmission, learning and memory, diurnal rhythmicity, and neural disease that have had broad implications for neuroscience. Drosophila is currently the eukaryotic model organism that permits the most sophisticated in vivo manipulations to address the function of neurons and neuronally expressed genes. Here, we summarize many of the techniques that help assess the role of specific neurons by labeling, removing, or altering their activity. We also survey genetic manipulations to identify and characterize neural genes by mutation, overexpression, and protein labeling. Here, we attempt to acquaint the reader with available options and contexts to apply these methods.
Collapse
Affiliation(s)
- Koen J.T. Venken
- Department of Molecular and Human Genetics, Neurological Research Institute, Baylor College of Medicine, Houston, Texas, 77030
| | - Julie H. Simpson
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, 20147
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Neurological Research Institute, Baylor College of Medicine, Houston, Texas, 77030
- Program in Developmental Biology, Department of Neuroscience, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
37
|
Cdk5 regulates the size of an axon initial segment-like compartment in mushroom body neurons of the Drosophila central brain. J Neurosci 2011; 31:10451-62. [PMID: 21775591 DOI: 10.1523/jneurosci.0117-11.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The axon initial segment (AIS) is the specialized compartment of vertebrate axons where action potentials are initiated. Despite longtime attention to the unique functions of this compartment, the mechanisms that regulate AIS formation and maintenance are not known. Here, we identify a novel compartment in Drosophila mushroom body neurons that mirrors the molecular hallmarks of the vertebrate AIS as judged by accumulation of the anchoring protein Ankyrin1, presence of a specialized actin cytoskeleton, exclusion of both axon-specific and somatodendritic-specific cell surface proteins, and accumulation of a unique combination of voltage-gated ion channels. Using pharmacological treatments, we show that, similar to the vertebrate AIS, the integrity of this region of γ-neurons and its ability to tether membrane proteins depends on an intact actin cytoskeleton. We further show that Cdk5/p35 kinase regulates the formation and maintenance of the putative AIS by controlling the position of its distal boundary. Thus, boosting Cdk5 activity in γ-neurons extends the AIS by as much as 100%, while eliminating Cdk5 activity causes the domain to shrink proximally or disappear altogether. These data demonstrate that Cdk5/p35 kinase is a key regulator of the development and maintenance of the AIS in Drosophila.
Collapse
|
38
|
Abstract
Drosophila neurons have identifiable axons and dendrites based on cell shape, but it is only just starting to become clear how Drosophila neurons are polarized at the molecular level. Dendrite-specific components including the Golgi complex, GABA receptors, neurotransmitter receptor scaffolding proteins, and cell adhesion molecules have been described. Proteins involved in constructing presynaptic specializations are concentrated in axons of some neurons. A very simple model for how these components are distributed to axons and dendrites can be constructed based on the opposite polarity of microtubules in axons and dendrites: dynein carries cargo into dendrites, and kinesins carry cargo into axons. The simple model works well for multipolar neurons, but will likely need refinement for unipolar neurons, which are common in Drosophila.
Collapse
Affiliation(s)
- Melissa M Rolls
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
39
|
Katsuki T, Joshi R, Ailani D, Hiromi Y. Compartmentalization within neurites: its mechanisms and implications. Dev Neurobiol 2011; 71:458-73. [PMID: 21557500 DOI: 10.1002/dneu.20859] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neurons are morphologically characterized by long processes extending from a cell body. These processes, the dendrites and axon, are major sub-cellular compartments defined by morphological, molecular, and functional differences. However, evidence from vertebrates and invertebrates suggests that, based on molecular distribution, individual axons and dendrites are further divided into distinct compartments; many membrane molecules involved in axon guidance and synapse formation are localized to specific segments of axons or dendrites that share a boundary of localization. In this review, we describe recent progress in understanding the mechanisms of intra-neurite patterning, and discuss its potential roles in the development and function of the nervous system. Each protein employs different ways to achieve compartment-specific localization; some membrane molecules localize via cell-autonomous ability of neurons, while others require extrinsic signals for localization. The underlying regulatory mechanisms include transcriptional regulation, local translation, diffusion barrier, endocytosis, and selective membrane targeting. We propose that intra-neurite compartmentalization could provide platforms for structural and functional diversification of individual neurons.
Collapse
Affiliation(s)
- Takeo Katsuki
- Department of Developmental Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, Japan
| | | | | | | |
Collapse
|
40
|
Abstract
A hallmark of neurons is their ability to polarize with dendrite and axon specification to allow the proper flow of information through the nervous system. Over the past decade, extensive research has been performed in an attempt to understand the molecular and cellular machinery mediating this neuronal polarization process. It has become evident that many of the critical regulators involved in establishing neuronal polarity are evolutionarily conserved proteins that had previously been implicated in controlling the polarization of other cell types. At the forefront of this research are the partition defective (Par) proteins. In this review,we will provide a commentary on the progress of work regarding the central importance of Parproteins in the establishment of neuronal polarity.
Collapse
Affiliation(s)
- Ryan Insolera
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
41
|
Shinomiya K, Matsuda K, Oishi T, Otsuna H, Ito K. Flybrain neuron database: a comprehensive database system of the Drosophila brain neurons. J Comp Neurol 2011; 519:807-33. [PMID: 21280038 DOI: 10.1002/cne.22540] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The long history of neuroscience has accumulated information about numerous types of neurons in the brain of various organisms. Because such neurons have been reported in diverse publications without controlled format, it is not easy to keep track of all the known neurons in a particular nervous system. To address this issue we constructed an online database called Flybrain Neuron Database (Flybrain NDB), which serves as a platform to collect and provide information about all the types of neurons published so far in the brain of Drosophila melanogaster. Projection patterns of the identified neurons in diverse areas of the brain were recorded in a unified format, with text-based descriptions as well as images and movies wherever possible. In some cases projection sites and the distribution of the post- and presynaptic sites were determined with greater detail than described in the original publication. Information about the labeling patterns of various antibodies and expression driver strains to visualize identified neurons are provided as a separate sub-database. We also implemented a novel visualization tool with which users can interactively examine three-dimensional reconstruction of the confocal serial section images with desired viewing angles and cross sections. Comprehensive collection and versatile search function of the anatomical information reported in diverse publications make it possible to analyze possible connectivity between different brain regions. We analyzed the preferential connectivity among optic lobe layers and the plausible olfactory sensory map in the lateral horn to show the usefulness of such a database.
Collapse
Affiliation(s)
- Kazunori Shinomiya
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
42
|
Spindler SR, Hartenstein V. Bazooka mediates secondary axon morphology in Drosophila brain lineages. Neural Dev 2011; 6:16. [PMID: 21524279 PMCID: PMC3107162 DOI: 10.1186/1749-8104-6-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/27/2011] [Indexed: 12/22/2022] Open
Abstract
In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF) clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila.
Collapse
Affiliation(s)
- Shana R Spindler
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
43
|
Nicolaï LJJ, Ramaekers A, Raemaekers T, Drozdzecki A, Mauss AS, Yan J, Landgraf M, Annaert W, Hassan BA. Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. Proc Natl Acad Sci U S A 2010; 107:20553-8. [PMID: 21059961 PMCID: PMC2996714 DOI: 10.1073/pnas.1010198107] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent years, Drosophila melanogaster has emerged as a powerful model for neuronal circuit development, pathology, and function. A major impediment to these studies has been the lack of a genetically encoded, specific, universal, and phenotypically neutral marker of the somatodendritic compartment. We have developed such a marker and show that it is effective and specific in all neuronal populations tested in the peripheral and central nervous system. The marker, which we name DenMark (Dendritic Marker), is a hybrid protein of the mouse protein ICAM5/Telencephalin and the red fluorescent protein mCherry. We show that DenMark is a powerful tool for revealing novel aspects of the neuroanatomy of developing dendrites, identifying previously unknown dendritic arbors, and elucidating neuronal connectivity.
Collapse
Affiliation(s)
- Laura J. J. Nicolaï
- Laboratory of Neurogenetics and
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
- Doctoral Program in Molecular and Developmental Genetics, Katholieke Universiteit Leuven Group Biomedicine, 3000 Leuven, Belgium; and
| | - Ariane Ramaekers
- Laboratory of Neurogenetics and
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
| | - Tim Raemaekers
- Laboratory of Membrane Trafficking, Department of Molecular and Developmental Genetics, Flanders Institute of Biotechnology (VIB), 3000 Leuven, Belgium
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
| | - Andrzej Drozdzecki
- Laboratory of Membrane Trafficking, Department of Molecular and Developmental Genetics, Flanders Institute of Biotechnology (VIB), 3000 Leuven, Belgium
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
| | - Alex S. Mauss
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Jiekun Yan
- Laboratory of Neurogenetics and
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Wim Annaert
- Laboratory of Membrane Trafficking, Department of Molecular and Developmental Genetics, Flanders Institute of Biotechnology (VIB), 3000 Leuven, Belgium
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
- Doctoral Program in Molecular and Developmental Genetics, Katholieke Universiteit Leuven Group Biomedicine, 3000 Leuven, Belgium; and
| | - Bassem A. Hassan
- Laboratory of Neurogenetics and
- Center for Human Genetics, Katholieke Universiteit Leuven School of Medicine, 3000 Leuven, Belgium
- Doctoral Program in Molecular and Developmental Genetics, Katholieke Universiteit Leuven Group Biomedicine, 3000 Leuven, Belgium; and
| |
Collapse
|
44
|
Affiliation(s)
- Alexander Borst
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, Martinsried, Germany;
| | - Juergen Haag
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, Martinsried, Germany;
| | - Dierk F. Reiff
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, Martinsried, Germany;
| |
Collapse
|
45
|
Singh AP, VijayRaghavan K, Rodrigues V. Dendritic refinement of an identified neuron in the Drosophila CNS is regulated by neuronal activity and Wnt signaling. Development 2010; 137:1351-60. [DOI: 10.1242/dev.044131] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dendrites of neurons undergo dramatic reorganization in response to developmental and other cues, such as stress and hormones. Although their morphogenesis is an active area of research, there are few neuron preparations that allow the mechanistic study of how dendritic fields are established in central neurons. Dendritic refinement is a key final step of neuronal circuit formation and is closely linked to emergence of function. Here, we study a central serotonergic neuron in the Drosophila brain, the dendrites of which undergo a dramatic morphological change during metamorphosis. Using tools to manipulate gene expression in this neuron, we examine the refinement of dendrites during pupal life. We show that the final pattern emerges after an initial growth phase, in which the dendrites function as ‘detectors’, sensing inputs received by the cell. Consistent with this, reducing excitability of the cell through hyperpolarization by expression of Kir2.1 results in increased dendritic length. We show that sensory input, possibly acting through NMDA receptors, is necessary for dendritic refinement. Our results indicate that activity triggers Wnt signaling, which plays a ‘pro-retraction’ role in sculpting the dendritic field: in the absence of sensory input, dendritic arbors do not retract, a phenotype that can be rescued by activating Wnt signaling. Our findings integrate sensory activity, NMDA receptors and Wingless/Wnt5 signaling pathways to advance our understanding of how dendritic refinement is established. We show how the maturation of sensory function interacts with broadly distributed signaling molecules, resulting in their localized action in the refinement of dendritic arbors.
Collapse
Affiliation(s)
- Ajeet Pratap Singh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai-5, India
| | - K. VijayRaghavan
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore-65, India
| | - Veronica Rodrigues
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai-5, India
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore-65, India
| |
Collapse
|
46
|
Sánchez-Soriano N, Gonçalves-Pimentel C, Beaven R, Haessler U, Ofner-Ziegenfuss L, Ballestrem C, Prokop A. Drosophila growth cones: a genetically tractable platform for the analysis of axonal growth dynamics. Dev Neurobiol 2010; 70:58-71. [PMID: 19937774 DOI: 10.1002/dneu.20762] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The formation of neuronal networks, during development and regeneration, requires outgrowth of axons along reproducible paths toward their appropriate postsynaptic target cells. Axonal extension occurs at growth cones (GCs) at the tips of axons. GC advance and navigation requires the activity of their cytoskeletal networks, comprising filamentous actin (F-actin) in lamellipodia and filopodia as well as dynamic microtubules (MTs) emanating from bundles of the axonal core. The molecular mechanisms governing these two cytoskeletal networks, their cross-talk, and their response to extracellular signaling cues are only partially understood, hindering our conceptual understanding of how regulated changes in GC behavior are controlled. Here, we introduce Drosophila GCs as a suitable model to address these mechanisms. Morphological and cytoskeletal readouts of Drosophila GCs are similar to those of other models, including mammals, as demonstrated here for MT and F-actin dynamics, axonal growth rates, filopodial structure and motility, organizational principles of MT networks, and subcellular marker localization. Therefore, we expect fundamental insights gained in Drosophila to be translatable into vertebrate biology. The advantage of the Drosophila model over others is its enormous amenability to combinatorial genetics as a powerful strategy to address the complexity of regulatory networks governing axonal growth. Thus, using pharmacological and genetic manipulations, we demonstrate a role of the actin cytoskeleton in a specific form of MT organization (loop formation), known to regulate GC pausing behavior. We demonstrate these events to be mediated by the actin-MT linking factor Short stop, thus identifying an essential molecular player in this context.
Collapse
Affiliation(s)
- Natalia Sánchez-Soriano
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
47
|
Stone MC, Nguyen MM, Tao J, Allender DL, Rolls MM. Global up-regulation of microtubule dynamics and polarity reversal during regeneration of an axon from a dendrite. Mol Biol Cell 2010; 21:767-77. [PMID: 20053676 PMCID: PMC2828963 DOI: 10.1091/mbc.e09-11-0967] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Axon regeneration is crucial for recovery after trauma to the nervous system. For neurons to recover from complete axon removal they must respecify a dendrite as an axon: a complete reversal of polarity. We show that Drosophila neurons in vivo can convert a dendrite to a regenerating axon and that this process involves rebuilding the entire neuronal microtubule cytoskeleton. Two major microtubule rearrangements are specifically induced by axon and not dendrite removal: 1) 10-fold up-regulation of the number of growing microtubules and 2) microtubule polarity reversal. After one dendrite reverses its microtubules, it initiates tip growth and takes on morphological and molecular characteristics of an axon. Only neurons with a single dendrite that reverses polarity are able to initiate tip growth, and normal microtubule plus-end dynamics are required to initiate this growth. In addition, we find that JNK signaling is required for both the up-regulation of microtubule dynamics and microtubule polarity reversal initiated by axon injury. We conclude that regulation of microtubule dynamics and polarity in response to JNK signaling is key to initiating regeneration of an axon from a dendrite.
Collapse
Affiliation(s)
- Michelle C Stone
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
48
|
Bitan A, Guild GM, Bar-Dubin D, Abdu U. Asymmetric microtubule function is an essential requirement for polarized organization of the Drosophila bristle. Mol Cell Biol 2010; 30:496-507. [PMID: 19917727 PMCID: PMC2798467 DOI: 10.1128/mcb.00861-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/14/2009] [Accepted: 11/06/2009] [Indexed: 01/21/2023] Open
Abstract
While previous studies have shown that microtubules (MTs) are essential for maintaining the highly biased axial growth of the Drosophila bristle, the mechanism for this process has remained vague. We report that the MT minus-end marker, Nod-KHC, accumulates at the bristle tip, suggesting that the MT network in the bristle is organized minus end out. Potential markers for studying the importance of properly polarized MTs to bristle axial growth are Ik2 and Spindle-F (Spn-F), since mutations in spn-F and ik2 affect bristle development. We demonstrate that Spn-F and Ik2 are localized to the bristle tip and that mutations in ik2 and spn-F affect bristle MT and actin organization. Specifically, mutation in ik2 affects polarized bristle MT function. It was previously found that the hook mutant exhibited defects in bristle polarity and that hook is involved in endocytic trafficking. We found that Hook is localized at the bristle tip and that this localization is affected in ik2 mutants, suggesting that the contribution of MTs within the bristle shaft is important for correct endocytic trafficking. Thus, our results show that MTs are organized in a polarized manner within the highly elongated bristle and that this organization is essential for biased bristle axial growth.
Collapse
Affiliation(s)
- Amir Bitan
- Department of Life Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregory M. Guild
- Department of Life Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dikla Bar-Dubin
- Department of Life Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Uri Abdu
- Department of Life Sciences and National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Katsuki T, Ailani D, Hiramoto M, Hiromi Y. Intra-axonal patterning: intrinsic compartmentalization of the axonal membrane in Drosophila neurons. Neuron 2009; 64:188-99. [PMID: 19874787 DOI: 10.1016/j.neuron.2009.08.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 08/20/2009] [Accepted: 08/20/2009] [Indexed: 10/20/2022]
Abstract
In the developing nervous system, distribution of membrane molecules, particularly axon guidance receptors, is often restricted to specific segments of axons. Such localization of membrane molecules can be important for the formation and function of neural networks; however, how this patterning within axons is achieved remains elusive. Here we show that Drosophila neurons in culture establish intra-axonal patterns in a cell-autonomous manner; several membrane molecules localize to either proximal or distal axon segments without cell-cell contacts. This distinct patterning of membrane proteins is not explained by a simple temporal control of expression, and likely involves spatially controlled vesicular targeting or retrieval. Mobility of transmembrane molecules is restricted at the boundary of intra-axonal segments, indicating that the axonal membrane is compartmentalized by a barrier mechanism. We propose that this intra-axonal compartmentalization is an intrinsic property of Drosophila neurons that provides a basis for the structural and functional development of the nervous system.
Collapse
Affiliation(s)
- Takeo Katsuki
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | | | | | |
Collapse
|
50
|
Sanchez-Soriano N, Travis M, Dajas-Bailador F, Gonçalves-Pimentel C, Whitmarsh AJ, Prokop A. Mouse ACF7 and drosophila short stop modulate filopodia formation and microtubule organisation during neuronal growth. J Cell Sci 2009; 122:2534-42. [PMID: 19571116 DOI: 10.1242/jcs.046268] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spectraplakins are large actin-microtubule linker molecules implicated in various processes, including gastrulation, wound healing, skin blistering and neuronal degeneration. Expression data for the mammalian spectraplakin ACF7 and genetic analyses of the Drosophila spectraplakin Short stop (Shot) suggest an important role during neurogenesis. Using three parallel neuronal culture systems we demonstrate that, like Shot, ACF7 is essential for axon extension and describe, for the first time, their subcellular functions during axonal growth. Firstly, both ACF7 and Shot regulate the organisation of neuronal microtubules, a role dependent on both the F-actin- and microtubule-binding domains. This role in microtubule organisation is probably the key mechanism underlying the roles of Shot and ACF7 in growth cone advance. Secondly, we found a novel role for ACF7 and Shot in regulating the actin cytoskeleton through their ability to control the formation of filopodia. This function in F-actin regulation requires EF-hand motifs and interaction with the translational regulator Krasavietz/eIF5C, indicating that the underlying mechanisms are completely different from those used to control microtubules. Our data provide the basis for the first mechanistic explanation for the role of Shot and ACF7 in the developing nervous system and demonstrate their ability to coordinate the organisation of both actin and microtubule networks during axonal growth.
Collapse
Affiliation(s)
- Natalia Sanchez-Soriano
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|