1
|
Lee SY, Lee BY, Lim B, Uzzaman R, Jang G, Kim KS. Exploring the importance of predicted camel NRAP exon 4 for environmental adaptation using a mouse model. Anim Genet 2025; 56:e13490. [PMID: 39478283 DOI: 10.1111/age.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/28/2024] [Accepted: 10/20/2024] [Indexed: 12/25/2024]
Abstract
Camels possess exceptional adaptability, allowing them to withstand extreme temperatures in desert environments. They conserve water by reducing their metabolic rate and regulating body temperature. The heart of the camel plays a crucial role in this adaptation, with specific genes expressed in cardiac tissue that are essential for mammalian adaptation, regulating cardiac function and responding to environmental stressors. One such gene, nebulin-related-anchoring protein (NRAP), is involved in the assembly of myofibrils and the transmission of force within the heart. In our study of the NRAP gene across various livestock species, including three camel species, we identified a camel-specific exon region in the NRAP transcripts. This additional exon (exon 4) contains an open reading frame predicted in camels. To investigate its function, we generated knock-in mice expressing camel NRAP exon 4. These 'camelized mice' exhibited normal phenotypic characteristics compared with wild-type mice but showed elevated body temperatures under cold stress. Transcriptome analyses of the hearts from camelized mice under cold stress revealed differentially expressed inflammatory cytokine genes, known to influence cardiac function by modulating the contractility of cardiac muscle cells. We propose further investigations utilizing these camelized mice to explore these findings in greater depth.
Collapse
Affiliation(s)
- Sung-Yeon Lee
- Department of Animal Sciences, Chungbuk National University, Cheongju, South Korea
- GEM Division, Macrogen Inc., Seoul, South Korea
- Laboratory of Theriogenology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Bo-Young Lee
- Department of Animal Sciences, Chungbuk National University, Cheongju, South Korea
- Department of Biological Science, University of New Hampshire, Durham, New Hampshire, USA
| | - Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Rasel Uzzaman
- Department of Animal Sciences, Chungbuk National University, Cheongju, South Korea
| | - Goo Jang
- Laboratory of Theriogenology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Kwan-Suk Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
2
|
Garg P, Singhal G, Pareek S, Kulkarni P, Horne D, Nath A, Salgia R, Singhal SS. Unveiling the potential of gene editing techniques in revolutionizing Cancer treatment: A comprehensive overview. Biochim Biophys Acta Rev Cancer 2024; 1880:189233. [PMID: 39638158 DOI: 10.1016/j.bbcan.2024.189233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Gene editing techniques have emerged as powerful tools in biomedical research, offering precise manipulation of genetic material with the potential to revolutionize cancer treatment strategies. This review provides a comprehensive overview of the current landscape of gene editing technologies, including CRISPR-Cas systems, base editing, prime editing, and synthetic gene circuits, highlighting their applications and potential in cancer therapy. It discusses the mechanisms, advantages, and limitations of each gene editing approach, emphasizing their transformative impact on targeting oncogenes, tumor suppressor genes, and drug resistance mechanisms in various cancer types. The review delves into population-level interventions and precision prevention strategies enabled by gene editing technologies, including gene drives, synthetic gene circuits, and precision prevention tools, for controlling cancer-causing genes, targeting pre-cancerous lesions, and implementing personalized preventive measures. Ethical considerations, regulatory challenges, and future directions in gene editing research for cancer treatment are also addressed. This review highlights how gene editing could revolutionize precision medicine by enhancing patient care and advancing cancer treatments with targeted, personalized methods. For these benefits to be fully realized, collaboration among researchers, doctors, regulators, and patient advocates is crucial in fighting cancer and meeting clinical needs.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Gargi Singhal
- Undergraduate Medical Sciences, S.N. Medical College Agra, Uttar Pradesh 282002, India
| | - Siddhika Pareek
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Aritro Nath
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
3
|
Chin AHB, Sun N. Do not overlook the possibility of genome-edited somatic cells ending up in the human germline. J Community Genet 2024; 15:749-752. [PMID: 39382831 PMCID: PMC11645330 DOI: 10.1007/s12687-024-00741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Most debates on human germline genome editing have limited discussions to just genetic modifications of sperm and eggs (gametes), their precursors within testicular or ovarian tissues, and preimplantation human embryos. What has largely been overlooked is that genome editing of somatic (non-reproductive) cells can also become heritable and can potentially be transmitted to future generations of human offspring under specific experimental conditions, due to the emergence of various new technology platforms. Most notably, the reprogramming of human somatic cells to a pluripotent "embryonic stem cell-like" state (i.e. induced pluripotent stem cells), has opened up the possibility that genome editing performed on human somatic cells can also be transmitted to future generations of human offspring when combined with other new technology platforms, such as in vitro gametogenesis, chimeric and synthetic embryos. Additionally, due to high levels of plasticity and extensive tissue remodeling within the human fetus during gestation, it is speculated that genome editing performed on fetal somatic cells intended for fetal gene therapy in utero may be unintentionally transmitted to the human germline. Hence, there should be strict regulatory oversight to ensure that any genome-edited somatic cell that ends up in the human germline via such aforementioned technology platforms does so in strict compliance with relevant legislation and ethical guidelines, especially that pertaining to safety issues with genome editing technology and its potential misuse in human enhancement and eugenics.
Collapse
Affiliation(s)
- Alexis Heng Boon Chin
- Singapore Fertility and IVF Consultancy Pvt Ltd., 531A Upper Cross Street, #04-95, Hong Lim Complex, Chinatown, 051531, Singapore.
| | - Ningyu Sun
- Center for Reproductive Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Sato M, Inada E, Saitoh I, Morohoshi K, Nakamura S. Artificial Insemination as a Possible Convenient Tool to Acquire Genome-Edited Mice via In Vivo Fertilization with Engineered Sperm. BIOTECH 2024; 13:45. [PMID: 39584902 PMCID: PMC11587059 DOI: 10.3390/biotech13040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Advances in genome editing technology have made it possible to create genome-edited (GE) animals, which are useful for identifying isolated genes and producing models of human diseases within a short period of time. The production of GE animals mainly relies on the gene manipulation of pre-implantation embryos, such as fertilized eggs and two-cell embryos, which can usually be achieved by the microinjection of nucleic acids, electroporation in the presence of nucleic acids, or infection with viral vectors, such as adeno-associated viruses. In contrast, GE animals can theoretically be generated by fertilizing ovulated oocytes with GE sperm. However, there are only a few reports showing the successful production of GE animals using GE sperm. Artificial insemination (AI) is an assisted reproduction technology based on the introduction of isolated sperm into the female reproductive tract, such as the uterine horn or oviductal lumen, for the in vivo fertilization of ovulated oocytes. This approach is simpler than the in vitro fertilization-based production of offspring, as the latter always requires an egg transfer to recipient females, which is labor-intensive and time-consuming. In this review, we summarize the various methods for AI reported so far, the history of sperm-mediated gene transfer, a technology to produce genetically engineered animals through in vivo fertilization with sperm carrying exogenous DNA, and finally describe the possibility of AI-mediated creation of GE animals using GE sperm.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Gifu 501-0296, Japan
| | - Kazunori Morohoshi
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| |
Collapse
|
5
|
Fernández JP, Petersen B, Hassel P, Lucas Hahn A, Kielau P, Geibel J, Kues WA. Comparison Between Electroporation at Different Voltage Levels and Microinjection to Generate Porcine Embryos with Multiple Xenoantigen Knock-Outs. Int J Mol Sci 2024; 25:11894. [PMID: 39595965 PMCID: PMC11593736 DOI: 10.3390/ijms252211894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
In the context of xenotransplantation, the production of genetically modified pigs is essential. For several years, knock-out pigs were generated through somatic cell nuclear transfer employing donor cells with the desired genetic modifications, which resulted in a lengthy and cumbersome procedure. The CRISPR/Cas9 system enables direct targeting of specific genes in zygotes directly through microinjection or electroporation. However, these techniques require improvement to minimize mosaicism and low mutation rates without compromising embryo survival. This study aimed to determine the gene editing potential of these two techniques to deliver multiplexed ribonucleotide proteins (RNPs) to generate triple-knock-out porcine embryos with a multi-transgenic background. We designed RNP complexes targeting the major porcine xenoantigens GGTA1, CMAH, and B4GALNT2. We then compared the development of mosaicism and gene editing efficiencies between electroporation and microinjection. Our results indicated a significant effect of voltage increase on molecule intake in electroporated embryos, without it notably affecting the blastocyst formation rate. Our gene editing analysis revealed differences among delivery approaches and gene loci. Notably, employing electroporation at 35 V yielded the highest frequency of biallelic disruptions. However, mosaicism was the predominant genetic variant in all RNP delivery methods, underscoring the need for further research to optimize multiplex genome editing in porcine zygotes.
Collapse
Affiliation(s)
- Juan Pablo Fernández
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (B.P.); (P.H.); (A.L.H.); (P.K.); (J.G.)
- Graduate School HGNI, University of Veterinary Medicine Hannover (TiHo) Foundation, 30559 Hannover, Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (B.P.); (P.H.); (A.L.H.); (P.K.); (J.G.)
- eGenesis, 2706 County Rd E, Mount Horeb, WI 53572, USA
| | - Petra Hassel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (B.P.); (P.H.); (A.L.H.); (P.K.); (J.G.)
| | - Andrea Lucas Hahn
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (B.P.); (P.H.); (A.L.H.); (P.K.); (J.G.)
| | - Paul Kielau
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (B.P.); (P.H.); (A.L.H.); (P.K.); (J.G.)
| | - Johannes Geibel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (B.P.); (P.H.); (A.L.H.); (P.K.); (J.G.)
- Center for Integrated Breeding Research, University of Göttingen, 37073 Göttingen, Germany
| | - Wilfried A. Kues
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (B.P.); (P.H.); (A.L.H.); (P.K.); (J.G.)
| |
Collapse
|
6
|
Punetha M, Saini S, Choudhary S, Sharma S, Bala R, Kumar P, Sharma RK, Yadav PS, Datta TK, Kumar D. Establishment of CRISPR-Cas9 ribonucleoprotein mediated MSTN gene edited pregnancy in buffalo: Compare cells transfection and zygotes electroporation. Theriogenology 2024; 229:158-168. [PMID: 39178617 DOI: 10.1016/j.theriogenology.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Genome editing is recognized as a powerful tool in agriculture and research, enhancing our understanding of genetic function, diseases, and productivity. However, its progress in buffaloes has lagged behind other mammals due to several challenges, including long gestational periods, single pregnancies, and high raising costs. In this study, we aimed to generate MSTN-edited buffaloes, known for their distinctive double-muscling phenotype, as a proof of concept. To meet our goal, we used somatic cell nuclear transfer (SCNT) and zygotic electroporation (CRISPR-EP) technique. For this, we firstly identified the best transfection method for introduction of RNP complex into fibroblast which was further used for SCNT. For this, we compared the transfection, cleavage efficiency and cell viability of nucleofection and lipofection in adult fibroblasts. The cleavage, transfection efficiency and cell viability of nucleofection group was found to be significantly (P ≤ 0.05) higher than lipofection group. Four MSTN edited colony were generated using nucleofection, out of which three colonies was found to be biallelic and one was monoallelic. Further, we compared the efficacy, embryonic developmental potential and subsequent pregnancy outcome of SCNT and zygotic electroporation. The blastocyst rate of electroporated group was found to be significantly (P ≤ 0.05) higher than SCNT group. However, the zygotic electroporation group resulted into two pregnancies which were confirmed to be MSTN edited. Since, the zygotic electroporation does not require complex micromanipulation techniques associated with SCNT, it has potential for facilitating the genetic modification in large livestock such as buffaloes. The present study lays the basis for inducing genetic alternation with practical or biological significance.
Collapse
Affiliation(s)
- Meeti Punetha
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Sheetal Saini
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Suman Choudhary
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Surabhi Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Renu Bala
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Pradeep Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - R K Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - P S Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - T K Datta
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India.
| |
Collapse
|
7
|
Song X, Li Y, Zhang X, Hsiang T, Xu M, Guo Z, He K, Yu J. An Isoflavone Synthase Gene in Arachis hypogea Responds to Phoma arachidicola Infection Causing Web Blotch. PLANTS (BASEL, SWITZERLAND) 2024; 13:2948. [PMID: 39519870 PMCID: PMC11547825 DOI: 10.3390/plants13212948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Peanut web blotch is an important leaf disease caused by Phoma arachidicola, which seriously affects the quality and yield of peanuts. However, the molecular mechanisms of peanut resistance to peanut web blotch are not well understood. In this study, a transcriptome analysis of the interaction between peanut (Arachis hypogaea) and P. arachidicola revealed that total 2989 (779 up- and 2210 down-regulated) genes were all differentially expressed in peanut leaves infected by P. arachidicola at 7, 14, 21 days post inoculation. The pathways that were strongly differentially expressed were the flavone or isoflavone biosynthesis pathways. In addition, two 2-hydroxy isoflavanone synthase genes, IFS1 and IFS2, were strongly induced by P. arachidicola infection. Overexpression of the two genes enhanced resistance to Phytophthora parasitica in Nicotiana benthamiana. Knockout of AhIFS genes in peanut reduced disease resistance to P. arachidicola. These findings demonstrated that AhIFS genes play key roles in peanut resistance to P. arachidicola infection. Promoter analysis of the two AhIFS genes showed several defense-related cis-elements distributed in the promoter region. This study improves our understanding of the molecular mechanisms behind resistance of peanut infection by P. arachidicola, and provides important information that could be used to undertake greater detailed characterization of web blotch resistance genes in peanut.
Collapse
Affiliation(s)
- Xinying Song
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Ying Li
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Xia Zhang
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Manlin Xu
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Zhiqing Guo
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Kang He
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| | - Jing Yu
- Shandong Peanut Research Institute, Qingdao 266100, China; (X.S.); (Y.L.); (X.Z.); (M.X.); (Z.G.); (K.H.)
| |
Collapse
|
8
|
Shamjetsabam ND, Rana R, Malik P, Ganguly NK. CRISPR/Cas9: an overview of recent developments and applications in cancer research. Int J Surg 2024; 110:6198-6213. [PMID: 38377059 PMCID: PMC11486967 DOI: 10.1097/js9.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/27/2023] [Indexed: 02/22/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) has risen as a potent gene editing method with vast potential across numerous domains, including its application in cancer research and therapy. This review article provides an extensive overview of the research that has been done so far on CRISPR-Cas9 with an emphasis on how it could be utilized in the treatment of cancer. The authors go into the underlying ideas behind CRISPR-Cas9, its mechanisms of action, and its application for the study of cancer biology. Furthermore, the authors investigate the various uses of CRISPR-Cas9 in cancer research, spanning from the discovery of genes and the disease to the creation of novel therapeutic approaches. The authors additionally discuss the challenges and limitations posed by CRISPR-Cas9 technology and offer insights into the potential applications and future directions of this cutting-edge field of research. The article intends to consolidate the present understanding and stimulate more research into CRISPR-Cas9's promise as a game-changing tool for cancer research and therapy.
Collapse
Affiliation(s)
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital New Delhi
| | - Priyanka Malik
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| | | |
Collapse
|
9
|
Li A, Zhu Z, Yang J, Liu Y, Zhang Y, Liu J. Precise Insertion of AttB Sequences in Goat Genome Using Enhanced Prime Editor. Int J Mol Sci 2024; 25:9486. [PMID: 39273433 PMCID: PMC11395042 DOI: 10.3390/ijms25179486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Prime editor, an editing tool based on the CRISPR/Cas9 system, allows for all 12 types of nucleotide exchanges and arbitrary indels in genomic sequences without the need for inducing DNA double-strand breaks. Despite its flexibility and precision, prime editing efficiency is still low and hindered by various factors such as target sites, editing types, and the length of the primer binding site. In this study, we developed a prime editing system by incorporating an RNA motif at the 3' terminal of the pegRNA and integrating all twin prime editor factors into a single plasmid. These two strategies enhanced prime editing efficiency at target sites by up to 3.58-fold and 2.19-fold, respectively. Subsequently, enhanced prime editor was employed in goat cells and embryos to efficiently insert a 38 bp attB sequence into the Gt(ROSA)26Sor (Rosa26) and C-C motif chemokine receptor 5 (CCR5) loci. The enhanced prime editor can mediate 11.9% and 6.8% editing efficiency in parthenogenetic activation of embryos through embryo microinjection. In summary, our study introduces a modified prime editing system with improved editing and transfection efficiency, making it more suitable for inserting foreign sequences into primary cells and embryos. These results broaden the potential applications of prime editing technologies in the production of transgenic animals.
Collapse
Affiliation(s)
- Aicong Li
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zhenliang Zhu
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jing Yang
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yayi Liu
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yong Zhang
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jun Liu
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
10
|
Liu B, Wittayarat M, Takebayashi K, Lin Q, Torigoe N, Namula Z, Hirata M, Nagahara M, Tanihara F, Otoi T. Effects of centrifugation treatment before electroporation on gene editing in pig embryos. In Vitro Cell Dev Biol Anim 2024; 60:732-739. [PMID: 38833208 DOI: 10.1007/s11626-024-00926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/15/2024] [Indexed: 06/06/2024]
Abstract
Genetic mosaicism, characterized by multiple genotypes within an individual, is considered an obstacle to CRISPR/Cas9 genome editing in animal models. Despite the various strategies for minimizing mosaic mutations, no definitive methods exist to eliminate them. This study aimed to enhance gene editing efficiency in porcine zygotes using CRISPR/Cas9, which targets specific genes through centrifugation and zona pellucida removal before electroporation. Centrifugation at 2000 × g did not adversely affect blastocyst formation rates in zygotes electroporated with gRNA targeting the GGTA1 gene; instead, it led to increased total and monoallelic mutation rates compared with control zygotes without centrifugation. However, the groups had no significant differences in biallelic mutation rates. In zygotes electroporated with gRNA targeting the CMAH gene, centrifugation treatments exceeding 1000 × g significantly increased both biallelic mutation rates and mutation efficiency. The combination of centrifugation and zona pellucida removal did not have a detrimental effect on blastocyst formation rates. It led to a higher rate of double biallelic mutations in embryos targeting both GGTA1 and CMAH compared to embryos without centrifugation treatment. In summary, our results demonstrate that pre-electroporation treatments, including centrifugation and zona pellucida removal, positively influenced the reduction of mosaic mutations, with the effectiveness of centrifugation depending on the specific gRNA used.
Collapse
Affiliation(s)
- Bin Liu
- Bio-Innovation Research Center, Tokushima University, Tokushima, 7793233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 7793233, Japan
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Koki Takebayashi
- Bio-Innovation Research Center, Tokushima University, Tokushima, 7793233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 7793233, Japan
| | - Qingyi Lin
- Bio-Innovation Research Center, Tokushima University, Tokushima, 7793233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 7793233, Japan
| | - Nanaka Torigoe
- Bio-Innovation Research Center, Tokushima University, Tokushima, 7793233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 7793233, Japan
| | - Zhao Namula
- Bio-Innovation Research Center, Tokushima University, Tokushima, 7793233, Japan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Maki Hirata
- Bio-Innovation Research Center, Tokushima University, Tokushima, 7793233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 7793233, Japan
| | - Megumi Nagahara
- Bio-Innovation Research Center, Tokushima University, Tokushima, 7793233, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 7793233, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 7793233, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, Tokushima, 7793233, Japan.
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 7793233, Japan.
- Laboratory of Animal Reproduction, Bio-Innovation Research Center, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan.
| |
Collapse
|
11
|
Chin AHB, Nguma JDB, Ahmad MF. Stringent criteria needed for germline genome editing of human IVF embryos. J Assist Reprod Genet 2024; 41:1727-1731. [PMID: 38695986 PMCID: PMC11263300 DOI: 10.1007/s10815-024-03125-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/16/2024] [Indexed: 07/23/2024] Open
Abstract
Germline genome editing of IVF embryos is controversial because it is not directly health or lifesaving but is intended to prevent genetic diseases in yet-unborn future offspring. The following criteria are thus proposed for future clinical trials: (i) Due to medical risks, there should be cautious and judicious application while avoiding any non-essential usage, with rigorous patient counseling. (ii) Genome editing should only be performed on the entire batch of IVF embryos without initial PGT screening if all of them are expected to be affected by genetic disease. (iii) When there is a fair chance that some IVF embryos will not be affected by genetic diseases, initial PGT screening must be performed to identify unaffected embryos for transfer. (iv) IVF embryos with carrier status should not undergo germline genome editing. (v) If patients fail to conceive after the transfer of unaffected embryos, they should undergo another fresh IVF cycle rather than opt for genome editing of their remaining affected embryos. (vi) Only if the patient is unable to produce any more unaffected embryos in a fresh IVF cycle due to advanced maternal age or diminished ovarian reserves, can the genome editing of remaining affected embryos be permitted as a last resort.
Collapse
Affiliation(s)
- Alexis Heng Boon Chin
- Singapore Fertility and IVF Consultancy Pvt Ltd, 531A Upper Cross Street, #04-95, Hong Lim Complex, Chinatown, 051531, Singapore.
| | - Jean-Didier Bosenge Nguma
- Department of Obstetrics and Gynecology, Kisangani University Hospital, Kisangani, Democratic Republic of the Congo
| | - Mohd Faizal Ahmad
- Department of Obstetrics & Gynecology, Faculty of Medicine, Advanced Reproductive Centre (ARC), Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Jeon BJ, Kwon DH, Gim GM, Kim HK, Lee JH, Jang G. Stable long-term germline transmission of GFP transgenic rat via PiggyBac transposon mediated gene transfer. BMC Vet Res 2024; 20:275. [PMID: 38918814 PMCID: PMC11201299 DOI: 10.1186/s12917-024-04123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Transgene silencing provides a significant challenge in animal model production via gene engineering using viral vectors or transposons. Selecting an appropriate strategy, contingent upon the species is crucial to circumvent transgene silencing, necessitating long-term observation of in vivo gene expression. This study employed the PiggyBac transposon to create a GFP rat model to address transgene silencing in rats. Surprisingly, transgene silencing occurred while using the CAG promoter, contrary to conventional understanding, whereas the Ef1α promoter prevented silencing. GFP expression remained stable through over five generations, confirming efficacy of the Ef1α promoter for long-term protein expression in rats. Additionally, GFP expression was consistently maintained at the cellular level in various cellular sources produced from the GFP rats, thereby validating the in vitro GFP expression of GFP rats. Whole-genome sequencing identified a stable integration site in Akap1 between exons 1 and 2, mitigating sequence-independent mechanism-mediated transgene silencing. This study established an efficient method for producing transgenic rat models using PiggyBac transposon. Our GFP rats represent the first model to exhibit prolonged expression of foreign genes over five generations, with implications for future research in gene-engineered rat models.
Collapse
Affiliation(s)
- Beom-Jin Jeon
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | - Dong-Hyeok Kwon
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| | | | - Hee-Kyoung Kim
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Jeong-Hwa Lee
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- K-BIO KIURI Center, Seoul National University, Seoul, Republic of Korea
| | - Goo Jang
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- LARTBio Incorp, Gyeonggi-Do, Republic of Korea.
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea.
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia.
| |
Collapse
|
13
|
Rossi M, Breman E. Engineering strategies to safely drive CAR T-cells into the future. Front Immunol 2024; 15:1411393. [PMID: 38962002 PMCID: PMC11219585 DOI: 10.3389/fimmu.2024.1411393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has proven a breakthrough in cancer treatment in the last decade, giving unprecedented results against hematological malignancies. All approved CAR T-cell products, as well as many being assessed in clinical trials, are generated using viral vectors to deploy the exogenous genetic material into T-cells. Viral vectors have a long-standing clinical history in gene delivery, and thus underwent iterations of optimization to improve their efficiency and safety. Nonetheless, their capacity to integrate semi-randomly into the host genome makes them potentially oncogenic via insertional mutagenesis and dysregulation of key cellular genes. Secondary cancers following CAR T-cell administration appear to be a rare adverse event. However several cases documented in the last few years put the spotlight on this issue, which might have been underestimated so far, given the relatively recent deployment of CAR T-cell therapies. Furthermore, the initial successes obtained in hematological malignancies have not yet been replicated in solid tumors. It is now clear that further enhancements are needed to allow CAR T-cells to increase long-term persistence, overcome exhaustion and cope with the immunosuppressive tumor microenvironment. To this aim, a variety of genomic engineering strategies are under evaluation, most relying on CRISPR/Cas9 or other gene editing technologies. These approaches are liable to introduce unintended, irreversible genomic alterations in the product cells. In the first part of this review, we will discuss the viral and non-viral approaches used for the generation of CAR T-cells, whereas in the second part we will focus on gene editing and non-gene editing T-cell engineering, with particular regard to advantages, limitations, and safety. Finally, we will critically analyze the different gene deployment and genomic engineering combinations, delineating strategies with a superior safety profile for the production of next-generation CAR T-cell.
Collapse
|
14
|
Mattar CN, Chew WL, Lai PS. Embryo and fetal gene editing: Technical challenges and progress toward clinical applications. Mol Ther Methods Clin Dev 2024; 32:101229. [PMID: 38533521 PMCID: PMC10963250 DOI: 10.1016/j.omtm.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. In vivo strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.
Collapse
Affiliation(s)
- Citra N.Z. Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| | - Wei Leong Chew
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, 60 Biopolis St, Singapore, Singapore 138672
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| |
Collapse
|
15
|
Wang Y, Chen J, Huang X, Wu B, Dai P, Zhang F, Li J, Wang L. Gene-knockout by iSTOP enables rapid reproductive disease modeling and phenotyping in germ cells of the founder generation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1035-1050. [PMID: 38332217 DOI: 10.1007/s11427-023-2408-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 02/10/2024]
Abstract
Cytosine base editing achieves C•G-to-T•A substitutions and can convert four codons (CAA/CAG/CGA/TGG) into STOP-codons (induction of STOP-codons, iSTOP) to knock out genes with reduced mosaicism. iSTOP enables direct phenotyping in founders' somatic cells, but it remains unknown whether this works in founders' germ cells so as to rapidly reveal novel genes for fertility. Here, we initially establish that iSTOP in mouse zygotes enables functional characterization of known genes in founders' germ cells: Cfap43-iSTOP male founders manifest expected sperm features resembling human "multiple morphological abnormalities of the flagella" syndrome (i.e., MMAF-like features), while oocytes of Zp3-iSTOP female founders have no zona pellucida. We further illustrate iSTOP's utility for dissecting the functions of unknown genes with Ccdc183, observing MMAF-like features and male infertility in Ccdc183-iSTOP founders, phenotypes concordant with those of Ccdc183-KO offspring. We ultimately establish that CCDC183 is essential for sperm morphogenesis through regulating the assembly of outer dynein arms and participating in the intra-flagellar transport. Our study demonstrates iSTOP as an efficient tool for direct reproductive disease modeling and phenotyping in germ cells of the founder generation, and rapidly reveals the essentiality of Ccdc183 in fertility, thus providing a time-saving approach for validating genetic defects (like nonsense mutations) for human infertility.
Collapse
Affiliation(s)
- Yaling Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
| | - Jingwen Chen
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200433, China
| | - Xueying Huang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bangguo Wu
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, 200433, China
| | - Peng Dai
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingbo Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200438, China.
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
16
|
Sharma AK, Giri AK. Engineering CRISPR/Cas9 therapeutics for cancer precision medicine. Front Genet 2024; 15:1309175. [PMID: 38725484 PMCID: PMC11079134 DOI: 10.3389/fgene.2024.1309175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) technology has revolutionized field of cancer treatment. This review explores usage of CRISPR/Cas9 for editing and investigating genes involved in human carcinogenesis. It provides insights into the development of CRISPR as a genetic tool. Also, it explores recent developments and tools available in designing CRISPR/Cas9 systems for targeting oncogenic genes for cancer treatment. Further, we delve into an overview of cancer biology, highlighting key genetic alterations and signaling pathways whose deletion prevents malignancies. This fundamental knowledge enables a deeper understanding of how CRISPR/Cas9 can be tailored to address specific genetic aberrations and offer personalized therapeutic approaches. In this review, we showcase studies and preclinical trials that show the utility of CRISPR/Cas9 in disrupting oncogenic targets, modulating tumor microenvironment and increasing the efficiency of available anti treatments. It also provides insight into the use of CRISPR high throughput screens for cancer biomarker identifications and CRISPR based screening for drug discovery. In conclusion, this review offers an overview of exciting developments in engineering CRISPR/Cas9 therapeutics for cancer treatment and highlights the transformative potential of CRISPR for innovation and effective cancer treatments.
Collapse
Affiliation(s)
- Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Anil K. Giri
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| |
Collapse
|
17
|
Mariano CG, de Oliveira VC, Ambrósio CE. Gene editing in small and large animals for translational medicine: a review. Anim Reprod 2024; 21:e20230089. [PMID: 38628493 PMCID: PMC11019828 DOI: 10.1590/1984-3143-ar2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/16/2024] [Indexed: 04/19/2024] Open
Abstract
The CRISPR/Cas9 system is a simpler and more versatile method compared to other engineered nucleases such as Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs), and since its discovery, the efficiency of CRISPR-based genome editing has increased to the point that multiple and different types of edits can be made simultaneously. These advances in gene editing have revolutionized biotechnology by enabling precise genome editing with greater simplicity and efficacy than ever before. This tool has been successfully applied to a wide range of animal species, including cattle, pigs, dogs, and other small animals. Engineered nucleases cut the genome at specific target positions, triggering the cell's mechanisms to repair the damage and introduce a mutation to a specific genomic site. This review discusses novel genome-based CRISPR/Cas9 editing tools, methods developed to improve efficiency and specificity, the use of gene-editing on animal models and translational medicine, and the main challenges and limitations of CRISPR-based gene-editing approaches.
Collapse
Affiliation(s)
- Clésio Gomes Mariano
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Vanessa Cristina de Oliveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| | - Carlos Eduardo Ambrósio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo – USP, Pirassununga, SP, Brasil
| |
Collapse
|
18
|
Wang L, Wang J, Feng D, Wang B, Jahan-Mihan Y, Wang Y, Bi Y, Lim D, Ji B. A simple and effective genotyping workflow for rapid detection of CRISPR genome editing. Am J Physiol Gastrointest Liver Physiol 2024; 326:G473-G481. [PMID: 38410866 PMCID: PMC11216750 DOI: 10.1152/ajpgi.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
Genetically engineered mouse models play a pivotal role in the modeling of diseases, exploration of gene functions, and the development of novel therapies. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated genome editing technology has revolutionized the process of developing such models by enabling precise genome modifications of the multiple interested genes simultaneously. Following genome editing, an efficient genotyping methodology is crucial for subsequent characterization. However, current genotyping methods are laborious, time-consuming, and costly. Here, using targeting the mouse trypsinogen genes as an example, we introduced common applications of CRISPR-Cas9 editing and a streamlined cost-effective genotyping workflow for CRISPR-edited mouse models, in which Sanger sequencing is required only at the initial steps. In the F0 mice, we focused on identifying the presence of positive editing by PCR followed by Sanger sequencing without the need to know the exact sequences, simplifying the initial screening. In the F1 mice, Sanger sequencing and algorithms decoding were used to identify the precise editing. Once the edited sequence was established, a simple and effective genotyping strategy was established to distinguish homozygous and heterozygous status by PCR from tail DNA. The genotyping workflow applies to deletions as small as one nucleotide, multiple-gene knockout, and knockin studies. This simplified, efficient, and cost-effective genotyping shall be instructive to new investigators who are unfamiliar with characterizing CRISPR-Cas9-edited mouse strains.NEW & NOTEWORTHY This study presents a streamlined, cost-effective genotyping workflow for clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) edited mouse models, focusing on trypsinogen genes. It simplifies initial F0 mouse screening using PCR and Sanger sequencing without needing exact sequences. For F1 mice, precise editing is identified through Sanger sequencing and algorithm decoding. The workflow includes a novel PCR strategy for distinguishing homozygous and heterozygous statuses in subsequent generations, effective for small deletions, multiple-gene knockouts, and knockins.
Collapse
Affiliation(s)
- Lingxiang Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jiale Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Dongfeng Feng
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Bin Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Yasmin Jahan-Mihan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Ying Wang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Yan Bi
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, United States
| | - DoYoung Lim
- The Transgenic and Knockout Core, Mayo Clinic, Rochester, Minnesota, United States
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| |
Collapse
|
19
|
Khan S, Drabiak K. Eight Strategies to Engineer Acceptance of Human Germline Modifications. JOURNAL OF BIOETHICAL INQUIRY 2024; 21:81-94. [PMID: 37523056 DOI: 10.1007/s11673-023-10266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 05/06/2023] [Indexed: 08/01/2023]
Abstract
Until recently, scientific consensus held firm that genetically manipulated embryos created through methods including Mitochondrial Replacement Therapy or human germline genome editing should not be used to initiate a pregnancy. In countries that have relevant laws pertaining to heritable human germline modifications, the vast majority prohibit or restrict this practice. In the last several years, scholars have observed a transformation of scientific and policy restrictions with insistent calls for creating a regulatory pathway. Multiple stakeholders highlight the role of social consensus and public engagement for governance of heritable human germline modifications. However, in the drive to gain public acceptance and lift restrictions, some proponents provide distorted or misleading narratives designed to influence public perception and incrementally shift the consensus. This article describes eight discrete strategies that proponents employ to influence framing, sway public opinion, and revise policymaking of human germline modifications in a manner that undermines honest engagement.
Collapse
Affiliation(s)
- Shoaib Khan
- Morsani College of Medicine, University of South Florida, Tampa, USA
| | | |
Collapse
|
20
|
Wang J, Torres IM, Shang M, Al-Armanazi J, Dilawar H, Hettiarachchi DU, Paladines-Parrales A, Chambers B, Pottle K, Soman M, Su B, Dunham RA. One-step knock-in of two antimicrobial peptide transgenes at multiple loci of catfish by CRISPR/Cas9-mediated multiplex genome engineering. Int J Biol Macromol 2024; 260:129384. [PMID: 38224812 DOI: 10.1016/j.ijbiomac.2024.129384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/23/2023] [Accepted: 01/01/2024] [Indexed: 01/17/2024]
Abstract
CRISPR/Cas9-mediated multiplex genome editing (MGE) conventionally uses multiple single-guide RNAs (sgRNAs) for gene-targeted mutagenesis via the non-homologous end joining (NHEJ) pathway. MGE has been proven to be highly efficient for functional gene disruption/knockout (KO) at multiple loci in mammalian cells or organisms. However, in the absence of a DNA donor, this approach is limited to small indels without transgene integration. Here, we establish the linear double-stranded DNA (dsDNA) and double-cut plasmid (dcPlasmid) combination-assisted MGE in channel catfish (Ictalurus punctatus), allowing combinational deletion mutagenesis and transgene knock-in (KI) at multiple sites through NHEJ/homology-directed repair (HDR) pathway in parallel. In this study, we used single-sgRNA-based genome editing (ssGE) and multi-sgRNA-based MGE (msMGE) to replace the luteinizing hormone (lh) and melanocortin-4 receptor (mc4r) genes with the cathelicidin (As-Cath) transgene and the myostatin (two target sites: mstn1, mstn2) gene with the cecropin (Cec) transgene, respectively. A total of 9000 embryos were microinjected from three families, and 1004 live fingerlings were generated and analyzed. There was no significant difference in hatchability (all P > 0.05) and fry survival (all P > 0.05) between ssGE and msMGE. Compared to ssGE, CRISPR/Cas9-mediated msMGE assisted by the mixture of dsDNA and dcPlasmid donors yielded a higher knock-in (KI) efficiency of As-Cath (19.93 %, [59/296] vs. 12.96 %, [45/347]; P = 0.018) and Cec (22.97 %, [68/296] vs. 10.80 %, [39/361]; P = 0.003) transgenes, respectively. The msMGE strategy can be used to generate transgenic fish carrying two transgenes at multiple loci. In addition, double and quadruple mutant individuals can be produced with high efficiency (36.3 % ∼ 71.1 %) in one-step microinjection. In conclusion, we demonstrated that the CRISPR/Cas9-mediated msMGE allows the one-step generation of simultaneous insertion of the As-Cath and Cec transgenes at four sites, and the simultaneous disruption of the lh, mc4r, mstn1 and mstn2 alleles. This msMGE system, aided by the mixture donors, promises to pioneer a new dimension in the drive and selection of multiple designated traits in other non-model organisms.
Collapse
Affiliation(s)
- Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America.
| | - Indira Medina Torres
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Jacob Al-Armanazi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Hamza Dilawar
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Darshika U Hettiarachchi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Abel Paladines-Parrales
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Barrett Chambers
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Kate Pottle
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Misha Soman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America.
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States of America
| |
Collapse
|
21
|
Briski O, La Motta GE, Ratner LD, Allegroni FA, Pillado S, Álvarez G, Gutierrez B, Tarragona L, Zaccagnini A, Acerbo M, Ciampi C, Fernández-Martin R, Salamone DF. Comparison of ICSI, IVF, and in vivo derived embryos to produce CRISPR-Cas9 gene-edited pigs for xenotransplantation. Theriogenology 2024; 220:43-55. [PMID: 38471390 DOI: 10.1016/j.theriogenology.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Genome editing in pigs for xenotransplantation has seen significant advances in recent years. This study compared three methodologies to generate gene-edited embryos, including co-injection of sperm together with the CRISPR-Cas9 system into oocytes, named ICSI-MGE (mediated gene editing); microinjection of CRISPR-Cas9 components into oocytes followed by in vitro fertilization (IVF), and microinjection of in vivo fertilized zygotes with the CRISPR-Cas9 system. Our goal was to knock-out (KO) porcine genes involved in the biosynthesis of xenoantigens responsible for the hyperacute rejection of interspecific xenografts, namely GGTA1, CMAH, and β4GalNT2. Additionally, we attempted to KO the growth hormone receptor (GHR) gene with the aim of limiting the growth of porcine organs to a size that is physiologically suitable for human transplantation. Embryo development, pregnancy, and gene editing rates were evaluated. We found an efficient mutation of the GGTA1 gene following ICSI-MGE, comparable to the results obtained through the microinjection of oocytes followed by IVF. ICSI-MGE also showed higher rates of biallelic mutations compared to the other techniques. Five healthy piglets were born from in vivo-derived embryos, all of them exhibiting biallelic mutations in the GGTA1 gene, with three displaying mutations in the GHR gene. No mutations were observed in the CMAH and β4GalNT2 genes. In conclusion, in vitro methodologies showed high rates of gene-edited embryos. Specifically, ICSI-MGE proved to be an efficient technique for obtaining homozygous biallelic mutated embryos. Lastly, only live births were obtained from in vivo-derived embryos showing efficient multiple gene editing for GGTA1 and GHR.
Collapse
Affiliation(s)
- Olinda Briski
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Gastón Emilio La Motta
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina
| | - Laura Daniela Ratner
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Federico Andrés Allegroni
- Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Santiago Pillado
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Guadalupe Álvarez
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Betiana Gutierrez
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Lisa Tarragona
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Andrea Zaccagnini
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Marcelo Acerbo
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Carla Ciampi
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Rafael Fernández-Martin
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina.
| | - Daniel Felipe Salamone
- CONICET-Universidad de Buenos Aires - Instituto de Investigaciones en Producción Animal (INPA), Ciudad Autónoma de Buenos Aires, C1425FQB, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina.
| |
Collapse
|
22
|
Burger BT, Beaton BP, Campbell MA, Brett BT, Rohrer MS, Plummer S, Barnes D, Jiang K, Naswa S, Lange J, Ott A, Alger E, Rincon G, Rounsley S, Betthauser J, Mtango NR, Benne JA, Hammerand J, Durfee CJ, Rotolo ML, Cameron P, Lied AM, Irby MJ, Nyer DB, Fuller CK, Gradia S, Kanner SB, Park KE, Waters J, Simpson S, Telugu BP, Salgado BC, Brandariz-Nuñez A, Rowland RRR, Culbertson M, Rice E, Cigan AM. Generation of a Commercial-Scale Founder Population of Porcine Reproductive and Respiratory Syndrome Virus Resistant Pigs Using CRISPR-Cas. CRISPR J 2024; 7:12-28. [PMID: 38353617 DOI: 10.1089/crispr.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Disease resistance genes in livestock provide health benefits to animals and opportunities for farmers to meet the growing demand for affordable, high-quality protein. Previously, researchers used gene editing to modify the porcine CD163 gene and demonstrated resistance to a harmful virus that causes porcine reproductive and respiratory syndrome (PRRS). To maximize potential benefits, this disease resistance trait needs to be present in commercially relevant breeding populations for multiplication and distribution of pigs. Toward this goal, a first-of-its-kind, scaled gene editing program was established to introduce a single modified CD163 allele into four genetically diverse, elite porcine lines. This effort produced healthy pigs that resisted PRRS virus infection as determined by macrophage and animal challenges. This founder population will be used for additional disease and trait testing, multiplication, and commercial distribution upon regulatory approval. Applying CRISPR-Cas to eliminate a viral disease represents a major step toward improving animal health.
Collapse
Affiliation(s)
- Brian T Burger
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | | | | | | | | | - Sarah Plummer
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Dylan Barnes
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Ke Jiang
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Sudhir Naswa
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Jeremy Lange
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Alina Ott
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Elizabeth Alger
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Gonzalo Rincon
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Steven Rounsley
- Genus plc Research and Development, DeForest, Wisconsin, USA
- Current address: Inari Agriculture, West Lafayette, IN, USA
| | - Jeff Betthauser
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Namdori R Mtango
- Genus plc Research and Development, DeForest, Wisconsin, USA
- Current address: Colossal Biosciences, Dallas, TX, USA
| | - Joshua A Benne
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | | | - Codie J Durfee
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Marisa L Rotolo
- PIC, Hendersonville, Tennessee, USA
- Current address: National Pork Board, Des Moines, IA, USA
| | - Peter Cameron
- Caribou Biosciences, Berkeley, California, USA
- Current address: Profluent Bio, Berkeley, CA, USA
| | | | - Matthew J Irby
- Caribou Biosciences, Berkeley, California, USA
- Current address: Prime Medicine, Cambridge, MA, USA
| | - David B Nyer
- Caribou Biosciences, Berkeley, California, USA
- Current address: Clade Therapeutics, Boston, MA, USA
| | | | | | | | - Ki-Eun Park
- RenOVAte Biosciences, Reisterstown, Maryland, USA
| | - Jerel Waters
- RenOVAte Biosciences, Reisterstown, Maryland, USA
| | - Sean Simpson
- RenOVAte Biosciences, Reisterstown, Maryland, USA
| | | | - Brianna C Salgado
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alberto Brandariz-Nuñez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Raymond R R Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Elena Rice
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - A Mark Cigan
- Genus plc Research and Development, DeForest, Wisconsin, USA
- Current address: Cobb-Vantress, Siloam Springs, AR, USA
| |
Collapse
|
23
|
Puthumana J, Chandrababu A, Sarasan M, Joseph V, Singh ISB. Genetic improvement in edible fish: status, constraints, and prospects on CRISPR-based genome engineering. 3 Biotech 2024; 14:44. [PMID: 38249355 PMCID: PMC10796887 DOI: 10.1007/s13205-023-03891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024] Open
Abstract
Conventional selective breeding in aquaculture has been effective in genetically enhancing economic traits like growth and disease resistance. However, its advances are restricted by heritability, the extended period required to produce a strain with desirable traits, and the necessity to target multiple characteristics simultaneously in the breeding programs. Genome editing tools like zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) are promising for faster genetic improvement in fishes. CRISPR/Cas9 technology is the least expensive, most precise, and well compatible with multiplexing of all genome editing approaches, making it a productive and highly targeted approach for developing customized fish strains with specified characteristics. As a result, the use of CRISPR/Cas9 technology in aquaculture is rapidly growing, with the main traits researched being reproduction and development, growth, pigmentation, disease resistance, trans-GFP utilization, and omega-3 metabolism. However, technological obstacles, such as off-target effects, ancestral genome duplication, and mosaicism in founder population, need to be addressed to achieve sustainable fish production. Furthermore, present regulatory and risk assessment frameworks are inadequate to address the technical hurdles of CRISPR/Cas9, even though public and regulatory approval is critical to commercializing novel technology products. In this review, we examine the potential of CRISPR/Cas9 technology for the genetic improvement of edible fish, the technical, ethical, and socio-economic challenges to using it in fish species, and its future scope for sustainable fish production.
Collapse
Affiliation(s)
- Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Aswathy Chandrababu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Manomi Sarasan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - I. S. Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| |
Collapse
|
24
|
Moradbeigi P, Hosseini S, Salehi M, Mogheiseh A. Methyl β-Cyclodextrin-sperm-mediated gene editing (MBCD-SMGE): a simple and efficient method for targeted mutant mouse production. Biol Proced Online 2024; 26:3. [PMID: 38279106 PMCID: PMC10811837 DOI: 10.1186/s12575-024-00230-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Generating targeted mutant mice is a crucial technology in biomedical research. This study focuses on optimizing the CRISPR/Cas9 system uptake into sperm cells using the methyl β-cyclodextrin-sperm-mediated gene transfer (MBCD-SMGT) technique to generate targeted mutant blastocysts and mice efficiently. Additionally, the present study elucidates the roles of cholesterol and reactive oxygen species (ROS) in the exogenous DNA uptake by sperm. RESULTS In this study, B6D2F1 mouse sperm were incubated in the c-TYH medium with different concentrations of MBCD (0, 0.75, 1, and 2 mM) in the presence of 20 ng/µl pCAG-eCas9-GFP-U6-gRNA (pgRNA-Cas9) for 30 min. Functional parameters, extracellular ROS, and the copy numbers of internalized plasmid per sperm cell were evaluated. Subsequently, in vitro fertilization (IVF) was performed and fertilization rate, early embryonic development, and transfection rate were assessed. Finally, our study investigated the potential of the MBCD-SMGT technique in combination with the CRISPR-Cas9 system, referred to as MBCD-SMGE (MBCD-sperm-mediated gene editing), for generating targeted mutant blastocysts and mice. Results indicated that cholesterol removal from the sperm membrane using MBCD resulted in a premature acrosomal reaction, an increase in extracellular ROS levels, and a dose-dependent influence on the copy numbers of the internalized plasmids per sperm cell. Moreover, the MBCD-SMGT technique led to a larger population of transfected motile sperm and a higher production rate of GFP-positive blastocysts. Additionally, the current study validated the targeted indel in blastocyst and mouse derived from MBCD-SMGE technique. CONCLUSION Overall, this study highlights the significant potential of the MBCD-SMGE technique for generating targeted mutant mice. It holds enormous promise for modeling human diseases and improving desirable traits in animals.
Collapse
Affiliation(s)
- Parisa Moradbeigi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P. O. Box: 7144169155, Shiraz, Iran
| | - Sara Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 193954717, Tehran, Iran
- Hasti Noavaran Gene Royan Co, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box: 193954717, Tehran, Iran.
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Asghar Mogheiseh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, P. O. Box: 7144169155, Shiraz, Iran
| |
Collapse
|
25
|
Booncherd K, Sreebun S, Pasomboon P, Boonanuntanasarn S. Effects of CRISPR/Cas9-mediated dnd1 knockout impairs gonadal development in striped catfish. Animal 2024; 18:101039. [PMID: 38103430 DOI: 10.1016/j.animal.2023.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology allows for the generation of loss-of-function mutations to enable efficient gene targeting to produce desired phenotypes, such as the production of germ cell-free fish. This technology could provide several applications for aquaculture and conservation of fisheries resources, such as the prevention of overpopulation in fish culture and gene flow from escaped farmed fish into wild populations and the production of germ cell-free recipient larvae for germ cell transplantation. This study aimed to develop CRISPR/Cas9 mediated dead-end 1 (dnd1) knockout techniques for striped catfish (Pangasianodon hypophthalmus). To optimise CRISPR/Cas9-induced dnd1 knockout, three single-guide RNAs (sgRNAs) were designed to target upstream sequences of start codon of the dnd1 gene. A combination of two concentrations of each sgRNA (100 and 200 ng/µl) and three concentrations of Cas9 (100, 250, and 500 ng/µl) was microinjected into fertilised striped catfish eggs. These sgRNAs/Cas9 could induce indel mutations and lower the primordial germ cell (PGC) numbers. Histological analyses indicated that sgRNA3 targeting upstream and nearest to the start codon at 200 ng/µL and Cas9 at 500 ng/µL showed the lowest PGC number. The reduction in PGC number was confirmed by in situ hybridisation using antisense dnd1 and vasa probes. All sgRNA/Cas9 combinations reduced the expression of dnd1, cxcr4b, dazl, nanos1, nanos2, and vasa, and the lowest expression levels were observed in gonads obtained from fish injected with 200 ng/µL sgRNA3 and 500 ng/µL Cas9 (P < 0.05). In addition, at 1 year of age, a significantly lower gonadosomatic index was observed in fish injected with all sgRNA and Cas9 at 500 ng/µL. Moreover, compared to the control fish, the ovaries and testes presented different morphologies in the sgRNA/Cas9-injected fish, that is, few previtellogenic oocytes in the ovary and spermatogonial cell-less testes. In conclusion, CRISPR/Cas 9 targeting dnd1 knockout at the upstream sequences of start codon was achieved, which resulted in the downregulation of dnd1 and lowered PGC number.
Collapse
Affiliation(s)
- Kunlanan Booncherd
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Somkiat Sreebun
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Pailin Pasomboon
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
26
|
Park CS, Habib O, Lee Y, Hur JK. Applications of CRISPR technologies to the development of gene and cell therapy. BMB Rep 2024; 57:2-11. [PMID: 38178651 PMCID: PMC10828430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
Advancements in gene and cell therapy have resulted in novel therapeutics for diseases previously considered incurable or challenging to treat. Among the various contributing technologies, genome editing stands out as one of the most crucial for the progress in gene and cell therapy. The discovery of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) and the subsequent evolution of genetic engineering technology have markedly expanded the field of target-specific gene editing. Originally studied in the immune systems of bacteria and archaea, the CRISPR system has demonstrated wide applicability to effective genome editing of various biological systems including human cells. The development of CRISPR-based base editing has enabled directional cytosine-tothymine and adenine-to-guanine substitutions of select DNA bases at the target locus. Subsequent advances in prime editing further elevated the flexibility of the edit multiple consecutive bases to desired sequences. The recent CRISPR technologies also have been actively utilized for the development of in vivo and ex vivo gene and cell therapies. We anticipate that the medical applications of CRISPR will rapidly progress to provide unprecedented possibilities to develop novel therapeutics towards various diseases. [BMB Reports 2024; 57(1): 2-11].
Collapse
Affiliation(s)
- Chul-Sung Park
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Omer Habib
- Division of R&D, RedGene Inc., Seoul 08790, Korea
| | - Younsu Lee
- Division of R&D, RedGene Inc., Seoul 08790, Korea
| | - Junho K. Hur
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Genetics, College of Medicine, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
27
|
Hossain N, Igawa T, Suzuki M, Tazawa I, Nakao Y, Hayashi T, Suzuki N, Ogino H. Phenotype-genotype relationships in Xenopus sox9 crispants provide insights into campomelic dysplasia and vertebrate jaw evolution. Dev Growth Differ 2023; 65:481-497. [PMID: 37505799 DOI: 10.1111/dgd.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Since CRISPR-based genome editing technology works effectively in the diploid frog Xenopus tropicalis, a growing number of studies have successfully modeled human genetic diseases in this species. However, most of their targets were limited to non-syndromic diseases that exhibit abnormalities in a small fraction of tissues or organs in the body. This is likely because of the complexity of interpreting the phenotypic variations resulting from somatic mosaic mutations generated in the founder animals (crispants). In this study, we attempted to model the syndromic disease campomelic dysplasia (CD) by generating sox9 crispants in X. tropicalis. The resulting crispants failed to form neural crest cells at neurula stages and exhibited various combinations of jaw, gill, ear, heart, and gut defects at tadpole stages, recapitulating part of the syndromic phenotype of CD patients. Genotyping of the crispants with a variety of allelic series of mutations suggested that the heart and gut defects depend primarily on frame-shift mutations expected to be null, whereas the jaw, gill, and ear defects could be induced not only by such mutations but also by in-frame deletion mutations expected to delete part of the jawed vertebrate-specific domain from the encoded Sox9 protein. These results demonstrate that Xenopus crispants are useful for investigating the phenotype-genotype relationships behind syndromic diseases and examining the tissue-specific role of each functional domain within a single protein, providing novel insights into vertebrate jaw evolution.
Collapse
Affiliation(s)
- Nusrat Hossain
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takeshi Igawa
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Makoto Suzuki
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Ichiro Tazawa
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yuta Nakao
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Toshinori Hayashi
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Nanoka Suzuki
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
| | - Hajime Ogino
- Amphibian Research Center, Hiroshima University, Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
28
|
Doll RM, Boutros M, Port F. A temperature-tolerant CRISPR base editor mediates highly efficient and precise gene editing in Drosophila. SCIENCE ADVANCES 2023; 9:eadj1568. [PMID: 37647411 PMCID: PMC10468138 DOI: 10.1126/sciadv.adj1568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
CRISPR nucleases generate a broad spectrum of mutations that includes undesired editing outcomes. Here, we develop optimized C-to-T base editing systems for the generation of precise loss- or gain-of-function alleles in Drosophila and identify temperature as a crucial parameter for efficiency. We find that a variant of the widely used APOBEC1 deaminase has attenuated activity at 18° to 29°C and shows considerable dose-dependent toxicity. In contrast, the temperature-tolerant evoCDA1 domain mediates editing of typically more than 90% of alleles and is substantially better tolerated. Furthermore, formation of undesired mutations is exceptionally rare in Drosophila compared to other species. The predictable editing outcome, high efficiency, and product purity enables near homogeneous induction of STOP codons or alleles encoding protein variants in vivo. Last, we demonstrate how optimized expression enables conditional base editing in marked cell populations. This work substantially facilitates creation of precise alleles in Drosophila and provides key design parameters for developing efficient base editing systems in other ectothermic species.
Collapse
Affiliation(s)
- Roman M. Doll
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and BioQuant & Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Molecular Biosciences/Cancer Biology Program, Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and BioQuant & Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Fillip Port
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and BioQuant & Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
29
|
Daniels RR, Taylor RS, Robledo D, Macqueen DJ. Single cell genomics as a transformative approach for aquaculture research and innovation. REVIEWS IN AQUACULTURE 2023; 15:1618-1637. [PMID: 38505116 PMCID: PMC10946576 DOI: 10.1111/raq.12806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 03/21/2024]
Abstract
Single cell genomics encompasses a suite of rapidly maturing technologies that measure the molecular profiles of individual cells within target samples. These approaches provide a large up-step in biological information compared to long-established 'bulk' methods that profile the average molecular profiles of all cells in a sample, and have led to transformative advances in understanding of cellular biology, particularly in humans and model organisms. The application of single cell genomics is fast expanding to non-model taxa, including aquaculture species, where numerous research applications are underway with many more envisaged. In this review, we highlight the potential transformative applications of single cell genomics in aquaculture research, considering barriers and potential solutions to the broad uptake of these technologies. Focusing on single cell transcriptomics, we outline considerations for experimental design, including the essential requirement to obtain high quality cells/nuclei for sequencing in ectothermic aquatic species. We further outline data analysis and bioinformatics considerations, tailored to studies with the under-characterized genomes of aquaculture species, where our knowledge of cellular heterogeneity and cell marker genes is immature. Overall, this review offers a useful source of knowledge for researchers aiming to apply single cell genomics to address biological challenges faced by the global aquaculture sector though an improved understanding of cell biology.
Collapse
Affiliation(s)
- Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Richard S. Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| |
Collapse
|
30
|
Bekaert B, Boel A, De Witte L, Vandenberghe W, Popovic M, Stamatiadis P, Cosemans G, Tordeurs L, De Loore AM, Chuva de Sousa Lopes SM, De Sutter P, Stoop D, Coucke P, Menten B, Heindryckx B. Retained chromosomal integrity following CRISPR-Cas9-based mutational correction in human embryos. Mol Ther 2023; 31:2326-2341. [PMID: 37376733 PMCID: PMC10422011 DOI: 10.1016/j.ymthe.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/11/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Human germline gene correction by targeted nucleases holds great promise for reducing mutation transmission. However, recent studies have reported concerning observations in CRISPR-Cas9-targeted human embryos, including mosaicism and loss of heterozygosity (LOH). The latter has been associated with either gene conversion or (partial) chromosome loss events. In this study, we aimed to correct a heterozygous basepair substitution in PLCZ1, related to infertility. In 36% of the targeted embryos that originated from mutant sperm, only wild-type alleles were observed. By performing genome-wide double-digest restriction site-associated DNA sequencing, integrity of the targeted chromosome (i.e., no deletions larger than 3 Mb or chromosome loss) was confirmed in all seven targeted GENType-analyzed embryos (mutant editing and absence of mutation), while short-range LOH events (shorter than 10 Mb) were clearly observed by single-nucleotide polymorphism assessment in two of these embryos. These results fuel the currently ongoing discussion on double-strand break repair in early human embryos, making a case for the occurrence of gene conversion events or partial template-based homology-directed repair.
Collapse
Affiliation(s)
- Bieke Bekaert
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Lisa De Witte
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Winter Vandenberghe
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Mina Popovic
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Panagiotis Stamatiadis
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Gwenny Cosemans
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Lise Tordeurs
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Athina-Maria De Loore
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Susana Marina Chuva de Sousa Lopes
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Petra De Sutter
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Dominic Stoop
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Paul Coucke
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
31
|
Feng H, Bavister G, Gribble KE, Mark Welch DB. Highly efficient CRISPR-mediated gene editing in a rotifer. PLoS Biol 2023; 21:e3001888. [PMID: 37478130 PMCID: PMC10395877 DOI: 10.1371/journal.pbio.3001888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/09/2023] [Indexed: 07/23/2023] Open
Abstract
Rotifers have been studied in the laboratory and field for over 100 years in investigations of microevolution, ecological dynamics, and ecotoxicology. In recent years, rotifers have emerged as a model system for modern studies of the molecular mechanisms of genome evolution, development, DNA repair, aging, life history strategy, and desiccation tolerance. However, a lack of gene editing tools and transgenic strains has limited the ability to link genotype to phenotype and dissect molecular mechanisms. To facilitate genetic manipulation and the creation of reporter lines in rotifers, we developed a protocol for highly efficient, transgenerational, CRISPR-mediated gene editing in the monogonont rotifer Brachionus manjavacas by microinjection of Cas9 protein and synthetic single-guide RNA into the vitellaria of young amictic (asexual) females. To demonstrate the efficacy of the method, we created knockout mutants of the developmental gene vasa and the DNA mismatch repair gene mlh3. More than half of mothers survived injection and produced offspring. Genotyping these offspring and successive generations revealed that most carried at least 1 CRISPR-induced mutation, with many apparently mutated at both alleles. In addition, we achieved precise CRISPR-mediated knock-in of a stop codon cassette in the mlh3 locus, with half of injected mothers producing F2 offspring with an insertion of the cassette. Thus, this protocol produces knockout and knock-in CRISPR/Cas9 editing with high efficiency, to further advance rotifers as a model system for biological discovery.
Collapse
Affiliation(s)
- Haiyang Feng
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Gemma Bavister
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Kristin E Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
32
|
Shi Y, Kopparapu N, Ohler L, Dickinson DJ. Efficient and rapid fluorescent protein knock-in with universal donors in mouse embryonic stem cells. Development 2023; 150:dev201367. [PMID: 37129004 PMCID: PMC10233722 DOI: 10.1242/dev.201367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Fluorescent protein (FP) tagging is a key method for observing protein distribution, dynamics and interaction with other proteins in living cells. However, the typical approach using overexpression of tagged proteins can perturb cell behavior and introduce localization artifacts. To preserve native expression, fluorescent proteins can be inserted directly into endogenous genes. This approach has been widely used in yeast for decades, and more recently in invertebrate model organisms with the advent of CRISPR/Cas9. However, endogenous FP tagging has not been widely used in mammalian cells due to inefficient homology-directed repair. Recently, the CRISPaint system used non-homologous end joining for efficient integration of FP tags into native loci, but it only allows C-terminal knock-ins. Here, we have enhanced the CRISPaint system by introducing new universal donors for N-terminal insertion and for multi-color tagging with orthogonal selection markers. We adapted the procedure for mouse embryonic stem cells, which can be differentiated into diverse cell types. Our protocol is rapid and efficient, enabling live imaging in less than 2 weeks post-transfection. These improvements increase the versatility and applicability of FP knock-in in mammalian cells.
Collapse
Affiliation(s)
- Yu Shi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nitya Kopparapu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lauren Ohler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel J. Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
33
|
Nelson JP, Selin CL. Seven open questions in the futures of human genome editing. FUTURES 2023; 149:103138. [PMID: 37484876 PMCID: PMC10358607 DOI: 10.1016/j.futures.2023.103138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Scholarly discussion around the governance of human genome editing (HGE) recognizes that development and application of HGE techniques could result in unexpected societal outcomes. However, it contains few to no methodological models for how to anticipate, prepare for, or shape such outcomes. This article presents early-stage results from research guided by anticipatory governance, a framework for broad expert and public consideration of innovation processes and purposes. We present and discuss key themes emerging from a set of future-oriented interviews with genome editing practitioners and experts, designed to inform broadly scoped deliberations about plausible futures of HGE. We articulate our results as seven "open questions," the answers to which will be important components of HGE's eventual shape and outcomes. Some themes are perennial in studies of science and society, and others are more novel to HGE. Each helps to reframe HGE beyond a simple comparison of risk and benefit. Such reframing opens up new and important terrain for discussion among policymakers, academics, scientists, and publics. We suggest that discussion framed around broad and reflexive questions like those presented here will help governance efforts to better acknowledge and flexibly respond to the uncertainty and complexities of HGE developments.
Collapse
Affiliation(s)
- John P. Nelson
- School for the Future of Innovation in Society, Arizona State University, 1120 South Cady Mall, Tempe, Arizona 85287-5603
| | - Cynthia L. Selin
- School for the Future of Innovation in Society/Consortium for Science, Policy & Outcomes, Arizona State University, 1120 South Cady Mall, Tempe, Arizona 85287-5603
| |
Collapse
|
34
|
Farzanehpour M, Miri A, Ghorbani Alvanegh A, Esmaeili Gouvarchinghaleh H. Viral Vectors, Exosomes, and Vexosomes: Potential Armamentarium for Delivering CRISPR/Cas to Cancer Cells. Biochem Pharmacol 2023; 212:115555. [PMID: 37075815 DOI: 10.1016/j.bcp.2023.115555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
The underlying cause of cancer is genetic disruption, so gene editing technologies, particularly CRISPR/Cas systems can be used to go against cancer. The field of gene therapy has undergone many transitions over its 40-year history. Despite its many successes, it has also suffered many failures in the battle against malignancies, causing really adverse effects instead of therapeutic outcomes. At the tip of this double-edged sword are viral and non-viral-based vectors, which have profoundly transformed the way scientists and clinicians develop therapeutic platforms. Viruses such as lentivirus, adenovirus, and adeno-associated viruses are the most common viral vectors used for delivering the CRISPR/Cas system into human cells. In addition, among non-viral vectors, exosomes, especially tumor-derived exosomes (TDEs), have proven to be quite effective at delivering this gene editing tool. The combined use of viral vectors and exosomes, called vexosomes, seems to be a solution to overcoming the obstacles of both delivery systems.
Collapse
Affiliation(s)
- Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Miri
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
35
|
Bhokisham N, Laudermilch E, Traeger LL, Bonilla TD, Ruiz-Estevez M, Becker JR. CRISPR-Cas System: The Current and Emerging Translational Landscape. Cells 2023; 12:cells12081103. [PMID: 37190012 DOI: 10.3390/cells12081103] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
CRISPR-Cas technology has rapidly changed life science research and human medicine. The ability to add, remove, or edit human DNA sequences has transformative potential for treating congenital and acquired human diseases. The timely maturation of the cell and gene therapy ecosystem and its seamless integration with CRISPR-Cas technologies has enabled the development of therapies that could potentially cure not only monogenic diseases such as sickle cell anemia and muscular dystrophy, but also complex heterogenous diseases such as cancer and diabetes. Here, we review the current landscape of clinical trials involving the use of various CRISPR-Cas systems as therapeutics for human diseases, discuss challenges, and explore new CRISPR-Cas-based tools such as base editing, prime editing, CRISPR-based transcriptional regulation, CRISPR-based epigenome editing, and RNA editing, each promising new functionality and broadening therapeutic potential. Finally, we discuss how the CRISPR-Cas system is being used to understand the biology of human diseases through the generation of large animal disease models used for preclinical testing of emerging therapeutics.
Collapse
Affiliation(s)
| | - Ethan Laudermilch
- Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA
| | - Lindsay L Traeger
- Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA
| | - Tonya D Bonilla
- Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA
| | | | - Jordan R Becker
- Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA
| |
Collapse
|
36
|
Spasskaya DS, Davletshin AI, Bachurin SS, Tutyaeva VV, Garbuz DG, Karpov DS. Improving the on-target activity of high-fidelity Cas9 editors by combining rational design and random mutagenesis. Appl Microbiol Biotechnol 2023; 107:2385-2401. [PMID: 36917274 DOI: 10.1007/s00253-023-12469-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Genomic and post-genomic editors based on CRISPR/Cas systems are widely used in basic research and applied sciences, including human gene therapy. Most genome editing tools are based on the CRISPR/Cas9 type IIA system from Streptococcus pyogenes. Unfortunately, a number of drawbacks have hindered its application in therapeutic approaches, the most serious of which is the relatively high level of off-targets. To overcome this obstacle, various high-fidelity Cas9 variants have been created. However, they show reduced on-target activity compared to wild-type Cas9 possibly due to increased sensitivity to eukaryotic chromatin. Here, we combined a rational approach with random mutagenesis to create a set of new Cas9 variants showing high specificity and increased activity in Saccharomyces cerevisiae yeast. Moreover, a novel mutation in the PAM (protospacer adjacent motif)-interacting Cas9 domain was found, which increases the on-target activity of high-fidelity Cas9 variants while retaining their high specificity. The obtained data suggest that this mutation acts by weakening the eukaryotic chromatin barrier for Cas9 and rearranging the RuvC active center. Improved Cas9 variants should further advance genome and post-genome editing technologies. KEY POINTS: • D147Y and P411T mutations increase the activity of high-fidelity Cas9 variants. • The new L1206P mutation further increases the activity of high-fidelity Cas9 variants. • The L1206P mutation weakens the chromatin barrier for Cas9 editors.
Collapse
Affiliation(s)
- Daria S Spasskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov St. 32, Moscow, 119991, Russia
| | - Artem I Davletshin
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov St. 32, Moscow, 119991, Russia
| | - Stanislav S Bachurin
- FSBEI HE Rostov State Medical University Ministry of Health, Nakhichevanskiy Lane 29, Rostov-On-Don, 344022, Russia
| | - Vera V Tutyaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov St. 32, Moscow, 119991, Russia
| | - David G Garbuz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov St. 32, Moscow, 119991, Russia
| | - Dmitry S Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov St. 32, Moscow, 119991, Russia.
| |
Collapse
|
37
|
Carneiro SP, Greco A, Chiesa E, Genta I, Merkel OM. Shaping the future from the small scale: dry powder inhalation of CRISPR-Cas9 lipid nanoparticles for the treatment of lung diseases. Expert Opin Drug Deliv 2023; 20:471-487. [PMID: 36896650 PMCID: PMC7614984 DOI: 10.1080/17425247.2023.2185220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Most lung diseases are serious conditions resulting from genetic and environmental causes associated with high mortality and severe symptoms. Currently, treatments available have a palliative effect and many targets are still considered undruggable. Gene therapy stands as an attractive approach to offering innovative therapeutic solutions. CRISPRCas9 has established a remarkable potential for genome editing with high selectivity to targeted mutations. To ensure high efficacy with minimum systemic exposure, the delivery and administration route are key components that must be investigated. AREAS COVERED This review is focused on the delivery of CRISPRCas9 to the lungs, taking advantage of lipid nanoparticles (LNPs), the most clinically advanced nucleic acid carriers. We also aim to highlight the benefits of pulmonary administration as a local delivery route and the use of spray drying to prepare stable nucleic-acid-based dry powder formulations that can overcome multiple lung barriers. EXPERT OPINION Exploring the pulmonary administration to deliver CRISPRCas9 loaded in LNPs as a dry powder increases the chances to achieve high efficacy and reduced adverse effects. CRISPRCas9 loaded in LNP-embedded microparticles has not yet been reported in the literature but has the potential to reach and accumulate in target cells in the lung, thus, enhancing overall efficacy and safety.
Collapse
Affiliation(s)
- Simone P. Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Antonietta Greco
- University School for Advanced Studies (IUSS), Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia, Italy
| | - Olivia M. Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| |
Collapse
|
38
|
Tian Y, Zhong D, Li X, Shen R, Han H, Dai Y, Yao Q, Zhang X, Deng Q, Cao X, Zhu JK, Lu Y. High-throughput genome editing in rice with a virus-based surrogate system. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:646-655. [PMID: 36218268 DOI: 10.1111/jipb.13381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
With the widespread use of clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) technologies in plants, large-scale genome editing is increasingly needed. Here, we developed a geminivirus-mediated surrogate system, called Wheat Dwarf Virus-Gate (WDV-surrogate), to facilitate high-throughput genome editing. WDV-Gate has two parts: one is the recipient callus from a transgenic rice line expressing Cas9 and a mutated hygromycin-resistant gene (HygM) for surrogate selection; the other is a WDV-based construct expressing two single guide RNAs (sgRNAs) targeting HygM and a gene of interest, respectively. We evaluated WDV-Gate on six rice loci by producing a total of 874 T0 plants. Compared with the conventional method, the WDV-Gate system, which was characterized by a transient and high level of sgRNA expression, significantly increased editing frequency (66.8% vs. 90.1%), plantlet regeneration efficiency (2.31-fold increase), and numbers of homozygous-edited plants (36.3% vs. 70.7%). Large-scale editing using pooled sgRNAs targeting the SLR1 gene resulted in a high editing frequency of 94.4%, further demonstrating its feasibility. We also tested WDV-Gate on sequence knock-in for protein tagging. By co-delivering a chemically modified donor DNA with the WDV-Gate plasmid, 3xFLAG peptides were successfully fused to three loci with an efficiency of up to 13%. Thus, by combining transiently expressed sgRNAs and a surrogate selection system, WDV-Gate could be useful for high-throughput gene knock-out and sequence knock-in.
Collapse
Affiliation(s)
- Yifu Tian
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Center for Advanced Bioindustry Technologies, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, China
| | - Dating Zhong
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinbo Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Center for Advanced Bioindustry Technologies, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, China
| | - Rundong Shen
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Center for Advanced Bioindustry Technologies, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, China
| | - Han Han
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuqin Dai
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Qi Yao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuening Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Deng
- Center for Advanced Bioindustry Technologies, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuesong Cao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Center for Advanced Bioindustry Technologies, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, China
- Institute of Advanced Biotechnology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
39
|
Garcia-Elfring A, Sabin CE, Iouchmanov AL, Roffey HL, Samudra SP, Alcala AJ, Osman RS, Lauderdale JD, Hendry AP, Menke DB, Barrett RDH. Piebaldism and chromatophore development in reptiles are linked to the tfec gene. Curr Biol 2023; 33:755-763.e3. [PMID: 36702128 DOI: 10.1016/j.cub.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/12/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023]
Abstract
Reptiles display great diversity in color and pattern, yet much of what we know about vertebrate coloration comes from classic model species such as the mouse and zebrafish.1,2,3,4 Captive-bred ball pythons (Python regius) exhibit a remarkable degree of color and pattern variation. Despite the wide range of Mendelian color phenotypes available in the pet trade, ball pythons remain an overlooked species in pigmentation research. Here, we investigate the genetic basis of the recessive piebald phenotype, a pattern defect characterized by patches of unpigmented skin (leucoderma). We performed whole-genome sequencing and used a case-control approach to discover a nonsense mutation in the gene encoding the transcription factor tfec, implicating this gene in the leucodermic patches in ball pythons. We functionally validated tfec in a lizard model (Anolis sagrei) using the gene editing CRISPR/Cas9 system and TEM imaging of skin. Our findings show that reading frame mutations in tfec affect coloration and lead to a loss of iridophores in Anolis, indicating that tfec is required for chromatophore development. This study highlights the value of captive-bred ball pythons as a model species for accelerating discoveries on the genetic basis of vertebrate coloration.
Collapse
Affiliation(s)
- Alan Garcia-Elfring
- Department of Biology, Redpath Museum, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Christina E Sabin
- Department of Genetics, University of Georgia, Athens, GA 30602, USA; Neuroscience Division of the Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA 30602, USA
| | - Anna L Iouchmanov
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Heather L Roffey
- Biology Department, Vanier College, Montreal, QC H4L 3X9, Canada
| | - Sukhada P Samudra
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Aaron J Alcala
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Rida S Osman
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - James D Lauderdale
- Neuroscience Division of the Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA 30602, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Andrew P Hendry
- Department of Biology, Redpath Museum, McGill University, Montreal, QC H3A 0G4, Canada
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Rowan D H Barrett
- Department of Biology, Redpath Museum, McGill University, Montreal, QC H3A 0G4, Canada.
| |
Collapse
|
40
|
Medert R, Thumberger T, Tavhelidse-Suck T, Hub T, Kellner T, Oguchi Y, Dlugosz S, Zimmermann F, Wittbrodt J, Freichel M. Efficient single copy integration via homology-directed repair (scHDR) by 5'modification of large DNA donor fragments in mice. Nucleic Acids Res 2023; 51:e14. [PMID: 36533445 PMCID: PMC10021492 DOI: 10.1093/nar/gkac1150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 09/22/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
CRISPR/Cas-based approaches have largely replaced conventional gene targeting strategies. However, homology-directed repair (HDR) in the mouse genome is not very efficient, and precisely inserting longer sequences using HDR remains challenging given that donor constructs preferentially integrate as concatemers. Here, we showed that injecting 5' biotinylated donor DNA into mouse embryos at the two-cell stage led to efficient single-copy HDR (scHDR) allele generation. Our dedicated genotyping strategy showed that these alleles occurred with frequencies of 19%, 20%, and 26% at three independent gene loci, indicating that scHDR was dramatically increased by 5' biotinylation. Thus, we suggest that the combination of a 5' biotinylated donor and diligent analysis of concatemer integration are prerequisites for efficiently and reliably generating conditional alleles or other large fragment knock-ins in the mouse genome.
Collapse
Affiliation(s)
- Rebekka Medert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | | - Tobias Hub
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Tanja Kellner
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Yoko Oguchi
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Sascha Dlugosz
- Interfacultary Biomedical Faculty (IBF), Heidelberg University, Heidelberg, Germany
| | - Frank Zimmermann
- Interfacultary Biomedical Faculty (IBF), Heidelberg University, Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
41
|
Watanabe M, Nagashima H. Genome Editing of Pig. Methods Mol Biol 2023; 2637:269-292. [PMID: 36773154 DOI: 10.1007/978-1-0716-3016-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Pigs have anatomical and physiological characteristics similar to humans; therefore, genetically modified pigs have the potential to become a valuable bioresource in biomedical research. In fact, considering the increasing need for translational research, pigs are useful for studying intractable diseases, organ transplantation, and regenerative medicine as large-scale experimental animals with excellent potential for extrapolation to humans. With the advent of zinc finger nucleases (ZFNs), breakthroughs in genome editing tools such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) have facilitated the efficient generation of genetically modified pigs. Genome editing has been used in pigs for more than 10 years; now, along with knockout pigs, knock-in pigs are also gaining increasing importance. In this chapter, we describe the establishment of gene-modified cells (nuclear donor cells), which are necessary for gene knockout and production of knock-in pigs via somatic cell nuclear transplantation, as well as the production of gene knockout pigs using a simple cytoplasmic injection method.
Collapse
Affiliation(s)
- Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa, Japan.,PorMedTec Co., Ltd., Kawasaki, Kanagawa, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa, Japan. .,Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
42
|
Flórez JM, Martins K, Solin S, Bostrom JR, Rodríguez-Villamil P, Ongaratto F, Larson SA, Ganbaatar U, Coutts AW, Kern D, Murphy TW, Kim ES, Carlson DF, Huisman A, Sonstegard TS, Lents CA. CRISPR/Cas9-editing of KISS1 to generate pigs with hypogonadotropic hypogonadism as a castration free trait. Front Genet 2023; 13:1078991. [PMID: 36685939 PMCID: PMC9854396 DOI: 10.3389/fgene.2022.1078991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: Most male pigs are surgically castrated to avoid puberty-derived boar taint and aggressiveness. However, this surgical intervention represents a welfare concern in swine production. Disrupting porcine KISS1 is hypothesized to delay or abolish puberty by inducing variable hypogonadotropism and thus preventing the need for castration. Methods: To test this hypothesis, we generated the first KISS1-edited large animal using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides. The targeted region preceded the sequence encoding a conserved core motif of kisspeptin. Genome editors were intracytoplasmically injected into 684 swine zygotes and transferred to 19 hormonally synchronized surrogate sows. In nine litters, 49 American Yorkshire and 20 Duroc liveborn piglets were naturally farrowed. Results: Thirty-five of these pigs bore KISS1-disruptive alleles ranging in frequency from 5% to 97% and did not phenotypically differ from their wild-type counterparts. In contrast, four KISS1-edited pigs (two boars and two gilts) with disruptive allele frequencies of 96% and 100% demonstrated full hypogonadotropism, infantile reproductive tracts, and failed to reach sexual maturity. Change in body weight during development was unaffected by editing KISS1. Founder pigs partially carrying KISS1-disruptive alleles were bred resulting in a total of 53 KISS1 +/+, 60 KISS1 +/-, and 34 KISS1 -/- F1 liveborn piglets, confirming germline transmission. Discussion: Results demonstrate that a high proportion of KISS1 alleles in pigs must be disrupted before variation in gonadotropin secretion is observed, suggesting that even a small amount of kisspeptin ligand is sufficient to confer proper sexual development and puberty in pigs. Follow-on studies will evaluate fertility restoration in KISS1 KO breeding stock to fully realize the potential of KISS1 gene edits to eliminate the need for surgical castration.
Collapse
Affiliation(s)
- Julio M. Flórez
- Acceligen Inc., Eagan, MN, United States,Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | | | - Staci Solin
- Recombinetics Inc., Eagan, MN, United States
| | | | | | | | | | | | | | - Doug Kern
- Recombinetics Inc., Eagan, MN, United States
| | - Thomas W. Murphy
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| | | | | | - Abe Huisman
- Hypor, Hendrix Genetics, Boxmeer, Netherlands
| | - Tad S. Sonstegard
- Acceligen Inc., Eagan, MN, United States,*Correspondence: Tad S. Sonstegard,
| | - Clay A. Lents
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
| |
Collapse
|
43
|
Tanihara F, Hirata M, Otoi T. GEEP Method: An Optimized Electroporation-Mediated Gene Editing Approach for Establishment of Knockout Pig Lines. Methods Mol Biol 2023; 2637:293-300. [PMID: 36773155 DOI: 10.1007/978-1-0716-3016-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Pigs are excellent large animal models owing to their several physiological and anatomical similarities to humans. Somatic cell nuclear transfer using gene-modified cells is the mainstream approach for generating genetically modified pigs. Recent advances in improving gene editors such as the CRISPR/Cas9 system have enabled direct gene modification in zygotes/embryos. Here, we describe the gene editing by electroporation of Cas9 protein (GEEP) method, an optimized electroporation-mediated method for the introduction of CRISPR/Cas9 into porcine zygotes/embryos. The simplicity and micromanipulation-free procedures are the major advantages of this method.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan.
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan.
| |
Collapse
|
44
|
Lin Q, Takebayashi K, Torigoe N, Liu B, Namula Z, Hirata M, Tanihara F, Nagahara M, Otoi T. Comparison of chemically mediated CRISPR/Cas9 gene editing systems using different nonviral vectors in porcine embryos. Anim Sci J 2023; 94:e13878. [PMID: 37818780 DOI: 10.1111/asj.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
The transfection efficiency of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas ribonucleoprotein complexes was compared using three nonviral vector transfection reagents: nonliposomal polymeric (TransIT-X2), lipid nanoparticle delivery (CRISPRMAX), and peptide (ProteoCarry) systems. Porcine zona pellucida-free zygotes and embryos were incubated for 5 h with CRISPR-associated protein 9 (Cas9), guide RNA (gRNA) targeting GGTA1, and one of the reagents. In Experiment 1, optimization of Cas9 protein to gRNA molar ratios of 1:2, 2:2, and 4:2, along with single or double doses of reagents, was performed on zygotes at 10 h post-in vitro fertilization. In Experiment 2, optimization of timing was performed at 10 or 29 h post-in vitro fertilization, using optimal molar ratios and reagent doses. Blastocyst formation, mutation rates, and mutation efficiency were measured in each experiment. For each reagent, a 4:2 Cas9:gRNA molar ratio and addition of a double reagent dose exhibited a higher mutation rate; however, blastocyst rate tended to decrease compared with that of control. Moreover, the optimal transfection time varied depending on the reagent, and the proportions of blastocysts carrying mutations were <34%. In conclusion, the above three transfectants allowed gene editing of porcine zygotes and embryos; however, this newly established chemistry-based technology needs further improvement, especially regarding editing efficiency and embryo development.
Collapse
Affiliation(s)
- Qingyi Lin
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Koki Takebayashi
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Nanaka Torigoe
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Bin Liu
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Zhao Namula
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Maki Hirata
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Fuminori Tanihara
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
| | - Megumi Nagahara
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Takeshige Otoi
- Bio-Innovation Research Center, Tokushima University, Tokushima, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|
45
|
Buch T, Jerchow B, Zevnik B. Practical Application of the 3Rs in Rodent Transgenesis. Methods Mol Biol 2023; 2631:33-51. [PMID: 36995663 DOI: 10.1007/978-1-0716-2990-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The principles of the 3Rs (replace, reduce, refine), as originally published by Russell and Burch, are internationally acclaimed guidelines for meeting ethical and welfare standards in animal experimentation. Genome manipulation is a standard technique in biomedical research and beyond. The goal of this chapter is to give practical advice on the implementation of the 3Rs in laboratories generating genetically modified rodents. We cover 3R aspects from the planning phase through operations of the transgenic unit to the final genome-manipulated animals. The focus of our chapter is on an easy-to-use, concise protocol that is close to a checklist. While we focus on mice, the proposed methodological concepts can be easily adapted for the manipulation of other sentient animals.
Collapse
Affiliation(s)
- Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Boris Jerchow
- Novartis Institute for Biomedical Research (NIBR), Novartis Pharma AG, Basel, Switzerland
| | - Branko Zevnik
- In vivo Research Facility, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
46
|
Xing D, Li S, Shang M, Wang W, Zhang Q, Wang J, Hasin T, Hettiarachchi D, Alston V, Bern L, Parrales AP, Lu C, Coogan M, Johnson A, Qin Z, Su B, Dunham R. A New Strategy for Increasing Knock-in Efficiency: Multiple Elongase and Desaturase Transgenes Knock-in by Targeting Long Repeated Sequences. ACS Synth Biol 2022; 11:4210-4219. [PMID: 36332126 DOI: 10.1021/acssynbio.2c00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CRISPR/Cas9-mediated knock-in (KI) has a wide application in gene therapy, gene function study, and transgenic breeding programs. Unlike gene therapy, which requires accurate KI to correct gene mutation, transgenic breeding programs can accept robust KI as long as integration does not interrupt normal gene functions and result in any negative pleiotropic effects. High KI efficiency is required to reduce the breeding cost and shorten the breeding period, especially in transferring multiple foreign genes to a single individual. To elevate the KI efficacy and achieve multiple gene KIs simultaneously, we introduced a new strategy that enables transgene integration into numerous sites of the genome by targeting long repeated sequences (LRSs). Using this simple strategy, for the first time we successfully generated transgenic fish carrying the masu salmon (Oncorhynchus masou) elovl2 gene and rabbitfish (Siganus canaliculatus) Δ4 fad and Δ6 fad genes, and achieved robust target KI of elovl2 and Δ6 fad genes at multiple sites of LRS1 and LRS3, respectively, in the initial generation. This demonstrated that donor plasmid homology arms, which were nearly identical but not completely the same as the genome sequence, still led to on-target KI. Although the target KI efficiencies at LRS1, LRS2, and LRS3 sites were still relatively low in the current study, it is very promising that 100% KI efficiency in the future could be realized and perfected by selection of better LRSs and optimization of sgRNAs.
Collapse
Affiliation(s)
- De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Qin Zhang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Tasnuba Hasin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Darshika Hettiarachchi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Veronica Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Logan Bern
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Abel Paladines Parrales
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Cuiyu Lu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Michael Coogan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Andrew Johnson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao266003, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
47
|
Hossain MAM, Uddin SMK, Hashem A, Mamun MA, Sagadevan S, Johan MR. Advancements in Detection Approaches of Severe Acute Respiratory Syndrome Coronavirus 2. Malays J Med Sci 2022; 29:15-33. [PMID: 36818907 PMCID: PMC9910375 DOI: 10.21315/mjms2022.29.6.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Diagnostic testing to identify individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a key role in selecting appropriate treatments, saving people's lives and preventing the global pandemic of COVID-19. By testing on a massive scale, some countries could successfully contain the disease spread. Since early viral detection may provide the best approach to curb the disease outbreak, the rapid and reliable detection of coronavirus (CoV) is therefore becoming increasingly important. Nucleic acid detection methods, especially real-time reverse transcription polymerase chain reaction (RT-PCR)-based assays are considered the gold standard for COVID-19 diagnostics. Some non-PCR-based molecular methods without thermocycler operation, such as isothermal nucleic acid amplification have been proved promising. Serologic immunoassays are also available. A variety of novel and improved methods based on biosensors, Clustered-Regularly Interspaced Short Palindromic Repeats (CRISPR) technology, lateral flow assay (LFA), microarray, aptamer etc. have also been developed. Several integrated, random-access, point-of-care (POC) molecular devices are rapidly emerging for quick and accurate detection of SARS-CoV-2 that can be used in the local hospitals and clinics. This review intends to summarize the currently available detection approaches of SARS-CoV-2, highlight gaps in existing diagnostic capacity, and propose potential solutions and thus may assist clinicians and researchers develop better technologies for rapid and authentic diagnosis of CoV infection.
Collapse
Affiliation(s)
- M. A. Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Syed Muhammad Kamal Uddin
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Abu Hashem
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
- Microbial Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Mohammad Al Mamun
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Chemistry, Jagannath University, Dhaka, Bangladesh
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
48
|
Bekaert B, Boel A, Cosemans G, De Witte L, Menten B, Heindryckx B. CRISPR/Cas gene editing in the human germline. Semin Cell Dev Biol 2022; 131:93-107. [PMID: 35305903 DOI: 10.1016/j.semcdb.2022.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022]
Abstract
The ease and efficacy of CRISPR/Cas9 germline gene editing in animal models paved the way to human germline gene editing (HGGE), by which permanent changes can be introduced into the embryo. Distinct genes can be knocked out to examine their function during embryonic development. Alternatively, specific sequences can be introduced which can be applied to correct disease-causing mutations. To date, it has been shown that the success of HGGE is dependent on various experimental parameters and that various hurdles (i.e. loss-of-heterozygosity and mosaicism) need to be overcome before clinical applications should be considered. Due to the shortage of human germline material and the ethical constraints concerning HGGE, alternative models such as stem cells have been evaluated as well, in terms of their predictive value on the genetic outcome for HGGE approaches. This review will give an overview of the state of the art of HGGE in oocytes and embryos, and its accompanying challenges.
Collapse
Affiliation(s)
- B Bekaert
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - A Boel
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - G Cosemans
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - L De Witte
- Center for Medical Genetics Ghent, Ghent University, Department of Biomolecular Medicine, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - B Menten
- Center for Medical Genetics Ghent, Ghent University, Department of Biomolecular Medicine, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| |
Collapse
|
49
|
Piotrowski-Daspit AS, Barone C, Lin CY, Deng Y, Wu D, Binns TC, Xu E, Ricciardi AS, Putman R, Garrison A, Nguyen R, Gupta A, Fan R, Glazer PM, Saltzman WM, Egan ME. In vivo correction of cystic fibrosis mediated by PNA nanoparticles. SCIENCE ADVANCES 2022; 8:eabo0522. [PMID: 36197984 PMCID: PMC9534507 DOI: 10.1126/sciadv.abo0522] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/18/2022] [Indexed: 05/26/2023]
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. We sought to correct the multiple organ dysfunction of the F508del CF-causing mutation using systemic delivery of peptide nucleic acid gene editing technology mediated by biocompatible polymeric nanoparticles. We confirmed phenotypic and genotypic modification in vitro in primary nasal epithelial cells from F508del mice grown at air-liquid interface and in vivo in F508del mice following intravenous delivery. In vivo treatment resulted in a partial gain of CFTR function in epithelia as measured by in situ potential differences and Ussing chamber assays and correction of CFTR in both airway and GI tissues with no off-target effects above background. Our studies demonstrate that systemic gene editing is possible, and more specifically that intravenous delivery of PNA NPs designed to correct CF-causing mutations is a viable option to ameliorate CF in multiple affected organs.
Collapse
Affiliation(s)
| | - Christina Barone
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Chun-Yu Lin
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Douglas Wu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Thomas C. Binns
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Emily Xu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Adele S. Ricciardi
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Rachael Putman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Alannah Garrison
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Richard Nguyen
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Anisha Gupta
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Marie E. Egan
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
50
|
Tian H, Niu H, Luo J, Yao W, Gao W, Wen Y, Cheng M, Lei A, Hua J. Effects of CRISPR/Cas9-mediated stearoyl-Coenzyme A desaturase 1 knockout on mouse embryo development and lipid synthesis. PeerJ 2022; 10:e13945. [PMID: 36124130 PMCID: PMC9482360 DOI: 10.7717/peerj.13945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/03/2022] [Indexed: 01/19/2023] Open
Abstract
Background Lipid synthesis is an indispensable process during embryo and growth development. Abnormal lipid synthesis metabolism can cause multiple metabolic diseases including obesity and hyperlipidemia. Stearoyl-Coenzyme A desaturase 1 (SCD1) is responsible for catalyzing the synthesis of monounsaturated fatty acids (MUFA) and plays an essential role in lipid metabolism. The aim of our study was to evaluate the effects of SCD1 on embryo development and lipid synthesis in a knockout mice model. Methods We used the CRISPR/Cas9 system together with microinjection for the knockout mouse model generation. Ten-week-old female C57BL/6 mice were used for zygote collection. RNase-free water was injected into mouse zygotes at different cell phases in order to select the optimal time for microinjection. Five sgRNAs were designed and in vitro transcription was performed to obtain sgRNAs and Cas9 mRNA. RNase-free water, NC sgRNA/Cas9 mRNA, and Scd1 sgRNA/Cas9 mRNA were injected into zygotes to observe the morula and blastocyst formation rates. Embryos that were injected with Scd1 sgRNA/Cas9 mRNA and developed to the two-cell stage were used for embryo transfer. Body weight, triacylglycerol (TAG), and cholesterol in Scd1 knockout mice serum were analyzed to determine the effects of SCD1 on lipid metabolism. Results Microinjection performed during the S phase presented with the highest zygote survival rate (P < 0.05). Of the five sgRNAs targeted to Scd1, two sgRNAs with relatively higher gene editing efficiency were used for Scd1 knockout embryos and mice generation. Genome sequence modification was observed at Scd1 exons in embryos, and Scd1 knockout reduced blastocyst formation rates (P < 0.05). Three Scd1 monoallelic knockout mice were obtained. In mice, the protein level of SCD1 decreased (P < 0.05), and the body weight and serum TAG and cholesterol contents were all reduced (P < 0.01).
Collapse
Affiliation(s)
- Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenchang Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Wen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Cheng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anmin Lei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|