1
|
Xu YP, Fu JC, Hong ZL, Zeng DF, Guo CQ, Li P, Wu JX. Psychological stressors involved in the pathogenesis of premature ovarian insufficiency and potential intervention measures. Gynecol Endocrinol 2024; 40:2360085. [PMID: 38813955 DOI: 10.1080/09513590.2024.2360085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Premature ovarian insufficiency (POI) is a common gynecological endocrine disease, which seriously affects women's physical and mental health and fertility, and its incidence is increasing year by year. With the development of social economy and technology, psychological stressors such as anxiety and depression caused by social, life and environmental factors may be one of the risk factors for POI. We used PubMed to search peer-reviewed original English manuscripts published over the last 10 years to identify established and experimental studies on the relationship between various types of stress and decreased ovarian function. Oxidative stress, follicular atresia, and excessive activation of oocytes, caused by Stress-associated factors may be the main causes of ovarian function damage. This article reviews the relationship between psychological stressors and hypoovarian function and the possible early intervention measures in order to provide new ideas for future clinical treatment and intervention.
Collapse
Affiliation(s)
- Ying-Pei Xu
- Department of Reproductive Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ji-Chun Fu
- Department of Reproductive Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Zhi-Lin Hong
- Clinical Laboratory Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - De-Fei Zeng
- Department of Reproductive Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Chao-Qin Guo
- Department of Reproductive Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Ping Li
- Department of Reproductive Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Jin-Xiang Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
2
|
Umumararungu T, Gahamanyi N, Mukiza J, Habarurema G, Katandula J, Rugamba A, Kagisha V. Proline, a unique amino acid whose polymer, polyproline II helix, and its analogues are involved in many biological processes: a review. Amino Acids 2024; 56:50. [PMID: 39182198 PMCID: PMC11345334 DOI: 10.1007/s00726-024-03410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Proline is a unique amino acid in that its side-chain is cyclised to the backbone, thus giving proline an exceptional rigidity and a considerably restricted conformational space. Polyproline forms two well-characterized helical structures: a left-handed polyproline helix (PPII) and a right-handed polyproline helix (PPI). Usually, sequences made only of prolyl residues are in PPII conformation, but even sequences not rich in proline but which are rich in glycine, lysine, glutamate, or aspartate have also a tendency to form PPII helices. Currently, the only way to study unambiguously PPII structure in solution is to use spectroscopies based on optical activity such as circular dichroism, vibrational circular dichroism and Raman optical activity. The importance of the PPII structure is emphasized by its ubiquitous presence in different organisms from yeast to human beings where proline-rich motifs and their binding domains are believed to be involved in vital biological processes. Some of the domains that are bound by proline-rich motifs include SH3 domains, WW domains, GYF domains and UEV domains, etc. The PPII structure has been demonstrated to be essential to biological activities such as signal transduction, transcription, cell motility, and immune response.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Industrial Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
| | - Noël Gahamanyi
- Department of Biology, School of Science, College of Science and Technology, University of Rwanda, Kigali, Rwanda
- Rwanda Biomedical Center, Microbiology Unit, National Reference Laboratory, Kigali, Rwanda
| | - Janvier Mukiza
- Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Jonathan Katandula
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Alexis Rugamba
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Vedaste Kagisha
- Department of Pharmaceuticals and Biomolecules Analysis, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
3
|
Fonódi M, Nagy L, Boratkó A. Role of Protein Phosphatases in Tumor Angiogenesis: Assessing PP1, PP2A, PP2B and PTPs Activity. Int J Mol Sci 2024; 25:6868. [PMID: 38999976 PMCID: PMC11241275 DOI: 10.3390/ijms25136868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels to support tumor growth and metastasis, is a complex process regulated by a multitude of signaling pathways. Dysregulation of signaling pathways involving protein kinases has been extensively studied, but the role of protein phosphatases in angiogenesis within the tumor microenvironment remains less explored. However, among angiogenic pathways, protein phosphatases play critical roles in modulating signaling cascades. This review provides a comprehensive overview of the involvement of protein phosphatases in tumor angiogenesis, highlighting their diverse functions and mechanisms of action. Protein phosphatases are key regulators of cellular signaling pathways by catalyzing the dephosphorylation of proteins, thereby modulating their activity and function. This review aims to assess the activity of the protein tyrosine phosphatases and serine/threonine phosphatases. These phosphatases exert their effects on angiogenic signaling pathways through various mechanisms, including direct dephosphorylation of angiogenic receptors and downstream signaling molecules. Moreover, protein phosphatases also crosstalk with other signaling pathways involved in angiogenesis, further emphasizing their significance in regulating tumor vascularization, including endothelial cell survival, sprouting, and vessel maturation. In conclusion, this review underscores the pivotal role of protein phosphatases in tumor angiogenesis and accentuate their potential as therapeutic targets for anti-angiogenic therapy in cancer.
Collapse
Affiliation(s)
| | | | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.F.); (L.N.)
| |
Collapse
|
4
|
Zou R, Shi W, Chang X, Zhang M, Tan S, Li R, Zhou H, Li Y, Wang G, Lv W, Fan X. The DNA-dependent protein kinase catalytic subunit exacerbates endotoxemia-induced myocardial microvascular injury by disrupting the MOTS-c/JNK pathway and inducing profilin-mediated lamellipodia degradation. Theranostics 2024; 14:1561-1582. [PMID: 38389837 PMCID: PMC10879869 DOI: 10.7150/thno.92650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) promotes pathological mitochondrial fission during septic acute kidney injury. The mitochondrial open reading frame of the 12S rRNA type-c (MOTS-c) is a mitochondria-derived peptide that exhibits anti-inflammatory properties during cardiovascular illnesses. We explored whether endotoxemia-induced myocardial microvascular injury involved DNA-PKcs and MOTS-c dysregulation. Methods: To induce endotoxemia in vivo, endothelial cell-specific DNA-PKcs-knockout mice were injected intraperitoneally with a single dose of lipopolysaccharide (10 mg/kg) and evaluated after 72 h. Results: Lipopolysaccharide exposure increased DNA-PKcs activity in cardiac microvascular endothelial cells, while pharmacological inhibition or endothelial cell-specific genetic ablation of DNA-PKcs reduced lipopolysaccharide-induced myocardial microvascular dysfunction. Proteomic analyses showed that endothelial DNA-PKcs ablation primarily altered mitochondrial protein expression. Verification assays confirmed that DNA-PKcs drastically repressed MOTS-c transcription by inducing mtDNA breaks via pathological mitochondrial fission. Inhibiting MOTS-c neutralized the endothelial protective effects of DNA-PKcs ablation, whereas MOTS-c supplementation enhanced endothelial barrier function and myocardial microvascular homeostasis under lipopolysaccharide stress. In molecular studies, MOTS-c downregulation disinhibited c-Jun N-terminal kinase (JNK), allowing JNK to phosphorylate profilin-S173. Inhibiting JNK or transfecting cells with a profilin phosphorylation-defective mutant improved endothelial barrier function by preventing F-actin depolymerization and lamellipodial degradation following lipopolysaccharide treatment. Conclusions: DNA-PKcs inactivation during endotoxemia could be a worthwhile therapeutic strategy to restore MOTS-c expression, prevent JNK-induced profilin phosphorylation, improve F-actin polymerization, and enhance lamellipodial integrity, ultimately ameliorating endothelial barrier function and reducing myocardial microvascular injury.
Collapse
Affiliation(s)
- Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Wanting Shi
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Miao Zhang
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Songtao Tan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Ruibing Li
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese People's Liberation Army, Beijing, China
| | - Hao Zhou
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese People's Liberation Army, Beijing, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Ge Wang
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| | - Weihui Lv
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, the Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510120, Guangdong, China
- Guangdong Provincial Key Laboratory of TCM Emergency Research, Guangzhou 510120, Guangdong, China
| |
Collapse
|
5
|
Gau D, Daoud A, Allen A, Joy M, Sagan A, Lee S, Lucas PC, Duensing S, Boone D, Osmanbeyoglu HU, Roy P. Vascular endothelial profilin-1 drives a protumorigenic tumor microenvironment and tumor progression in renal cancer. J Biol Chem 2023; 299:105044. [PMID: 37451478 PMCID: PMC10432806 DOI: 10.1016/j.jbc.2023.105044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Overexpression of actin-binding protein profilin-1 (Pfn1) correlates with advanced disease features and adverse clinical outcome of patients with clear cell renal carcinoma, the most prevalent form of renal cancer. We previously reported that Pfn1 is predominantly overexpressed in tumor-associated vascular endothelial cells in human clear cell renal carcinoma. In this study, we combined in vivo strategies involving endothelial cell-specific depletion and overexpression of Pfn1 to demonstrate a role of vascular endothelial Pfn1 in promoting tumorigenicity and enabling progressive growth and metastasis of renal carcinoma cells in a syngeneic orthotopic mouse model of kidney cancer. We established an important role of endothelial Pfn1 in tumor angiogenesis and further identified endothelial Pfn1-dependent regulation of several pro- (VEGF, SERPINE1, CCL2) and anti-angiogenic factors (platelet factor 4) in vivo. Endothelial Pfn1 overexpression increases tumor infiltration by macrophages and concomitantly diminishes tumor infiltration by T cells including CD8+ T cells in vivo, correlating with the pattern of endothelial Pfn1-dependent changes in tumor abundance of several prominent immunomodulatory cytokines. These data were also corroborated by multiplexed quantitative immunohistochemistry and immune deconvolution analyses of RNA-seq data of clinical samples. Guided by Upstream Regulator Analysis of tumor transcriptome data, we further established endothelial Pfn1-induced Hif1α elevation and suppression of STAT1 activation. In conclusion, this study demonstrates for the first time a direct causal relationship between vascular endothelial Pfn1 dysregulation, immunosuppressive tumor microenvironment, and disease progression with mechanistic insights in kidney cancer. Our study also provides a conceptual basis for targeting Pfn1 for therapeutic benefit in kidney cancer.
Collapse
Affiliation(s)
- David Gau
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Andrew Daoud
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Abigail Allen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marion Joy
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - April Sagan
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sanghoon Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peter C Lucas
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stefan Duensing
- Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - David Boone
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hatice U Osmanbeyoglu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
6
|
Chen X, Song QL, Wang JY, Ji R, Li ZH, Cao ML, Mu XF, Guo DY, Zhang Y, Yang J. Profilin1 regulates trophoblast invasion and macrophage differentiation. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00165-7. [PMID: 37164274 DOI: 10.1016/j.ajpath.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
Unexplained recurrent spontaneous abortion (URSA) has been associated with the dysfunction of trophoblasts and decidual macrophages. Current evidence suggests that profilin1 (PFN1) plays an important role in many biological processes. However, little is currently known on whether PFN1 is related to URSA. The location of PFN1 was detected by immunohistochemistry. The level of PFN1 were detected by qRT-PCR, western blot and immunohistochemistry. The proliferation of trophoblasts was detected by CCK8 and EdU assays. Apoptosis of trophoblasts was detected by TUNEL assays. The migration and invasion ability of trophoblasts were assessed by the wound-healing test and transwell test. Macrophages were cultured in trophoblast conditioned medium and the polarization of macrophages was detected. PFN1 expression was observed in in cytotrophoblasts, syncytiotrophoblasts, and extravillous trophoblasts and decreased in the villous tissue of URSA patients. The migration and invasion ability and cell viability of trophoblastic cell lines that underwent PFN1 knockdown significantly decreased, and apoptosis increased. Opposite findings were observed following the overexpression of PFN1 in trophoblastic cells. In addition, PFN1 could regulate trophoblast function through PI3K/AKT signal transduction rather than MAPK signaling pathways. In addition, this study also found that knockdown of PFN1 in trophoblast promotes TNF-α secretion to induce macrophage polarization to M1 phenotype, mediated by the NF- κ B signaling pathway.
Collapse
Affiliation(s)
- Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Qian Lin Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jia Yu Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Rui Ji
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Ze Hong Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China
| | - Ming Liang Cao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Feng Mu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Duan Ying Guo
- Longgang District People's Hospital of Shenzhen, Shenzhen, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Allogenic Adipose-Derived Stem Cells in Diabetic Foot Ulcer Treatment: Clinical Effectiveness, Safety, Survival in the Wound Site, and Proteomic Impact. Int J Mol Sci 2023; 24:ijms24021472. [PMID: 36674989 PMCID: PMC9864558 DOI: 10.3390/ijms24021472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Although encouraging results of adipose-derived stem cell (ADSC) use in wound healing are available, the mechanism of action has been studied mainly in vitro and in animals. This work aimed to examine the safety and efficacy of allogenic ADSCs in human diabetic foot ulcer treatment, in combination with the analyses of the wound. Equal groups of 23 participants each received fibrin gel with ADSCs or fibrin gel alone. The clinical effects were assessed at four time points: days 7, 14, 21 and 49. Material collected during debridement from a subset of each group was analyzed for the presence of ADSC donor DNA and proteomic changes. The reduction in wound size was greater at all subsequent visits, significantly on day 21 and 49, and the time to 50% reduction in the wound size was significantly shorter in patients who received ADSCs. Complete healing was achieved at the end of the study in seven patients treated with ADSCs vs. one treated without ADSCs. One week after ADSC application, 34 proteins significantly differentiated the material from both groups, seven of which, i.e., GAPDH, CAT, ACTN1, KRT1, KRT9, SCL4A1, and TPI, positively correlated with the healing rate. We detected ADSC donor DNA up to 21 days after administration. We confirmed ADSC-related improvement in wound healing that correlated with the molecular background, which provides insights into the role of ADSCs in wound healing-a step toward the development of cell-based therapies.
Collapse
|
8
|
Increased expression of Profilin potentiates chemotherapeutic agent-mediated tumour regression. Br J Cancer 2022; 126:1410-1420. [PMID: 35022526 PMCID: PMC9091232 DOI: 10.1038/s41416-021-01683-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Targeted cancer therapy is an alternative to standard chemotherapy for a better prognosis. Although its incompetency for triple-negative breast cancer (TNBC), treatment still relies on classical chemotherapy. Increasing evidence suggest that chemotherapeutic drug-induced toxic effect could be minimised by combinatorial therapy. Profilin's familiar anti-tumorigenic activity can be utilised in combination with the drug to improve efficacy, which could be promising therapeutics to treat TNBC. METHODS All-trans retinoic acid (ATRA) in combination with vinblastine was tested on human MDA MB-231 cell line (MB-231) (in vitro) and MB-231 borne breast cancer in nude mice (in vivo). Effects of combination treatment on tumour growth inhibition and apoptosis were examined by tumour volume, histology and PARP cleavage. ATRA-induced transcriptional regulation of profilin had been evaluated by gel-shift and reporter gene assays. Profilin's role in ATRA-induced vinblastine efficacy was validated in profilin-stable and profilin-silenced cells. RESULTS ATRA binds with RAR/RXR to increase the profilin expression that potentiated cell death by chemotherapeutics. ATRA priming led to vinblastine-mediated potentiation of G2-M phase cell cycle arrest in MB-231 cells and regression of breast cancer in xenograft mice at very low concentration without any adverse effects. Moreover, increased p53 and PTEN but downregulated p65 in the tumour tissues further supported the involvement of profilin for tumour regression. CONCLUSIONS Vinblastine at very low concentration (20 times lesser than the recommended dose for breast cancer therapeutic) significantly regress tumour growth in ATRA-primed mice without any toxic effects suggesting potential combinatorial therapeutics for TNBC.
Collapse
|
9
|
Saurav S, Manna SK. Profilin upregulation induces autophagy through stabilization of AMP-activated protein kinase. FEBS Lett 2022; 596:1765-1777. [PMID: 35532157 DOI: 10.1002/1873-3468.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
Profilin regulates actin polymerization, and its balanced expression is required for cellular growth and development. Most tumors have compromised profilin expression, and its overexpression in MDA MB-231 breast cancer cells has been reported to activate AMP-activated protein kinase α (AMPKα), an energy-sensing molecule that affects various cellular processes including autophagy. The present study aims to explore the role of profilin in inducing autophagy. We employed all-trans retinoic acid (ATRA) as an inducer of profilin expression and showed that profilin induces autophagy through mTOR inhibition, autophagy-activating kinase ULK1 upregulation, and AMPK stabilization as well as its activation. Furthermore, evidence from our study indicates physical interaction between profilin and AMPK, which results in AMPK stabilization and induction of prolonged autophagy, thereby leading to apoptosis. This study uncovers a novel mechanism that induces autophagy in triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Shashank Saurav
- Laboratory of Immunology, Centre for DNA Fingerprinting & Diagnostics, Uppal, Hyderabad, 500 039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sunil Kumar Manna
- Laboratory of Immunology, Centre for DNA Fingerprinting & Diagnostics, Uppal, Hyderabad, 500 039, Telangana, India
| |
Collapse
|
10
|
Gau D, Vignaud L, Francoeur P, Koes D, Guillonneau X, Roy P. Inhibition of ocular neovascularization by novel anti-angiogenic compound. Exp Eye Res 2021; 213:108861. [PMID: 34822853 DOI: 10.1016/j.exer.2021.108861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022]
Abstract
Aberrant angiogenesis lies at the heart of a wide range of ocular pathologies such as proliferative diabetic retinopathy, wet age-related macular degeneration and retinopathy of prematurity. This study explores the anti-angiogenic activity of a novel small molecule investigative compound capable of inhibiting profilin1-actin interaction recently identified by our group. We demonstrate that our compound is capable of inhibiting migration, proliferation and angiogenic activity of microvascular endothelial cells in vitro as well as choroidal neovascularization (CNV) ex vivo. In mouse model of laser-injury induced CNV, intravitreal administration of this compound diminishes sub-retinal neovascularization. Finally, our preliminary structure-activity relationship study (SAR) demonstrates that this small molecule compound is amenable to improvement in biological activity through structural modifications.
Collapse
Affiliation(s)
- David Gau
- Bioengineering, University of Pittsburgh, USA
| | - Lucile Vignaud
- Sorbonne Université, INSERM, Institut de la Vision, Paris, France
| | | | - David Koes
- Computational Biology, University of Pittsburgh, USA
| | | | - Partha Roy
- Bioengineering, University of Pittsburgh, USA; Pathology, University of Pittsburgh, USA.
| |
Collapse
|
11
|
Abstract
Dynamic remodeling of the actin cytoskeleton is an essential feature for virtually all actin-dependent cellular processes, including cell migration, cell cycle progression, chromatin remodeling and gene expression, and even the DNA damage response. An altered actin cytoskeleton is a structural hallmark associated with numerous pathologies ranging from cardiovascular diseases to immune disorders, neurological diseases and cancer. The actin cytoskeleton in cells is regulated through the orchestrated actions of a myriad of actin-binding proteins. In this Review, we provide a brief overview of the structure and functions of the actin-monomer-binding protein profilin-1 (Pfn1) and then discuss how dysregulated expression of Pfn1 contributes to diseases associated with the cardiovascular system.
Collapse
Affiliation(s)
| | - David Gau
- Bioengineering, University of Pittsburgh
| | - Partha Roy
- Bioengineering, University of Pittsburgh.,Pathology, University of Pittsburgh, 306 Center for Bioengineering, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, USA
| |
Collapse
|
12
|
Allen A, Gau D, Francoeur P, Sturm J, Wang Y, Martin R, Maranchie J, Duensing A, Kaczorowski A, Duensing S, Wu L, Lotze MT, Koes D, Storkus WJ, Roy P. Actin-binding protein profilin1 promotes aggressiveness of clear-cell renal cell carcinoma cells. J Biol Chem 2020; 295:15636-15649. [PMID: 32883810 PMCID: PMC7667959 DOI: 10.1074/jbc.ra120.013963] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC), the most common subtype of renal cancer, has a poor clinical outcome. A hallmark of ccRCC is genetic loss-of-function of VHL (von Hippel-Lindau) that leads to a highly vascularized tumor microenvironment. Although many ccRCC patients initially respond to antiangiogenic therapies, virtually all develop progressive, drug-refractory disease. Given the role of dysregulated expressions of cytoskeletal and cytoskeleton-regulatory proteins in tumor progression, we performed analyses of The Cancer Genome Atlas (TCGA) transcriptome data for different classes of actin-binding proteins to demonstrate that increased mRNA expression of profilin1 (Pfn1), Arp3, cofilin1, Ena/VASP, and CapZ, is an indicator of poor prognosis in ccRCC. Focusing further on Pfn1, we performed immunohistochemistry-based classification of Pfn1 staining in tissue microarrays, which indicated Pfn1 positivity in both tumor and stromal cells; however, the vast majority of ccRCC tumors tend to be Pfn1-positive selectively in stromal cells only. This finding is further supported by evidence for dramatic transcriptional up-regulation of Pfn1 in tumor-associated vascular endothelial cells in the clinical specimens of ccRCC. In vitro studies support the importance of Pfn1 in proliferation and migration of RCC cells and in soluble Pfn1's involvement in vascular endothelial cell tumor cell cross-talk. Furthermore, proof-of-concept studies demonstrate that treatment with a novel computationally designed Pfn1-actin interaction inhibitor identified herein reduces proliferation and migration of RCC cells in vitro and RCC tumor growth in vivo Based on these findings, we propose a potentiating role for Pfn1 in promoting tumor cell aggressiveness in the setting of ccRCC.
Collapse
Affiliation(s)
- Abigail Allen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Gau
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Paul Francoeur
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jordan Sturm
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yue Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan Martin
- Department of Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jodi Maranchie
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anette Duensing
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam Kaczorowski
- Department of Urology, Heidelberg School of Medicine, Heidelberg, Germany
| | - Stefan Duensing
- Department of Urology, Heidelberg School of Medicine, Heidelberg, Germany
| | - Lily Wu
- Department of Urology, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael T. Lotze
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania USA
| | - David Koes
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Walter J. Storkus
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania USA,Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
13
|
Abstract
Profilin is a ubiquitously expressed protein well known as a key regulator of actin polymerisation. The actin cytoskeleton is involved in almost all cellular processes including motility, endocytosis, metabolism, signal transduction and gene transcription. Hence, profilin's role in the cell goes beyond its direct and essential function in regulating actin dynamics. This review will focus on the interactions of Profilin 1 and its ligands at the plasma membrane, in the cytoplasm and the nucleus of the cells and the regulation of profilin activity within those cell compartments. We will discuss the interactions of profilin in cell signalling pathways and highlight the importance of the cell context in the multiple functions that this small essential protein has in conjunction with its role in cytoskeletal organisation and dynamics. We will review some of the mechanisms that control profilin expression and the implications of changed expression of profilin in the light of cancer biology and other pathologies.
Collapse
|
14
|
Gau D, Vignaud L, Allen A, Guo Z, Sahel J, Boone D, Koes D, Guillonneau X, Roy P. Disruption of profilin1 function suppresses developmental and pathological retinal neovascularization. J Biol Chem 2020; 295:9618-9629. [PMID: 32444495 PMCID: PMC7363146 DOI: 10.1074/jbc.ra120.012613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis-mediated neovascularization in the eye is usually associated with visual complications. Pathological angiogenesis is particularly prominent in the retina in the settings of proliferative diabetic retinopathy, in which it can lead to permanent loss of vision. In this study, by bioinformatics analyses, we provide evidence for elevated expression of actin-binding protein PFN1 (profilin1) in the retinal vascular endothelial cells (VECs) of individuals with proliferative diabetic retinopathy, findings further supported by gene expression analyses for PFN1 in experimentally induced abnormal retinal neovascularization in an oxygen-induced retinopathy murine model. We observed that in a conditional knockout mouse model, postnatal deletion of the Pfn1 gene in VECs leads to defects in tip cell activity (marked by impaired filopodial protrusions) and reduced vascular sprouting, resulting in hypovascularization during developmental angiogenesis in the retina. Consistent with these findings, an investigative small molecule compound targeting the PFN1-actin interaction reduced random motility, proliferation, and cord morphogenesis of retinal VECs in vitro and experimentally induced abnormal retinal neovascularization in vivo In summary, these findings provide the first direct in vivo evidence that PFN1 is required for formation of actin-based protrusive structures and developmental angiogenesis in the retina. The proof of concept of susceptibility of abnormal angiogenesis to small molecule intervention of PFN1-actin interaction reported here lays a conceptual foundation for targeting PFN1 as a possible strategy in angiogenesis-dependent retinal diseases.
Collapse
Affiliation(s)
- David Gau
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lucile Vignaud
- Institut de la Vision, Sorbonne Université, INSERM, Paris, France
| | - Abigail Allen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhijian Guo
- Department of Nephrology, Southern Medical University, Guangzhou, China
| | - Jose Sahel
- Institut de la Vision, Sorbonne Université, INSERM, Paris, France
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - David Boone
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Koes
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Mindikoglu AL, Abdulsada MM, Jain A, Choi JM, Jalal PK, Devaraj S, Mezzari MP, Petrosino JF, Opekun AR, Jung SY. Intermittent fasting from dawn to sunset for 30 consecutive days is associated with anticancer proteomic signature and upregulates key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system and cognitive function in healthy subjects. J Proteomics 2020; 217:103645. [PMID: 31927066 DOI: 10.1016/j.jprot.2020.103645] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/13/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
Murine studies showed that disruption of circadian clock rhythmicity could lead to cancer and metabolic syndrome. Time-restricted feeding can reset the disrupted clock rhythm, protect against cancer and metabolic syndrome. Based on these observations, we hypothesized that intermittent fasting for several consecutive days without calorie restriction in humans would induce an anticarcinogenic proteome and the key regulatory proteins of glucose and lipid metabolism. Fourteen healthy subjects fasted from dawn to sunset for over 14 h daily. Fasting duration was 30 consecutive days. Serum samples were collected before 30-day intermittent fasting, at the end of 4th week during 30-day intermittent fasting, and one week after 30-day intermittent fasting. An untargeted serum proteomic profiling was performed using ultra high-performance liquid chromatography/tandem mass spectrometry. Our results showed that 30-day intermittent fasting was associated with an anticancer serum proteomic signature, upregulated key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system, and cognitive function, and resulted in a serum proteome protective against cancer, metabolic syndrome, inflammation, Alzheimer's disease, and several neuropsychiatric disorders. These findings suggest that fasting from dawn to sunset for 30 consecutive days can be preventive and adjunct therapy in cancer, metabolic syndrome, and several cognitive and neuropsychiatric diseases. SIGNIFICANCE: Our study has important clinical implications. Our results showed that intermittent fasting from dawn to sunset for over 14 h daily for 30 consecutive days was associated with an anticancer serum proteomic signature and upregulated key regulatory proteins of glucose and lipid metabolism, insulin signaling, circadian clock, DNA repair, cytoskeleton remodeling, immune system, and cognitive function, and resulted in a serum proteome protective against cancer, obesity, diabetes, metabolic syndrome, inflammation, Alzheimer's disease, and several neuropsychiatric disorders. Importantly, these findings occurred in the absence of any calorie restriction and significant weight loss. These findings suggest that intermittent fasting from dawn to sunset can be a preventive and adjunct therapy in cancer, metabolic syndrome and Alzheimer's disease and several neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ayse L Mindikoglu
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America; Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, United States of America.
| | - Mustafa M Abdulsada
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Antrix Jain
- Advanced Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, United States of America
| | - Jong Min Choi
- Advanced Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, United States of America
| | - Prasun K Jalal
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America; Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, United States of America
| | - Sridevi Devaraj
- Clinical Chemistry and Point of Care Technology, Texas Children's Hospital and Health Centers, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - Melissa P Mezzari
- The Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Joseph F Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Antone R Opekun
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America; Department of Pediatrics, Division of Gastroenterology, Nutrition and Hepatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sung Yun Jung
- Advanced Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, United States of America; Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
16
|
Pereira GRC, Tellini GHAS, De Mesquita JF. In silico analysis of PFN1 related to amyotrophic lateral sclerosis. PLoS One 2019; 14:e0215723. [PMID: 31216283 PMCID: PMC6583998 DOI: 10.1371/journal.pone.0215723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
Profilin 1 (PFN1) protein plays key roles in neuronal growth and differentiation, membrane trafficking, and regulation of the actin cytoskeleton. Four natural variants of PFN1 were described as related to ALS, the most common adult-onset motor neuron disorder. However, the pathological mechanism of PFN1 in ALS is not yet completely understood. The goal of this work is to thoroughly analyze the effects of the ALS-related mutations on PFN1 structure and function using computational simulations. Here, PhD-SNP, PMUT, PolyPhen-2, SIFT, SNAP, SNPS&GO, SAAP, nsSNPAnalyzer, SNPeffect4.0 and I-Mutant2.0 were used to predict the functional and stability effects of PFN1 mutations. ConSurf was used for the evolutionary conservation analysis, and GROMACS was used to perform the MD simulations. The mutations C71G, M114T, and G118V, but not E117G, were predicted as deleterious by most of the functional prediction algorithms that were used. The stability prediction indicated that the ALS-related mutations could destabilize PFN1. The ConSurf analysis indicated that the mutation C71G, M114T, E117G, and G118V occur in highly conserved positions. The MD results indicated that the studied mutations could affect the PFN1 flexibility at the actin and PLP-binding domains, and consequently, their intermolecular interactions. It may be therefore related to the functional impairment of PFN1 upon C71G, M114T, E117G and G118V mutations, and their involvement in ALS development. We also developed a database, SNPMOL (http://www.snpmol.org/), containing the results presented on this paper for biologists and clinicians to exploit PFN1 and its natural variants.
Collapse
Affiliation(s)
- Gabriel Rodrigues Coutinho Pereira
- Department of Genetics and Molecular Biology, Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giovanni Henrique Almeida Silva Tellini
- Department of Genetics and Molecular Biology, Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joelma Freire De Mesquita
- Department of Genetics and Molecular Biology, Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
17
|
Gau D, Veon W, Shroff SG, Roy P. The VASP-profilin1 (Pfn1) interaction is critical for efficient cell migration and is regulated by cell-substrate adhesion in a PKA-dependent manner. J Biol Chem 2019; 294:6972-6985. [PMID: 30814249 DOI: 10.1074/jbc.ra118.005255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Dynamic regulation of the actin cytoskeleton is an essential feature of cell motility. Action of Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP), a family of conserved actin-elongating proteins, is an important aspect of regulation of the actin cytoskeletal architecture at the leading edge that controls membrane protrusion and cell motility. In this study, we performed mutagenesis experiments in overexpression and knockdown-rescue settings to provide, for the first time, direct evidence of the role of the actin-binding protein profilin1 (Pfn1) in VASP-mediated regulation of cell motility. We found that VASP's interaction with Pfn1 is promoted by cell-substrate adhesion and requires down-regulation of PKA activity. Our experimental data further suggest that PKA-mediated Ser137 phosphorylation of Pfn1 potentially negatively regulates the Pfn1-VASP interaction. Finally, Pfn1's ability to be phosphorylated on Ser137 was partly responsible for the anti-migratory action elicited by exposing cells to a cAMP/PKA agonist. On the basis of these findings, we propose a mechanism of adhesion-protrusion coupling in cell motility that involves dynamic regulation of Pfn1 by PKA activity.
Collapse
Affiliation(s)
- David Gau
- From the Department of Bioengineering, University of Pittsburgh and
| | - William Veon
- From the Department of Bioengineering, University of Pittsburgh and
| | - Sanjeev G Shroff
- From the Department of Bioengineering, University of Pittsburgh and
| | - Partha Roy
- From the Department of Bioengineering, University of Pittsburgh and .,the Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
18
|
Keremu A, Yaoliwasi A, Tuerhong M, Kadeer N, Heyi, Yiming A, Yilike X. Research on the establishment of chronic stress-induced premature ovarian failure the rat model and effects of Chinese medicine Muniziqi treatment. Mol Reprod Dev 2018; 86:175-186. [PMID: 30512210 DOI: 10.1002/mrd.23092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
Abstract
The purposes of this study were to establish and to explore the biological basis of the chronic stress-induced premature ovarian failure (POF) model and to explore the therapeutic effects of the traditional Chinese medicine Muniziqi. Sexually matured female Sprague-Dawley rats were fed with spinach and cilantro in cold and wet conditions for about 20 weeks until a chronic stress (CS) model was established. The CS rats were divided into a POF stress model group and a stress model group according to weekly biological characteristics and hormone level detection ( luteinizing hormone [LH], follicle stimulating hormone [FSH], and estrogen [E2]). To investigate the therapeutic effect of Muniziqi, the POF disease stress model group was divided into the high-, medium-, and low-drug intervention groups. The results showed that chronic stresses (special food, cold, damp) can lead to POF disease. The traditional Chinese medicine Muniziqi could not only improve the reproductive hormone level disorder, but also improve the function of the hypothalamus-pituitary-ovarian axis. The underlying mechanism may be a change in the E2, LH, and FSH hormone levels in serum and lower expression of ovarian premature aging-related protein PFN-1.
Collapse
Affiliation(s)
- Abulizi Keremu
- Department of Biology, School of Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Aziguli Yaoliwasi
- Department of Biology, School of Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mayire Tuerhong
- Morphology Center, School of Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Nafeisha Kadeer
- Department of Biology, School of Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Heyi
- Houbo College of Xinjiang Medical University, Karamay, Xinjiang, China
| | - Adilijiang Yiming
- Department of Human Anatomy, School of Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiamixinuer Yilike
- Department of Biology, School of Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
19
|
Ma B, Chen J, Mu Y, Xue B, Zhao A, Wang D, Chang D, Pan Y, Liu J. Proteomic analysis of rat serum revealed the effects of chronic sleep deprivation on metabolic, cardiovascular and nervous system. PLoS One 2018; 13:e0199237. [PMID: 30235220 PMCID: PMC6147403 DOI: 10.1371/journal.pone.0199237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Sleep is an essential and fundamental physiological process that plays crucial roles in the balance of psychological and physical health. Sleep disorder may lead to adverse health outcomes. The effects of sleep deprivation were extensively studied, but its mechanism is still not fully understood. The present study aimed to identify the alterations of serum proteins associated with chronic sleep deprivation, and to seek for potential biomarkers of sleep disorder mediated diseases. A label-free quantitative proteomics technology was used to survey the global changes of serum proteins between normal rats and chronic sleep deprivation rats. A total of 309 proteins were detected in the serum samples and among them, 117 proteins showed more than 1.8-folds abundance alterations between the two groups. Functional enrichment and network analyses of the differential proteins revealed a close relationship between chronic sleep deprivation and several biological processes including energy metabolism, cardiovascular function and nervous function. And four proteins including pyruvate kinase M1, clusterin, kininogen1 and profilin-1were identified as potential biomarkers for chronic sleep deprivation. The four candidates were validated via parallel reaction monitoring (PRM) based targeted proteomics. In addition, protein expression alteration of the four proteins was confirmed in myocardium and brain of rat model. In summary, the comprehensive proteomic study revealed the biological impacts of chronic sleep deprivation and discovered several potential biomarkers. This study provides further insight into the pathological and molecular mechanisms underlying sleep disorders at protein level.
Collapse
Affiliation(s)
- Bo Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jincheng Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongying Mu
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Bingjie Xue
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aimei Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daoping Wang
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Penrith, Australia
| | - Yinghong Pan
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Science, Beijing, China
- * E-mail: (JL); (YP)
| | - Jianxun Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Institute of Complementary Medicine, Western Sydney University, Penrith, Australia
- * E-mail: (JL); (YP)
| |
Collapse
|
20
|
Coumans JVF, Davey RJ, Moens PDJ. Cofilin and profilin: partners in cancer aggressiveness. Biophys Rev 2018; 10:1323-1335. [PMID: 30027463 DOI: 10.1007/s12551-018-0445-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/08/2018] [Indexed: 02/07/2023] Open
Abstract
This review covers aspects of cofilin and profilin regulations and their influence on actin polymerisation responsible for cell motility and metastasis. The regulation of their activity by phosphorylation and nitration, miRs, PI(4,5)P2 binding, pH, oxidative stress and post-translational modification is described. In this review, we have highlighted selected similarities, complementarities and differences between the two proteins and how their interplay affects actin filament dynamics.
Collapse
Affiliation(s)
- Joelle V F Coumans
- School of Rural Medicine, University of New England, Armidale, Australia
| | - Rhonda J Davey
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia
| | - Pierre D J Moens
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia.
| |
Collapse
|
21
|
Gau D, Lewis T, McDermott L, Wipf P, Koes D, Roy P. Structure-based virtual screening identifies a small-molecule inhibitor of the profilin 1-actin interaction. J Biol Chem 2017; 293:2606-2616. [PMID: 29282288 DOI: 10.1074/jbc.m117.809137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/08/2017] [Indexed: 01/01/2023] Open
Abstract
Profilin 1 (Pfn1) is an important regulator of the actin cytoskeleton and plays a vital role in many actin-based cellular processes. Therefore, identification of a small-molecule intervention strategy targeted against the Pfn1-actin interaction could have broad utility in cytoskeletal research and further our understanding of the role of Pfn1 in actin-mediated biological processes. Based on an already resolved Pfn1-actin complex crystal structure, we performed structure-based virtual screening of small-molecule libraries to seek inhibitors of the Pfn1-actin interaction. We identified compounds that match the pharmacophore of the key actin residues of Pfn1-actin interaction and therefore have the potential to act as competitive inhibitors of this interaction. Subsequent biochemical assays identified two candidate compounds with nearly identical structures that can mitigate the effect of Pfn1 on actin polymerization in vitro As a further proof-of-concept test for cellular effects of these compounds, we performed proximity ligation assays in endothelial cells (ECs) to demonstrate compound-induced inhibition of Pfn1-actin interaction. Consistent with the important role of Pfn1 in regulating actin polymerization and various fundamental actin-based cellular activities (migration and proliferation), treatment of these compounds reduced the overall level of cellular filamentous (F) actin, slowed EC migration and proliferation, and inhibited the angiogenic ability of ECs both in vitro and ex vivo In summary, this study provides the first proof of principle of small-molecule-mediated interference with the Pfn1-actin interaction. Our findings may have potential general utility for perturbing actin-mediated cellular activities and biological processes.
Collapse
Affiliation(s)
- David Gau
- From the Departments of Bioengineering
| | | | | | - Peter Wipf
- From the Departments of Bioengineering.,Chemistry
| | | | - Partha Roy
- From the Departments of Bioengineering, .,Cell Biology, and.,Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
22
|
Davey RJ, Digman MA, Gratton E, Moens PDJ. Quantitative image mean squared displacement (iMSD) analysis of the dynamics of profilin 1 at the membrane of live cells. Methods 2017; 140-141:119-125. [PMID: 29242135 DOI: 10.1016/j.ymeth.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/29/2022] Open
Abstract
Image mean square displacement analysis (iMSD) is a method allowing the mapping of diffusion dynamics of molecules in living cells. However, it can also be used to obtain quantitative information on the diffusion processes of fluorescently labelled molecules and how their diffusion dynamics change when the cell environment is modified. In this paper, we describe the use of iMSD to obtain quantitative data of the diffusion dynamics of a small cytoskeletal protein, profilin 1 (pfn1), at the membrane of live cells and how its diffusion is perturbed when the cells are treated with Cytochalasin D and/or the interactions of pfn1 are modified when its actin and polyphosphoinositide binding sites are mutated (pfn1-R88A). Using total internal reflection fluorescence microscopy images, we obtained data on isotropic and confined diffusion coefficients, the proportion of cell areas where isotropic diffusion is the major diffusion mode compared to the confined diffusion mode, the size of the confinement zones and the size of the domains of dynamic partitioning of pfn1. Using these quantitative data, we could demonstrate a decreased isotropic diffusion coefficient for the cells treated with Cytochalasin D and for the pfn1-R88A mutant. We could also see changes in the modes of diffusion between the different conditions and changes in the size of the zones of pfn1 confinements for the pfn1 treated with Cytochalasin D. All of this information was acquired in only a few minutes of imaging per cell and without the need to record thousands of single molecule trajectories.
Collapse
Affiliation(s)
- Rhonda J Davey
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia
| | - Michelle A Digman
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia; Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, 3210 Natural Sciences II Bldg., University of California, Irvine, CA 92697-2715, United States
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, 3210 Natural Sciences II Bldg., University of California, Irvine, CA 92697-2715, United States
| | - Pierre D J Moens
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia.
| |
Collapse
|
23
|
Pharmacological intervention of MKL/SRF signaling by CCG-1423 impedes endothelial cell migration and angiogenesis. Angiogenesis 2017. [PMID: 28638990 DOI: 10.1007/s10456-017-9560-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
De novo synthesis of cytoskeleton-regulatory proteins triggered by the megakaryoblastic leukemia (MKL)/serum response factor (SRF) transcriptional system in response to pro-angiogenic growth factors lies at the heart of endothelial cell (EC) migration (a critical element of angiogenesis) and neovascularization. This study explores whether pharmacological intervention of MKL/SRF signaling axis by CCG-1423 is able to suppress angiogenesis. Our studies show that CCG-1423 inhibits migration and cord morphogenesis of EC in vitro and sprouting angiogenesis ex vivo and in vivo, suggesting CCG-1423 could be a novel anti-angiogenic agent. Kymography analyses of membrane dynamics of EC revealed that CCG-1423 treatment causes a major defect in membrane protrusion. CCG-1423 treatment led to attenuated expression of several actin-binding proteins that are important for driving membrane protrusion including ArpC2, VASP, and profilin1 (Pfn1) with the most drastic effect seen on the expression of Pfn1. Finally, depletion of Pfn1 alone is also sufficient for a dramatic decrease in sprouting angiogenesis of EC in vitro and ex vivo, further suggesting that Pfn1 depletion may be one of the mechanisms of the anti-angiogenic action of CCG-1423.
Collapse
|
24
|
Xu X, Liu X, Long J, Hu Z, Zheng Q, Zhang C, Li L, Wang Y, Jia Y, Qiu W, Zhou J, Yao W, Zeng Z. Interleukin-10 reorganizes the cytoskeleton of mature dendritic cells leading to their impaired biophysical properties and motilities. PLoS One 2017; 12:e0172523. [PMID: 28234961 PMCID: PMC5325303 DOI: 10.1371/journal.pone.0172523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/06/2017] [Indexed: 12/16/2022] Open
Abstract
Interlukin-10 (IL-10) is an immunomodulatory cytokine which predominantly induces immune-tolerance. It has been also identified as a major cytokine in the tumor microenvironment that markedly mediates tumor immune escape. Previous studies on the roles of IL-10 in tumor immunosuppression mainly focus on its biochemical effects. But the effects of IL-10 on the biophysical characteristics of immune cells are ill-defined. Dendritic cells (DCs) are the most potent antigen-presenting cells and play a key role in the anti-tumor immune response. IL-10 can affect the immune regulatory functions of DCs in various ways. In this study, we aim to explore the effects of IL-10 on the biophysical functions of mature DCs (mDCs). mDCs were treated with different concentrations of IL-10 and their biophysical characteristics were identified. The results showed that the biophysical properties of mDCs, including electrophoresis mobility, osmotic fragility and deformability, as well as their motilities, were impaired by IL-10. Meanwhile, the cytoskeleton (F-actin) of mDCs was reorganized by IL-10. IL-10 caused the alternations in the expressions of fasin1 and profilin1 as well as the phosphorylation of cofilin1 in a concentration-dependent fashion. Moreover, Fourier transformed infrared resonance data showed that IL-10 made the status of gene transcription and metabolic turnover of mDCs more active. These results demonstrate a new aspect of IL-10's actions on the immune system and represent one of the mechanisms for immune escape of tumors. It may provide a valuable clue to optimize and improve the efficiency of DC-based immunotherapy against cancer.
Collapse
Affiliation(s)
- Xiaoli Xu
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
- Hemorheology Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R.China
| | - Xianmei Liu
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
- Hemorheology Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R.China
| | - Jinhua Long
- Department of Head and Neck, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, P.R.China
| | - Zuquan Hu
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Qinni Zheng
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Chunlin Zhang
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
| | - Long Li
- Department of Nephropathy & Rheumatism, Third Affiliated Hospital, Guizhou Medical University, Duyun, P.R.China
| | - Yun Wang
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Yi Jia
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Wei Qiu
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Jing Zhou
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Weijuan Yao
- Hemorheology Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R.China
| | - Zhu Zeng
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| |
Collapse
|
25
|
Zafar S, Behrens C, Dihazi H, Schmitz M, Zerr I, Schulz-Schaeffer WJ, Ramljak S, Asif AR. Cellular prion protein mediates early apoptotic proteome alternation and phospho-modification in human neuroblastoma cells. Cell Death Dis 2017; 8:e2557. [PMID: 28102851 PMCID: PMC5386350 DOI: 10.1038/cddis.2016.384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 01/08/2023]
Abstract
Anti-apoptotic properties of physiological and elevated levels of the cellular prion protein (PrPc) under stress conditions are well documented. Yet, detrimental effects of elevated PrPc levels under stress conditions, such as exposure to staurosporine (STS) have also been described. In the present study, we focused on discerning early apoptotic STS-induced proteome and phospho-proteome changes in SH-SY5Y human neuroblastoma cells stably transfected either with an empty or PRNP-containing vector, expressing physiological or supraphysiological levels of PrPc, respectively. PrPc-overexpression per se appears to stress the cells under STS-free conditions as indicated by diminished cell viability of PrPc-overexpressing versus control cells. However, PrPc-overexpression becomes advantageous following exposure to STS. Thus, only a short exposure (2 h) to 1 μM STS results in lower survival rates and significantly higher caspase-3 activity in control versus PrPc-overexpressing cells. Hence, by exposing both experimental groups to the same apoptotic conditions we were able to induce apoptosis in control, but not in PrPc-overexpressing cells (as assessed by caspase-3 activity), which allowed for filtering out proteins possibly contributing to protection against STS-induced apoptosis in PrPc-overexpressing cells. Among other proteins regulated by different PrPc levels following exposure to STS, those involved in maintenance of cytoskeleton integrity caught our attention. In particular, the finding that elevated PrPc levels significantly reduce profilin-1 (PFN-1) expression. PFN-1 is known to facilitate STS-induced apoptosis. Silencing of PFN-1 expression by siRNA significantly increased viability of PrPc-overexpressing versus control cells, under STS treatment. In addition, PrPc-overexpressing cells depleted of PFN-1 exhibited increased viability versus PrPc-overexpressing cells with preserved PFN-1 expression, both subjected to STS. Concomitant increase in caspase-3 activity was observed in control versus PrPc-overexpressing cells after treatment with siRNA- PFN-1 and STS. We suggest that reduction of PFN-1 expression by elevated levels of PrPc may contribute to protective effects PrPc-overexpressing SH-SY5Y cells confer against STS-induced apoptosis.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | - Christina Behrens
- Department of Neuropathology, Georg-August University, Goettingen 37075, Germany
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Georg-August University, Goettingen 37075, Germany
| | - Matthias Schmitz
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | - Inga Zerr
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | | | | | - Abdul R Asif
- Institute for Clinical Chemistry / UMG-Laboratories, University Medical Center Goettingen, Georg-August University, Goettingen, Germany
| |
Collapse
|
26
|
Gau DM, Lesnock JL, Hood BL, Bhargava R, Sun M, Darcy K, Luthra S, Chandran U, Conrads TP, Edwards RP, Kelley JL, Krivak TC, Roy P. BRCA1 deficiency in ovarian cancer is associated with alteration in expression of several key regulators of cell motility - A proteomics study. Cell Cycle 2016; 14:1884-92. [PMID: 25927284 DOI: 10.1080/15384101.2015.1036203] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Functional loss of expression of breast cancer susceptibility gene 1(BRCA1) has been implicated in genomic instability and cancer progression. There is emerging evidence that BRCA1 gene product (BRCA1) also plays a role in cancer cell migration. We performed a quantitative proteomics study of EOC patient tumor tissues and identified changes in expression of several key regulators of actin cytoskeleton/cell adhesion and cell migration (CAPN1, 14-3-3, CAPG, PFN1, SPTBN1, CFN1) associated with loss of BRCA1 function. Gene expression analyses demonstrate that several of these proteomic hits are differentially expressed between early and advanced stage EOC thus suggesting clinical relevance of these proteins to disease progression. By immunohistochemistry of ovarian tumors with BRCA1(+/+) and BRCA1(null) status, we further verified our proteomic-based finding of elevated PFN1 expression associated with BRCA1 deficiency. Finally, we established a causal link between PFN1 and BRCA1-induced changes in cell migration thus uncovering a novel mechanistic basis for BRCA1-dependent regulation of ovarian cancer cell migration. Overall, findings of this study open up multiple avenues by which BRCA1 can potentially regulate migration and metastatic phenotype of EOC cells.
Collapse
Key Words
- BRCA1
- BRCA1, Breast cancer susceptibility gene 1
- BRCA2, Breast cancer susceptibility gene 2
- CAPG, Macrophage capping protein
- CAPN1, Calpain-1
- CFN1, Cofilin-1
- EOC, Epithelial Ovarian Cancer
- ERM, Ezrin-Radixin-Moesin
- FFPE, Formalin-fixed paraffin-embedded
- HYOU1, Hypoxia upregulated protein 1
- ID1, Inhibitor of differentiation-1
- IHC, Immunohistochemistry
- LC MS-MS, Liquid chromatography tandem mass spectrometry
- Luc, luciferase
- PFN1, Profilin-1
- PP2A, Protein phosphatase 2A
- SPTBN1, Non-erythrocytic spectrin β Chain-1
- WT, Wild-type
- cell Motility
- ovarian cancer
- profilin-1
Collapse
Affiliation(s)
- David M Gau
- a Department of Bioengineering; University of Pittsburgh ; Pittsburgh , PA , USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Profilin-PTEN interaction suppresses NF-κB activation via inhibition of IKK phosphorylation. Biochem J 2016; 473:859-72. [PMID: 26787927 DOI: 10.1042/bj20150624] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/19/2016] [Indexed: 01/22/2023]
Abstract
The molecular mechanism of Profilin for its tumour suppressor activity is still unknown. Nuclear transcription factor κB (NF-κB) is known to activate many target genes involved in cell proliferation. In the present study, we provide evidence that supports the involvement of Profilin in regulation of NF-κB, which might repress the tumorigenic response. Profilin overexpressing cells show low basal activity of IκBα kinase (IKK), high amounts of cytoplasmic inhibitory subunit of NF-κB (IκBα) and p65, and low nuclear NF-κB DNA binding activity. Co-localization and co-immunoprecipitation (Co-IP) studies suggest that Profilin interacts with a protein phosphatase, phosphatase and tension homologue (PTEN), and protects it from degradation. In turn, PTEN interacts physically and maintains a low phosphorylated state of the IKK complex and thereby suppresses NF-κB signalling. Thus, Profilin overexpressing cells show a decrease in NF-κB activation mediated by most of the inducers and potentiate cell death by repressing NF-κB-dependent genes involved in cell cycle progression. For the first time, we provide evidence, which suggests that Profilin increases tumour suppressor activity by regulating NF-κB.
Collapse
|
28
|
Kim MJ, Lee YS, Han GY, Lee HN, Ahn C, Kim CW. Profilin 2 promotes migration, invasion, and stemness of HT29 human colorectal cancer stem cells. Biosci Biotechnol Biochem 2015; 79:1438-46. [PMID: 25964982 DOI: 10.1080/09168451.2015.1043118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We investigated the role of profilin 2 in the stemness, migration, and invasion of HT29 cancer stem cells (CSCs). Increased and decreased levels of profilin 2 significantly enhanced and suppressed the self-renewal, migration, and invasion ability of HT29 CSCs, respectively. Moreover, profilin 2 directly regulated the expression of stemness markers (CD133, SOX2, and β-catenin) and epithelial mesenchymal transition (EMT) markers (E-cadherin and snail). CD133 and β-catenin were up-regulated by overexpression of profilin 2 and down-regulated by depletion of profilin 2. SOX2 was decreased by profilin 2 depletion. E-cadherin was not influenced by profilin 2- overexpression but increased by profilin 2- knockdown. The expression of snail was suppressed by profilin 2- knockdown. We speculated that stemness and the EMT are closely linked through profilin 2-related pathways. Therefore, this study indicates that profilin 2 affects the metastatic potential and stemness of colorectal CSCs by regulating EMT- and stemness-related proteins.
Collapse
Affiliation(s)
- Min-Jung Kim
- a College of Life Sciences and Biotechnology , Korea University , Seoul 136-701 , Korea
| | | | | | | | | | | |
Collapse
|
29
|
RhoA/mDia-1/profilin-1 signaling targets microvascular endothelial dysfunction in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2015; 253:669-80. [PMID: 25791356 DOI: 10.1007/s00417-015-2985-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/21/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major cause of blindness in the working-age populations of developed countries, and effective treatments and prevention measures have long been the foci of study. Patients with DR invariably demonstrate impairments of the retinal microvascular endothelium. Many observational and preclinical studies have shown that angiogenesis and apoptosis play crucial roles in the pathogenesis of DR. Increasing evidence suggests that in DR, the small guanosine-5'-triphosphate-binding protein RhoA activates its downstream targets mammalian Diaphanous homolog 1 (mDia-1) and profilin-1, thus affecting important cellular functions, including cell morphology, motility, secretion, proliferation, and gene expression. However, the specific underlying mechanism of disease remains unclear. CONCLUSION This review focuses on the RhoA/mDia-1/profilin-1 signaling pathway that specifically triggers endothelial dysfunction in diabetic patients. Recently, RhoA and profilin-1 signaling has attracted a great deal of attention in the context of diabetes-related research. However, the precise molecular mechanism by which the RhoA/mDia-1/profilin-1 pathway is involved in progression of microvascular endothelial dysfunction (MVED) during DR has not been determined. This review briefly describes each feature of the cascade before exploring the most recent findings on how the pathway may trigger endothelial dysfunction in DR. When the underlying mechanisms are understood, novel therapies seeking to restore the endothelial homeostasis comprised in DR will become possible.
Collapse
|
30
|
Valenzuela-Iglesias A, Sharma VP, Beaty BT, Ding Z, Gutierrez-Millan LE, Roy P, Condeelis JS, Bravo-Cordero JJ. Profilin1 regulates invadopodium maturation in human breast cancer cells. Eur J Cell Biol 2015; 94:78-89. [PMID: 25613364 PMCID: PMC4322761 DOI: 10.1016/j.ejcb.2014.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 12/08/2014] [Accepted: 12/17/2014] [Indexed: 01/23/2023] Open
Abstract
Invadopodia are actin-driven membrane protrusions that show oscillatory assembly and disassembly causing matrix degradation to support invasion and dissemination of cancer cells in vitro and in vivo. Profilin1, an actin and phosphoinositide binding protein, is downregulated in several adenocarcinomas and it is been shown that its depletion enhances invasiveness and motility of breast cancer cells by increasing PI(3,4)P2 levels at the leading edge. In this study, we show for the first time that depletion of profilin1 leads to an increase in the number of mature invadopodia and these assemble and disassemble more rapidly than in control cells. Previous work by Sharma et al. (2013a), has shown that the binding of the protein Tks5 with PI(3,4)P2 confers stability to the invadopodium precursor causing it to mature into a degradation-competent structure. We found that loss of profilin1 expression increases the levels of PI(3,4)P2 at the invadopodium and as a result, enhances recruitment of the interacting adaptor Tks5. The increased PI(3,4)P2-Tks5 interaction accelerates the rate of invadopodium anchorage, maturation, and turnover. Our results indicate that profilin1 acts as a molecular regulator of the levels of PI(3,4)P2 and Tks5 recruitment in invadopodia to control the invasion efficiency of invadopodia.
Collapse
Affiliation(s)
- A Valenzuela-Iglesias
- Department of Scientific and Technological Research DICTUS, University of Sonora, Hermosillo, Mexico.
| | - V P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States
| | - B T Beaty
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States
| | - Z Ding
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - L E Gutierrez-Millan
- Department of Scientific and Technological Research DICTUS, University of Sonora, Hermosillo, Mexico
| | - P Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - J S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States.
| | - J J Bravo-Cordero
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, United States.
| |
Collapse
|
31
|
Rizwani W, Fasim A, Sharma D, Reddy DJ, Bin Omar NAM, Singh SS. S137 phosphorylation of profilin 1 is an important signaling event in breast cancer progression. PLoS One 2014; 9:e103868. [PMID: 25084196 PMCID: PMC4118959 DOI: 10.1371/journal.pone.0103868] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/02/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Profilins are actin-modulating proteins regulating many intracellular functions based on their multiple and diverse ligand interactions. They have been implicated to play a role in many pathological conditions such as allergies, cardiovascular diseases, muscular atrophy, diabetes, dementia and cancer. Post-translational modifications of profilin 1 can alter its properties and subsequently its function in a cell. In the present study, we identify the importance of phosphorylation of profilin 1 at serine 137 (S137) residue in breast cancer progression. METHODS/PRINCIPAL FINDINGS We found elevated profilin 1 (PFN) in human breast cancer tissues when compared to adjacent normal tissues. Overexpression of wild-type profilin 1 (PFN-WT) in breast cancer MCF7 cells made them more migratory, invasive and adherent independent in comparison to empty vector transfected cells. Mutation in serine phosphorylation site (S137) of profilin 1 (PFN-S137A) significantly abrogated these properties. Mutation affecting actin-binding ability (PFN-R74E) of profilin 1 enhanced its tumorigenic function whereas mutation affecting its poly-L-proline binding function (PFN-H133S) alleviated these mechanisms in breast cancer cells. PFN-WT was found to activate matrix metalloproteinases by zymography, MMP2 and MMP9 in presence of PDBu (phorbol 12, 13 dibutyrate, PI3K agonist) to enhance migration and invasion in MCF7 cells while PFN-S137A did not. Phosphorylation increased migration and invasion in other mutants of profilin 1. Nuclear profilin levels also increased in the presence of PDBu. CONCLUSIONS Previous studies show that profilin could be executing a dual role in cancer by either suppressing or promoting tumorigenesis in a context dependent manner. In this study we demonstrate for the first time that phosphorylation of profilin 1 at serine 137 enhances oncogenic properties in breast cancer cells. Inhibitors targeting profilin 1 phosphorylation directly or indirectly through inhibition of kinases that phosphorylate profilin could be valuable therapeutic agents that can alter its activity and thereby control the progression of cancer.
Collapse
Affiliation(s)
- Wasia Rizwani
- Department of Biochemistry, Osmania University, Hyderabad, A.P., India
- * E-mail: (WR); (SSS)
| | - Aneesa Fasim
- Department of Biochemistry, Osmania University, Hyderabad, A.P., India
| | - Deepshikha Sharma
- Department of Biochemistry, Osmania University, Hyderabad, A.P., India
| | - Divya J. Reddy
- Department of Biochemistry, Osmania University, Hyderabad, A.P., India
| | | | - Surya S. Singh
- Department of Biochemistry, Osmania University, Hyderabad, A.P., India
- * E-mail: (WR); (SSS)
| |
Collapse
|
32
|
Fan Y, Potdar AA, Gong Y, Eswarappa SM, Donnola S, Lathia JD, Hambardzumyan D, Rich JN, Fox PL. Profilin-1 phosphorylation directs angiocrine expression and glioblastoma progression through HIF-1α accumulation. Nat Cell Biol 2014; 16:445-56. [PMID: 24747440 PMCID: PMC4036069 DOI: 10.1038/ncb2954] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/20/2014] [Indexed: 12/18/2022]
Abstract
The tumour vascular microenvironment supports tumorigenesis not only by supplying oxygen and diffusible nutrients but also by secreting soluble factors that promote tumorigenesis. Here we identify a feedforward mechanism in which endothelial cells (ECs), in response to tumour-derived mediators, release angiocrines driving aberrant vascularization and glioblastoma multiforme (GBM) progression through a hypoxia-independent induction of hypoxia-inducible factor (HIF)-1α. Phosphorylation of profilin-1 (Pfn-1) at Tyr 129 in ECs induces binding to the tumour suppressor protein von Hippel-Lindau (VHL), and prevents VHL-mediated degradation of prolyl-hydroxylated HIF-1α, culminating in HIF-1α accumulation even in normoxia. Elevated HIF-1α induces expression of multiple angiogenic factors, leading to vascular abnormality and tumour progression. In a genetic model of GBM, mice with an EC-specific defect in Pfn-1 phosphorylation exhibit reduced tumour angiogenesis, normalized vasculature and improved survival. Moreover, EC-specific Pfn-1 phosphorylation is associated with tumour aggressiveness in human glioma. These findings suggest that targeting Pfn-1 phosphorylation may offer a selective strategy for therapeutic intervention of malignant solid tumours.
Collapse
Affiliation(s)
- Yi Fan
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania, USA 19104
| | - Alka A. Potdar
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, USA 44106
| | - Yanqing Gong
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania, USA 19104
| | - Sandeepa M. Eswarappa
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
| | - Shannon Donnola
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
| | - Justin D. Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
| | - Dolores Hambardzumyan
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
| | - Jeremy N. Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
| | - Paul L. Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio, USA 44195
| |
Collapse
|
33
|
Joy ME, Vollmer LL, Hulkower K, Stern AM, Peterson CK, Boltz RC“D, Roy P, Vogt A. A high-content, multiplexed screen in human breast cancer cells identifies profilin-1 inducers with anti-migratory activities. PLoS One 2014; 9:e88350. [PMID: 24520372 PMCID: PMC3919756 DOI: 10.1371/journal.pone.0088350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/12/2014] [Indexed: 01/17/2023] Open
Abstract
Profilin-1 (Pfn-1) is a ubiquitously expressed actin-binding protein that is essential for normal cell proliferation and migration. In breast cancer and several other adenocarcinomas, Pfn-1 expression is downregulated when compared to normal tissues. Previous studies from our laboratory have shown that genetically modulating Pfn-1 expression significantly impacts proliferation, migration, and invasion of breast cancer cells in vitro, and mammary tumor growth, dissemination, and metastatic colonization in vivo. Therefore, small molecules that can modulate Pfn-1 expression could have therapeutic potential in the treatment of metastatic breast cancer. The overall goal of this study was to perform a multiplexed phenotypic screen to identify compounds that inhibit cell motility through upregulation of Pfn-1. Screening of a test cassette of 1280 compounds with known biological activities on an Oris™ Pro 384 cell migration platform identified several agents that increased Pfn-1 expression greater than two-fold over vehicle controls and exerted anti-migratory effects in the absence of overt cytotoxicity in MDA-MB-231 human breast cancer cells. Concentration-response confirmation and orthogonal follow-up assays identified two bona fide inducers of Pfn-1, purvalanol and tyrphostin A9, that confirmed in single-cell motility assays and Western blot analyses. SiRNA-mediated knockdown of Pfn-1 abrogated the inhibitory effect of tyrphostin A9 on cell migration, suggesting Pfn-1 is mechanistically linked to tyrphostin A9′s anti-migratory activity. The data illustrate the utility of the high-content cell motility assay to discover novel targeted anti-migratory agents by integrating functional phenotypic analyses with target-specific readouts in a single assay platform.
Collapse
Affiliation(s)
- Marion E. Joy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Laura L. Vollmer
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, Pennsylvania, United States of America
| | - Keren Hulkower
- Platypus Technologies, LLC, Madison, Wisconsin, United States of America
| | - Andrew M. Stern
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, Pennsylvania, United States of America
| | - Cameron K. Peterson
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, Pennsylvania, United States of America
| | - R. C. “Dutch” Boltz
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, Pennsylvania, United States of America
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Magee Women's Research Institute, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (AV); (PR)
| | - Andreas Vogt
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (AV); (PR)
| |
Collapse
|
34
|
Lorente G, Syriani E, Morales M. Actin filaments at the leading edge of cancer cells are characterized by a high mobile fraction and turnover regulation by profilin I. PLoS One 2014; 9:e85817. [PMID: 24465723 PMCID: PMC3895011 DOI: 10.1371/journal.pone.0085817] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
Cellular motility is the basis for cancer cell invasion and metastasis. In the case of breast cancer, the most common type of cancer among women, metastasis represents the most devastating stage of the disease. The central role of cellular motility in cancer development emphasizes the importance of understanding the specific mechanisms involved in this process. In this context, tumor development and metastasis would be the consequence of a loss or defect of the mechanisms that control cytoskeletal remodeling. Profilin I belongs to a family of small actin binding proteins that are thought to assist in actin filament elongation at the leading edge of migrating cells. Traditionally, Profilin I has been considered to be an essential control element for actin polymerization and cell migration. Expression of Profilin I is down-regulated in breast and various other cancer cells. In MDA-MB-231 cells, a breast cancer cell line, further inhibition of Profilin I expression promotes hypermotility and metastatic spread, a finding that contrasts with the proposed role of Profilin in enhancing polymerization. In this report, we have taken advantage of the fluorescence recovery after photobleaching (FRAP) of GFP-actin to quantify and compare actin dynamics at the leading edge level in both cancer and non-cancer cell models. Our results suggest that (i) a high level of actin dynamics (i.e., a large mobile fraction of actin filaments and a fast turnover) is a common characteristic of some cancer cells; (ii) actin polymerization shows a high degree of independence from the presence of extracellular growth factors; and (iii) our results also corroborate the role of Profilin I in regulating actin polymerization, as raising the intracellular levels of Profilin I decreased the mobile fraction ratio of actin filaments and slowed their polymerization rate; furthermore, increased Profilin levels also led to reduced individual cell velocity and directionality.
Collapse
Affiliation(s)
- Gisela Lorente
- Neurophysiology Laboratory, Deptartment of Physiological Sciences I, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Emilio Syriani
- Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, CIBIR Piqueras 98, Logroño, La Rioja, Spain
| | - Miguel Morales
- Structural Synaptic Plasticity Lab, Department of Neurodegenerative Diseases, CIBIR Piqueras 98, Logroño, La Rioja, Spain
- * E-mail:
| |
Collapse
|
35
|
Profilin-1 downregulation has contrasting effects on early vs late steps of breast cancer metastasis. Oncogene 2013; 33:2065-74. [PMID: 23686314 DOI: 10.1038/onc.2013.166] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/19/2013] [Accepted: 04/10/2013] [Indexed: 12/23/2022]
Abstract
Profilin1 (Pfn1), a ubiquitously expressed actin-binding protein, has an indispensable role in migration and proliferation of normal cells. Seemingly contrary to its essential cellular functions, Pfn1's expression is downregulated in breast cancer, the significance of which is unclear. In this study, expression profiling of Pfn1 in human breast cancer specimens correlates lower Pfn1 expression levels with propensity to metastasize. Xenograft experiments further establish a causal relationship between loss of Pfn1 expression and increased dissemination of breast cancer cells (BCCs) from the primary mammary tumor. BCCs exhibit a hyperinvasive phenotype (marked by matrix metalloproteinase-9 upregulation, faster invasion through collagen matrix) and acquire increased proficiency to transmigrate through endothelial barrier (an obligatory step for vascular dissemination) when Pfn1 expression is suppressed. In Pfn1-deficient cells, hyperinvasiveness involves a phosphatidylinositol 3-kinase-PI(3,4)P2 signaling axis while augmented transendothelial migration occurs in a vascular endothelial growth factor-dependent manner. Contrasting these dissemination promoting activities, loss of Pfn1, however, dramatically inhibits metastatic outgrowth of disseminated BCCs, suggesting that Pfn1 has a key role in the metastatic colonization process. In summary, this study shows that Pfn1 has a dichotomous role in early vs late steps of breast cancer metastasis.
Collapse
|
36
|
Zhou Y, Su J, Shi L, Liao Q, Su Q. DADS downregulates the Rac1-ROCK1/PAK1-LIMK1-ADF/cofilin signaling pathway, inhibiting cell migration and invasion. Oncol Rep 2012; 29:605-12. [PMID: 23233092 DOI: 10.3892/or.2012.2168] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 11/09/2012] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to explore the molecular mechanisms of the diallyl disulfide (DADS)-mediated downregulation of LIM kinase-1 (LIMK1) and the consequent inhibition of the migration and invasion of human colorectal cancer cells. RNA interference technology was used to establish stable LIMK1-miRNA/SW480 cell lines. The effects of DADS and LIMK1 RNA interference on the migration and invasion of SW480 cells were observed by scratch wound healing assay and Transwell migration assay. The effects of DADS on signaling molecules of the Rac1-Rho kinase (ROCK)1/p21-activated kinase (PAK)1-LIM kinase (LIMK)1-actin depolymerizing factor (ADF)/cofilin pathway in SW480 cells were examined by RT-PCR and western blot analysis. The healing and migration rate of the SW480 cells was significantly reduced and the cell penetrating ability was significantly suppressed (P<0.05) following treatment with DADS (45 mg/l). The immunohistochemistry and western blot analysis results showed that DADS significantly downregulated LIMK1 protein expression and suppressed LIMK1 protein phosphorylation. Furthermore, the RT-PCR and western blot analysis results revealed that DADS suppressed Rac1, ROCK1, PAK1, LIMK1 and destrin mRNA and protein expression, as well as the protein phosphorylation of LIMK1 and cofilin 1. The data demonstrate that LIMK1 expression positively correlates with the SW480 cell migration and invasion ability. DADS downregulates the Rac1-ROCK1/PAK1-LIMK1-ADF/cofilin signaling pathway, suppressing SW480 cell migration and invasion.
Collapse
Affiliation(s)
- Yujuan Zhou
- Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | | | | | | | | |
Collapse
|
37
|
Stimulus-dependent phosphorylation of profilin-1 in angiogenesis. Nat Cell Biol 2012; 14:1046-56. [PMID: 23000962 DOI: 10.1038/ncb2580] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/13/2012] [Indexed: 12/12/2022]
Abstract
Angiogenesis, the formation of new blood vessels, is fundamental to development and post-injury tissue repair. Vascular endothelial growth factor (VEGF)-A guides and enhances endothelial cell migration to initiate angiogenesis. Profilin-1 (Pfn-1) is an actin-binding protein that enhances actin filament formation and cell migration, but stimulus-dependent regulation of Pfn-1 has not been observed. Here, we show that VEGF-A-inducible phosphorylation of Pfn-1 at Tyr 129 is critical for endothelial cell migration and angiogenesis. Chemotactic activation of VEGF receptor kinase-2 (VEGFR2) and Src induces Pfn-1 phosphorylation in the cell leading edge, promoting Pfn-1 binding to actin and actin polymerization. Conditional endothelial knock-in of phosphorylation-deficient Pfn1(Y129F) in mice reveals that Pfn-1 phosphorylation is critical for angiogenesis in response to wounding and ischaemic injury, but not for developmental angiogenesis. Thus, VEGFR2/Src-mediated phosphorylation of Pfn-1 bypasses canonical, multistep intracellular signalling events to initiate endothelial cell migration and angiogenesis, and might serve as a selective therapeutic target for anti-angiogenic therapy.
Collapse
|
38
|
Rust MB, Kullmann JA, Witke W. Role of the actin-binding protein profilin1 in radial migration and glial cell adhesion of granule neurons in the cerebellum. Cell Adh Migr 2012; 6:13-7. [PMID: 22647936 DOI: 10.4161/cam.19845] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Profilins are small G-actin-binding proteins essential for cytoskeletal dynamics. Of the four mammalian profilin isoforms, profilin1 shows a broad expression pattern, profilin2 is abundant in the brain, and profilin3 and profilin4 are restricted to the testis. In vitro studies on cancer and epithelial cell lines suggested a role for profilins in cell migration and cell-cell adhesion. Genetic studies in mice revealed the importance of profilin1 in neuronal migration, while profilin2 has apparently acquired a specific function in synaptic physiology. We recently reported a mouse mutant line lacking profilin1 in the brain; animals display morphological defects that are typical for impaired neuronal migration. We found that during cerebellar development, profilin1 is specifically required for radial migration and glial cell adhesion of granule neurons. Profilin1 mutants showed cerebellar hypoplasia and aberrant organization of cerebellar cortex layers, with ectopically arranged granule neurons. In this commentary, we briefly introduce the profilin family and summarize the current knowledge on profilin activity in cell migration and adhesion. Employing cerebellar granule cells as a model, we shed some light on the mechanisms by which profilin1 may control radial migration and glial cell adhesion. Finally, a potential implication of profilin1 in human developmental neuropathies is discussed.
Collapse
Affiliation(s)
- Marco B Rust
- Neurobiology/Neurophysiology Group, University of Kaiserslautern, Kaiserslautern, Germany.
| | | | | |
Collapse
|
39
|
Ding Z, Bae YH, Roy P. Molecular insights on context-specific role of profilin-1 in cell migration. Cell Adh Migr 2012; 6:442-9. [PMID: 23076048 DOI: 10.4161/cam.21832] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Profilin-1 (Pfn1) is a ubiquitously expressed actin-monomer binding protein that has been linked to many cellular activities ranging from control of actin polymerization to gene transcription. Traditionally, Pfn1 has been considered to be an essential control element for actin polymerization and cell migration. Seemingly contrasting this view, a few recent studies have shown evidence of an inhibitory action of Pfn1 on motility of certain types of carcinoma cells. In this review, we summarize biochemistry and functional aspects of Pfn1 in normal cells and bring in newly emerged action of Pfn1 in cancer cells that may explain its context-specific role in cell migration.
Collapse
Affiliation(s)
- Zhijie Ding
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
40
|
Heterogenous GABAB receptor-mediated pathways are involved in the local GABAergic system of the rat trigeminal ganglion: Possible involvement of KCTD proteins. Neuroscience 2012; 218:344-58. [DOI: 10.1016/j.neuroscience.2012.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/01/2012] [Accepted: 05/14/2012] [Indexed: 01/28/2023]
|
41
|
Poly(I:C) treatment influences the expression of calreticulin and profilin-1 in a human HNSCC cell line: a proteomic study. Tumour Biol 2012; 33:1201-8. [PMID: 22415225 DOI: 10.1007/s13277-012-0366-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/15/2012] [Indexed: 12/15/2022] Open
Abstract
Polyinosinic:polycytidylic acid (poly (I:C)) has been formerly known to be an interferon inducer but the mechanism of its action was not revealed until the discovery of Toll-like receptors (TLRs). TLRs are members of transmembrane proteins that recognize conserved molecular motifs of viral and bacterial origin and initiate innate immune response. Recent studies have shown that they are also expressed on tumor cells, but their role in these cells is still not clear. TLR3 recognizes double-stranded RNA (poly (I:C)) and is primarily involved in the defense against viruses. TLR3 ligand binding initiates the activation of transcription factors NF-κB, IRF family members, and AP-1, which can induce wide cascading effect on the cell and consequently activate many cellular processes. Since little is known about TLR3 target genes, we have used the proteomic approach to widen the current knowledge. In this study, we have discovered 15 differentially expressed proteins, mostly connected with protein metabolic processes. Furthermore, we have confirmed by Western blot that calreticulin and profilin-1, proteins which have been shown previously to be involved in processes connected with tumor progression, are differentially expressed after poly(I:C) treatment. By using TLR3 small interfering RNA, we showed that calreticulin expression might be TLR3 dependent, unlike profilin-1.
Collapse
|
42
|
Menkhorst EM, Lane N, Winship AL, Li P, Yap J, Meehan K, Rainczuk A, Stephens A, Dimitriadis E. Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation. PLoS One 2012; 7:e31418. [PMID: 22359590 PMCID: PMC3281063 DOI: 10.1371/journal.pone.0031418] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/07/2012] [Indexed: 11/25/2022] Open
Abstract
Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the ‘extravillous trophoblast’ (EVT) invade through the differentiated uterine endometrium (the decidua) to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10−8 M), medroxyprogesterone acetate (10−7 M) and cAMP (0.5 mM) for 14 days. Conditioned media (CM) was collected on day 2 (non-decidualized CM) and 14 (decidualized CM) of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins <30 kDa using size-exclusion affinity nanoparticles (SEAN) before trypsin digestion and HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1), dipeptidyl peptidase 1 (DPP1/cathepsin C) and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro-inflammatory condition. Overall, we have demonstrated the potential of a proteomics approach to identify novel proteins expressed by EVT and to uncover the mechanisms leading to disease states.
Collapse
Affiliation(s)
| | - Natalie Lane
- Prince Henry's Institute, Clayton, Victoria, Australia
| | | | - Priscilla Li
- Prince Henry's Institute, Clayton, Victoria, Australia
| | - Joanne Yap
- Prince Henry's Institute, Clayton, Victoria, Australia
| | - Katie Meehan
- Prince Henry's Institute, Clayton, Victoria, Australia
| | - Adam Rainczuk
- Prince Henry's Institute, Clayton, Victoria, Australia
| | | | | |
Collapse
|
43
|
Chirieleison SM, Bissell TA, Scelfo CC, Anderson JE, Li Y, Koebler DJ, Deasy BM. Automated live cell imaging systems reveal dynamic cell behavior. Biotechnol Prog 2011; 27:913-24. [PMID: 21692197 DOI: 10.1002/btpr.629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 03/11/2011] [Indexed: 11/11/2022]
Abstract
Automated time-lapsed microscopy provides unique research opportunities to visualize cells and subcellular components in experiments with time-dependent parameters. As accessibility to these systems is increasing, we review here their use in cell science with a focus on stem cell research. Although the use of time-lapsed imaging to answer biological questions dates back nearly 150 years, only recently have the use of an environmentally controlled chamber and robotic stage controllers allowed for high-throughput continuous imaging over long periods at the cell and subcellular levels. Numerous automated imaging systems are now available from both companies that specialize in live cell imaging and from major microscope manufacturers. We discuss the key components of robots used for time-lapsed live microscopic imaging, and the unique data that can be obtained from image analysis. We show how automated features enhance experimentation by providing examples of uniquely quantified proliferation and migration live cell imaging data. In addition to providing an efficient system that drastically reduces man-hours and consumes fewer laboratory resources, this technology greatly enhances cell science by providing a unique dataset of temporal changes in cell activity.
Collapse
|
44
|
Yun SP, Ryu JM, Jang MW, Han HJ. Interaction of profilin-1 and F-actin via a β-arrestin-1/JNK signaling pathway involved in prostaglandin E(2)-induced human mesenchymal stem cells migration and proliferation. J Cell Physiol 2011; 226:559-71. [PMID: 20717968 DOI: 10.1002/jcp.22366] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although many previous reports have examined the function of prostaglandin E(2) (PGE(2)) in the migration and proliferation of various cell types, the role of the actin cytoskeleton in human mesenchymal stem cells (hMSCs) migration and proliferation has not been reported. The present study examined the involvement of profilin-1 (Pfn-1) and filamentous-actin (F-actin) in PGE(2)-induced hMSC migration and proliferation and its related signal pathways. PGE(2) (10(-6) M) increased both cell migration and proliferation, and also increased E-type prostaglandin receptor 2 (EP2) mRNA expression, β-arrestin-1 phosphorylation, and c-Jun N-terminal kinase (JNK) phosphorylation. Small interfering RNA (siRNA)-mediated knockdown of β-arrestin-1 and JNK (-1, -2, -3) inhibited PGE(2)-induced growth of hMSCs. PGE(2) also activated Pfn-1, which was blocked by JNK siRNA, and induced F-actin level and organization. Downregulation of Pfn-1 by siRNA decreased the level and organization of F-actin. In addition, specific siRNA for TRIO and F-actin-binding protein (TRIOBP) reduced the PGE(2)-induced increase in hMSC migration and proliferation. Together, these experimental data demonstrate that PGE(2) partially stimulates hMSCs migration and proliferation by interaction of Pfn-1 and F-actin via EP2 receptor-dependent β-arrestin-1/JNK signaling pathways.
Collapse
Affiliation(s)
- Seung Pil Yun
- Department of Veterinary Physiology, College of Veterinary Medicine, Biotherapy Human Resources Center (BK21), Chonnam National University, Gwangju, Korea
| | | | | | | |
Collapse
|
45
|
Profilin1 regulates PI(3,4)P2 and lamellipodin accumulation at the leading edge thus influencing motility of MDA-MB-231 cells. Proc Natl Acad Sci U S A 2010; 107:21547-52. [PMID: 21115820 DOI: 10.1073/pnas.1002309107] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Profilin1, a ubiquitously expressed actin-binding protein, plays a critical role in cell migration through actin cytoskeletal regulation. Given the traditional view of profilin1 as a promigratory molecule, it is difficult to reconcile observations that profilin1 is down-regulated in various invasive adenocarcinomas and that reduced profilin1 expression actually confers increased motility to certain adenocarcinoma cells. In this study, we show that profilin1 negatively regulates lamellipodin targeting to the leading edge in MDA-MB-231 breast cancer cells and normal cells; profilin1 depletion increases lamellipodin concentration at the lamellipodial tip (where it binds Ena/VASP), and this mediates the hypermotility. We report that the molecular mechanism underlying profilin1's modulation of lamellipodin localization relates to phosphoinositide control. Specifically, we show that phosphoinositide binding of profilin1 inhibits the motility of MDA-MB-231 cells by negatively regulating PI(3,4)P(2) at the membrane and thereby limiting recruitment of lamellipodin [a PI(3,4)P(2)-binding protein] and Ena/VASP to the leading edge. In summary, this study uncovers a unique biological consequence of profilin1-phosphoinositide interaction, thus providing direct evidence of profilin1's regulation of cell migration independent of its actin-related activity.
Collapse
|
46
|
Kurogi K, Sakakibara Y, Kamemoto Y, Takahashi S, Yasuda S, Liu MC, Suiko M. Mouse cytosolic sulfotransferase SULT2B1b interacts with cytoskeletal proteins via a proline/serine-rich C-terminus. FEBS J 2010; 277:3804-11. [PMID: 20718863 DOI: 10.1111/j.1742-4658.2010.07781.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytosolic sulfotransferase (SULT) SULT2B1b had previously been characterized as a cholesterol sulfotransferase. Like human SULT2B1, mouse SULT2B1b contains a unique, 31 amino acid C-terminal sequence with a proline/serine-rich region, which is not found in members of other SULT families. To gain insight into the functional relevance of this proline/serine-rich region, we constructed a truncated mouse SULT2B1b lacking the 31 C-terminal amino acids, and compared it with the wild-type enzyme. Enzymatic characterization indicated that the catalytic activity was not significantly affected by the absence of those C-terminal residues. Glutathione S-transferase pulldown assays showed that several proteins interacted with mouse SULT2B1b specifically through this C-terminal proline/serine-rich region. Peptide mass fingerprinting revealed that of the five SULT2B1b-binding proteins analyzed, three were cytoskeletal proteins and two were cytoskeleton-binding molecular chaperones. Furthermore, wild-type mouse SULT2B1b, but not the truncated enzyme, was associated with the cytoskeleton in experiments with a cytoskeleton-stabilizing buffer. Collectively, these results suggested that the unique, extended proline/serine-rich C-terminus of mouse SULT2B1b is important for its interaction with cytoskeletal proteins. Such an interaction may allow the enzyme to move along microfilaments such as actin filaments, and catalyze the sulfation of hydroxysteroids, such as cholesterol and pregnenolone, at specific intracellular locations.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Gau D, Ding Z, Baty C, Roy P. Fluorescence Resonance Energy Transfer (FRET)-based Detection of Profilin-VASP Interaction. Cell Mol Bioeng 2010; 4:1-8. [PMID: 21566724 DOI: 10.1007/s12195-010-0133-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Profilins belong to a family of small G-actin binding proteins which are thought to assist in F-actin elongation at the leading edge of migrating cells through their interactions with a host of actin-binding proteins including Ena (enabled)/VASP (vasodilator stimulated phosphoprotein). Profilin's interactions with the major actin regulators have been studied almost exclusively using biochemical methods. Therefore spatiotemporal features of these protein-protein interactions have not been resolved so far. In this paper, we for the first time demonstrate the feasibility of GFP-based fluorescence resonance energy transfer (FRET) technique to detect VASP's interaction with profilin-1, a ubiquitously expressed member of profilin family of genes. Specifically, we performed acceptor photobleaching FRET in MDA-MB-231 breast cancer cells to show prominent VASP-Pfn1 interaction at the membrane ruffles near the leading edge.
Collapse
Affiliation(s)
- Dave Gau
- Department of Bioengineering, University of Pittsburgh, 306 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|
48
|
Li A, Choi YS, Dziema H, Cao R, Cho HY, Jung YJ, Obrietan K. Proteomic profiling of the epileptic dentate gyrus. Brain Pathol 2010; 20:1077-89. [PMID: 20608933 DOI: 10.1111/j.1750-3639.2010.00414.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The development of epilepsy is often associated with marked changes in central nervous system cell structure and function. Along these lines, reactive gliosis and granule cell axonal sprouting within the dentate gyrus of the hippocampus are commonly observed in individuals with temporal lobe epilepsy (TLE). Here we used the pilocarpine model of TLE in mice to screen the proteome and phosphoproteome of the dentate gyrus to identify molecular events that are altered as part of the pathogenic process. Using a two-dimensional gel electrophoresis-based approach, followed by liquid chromatography-tandem mass spectrometry, 24 differentially expressed proteins, including 9 phosphoproteins, were identified. Functionally, these proteins were organized into several classes, including synaptic physiology, cell structure, cell stress, metabolism and energetics. The altered expression of three proteins involved in synaptic physiology, actin, profilin 1 and α-synuclein was validated by secondary methods. Interestingly, marked changes in protein expression were detected in the supragranular cell region, an area where robust mossy fibers sprouting occurs. Together, these data provide new molecular insights into the altered protein profile of the epileptogenic dentate gyrus and point to potential pathophysiologic mechanisms underlying epileptogenesis.
Collapse
Affiliation(s)
- Aiqing Li
- Key Lab. for Organ Failure Research, Education Ministry of P.R. China, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|