1
|
Mo Y, Huang E, Deng C, Huang H, Zhu Y, Wei X, Zhong J, Wang Y, Huang Z, Zhang J. NAT10 functions as a pivotal regulator in gastric cancer metastasis and tumor immunity. J Cell Physiol 2024:e31474. [PMID: 39467076 DOI: 10.1002/jcp.31474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Gastric cancer (GC) presents a significant global health burden, with metastasis being the leading cause of treatment failure and mortality. NAT10, a regulatory protein involved in mRNA acetylation, has been implicated in various cancers. However, its role in GC, especially concerning metastasis and immune interactions, remains unclear. Utilizing multi-omics data from gastric cancer samples, we conducted comprehensive analyses to investigate NAT10 expression, its correlation with clinical parameters and immune relevance. Bioinformatics analysis and digital image processing were employed for this purpose. Furthermore, in vitro and in vivo experiments were conducted to elucidate the functional role of NAT10 in gastric cancer progression, aiming to provide deeper biological insights. Our findings reveal a significant association between NAT10 expression and various aspects of transcriptional, protein, as well as tumor immunity in GC patients. Additionally, we demonstrated that NAT10 promotes gastric cancer cell proliferation and migration, both in cellular models and in animal studies, suggesting its involvement in early tumor microvascular metastasis. NAT10 emerges as a promising molecular target, offering potential avenues for further research into molecular mechanisms and therapeutic strategies for GC.
Collapse
Affiliation(s)
- Yuqian Mo
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, China
| | - Enyu Huang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, China
| | - Chao Deng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Haofeng Huang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, China
| | - Ying Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xinlong Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinlin Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuzhi Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zhigang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
- Key Laboratory of Noncommunicable Diseases Control and Health Data Statistics of Guangdong Medical University, Dongguan, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
2
|
Xie L, Sun Z, Brown NJ, Glinskii OV, Meininger GA, Glinsky VV. Changes in dynamics of tumor/endothelial cell adhesive interactions depending on endothelial cell growth state and elastic properties. PLoS One 2022; 17:e0269552. [PMID: 35666755 PMCID: PMC9170101 DOI: 10.1371/journal.pone.0269552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer cell adhesion to the endothelium is a crucial process in hematogenous metastasis, but how the integrity of the endothelial barrier and endothelial cell (EC) mechanical properties influence the adhesion between metastatic cancer cells and the endothelium remain unclear. In the present study, we have measured the adhesion between single cancer cells and two types of ECs at various growth states and their mechanical properties (elasticity) using atomic force microscopy single cell force spectroscopy. We demonstrated that the EC stiffness increased and adhesion with cancer cells decreased, as ECs grew from a single cell to a confluent state and developed cell-cell contacts, but this was reversed when confluent cells returned to a single state in a scratch assay. Our results suggest that the integrity of the endothelial barrier is an important factor in reducing the ability of the metastatic tumor cells to adhere to the vascular endothelium, extravasate and lodge in the vasculature of a distant organ where secondary metastatic tumors would develop.
Collapse
Affiliation(s)
- Leike Xie
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Nicola J. Brown
- Microcirculation Research Group, Department of Oncology and Metabolism, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Olga V. Glinskii
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States of America
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
| | - Vladislav V. Glinsky
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, United States of America
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, United States of America
| |
Collapse
|
3
|
Viscoelastic Properties in Cancer: From Cells to Spheroids. Cells 2021; 10:cells10071704. [PMID: 34359874 PMCID: PMC8304080 DOI: 10.3390/cells10071704] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
AFM-based rheology methods enable the investigation of the viscoelastic properties of cancer cells. Such properties are known to be essential for cell functions, especially for malignant cells. Here, the relevance of the force modulation method was investigated to characterize the viscoelasticity of bladder cancer cells of various invasiveness on soft substrates, revealing that the rheology parameters are a signature of malignancy. Furthermore, the collagen microenvironment affects the viscoelastic moduli of cancer cell spheroids; thus, collagen serves as a powerful proxy, leading to an increase of the dynamic moduli vs. frequency, as predicted by a double power law model. Taken together, these results shed new light on how cancer cells and tissues adapt their viscoelastic properties depending on their malignancy and the microenvironment. This method could be an attractive way to control their properties in the future, based on the similarity of spheroids with in vivo tumor models.
Collapse
|
4
|
Arefi SMA, Tsvirkun D, Verdier C, Feng JJ. A biomechanical model for the transendothelial migration of cancer cells. Phys Biol 2020; 17:036004. [PMID: 32015219 DOI: 10.1088/1478-3975/ab725c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We propose a biomechanical model for the extravasation of a tumor cell (TC) through the endothelium of a blood vessel. Based on prior in vitro observations, we assume that the TC extends a protrusion between adjacent endothelial cells (ECs) that adheres to the basement membrane via focal adhesions (FAs). As the protrusion grows in size and branches out, the actomyosin contraction along the stress fibers (SFs) inside the protrusion pulls the relatively rigid nucleus through the endothelial opening. We model the chemo-mechanics of the SFs and the FAs by following the kinetics of the active myosin motors and high-affinity integrins, subject to mechanical feedback. This is incorporated into a finite-element simulation of the extravasation process, with the contractile force pulling the nucleus of the TC against elastic resistance of the ECs. To account for the interaction between the TC nucleus and the endothelium, we consider two scenarios: solid-solid contact and lubrication by cytosol. The former gives a lower bound for the required contractile force to realize transmigration, while the latter provides a more realistic representation of the process. Using physiologically reasonable parameters, our model shows that the SF and FA ensemble can produce a contractile force on the order of 70 nN, which is sufficient to deform the ECs and enable transmigration. Furthermore, we use an atomic force microscope to measure the resistant force on a human bladder cancer cell that is pushed through an endothelium cultured in vitro. The magnitude of the required force turns out to be in the range of 70-100 nN, comparable to the model predictions.
Collapse
Affiliation(s)
- S M Amin Arefi
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | |
Collapse
|
5
|
Hapach LA, Mosier JA, Wang W, Reinhart-King CA. Engineered models to parse apart the metastatic cascade. NPJ Precis Oncol 2019; 3:20. [PMID: 31453371 PMCID: PMC6704099 DOI: 10.1038/s41698-019-0092-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
While considerable progress has been made in studying genetic and cellular aspects of metastasis with in vitro cell culture and in vivo animal models, the driving mechanisms of each step of metastasis are still relatively unclear due to their complexity. Moreover, little progress has been made in understanding how cellular fitness in one step of the metastatic cascade correlates with ability to survive other subsequent steps. Engineered models incorporate tools such as tailored biomaterials and microfabrication to mimic human disease progression, which when coupled with advanced quantification methods permit comparisons to human patient samples and in vivo studies. Here, we review novel tools and techniques that have been recently developed to dissect key features of the metastatic cascade using primary patient samples and highly representative microenvironments for the purposes of advancing personalized medicine and precision oncology. Although improvements are needed to increase tractability and accessibility while faithfully simulating the in vivo microenvironment, these models are powerful experimental platforms for understanding cancer biology, furthering drug screening, and facilitating development of therapeutics.
Collapse
Affiliation(s)
- Lauren A. Hapach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Jenna A. Mosier
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| | - Cynthia A. Reinhart-King
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235 USA
| |
Collapse
|
6
|
Li W, Mao S, Khan M, Zhang Q, Huang Q, Feng S, Lin JM. Responses of Cellular Adhesion Strength and Stiffness to Fluid Shear Stress during Tumor Cell Rolling Motion. ACS Sens 2019; 4:1710-1715. [PMID: 31094503 DOI: 10.1021/acssensors.9b00678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biochemical and physical factors affect the rolling of tumor cells across the blood vessel. The biochemical factors have been well studied, while the influence of physical factors such as fluid shear stress (FSS) remains poorly understood. Here, human glioma cells (U87 cells) in a straight microfluidic channel were exposed to FSS (0.12, 1.2, and 1.8 dyn/cm2); and their locomotion behaviors from crawling-to-rolling and changes in cellular morphology (concave, elongated, less elongated, and round) were observed. The adhesion strength and stiffness of the cells of different morphologies were analyzed using a live single-cell extractor and atomic force microscopy, respectively. In general, the FSS stimulated cells showed stronger adhesion strength than the cells not exposed to FSS. The cell not exposed to FSS always exhibited greater nuclear stiffness than cortex stiffness, while after FSS treatment the cortex hardened and nucleus softened, where the round-shaped cell had a cortex that was more rigid than its nucleus. These results indicated that FSS influenced the biomechanics of circulating tumor cells, and elucidation of the mechanical responses to FSS might provide a deeper insight for cancer metastasis.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Mashooq Khan
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Qiushi Huang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Shuo Feng
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Abstract
Cancer cells are usually found to be softer than normal cells, but their stiffness changes when they are in contact with different environments because of mechanosensitivity. For example, they adhere to a given substrate by tuning their cytoskeleton, thus affecting their rheological properties. This mechanism could become efficient when cancer cells invade the surrounding tissues, and they have to remodel their cytoskeleton in order to achieve particular deformations. Here we use an atomic force microscope in force modulation mode to study how local rheological properties of cancer cells are affected by a change of the environment. Cancer cells were plated on functionalized polyacrylamide substrates of different stiffnesses as well as on an endothelium substrate. A new correction of the Hertz model was developed because measurements require one to account for the precise properties of the thin, layered viscoelastic substrates. The main results show the influence of local cell rheology (the nucleus, perinuclear region, and edge locations) and the role of invasiveness. A general mechanosensitive trend is found by which the cell elastic modulus and transition frequency increase with substrate elasticity, but this tendency breaks down with a real endothelium substrate. These effects are investigated further during cell transmigration, when the actin cytoskeleton undergoes a rapid reorganization process necessary to push through the endothelial gap, in agreement with the local viscoelastic changes measured by atomic force microscopy. Taken together, these results introduce a paradigm for a new-to our knowledge-possible extravasation mechanism.
Collapse
|
8
|
Amschler K, Kossmann E, Erpenbeck L, Kruss S, Schill T, Schön M, Möckel SMC, Spatz JP, Schön MP. Nanoscale Tuning of VCAM-1 Determines VLA-4-Dependent Melanoma Cell Plasticity on RGD Motifs. Mol Cancer Res 2017; 16:528-542. [PMID: 29222169 DOI: 10.1158/1541-7786.mcr-17-0272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/08/2017] [Accepted: 11/09/2017] [Indexed: 11/16/2022]
Abstract
The biophysical fine-tuning of cancer cell plasticity is crucial for tumor progression but remains largely enigmatic. Although vascular cell adhesion molecule-1 (VCAM-1/CD106) has been implicated in melanoma progression, here its presentation on endothelial cells was associated with diminished melanoma cell spreading. Using a specific nanoscale modulation of VCAM-1 (tunable from 70 to 670 ligands/μm²) next to integrin ligands (RGD motifs) in a bifunctional system, reciprocal regulation of integrin α4 (ITGA4/VLA-4/CD49d)-dependent adhesion and spreading of melanoma cells was found. As the VCAM-1/VLA-4 receptor pair facilitated adhesion, while at the same time antagonizing RGD-mediated spreading, melanoma cell morphogenesis on these bifunctional matrices was directly regulated by VCAM-1 in a dichotomic and density-dependent fashion. This was accompanied by concordant regulation of F-actin cytoskeleton remodeling, Rac1-expression, and paxillin-related adhesion formation. The novel function of VCAM-1 was corroborated in vivo using two murine models of pulmonary metastasis. The regulation of melanoma cell plasticity by VCAM-1 highlights the complex regulation of tumor-matrix interactions.Implications: Nanotechnology has revealed a novel dichotomic function of the VCAM-1/VLA-4 interaction on melanoma cell plasticity, as nanoscale tuning of this interaction reciprocally determines adhesion and spreading in a ligand density-dependent manner. Mol Cancer Res; 16(3); 528-42. ©2017 AACR.
Collapse
Affiliation(s)
- Katharina Amschler
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
| | - Eugen Kossmann
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
| | - Sebastian Kruss
- Department of Physical Chemistry, Georg August University, Göttingen, Germany
| | - Tillmann Schill
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
| | - Margarete Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
| | - Sigrid M C Möckel
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg and Laboratory of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany.
| |
Collapse
|
9
|
Benedicto A, Romayor I, Arteta B. Role of liver ICAM-1 in metastasis. Oncol Lett 2017; 14:3883-3892. [PMID: 28943897 DOI: 10.3892/ol.2017.6700] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/07/2017] [Indexed: 12/15/2022] Open
Abstract
Intercellular adhesion molecule (ICAM)-1, is a transmembrane glycoprotein of the immunoglobulin (Ig)-like superfamily, consisting of five extracellular Ig-like domains, a transmembrane domain and a short cytoplasmic tail. ICAM-1 is expressed in various cell types, including endothelial cells and leukocytes, and is involved in several physiological processes. Furthermore, it has additionally been reported to be expressed in various cancer cells, including melanoma, colorectal cancer and lymphoma. The majority of studies to date have focused on the expression of the ICAM-1 on the surface of tumor cells, without research into ICAM-1 expression at sites of metastasis. Cancer cells frequently metastasize to the liver, due to its unique physiology and specialized liver sinusoid capillary network. Liver sinusoidal endothelial cells constitutively express ICAM-1, which is upregulated under inflammatory conditions. Furthermore, liver ICAM-1 may be important during the development of liver metastasis. Therefore, it is necessary to improve the understanding of the mechanisms mediated by this adhesion molecule in order to develop host-directed anticancer therapies.
Collapse
Affiliation(s)
- Aitor Benedicto
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| | - Irene Romayor
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| | - Beatriz Arteta
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| |
Collapse
|
10
|
Sundar Rajan V, Laurent VM, Verdier C, Duperray A. Unraveling the Receptor-Ligand Interactions between Bladder Cancer Cells and the Endothelium Using AFM. Biophys J 2017; 112:1246-1257. [PMID: 28355551 DOI: 10.1016/j.bpj.2017.01.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 01/18/2023] Open
Abstract
Adhesion of cancer cells to endothelial cells is a key step in cancer metastasis; therefore, identifying the key molecules involved during this process promises to aid in efforts to block the metastatic cascade. We have previously shown that intercellular adhesion molecule-1 (ICAM-1) expressed by endothelial cells is involved in the interactions of bladder cancer cells (BCs) with the endothelium. However, the ICAM-1 ligands have never been investigated. In this study, we combined adhesion assays and atomic force microscopy (AFM) to identify the ligands involved and to quantify the forces relevant in such interactions. We report the expression of MUC1 and CD43 on BCs, and demonstrate that these ligands interact with ICAM-1 to mediate cancer cell-endothelial cell adhesion in the case of the more invasive BCs. This was achieved with the use of adhesion assays, which showed a strong decrease in the attachment of BCs to endothelial cells when MUC1 and CD43 were blocked by antibodies. In addition, AFM measurements showed a similar decrease, by up to 70%, in the number of rupture events that occurred when MUC1 and CD43 were blocked. When we applied a Gaussian mixture model to the AFM data, we observed a distinct force range for receptor-ligand bonds, which allowed us to precisely identify the interactions of ICAM-1 with MUC1 or CD43. Furthermore, a detailed analysis of the rupture events suggested that CD43 is strongly connected to the cytoskeleton and that its interaction with ICAM-1 mainly corresponds to force ramps followed by sudden jumps. In contrast, MUC1 seems to be weakly connected to the cytoskeleton, as its interactions with ICAM-1 are mainly associated with the formation of tethers. This analysis is quite promising and may also be applied to other types of cancer cells.
Collapse
Affiliation(s)
- Vinoth Sundar Rajan
- INSERM U1209, CNRS UMR5309, IAB, Grenoble, France; University Grenoble Alpes, IAB, Grenoble, France
| | - Valérie M Laurent
- CNRS UMR 5588, LIPhy, Grenoble, France; University Grenoble Alpes, LIPhy, Grenoble, France
| | - Claude Verdier
- CNRS UMR 5588, LIPhy, Grenoble, France; University Grenoble Alpes, LIPhy, Grenoble, France
| | - Alain Duperray
- INSERM U1209, CNRS UMR5309, IAB, Grenoble, France; University Grenoble Alpes, IAB, Grenoble, France.
| |
Collapse
|
11
|
Zhang L, Zeng M, Fu BM. Inhibition of endothelial nitric oxide synthase decreases breast cancer cell MDA-MB-231 adhesion to intact microvessels under physiological flows. Am J Physiol Heart Circ Physiol 2016; 310:H1735-47. [PMID: 27059076 DOI: 10.1152/ajpheart.00109.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/06/2016] [Indexed: 12/27/2022]
Abstract
Nitric oxide (NO) at different concentrations may promote or inhibit tumor growth and metastasis under various conditions. To test the hypothesis that tumor cells prefer to adhere to the locations with a higher endothelial NO production in intact microvessels under physiological flows and to further test that inhibiting NO production decreases tumor cell adhesion, we used intravital fluorescence microscopy to measure NO production and tumor cell adhesion in postcapillary venules of rat mesentery under normal and reduced flow conditions, and in the presence of an endothelial nitric oxide synthase (eNOS) inhibitor, N(G)-monomethyl-l-arginine (l-NMMA). Rats (SD, 250-300 g) were anesthetized. A midline incision (∼2 inch) was made in the abdominal wall, and the mesentery was taken out from the abdominal cavity and spread over a coverslip for the measurement. An individual postcapillary venule (35-50 μm) was first loaded with 4,5-diaminofluorescein diacetate (DAF-2 DA), a fluorescent indictor for NO. Then the DAF-2 intensity was measured for 30 min under a normal or reduced flow velocity, with and without perfusion with MDA-MB-231 breast cancer cells, and in the presence of l-NMMA. We found that tumor cells prefer to adhere to the microvessel locations with a higher NO production such as curved portions. Inhibition of eNOS by l-NMMA attenuated the flow-induced NO production and reduced tumor cell adhesion. We also found that l-NMMA treatment for ∼40 min reduced microvessel permeability to albumin. Our results suggest that inhibition of eNOS is a good approach to preventing tumor cell adhesion to intact microvessels under physiological flows.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| | - Min Zeng
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York
| |
Collapse
|
12
|
van Marion DM, Domanska UM, Timmer-Bosscha H, Walenkamp AM. Studying cancer metastasis: Existing models, challenges and future perspectives. Crit Rev Oncol Hematol 2016; 97:107-17. [DOI: 10.1016/j.critrevonc.2015.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/05/2015] [Indexed: 02/03/2023] Open
|
13
|
Fan J, Fu BM. Quantification of Malignant Breast Cancer Cell MDA-MB-231 Transmigration Across Brain and Lung Microvascular Endothelium. Ann Biomed Eng 2015; 44:2189-201. [PMID: 26603751 DOI: 10.1007/s10439-015-1517-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/17/2015] [Indexed: 12/12/2022]
Abstract
Tumor cell extravasation through the endothelial barrier forming the microvessel wall is a crucial step during tumor metastasis. However, where, how and how fast tumor cells transmigrate through endothelial barriers remain unclear. Using an in vitro transwell model, we performed a transmigration assay of malignant breast tumor cells (MDA-MB-231) through brain and lung microvascular endothelial monolayers under control and pathological conditions. The locations and rates of tumor cell transmigration as well as the changes in the structural components (integrity) of endothelial monolayers were quantified by confocal microscopy. Endothelial monolayer permeability to albumin P (albumin) was also quantified under the same conditions. We found that about 98% of transmigration occurred at the joints of endothelial cells instead of cell bodies; tumor cell adhesion and transmigration degraded endothelial surface glycocalyx and disrupted endothelial junction proteins, consequently increased P (albumin); more tumor cells adhered to and transmigrated through the endothelial monolayer with higher P (albumin); P (albumin) and tumor transmigration were increased by vascular endothelial growth factor, a representative of cytokines, and lipopolysaccharides, a typical systemic inflammatory factor, but reduced by adenosine 3',5'-cyclic monophosphate. These results suggest that reinforcing endothelial structural integrity is an effective approach for inhibiting tumor extravasation.
Collapse
Affiliation(s)
- Jie Fan
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA.
| |
Collapse
|
14
|
Schlesinger M, Bendas G. Contribution of very late antigen-4 (VLA-4) integrin to cancer progression and metastasis. Cancer Metastasis Rev 2015; 34:575-91. [DOI: 10.1007/s10555-014-9545-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Svokos KA, Salhia B, Toms SA. Molecular biology of brain metastasis. Int J Mol Sci 2014; 15:9519-30. [PMID: 24879524 PMCID: PMC4100107 DOI: 10.3390/ijms15069519] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/17/2014] [Accepted: 05/09/2014] [Indexed: 12/18/2022] Open
Abstract
Metastasis to the central nervous system (CNS) remains a major cause of morbidity and mortality in patients with systemic cancer. As the length of survival in patients with systemic cancer improves, thanks to multimodality therapies, focusing on metastases to the CNS becomes of paramount importance. Unique interactions between the brain’s micro-environment, blood-brain barrier, and tumor cells are hypothesized to promote distinct molecular features in CNS metastases that may require tailored therapeutic approaches. This review will focus on the pathophysiology, epigenetics, and immunobiology of brain metastases in order to understand the metastatic cascade. Cancer cells escape the primary tumor, intravasate into blood vessels, survive the hematogenous dissemination to the CNS, arrest in brain capillaries, extravasate, proliferate, and develop angiogenic abilities to establish metastases. Molecular biology, genetics, and epigenetics are rapidly expanding, enabling us to advance our knowledge of the underlying mechanisms involved. Research approaches using cell lines that preferentially metastasize in vivo to the brain and in vitro tissue-based studies unfold new molecular leads into the disease. It is important to identify and understand the molecular pathways of the metastatic cascade in order to target the investigation and development of more effective therapies and research directions.
Collapse
Affiliation(s)
- Konstantina A Svokos
- Department of Neurosurgery, Pennsylvania College of Osteopathic Medicine, 4170 City Ave. Office of Graduate Medical Education, Philadelphia, PA 19131, USA.
| | - Bodour Salhia
- Translational Genomics Research Institute, 445 North Fifth Street, Phoenix, AZ 85004, USA.
| | - Steven A Toms
- Department of Neurosurgery, Geisinger Health System, 100 North Academy Ave., Danville, PA 17822, USA.
| |
Collapse
|
16
|
Laurent VM, Duperray A, Sundar Rajan V, Verdier C. Atomic force microscopy reveals a role for endothelial cell ICAM-1 expression in bladder cancer cell adherence. PLoS One 2014; 9:e98034. [PMID: 24857933 PMCID: PMC4032264 DOI: 10.1371/journal.pone.0098034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/28/2014] [Indexed: 12/22/2022] Open
Abstract
Cancer metastasis is a complex process involving cell-cell interactions mediated by cell adhesive molecules. In this study we determine the adhesion strength between an endothelial cell monolayer and tumor cells of different metastatic potentials using Atomic Force Microscopy. We show that the rupture forces of receptor-ligand bonds increase with retraction speed and range between 20 and 70 pN. It is shown that the most invasive cell lines (T24, J82) form the strongest bonds with endothelial cells. Using ICAM-1 coated substrates and a monoclonal antibody specific for ICAM-1, we demonstrate that ICAM-1 serves as a key receptor on endothelial cells and that its interactions with ligands expressed by tumor cells are correlated with the rupture forces obtained with the most invasive cancer cells (T24, J82). For the less invasive cancer cells (RT112), endothelial ICAM-1 does not seem to play any role in the adhesion process. Moreover, a detailed analysis of the distribution of rupture forces suggests that ICAM-1 interacts preferentially with one ligand on T24 cancer cells and with two ligands on J82 cancer cells. Possible counter receptors for these interactions are CD43 and MUC1, two known ligands for ICAM-1 which are expressed by these cancer cells.
Collapse
Affiliation(s)
- Valérie M. Laurent
- Univ. Grenoble Alpes, LIPHY, F-38000, Grenoble, France
- CNRS, LIPHY, F-38000, Grenoble, France
- * E-mail:
| | - Alain Duperray
- INSERM, IAB, F-38000, Grenoble, France
- Univ. Grenoble Alpes, IAB, F-38000, Grenoble, France
- CHU de Grenoble, IAB, F-38000, Grenoble, France
| | - Vinoth Sundar Rajan
- INSERM, IAB, F-38000, Grenoble, France
- Univ. Grenoble Alpes, IAB, F-38000, Grenoble, France
- CHU de Grenoble, IAB, F-38000, Grenoble, France
| | - Claude Verdier
- Univ. Grenoble Alpes, LIPHY, F-38000, Grenoble, France
- CNRS, LIPHY, F-38000, Grenoble, France
| |
Collapse
|
17
|
Schlesinger M, Bendas G. Vascular cell adhesion molecule-1 (VCAM-1)--an increasing insight into its role in tumorigenicity and metastasis. Int J Cancer 2014; 136:2504-14. [PMID: 24771582 DOI: 10.1002/ijc.28927] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 04/16/2014] [Indexed: 12/14/2022]
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) first attracted attention more than two decades ago as endothelial adhesion receptor with key function for leukocyte recruitment in term of cellular immune response. The early finding of VCAM-1 binding to melanoma cells, and thus a suggested mechanistic contribution to metastatic spread, was the first and for a long time the only link of VCAM-1 to cancer sciences. In the last few years, hallmarked by a growing insight into the molecular understanding of tumorigenicity and metastasis, an impressive variety of VCAM-1 functionalities in cancer have been elucidated. The present review aims to provide a current overview of VCAM-1 relevance for tumor growth, metastasis, angiogenesis, and related processes. By illustrating the intriguing role of VCAM-1 in cancer disease, VCAM-1 is suggested as a new and up to now underestimated target in cancer treatment and in clinical diagnosis of malignancies.
Collapse
Affiliation(s)
- Martin Schlesinger
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, 53121, Bonn, Germany
| | | |
Collapse
|
18
|
Zhao F, Li L, Guan L, Yang H, Wu C, Liu Y. Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction. Cancer Lett 2014; 344:62-73. [DOI: 10.1016/j.canlet.2013.10.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 10/10/2013] [Accepted: 10/18/2013] [Indexed: 02/07/2023]
|
19
|
Gialeli C, Viola M, Barbouri D, Kletsas D, Passi A, Karamanos NK. Dynamic interplay between breast cancer cells and normal endothelium mediates the expression of matrix macromolecules, proteasome activity and functional properties of endothelial cells. Biochim Biophys Acta Gen Subj 2014; 1840:2549-59. [PMID: 24582970 DOI: 10.1016/j.bbagen.2014.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/06/2014] [Accepted: 02/14/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Breast cancer-endothelium interactions provide regulatory signals facilitating tumor progression. The endothelial cells have so far been mainly viewed in the context of tumor perfusion and relatively little is known regarding the effects of such paracrine interactions on the expression of extracellular matrix (ECM), proteasome activity and properties of endothelial cells. METHODS To address the effects of breast cancer cell (BCC) lines MDA-MB-231 and MCF-7 on the endothelial cells, two cell culture models were utilized; one involves endothelial cell culture in the presence of BCCs-derived conditioned media (CM) and the other co-culture of both cell populations in a Transwell system. Real-time PCR was utilized to evaluate gene expression, an immunofluorescence assay for proteasome activity, and functional assays (migration, adhesion and invasion) and immunofluorescence microscopy for cell integrity and properties. RESULTS BCC-CM decreases the cell migration of HUVEC. Adhesion and invasion of BCCs are favored by HUVEC and HUVEC-CM. HA levels and the expression of CD44 and HA synthase-2 by HUVEC are substantially upregulated in both cell culture approaches. Adhesion molecules, ICAM-1 and VCAM-1, are also highly upregulated, whereas MT1-MMP and MMP-2 expressions are significantly downregulated in both culture systems. Notably, the expression and activity of the proteasome β5 subunit are increased, especially by the action of MDA-MB-231-CM on HUVEC. CONCLUSIONS AND GENERAL SIGNIFICANCE BCCs significantly alter the expression of matrix macromolecules, proteasome activity and functional properties of endothelial cells. Deep understanding of such paracrine interactions will help to design novel drugs targeting breast cancer at the ECM level. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Ch Gialeli
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), 26500 Patras, Greece
| | - M Viola
- Department of Surgery and Morphological Sciences, University of Insubria, Varese, Italy
| | - D Barbouri
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), 26500 Patras, Greece
| | - D Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biology, National Center of Scientific Research "Demokritos", Athens, Greece
| | - A Passi
- Department of Surgery and Morphological Sciences, University of Insubria, Varese, Italy
| | - N K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), 26500 Patras, Greece.
| |
Collapse
|
20
|
Hsieh HJ, Liu CA, Huang B, Tseng AH, Wang DL. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci 2014; 21:3. [PMID: 24410814 PMCID: PMC3898375 DOI: 10.1186/1423-0127-21-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/02/2014] [Indexed: 12/26/2022] Open
Abstract
Hemodynamic shear stress, the blood flow-generated frictional force acting on the vascular endothelial cells, is essential for endothelial homeostasis under normal physiological conditions. Mechanosensors on endothelial cells detect shear stress and transduce it into biochemical signals to trigger vascular adaptive responses. Among the various shear-induced signaling molecules, reactive oxygen species (ROS) and nitric oxide (NO) have been implicated in vascular homeostasis and diseases. In this review, we explore the molecular, cellular, and vascular processes arising from shear-induced signaling (mechanotransduction) with emphasis on the roles of ROS and NO, and also discuss the mechanisms that may lead to excessive vascular remodeling and thus drive pathobiologic processes responsible for atherosclerosis. Current evidence suggests that NADPH oxidase is one of main cellular sources of ROS generation in endothelial cells under flow condition. Flow patterns and magnitude of shear determine the amount of ROS produced by endothelial cells, usually an irregular flow pattern (disturbed or oscillatory) producing higher levels of ROS than a regular flow pattern (steady or pulsatile). ROS production is closely linked to NO generation and elevated levels of ROS lead to low NO bioavailability, as is often observed in endothelial cells exposed to irregular flow. The low NO bioavailability is partly caused by the reaction of ROS with NO to form peroxynitrite, a key molecule which may initiate many pro-atherogenic events. This differential production of ROS and RNS (reactive nitrogen species) under various flow patterns and conditions modulates endothelial gene expression and thus results in differential vascular responses. Moreover, ROS/RNS are able to promote specific post-translational modifications in regulatory proteins (including S-glutathionylation, S-nitrosylation and tyrosine nitration), which constitute chemical signals that are relevant in cardiovascular pathophysiology. Overall, the dynamic interplay between local hemodynamic milieu and the resulting oxidative and S-nitrosative modification of regulatory proteins is important for ensuing vascular homeostasis. Based on available evidence, it is proposed that a regular flow pattern produces lower levels of ROS and higher NO bioavailability, creating an anti-atherogenic environment. On the other hand, an irregular flow pattern results in higher levels of ROS and yet lower NO bioavailability, thus triggering pro-atherogenic effects.
Collapse
Affiliation(s)
| | | | | | | | - Danny Ling Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
21
|
Abstract
The vascular endothelium is a dynamic cellular "organ" that controls passage of nutrients into tissues, maintains the flow of blood, and regulates the trafficking of leukocytes. In tumors, factors such as hypoxia and chronic growth factor stimulation result in endothelial dysfunction. For example, tumor blood vessels have irregular diameters; they are fragile, leaky, and blood flow is abnormal. There is now good evidence that these abnormalities in the tumor endothelium contribute to tumor growth and metastasis. Thus, determining the biological basis underlying these abnormalities is critical for understanding the pathophysiology of tumor progression and facilitating the design and delivery of effective antiangiogenic therapies.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Cellular and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, USA; and McAllister Heart Institute, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
22
|
Peschetola V, Laurent VM, Duperray A, Michel R, Ambrosi D, Preziosi L, Verdier C. Time-dependent traction force microscopy for cancer cells as a measure of invasiveness. Cytoskeleton (Hoboken) 2013; 70:201-14. [PMID: 23444002 DOI: 10.1002/cm.21100] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/08/2013] [Accepted: 02/05/2013] [Indexed: 12/18/2022]
Abstract
The migration of tumor cells of different degrees of invasivity is studied, on the basis of the traction forces exerted in time on soft substrates (Young modulus∼10 kPa). It is found that the outliers of the traction stresses can be an effective indicator to distinguish cancer cell lines of different invasiveness. Here, we test two different epithelial bladder cancer cell lines, one invasive (T24), and a less invasive one (RT112). Invasive cancer cells move in a nearly periodic motion, with peaks in velocity corresponding to higher traction forces exerted on the substrate, whereas less invasive cells develop traction stresses almost constant in time. The dynamics of focal adhesions (FAs) as well as cytoskeleton features reveals that different mechanisms are activated to migrate: T24 cells show an interconnected cytoskeleton linked to mature adhesion sites, leading to small traction stresses, whereas less invasive cells (RT112) show a less-structured cytoskeleton and unmature adhesions corresponding to higher traction stresses. Migration velocities are smaller in the case of less invasive cells. The mean squared displacement shows super-diffusive motion in both cases with higher exponent for the more invasive cancer cells. Further correlations between traction forces and the actin cytoskeleton reveal an unexpected pattern of a large actin rim at the RT112 cell edge where higher forces are colocalized, whereas a more usual cytoskeleton structure with stress fibers and FAs are found for T24 cancer cells. We conjecture that this kind of analysis can be useful to classify cancer cell invasiveness.
Collapse
|
23
|
Hamilton A, Sibson NR. Role of the systemic immune system in brain metastasis. Mol Cell Neurosci 2013; 53:42-51. [PMID: 23073146 DOI: 10.1016/j.mcn.2012.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 09/24/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022] Open
Abstract
Metastatic disease in the central nervous system (CNS) is a cause of increasing mortality amongst cancer patients. As with other types of cancer, cells of the systemic immune system play a range of important roles in the development of metastatic lesions in the CNS, both repressing and promoting tumour growth. Recent advances in immunotherapy have changed the emphasis in cancer treatment away from conventional chemotherapy and radiotherapy for certain tumour types. Despite this, our understanding of systemic immune system involvement in CNS metastases remains poor. The blood-brain barrier prevents the majority of diagnostic and therapeutic agents from crossing into the brain parenchyma until the late stages of metastatic disease. Thus, the development of immunotherapy for CNS pathologies is particularly desirable. This review draws together our current understanding in the relationships between CNS metastases and circulating systemic immune cells. We discuss the roles that circulating systemic immune cells may play in the homing of metastatic cells to the perivascular space, and the pro-metastatic and antagonistic roles that infiltrating systemic immune cells may play at sites of metastasis. This article is part of a Special Issue entitled 'Neuroinflammation in neurodegeneration and neurodysfunction'.
Collapse
Affiliation(s)
- Alastair Hamilton
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | | |
Collapse
|
24
|
Cai B, Fan J, Zeng M, Zhang L, Fu BM. Adhesion of malignant mammary tumor cells MDA-MB-231 to microvessel wall increases microvascular permeability via degradation of endothelial surface glycocalyx. J Appl Physiol (1985) 2012; 113:1141-53. [PMID: 22858626 DOI: 10.1152/japplphysiol.00479.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To investigate the effect of tumor cell adhesion on microvascular permeability (P) in intact microvessels, we measured the adhesion rate of human mammary carcinoma MDA-MB-231, the hydraulic conductivity (L(p)), the P, and reflection coefficient (σ) to albumin of the microvessels at the initial tumor cell adhesion and after ∼45 min cell perfusion in the postcapillary venules of rat mesentery in vivo. Rats (Sprague-Dawley, 250-300 g) were anesthetized with pentobarbital sodium given subcutaneously. A midline incision was made in the abdominal wall, and the mesentery was gently taken out and arranged on the surface of a glass coverslip for the measurement. An individual postcapillary venule was perfused with cells at a rate of ∼1 mm/s, which is the mean blood flow velocity in this type of microvessels. At the initial tumor cell adhesion, which was defined as one adherent cell in ∼100- to 145-μm vessel segment, L(p) was 1.5-fold and P was 2.3-fold of their controls, and σ decreased from 0.92 to 0.64; after ∼45-min perfusion, the adhesion increased to ∼5 adherent cells in ∼100- to 145-μm vessel segment, while L(p) increased to 2.8-fold, P to 5.7-fold of their controls, and σ decreased from 0.92 to 0.42. Combining these measured data with the predictions from a mathematical model for the interendothelial transport suggests that tumor cell adhesion to the microvessel wall degrades the endothelial surface glycocalyx (ESG) layer. This suggestion was confirmed by immunostaining of heparan sulfate of the ESG on the microvessel wall. Preserving of the ESG by a plasma glycoprotein orosomucoid decreased the P to albumin and reduced the tumor cell adhesion.
Collapse
Affiliation(s)
- Bin Cai
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave., New York, NY 10031, USA
| | | | | | | | | |
Collapse
|
25
|
Molecular MRI enables early and sensitive detection of brain metastases. Proc Natl Acad Sci U S A 2012; 109:6674-9. [PMID: 22451897 DOI: 10.1073/pnas.1117412109] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Metastasis to the brain is a leading cause of cancer mortality. The current diagnostic method of gadolinium-enhanced MRI is sensitive only to larger tumors, when therapeutic options are limited. Earlier detection of brain metastases is critical for improved treatment. We have developed a targeted MRI contrast agent based on microparticles of iron oxide that enables imaging of endothelial vascular cell adhesion molecule-1 (VCAM-1). Our objectives here were to determine whether VCAM-1 is up-regulated on vessels associated with brain metastases, and if so, whether VCAM-1-targeted MRI enables early detection of these tumors. Early up-regulation of cerebrovascular VCAM-1 expression was evident on tumor-associated vessels in two separate murine models of brain metastasis. Metastases were detectable in vivo using VCAM-1-targeted MRI 5 d after induction (<1,000 cells). At clinical imaging resolutions, this finding is likely to translate to detection at tumor volumes two to three orders of magnitude smaller (0.3-3 × 10(5) cells) than those volumes detectable clinically (10(7)-10(8) cells). VCAM-1 expression detected by MRI increased significantly (P < 0.0001) with tumor progression, and tumors showed no gadolinium enhancement. Importantly, expression of VCAM-1 was shown in human brain tissue containing both established metastases and micrometastases. Translation of this approach to the clinic could increase therapeutic options and change clinical management in a substantial number of cancer patients.
Collapse
|
26
|
Zheng C, Zhao L, Chen G, Zhou Y, Pang Y, Huang Y. Quantitative study of the dynamic tumor-endothelial cell interactions through an integrated microfluidic coculture system. Anal Chem 2012; 84:2088-93. [PMID: 22263607 DOI: 10.1021/ac2032029] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between tumor and endothelial cells is crucial to cancer metastasis and angiogenesis. We developed a novel microfluidic device to assess the cell-cell interaction quantitatively at the single cell resolution. This integrated chip offers 16 coculture experiments in parallel with controllable microenvironments to study interactions between cells dynamically. We applied this approach to model the tumor invasion using Hela cells and human umbilical vein endothelial cells (HUVECs) and monitored the migration of both. We observed the retreatment of HUVECs upon the approach of Hela cells during coculture, indicating that the interaction between two cells was mediated by soluble factors. This interaction was further analyzed through quantitatively processing the phase-contrast microscopic time-lapse images of each individual coculture chamber. We also confirmed this paracrine effect by varying the frequency of medium change. This microfluidic technique is highly controllable, contamination free, fully automatic, and inexpensive. This approach not only offers a unique way to quantitatively study the interaction between cells but also provides accurate spatial-temporal tunability of microenvironments for cell coculture. We believe this method, intrinsically high-throughput and quantitative, will greatly facilitate the study of cell-cell interactions and communications.
Collapse
Affiliation(s)
- Chunhong Zheng
- College of Engineering and Biodynamic Optical Imaging Center, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
27
|
Chen F, Yang D, Wang S, Che X, Wang J, Li X, Zhang Z, Chen X, Song X. Livin regulates prostate cancer cell invasion by impacting the NF-κB signaling pathway and the expression of FN and CXCR4. IUBMB Life 2012; 64:274-83. [PMID: 22271494 DOI: 10.1002/iub.606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/28/2011] [Indexed: 12/15/2022]
Abstract
Prostate cancer (PCa) has the second highest mortality rate of all tumor-related diseases for males in Western countries, and the incidence of PCa in China is increasing. Previous studies have proven that inhibitor of apoptosis proteins (IAPs) can regulate tumor cell invasion and metastasis. Livin is the most recently identified IAP. Our previous study showed that Livin might play an important role in the initiation of human PCa and that Livin-α might promote cell proliferation by regulating the G1-S cell cycle transition. However, whether Livin, as an IAP, can regulate the invasive ability of PCa cells remains unknown. In this study, we found that the expression of Livin was higher in metastatic PCa tissues than in nonmetastatic tissues and that the expression of Livin was downregulated/upregulated by small interfering RNA/vector, which could inhibit/promote PC-3/LNCaP cell invasion. This action was related to the impact of Livin on nuclear factor-κB (NF-κB) and its downstream signaling pathway, including FN and CXCR4. Together, our findings suggested that Livin might regulate tumor cell invasion in PCa directly, and that Livin might be an ideal candidate for preventing tumor cell invasion.
Collapse
Affiliation(s)
- Feng Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Liaoning, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Etienne J, Duperray A. Initial dynamics of cell spreading are governed by dissipation in the actin cortex. Biophys J 2011; 101:611-21. [PMID: 21806929 DOI: 10.1016/j.bpj.2011.06.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 06/15/2011] [Accepted: 06/17/2011] [Indexed: 11/26/2022] Open
Abstract
The initial stages of spreading of a suspended cell onto a substrate under the effect of (specific or nonspecific) adhesion exhibit a universal behavior, which is cell-type independent. We show that this behavior is governed only by cell-scale phenomena. This can be understood if the main retarding force that opposes cell adhesion is of mechanical origin, that is, dissipation occurring during the spreading. By comparing several naive models that generate different patterns of dissipation, we show by numerical simulation that only dissipation due to the deformation of the actin cortex is compatible with the experimental observations. This viscous-like dissipation corresponds to the energetic cost of rearranging the cytoskeleton, and is the trace of all dissipative events occurring in the cell cortex during the early spreading, such as the binding and unbinding of cross-linkers and molecular friction.
Collapse
Affiliation(s)
- Jocelyn Etienne
- CNRS-Université J. Fourier, Grenoble I, Laboratoire Interdisciplinaire de Physique, UMR 5588, Saint Martin d'Hères, France.
| | | |
Collapse
|
29
|
van Moorst M, Dass CR. Methods for co-culturing tumour and endothelial cells: systems and their applications. J Pharm Pharmacol 2011; 63:1513-21. [PMID: 22060281 DOI: 10.1111/j.2042-7158.2011.01352.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES The high levels of morbidity and mortality associated with cancer can be attributed to two main processes; the tumour's ability to rapidly proliferate and the process of metastasis. These key processes are facilitated by tumour-induced angiogenesis, which causes existing blood vessels to branch off and actively grow towards the tumour providing it with the nutrients and oxygen required for growth and the avenue through which it can metastasise to invade other tissues. This process involves complex interactions between tumour and endothelial cells and is at the forefront of modern biomedical research as anti-angiogenic therapies may hold the key to preventing tumour growth and spread. This review looks at modern co-culture systems used in the study of the tumour-endothelial cell relationship highlighting the applications and weaknesses of each model and analysing their uses in various tumour-endothelial cell investigations. KEY FINDINGS The tumour-endothelial cell relationship can be studied in vitro using co-culture systems that involve growing endothelial and tumour cells together so that the effects of dynamic interaction (either by direct cell contact or molecular cross-talk) can be monitored. These co-culture assays are quite accurate indicators of in-vivo growth and therefore allow more effective trialling of therapeutic treatments. CONCLUSIONS The application of co-culture systems are of fundamental importance to understanding the tumour-endothelial cell relationship as they offer a method of in-vitro testing that is highly indicative of in-vivo processes. Co-cultures allow accurate testing, which is cost effective and therefore can be utilised in almost all laboratories, is reproducible and technically simple to perform and most importantly has biological relevancy. The importance of this form of testing is such that it warrants further investment of both time and money to enhance the methodology such as to eliminate some of the levels of variability.
Collapse
Affiliation(s)
- Mallory van Moorst
- School of Biomedical and Health Sciences, Victoria University, St Albans, Australia
| | | |
Collapse
|
30
|
Kryštof V, Rárová L, Liebl J, Zahler S, Jorda R, Voller J, Cankař P. The selective P-TEFb inhibitor CAN508 targets angiogenesis. Eur J Med Chem 2011; 46:4289-94. [PMID: 21777997 DOI: 10.1016/j.ejmech.2011.06.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/20/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
Abstract
Small molecule inhibitors of cyclin-dependent kinases (CDK) have been developed as anticancer drugs with cytostatic and cytotoxic properties, but some of them have also been shown to limit angiogenesis. Here, we report that the 3,5-diaminopyrazole CAN508 inhibits endothelial cell migration and tube formation. In addition, it reduces phosphorylation of the C-terminus of RNA polymerase II and inhibits mRNA synthesis in endothelial cells, in accordance with previous observations that it has high selectivity towards the positive transcriptional regulator P-TEFb. Moreover, CAN508 reduces expression of vascular endothelial growth factor by several human cancer cell lines. The findings suggest that P-TEFb may be an attractive target for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Vladimír Kryštof
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
31
|
Choi JS, Park J, Suk K, Moon C, Park YK, Han HS. Mild Hypothermia Attenuates Intercellular Adhesion Molecule-1 Induction via Activation of Extracellular Signal-Regulated Kinase-1/2 in a Focal Cerebral Ischemia Model. Stroke Res Treat 2011; 2011:846716. [PMID: 21716663 PMCID: PMC3118291 DOI: 10.4061/2011/846716] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/08/2011] [Accepted: 01/19/2011] [Indexed: 01/12/2023] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1) in cerebral vascular endothelium induced by ischemic insult triggers leukocyte infiltration and inflammatory reaction. We investigated the mechanism of hypothermic suppression of ICAM-1 in a model of focal cerebral ischemia. Rats underwent 2 hours of middle cerebral artery occlusion and were kept at 37°C or 33°C during occlusion and rewarmed to normal temperature immediately after reperfusion. Under hypothermic condition, robust activation of extracellular signal-regulated kinase-1/2 (ERK1/2) was observed in vascular endothelium of ischemic brain. Hypothermic suppression of ICAM-1 was reversed by ERK1/2 inhibition. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) in ischemic vessel was attenuated by hypothermia. STAT3 inhibitor suppressed ICAM-1 production induced by stroke. ERK1/2 inhibition enhanced phosphorylation and DNA binding activity of STAT3 in hypothermic condition. In this study, we demonstrated that hypothermic suppression of ICAM-1 induction is mediated by enhanced ERK1/2 activation and subsequent attenuation of STAT3 action.
Collapse
Affiliation(s)
- Jung Sook Choi
- Department of Physiology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, 101 Dongin 2 Ga, Jung Gu, Daegu 700-422, Republic of Korea
| | | | | | | | | | | |
Collapse
|
32
|
Wang L, Shi WY, Yang F, Tang W, Gapihan G, Varna M, Shen ZX, Chen SJ, Leboeuf C, Janin A, Zhao WL. Bevacizumab potentiates chemotherapeutic effect on T-leukemia/lymphoma cells by direct action on tumor endothelial cells. Haematologica 2011; 96:927-31. [PMID: 21330328 DOI: 10.3324/haematol.2010.037689] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vascular endothelial growth factor-A, an angiogenesis stimulator expressed on both tumor endothelial and malignant T cells, is involved in tumor progression in T-leukemia/lymphoma. Here, we assessed the impact of therapeutic vascular endothelial growth factor-A blockade on tumor-endothelial cell interaction and on tumor progression. In a murine xenograft T-leukemia/lymphoma model, combined bevacizumab (monoclonal antibody against vascular endothelial growth factor-A) with doxorubicin, compared with doxorubicin alone, significantly delayed tumor growth and induced prevalence of tumor cell apoptosis over mitosis. More importantly, the combined treatment induced endothelial cell swelling, microvessel occlusions, and tumor necrosis. In vitro, co-culture of endothelial cells with T-leukemia/lymphoma cells showed that doxorubicin induced expression of intracellular cell adhesion molecule-1, provided endothelial and malignant T cells were in direct contact. This was abrogated by bevacizumab treatment with doxorubicin. Taken together, bevacizumab enhances the chemotherapeutic effect on T-leukemia/lymphoma cells. Directly targeting tumor endothelial cells might be a promising therapeutic strategy to counteract tumor progression in T-cell malignancies.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chaballe L, Close P, Sempels M, Delstanche S, Fanielle J, Moons L, Carmeliet P, Schoenen J, Chariot A, Franzen R. Involvement of placental growth factor in Wallerian degeneration. Glia 2010; 59:379-96. [PMID: 21264946 DOI: 10.1002/glia.21108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 10/18/2010] [Indexed: 01/13/2023]
Abstract
Wallerian degeneration (WD) is an inflammatory process of nerve degeneration, which occurs more rapidly in the peripheral nervous system compared with the central nervous system, resulting, respectively in successful and aborted axon regeneration. In the peripheral nervous system, Schwann cells (SCs) and macrophages, under the control of a network of cytokines and chemokines, represent the main cell types involved in this process. Within this network, the role of placental growth factor (PlGF) remains totally unknown. However, properties like monocyte activation/attraction, ability to increase expression of pro-inflammatory molecules, as well as neuroprotective effects, make it a candidate likely implicated in this process. Also, nothing is described about the expression and localization of this molecule in the peripheral nervous system. To address these original questions, we decided to study PlGF expression under physiological and degenerative conditions and to explore its role in WD, using a model of sciatic nerve transection in wild-type and Pgf(-/-) mice. Our data show dynamic changes of PlGF expression, from periaxonal in normal nerve to SCs 24h postinjury, in parallel with a p65/NF-κB recruitment on Pgf promoter. After injury, SC proliferation is reduced by 30% in absence of PlGF. Macrophage invasion is significantly delayed in Pgf(-/-) mice compared with wild-type mice, which results in worse functional recovery. MCP-1 and proMMP-9 exhibit a 3-fold reduction of their relative expressions in Pgf(-/-) injured nerves, as demonstrated by cytokine array. In conclusion, this work originally describes PlGF as a novel member of the cytokine network of WD.
Collapse
Affiliation(s)
- Linda Chaballe
- GIGA Neurosciences, Axonal Regeneration and Cephalic Pain unit, University of Liege, Avenue de l'Hopital, Liege, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yu AL, Lu CY, Wang TS, Tsai CW, Liu KL, Cheng YP, Chang HC, Lii CK, Chen HW. Induction of heme oxygenase 1 and inhibition of tumor necrosis factor alpha-induced intercellular adhesion molecule expression by andrographolide in EA.hy926 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7641-7648. [PMID: 20536138 DOI: 10.1021/jf101353c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Andrographolide is the most abundant diterpene lactone in Andrographis paniculata, which is widely used as a traditional medicine in Southeast Asia. Heme oxygenase 1 (HO-1) is an antioxidant enzyme encoded by a stress-responsive gene. HO-1 has been reported to inhibit the expression of adhesion molecules in vascular endothelial cells (EC). Intercellular adhesion molecule (ICAM-1) is an inflammatory biomarker that is involved in the adhesion of monocytes to EC. In this study, we investigated the effect of andrographolide on the expression of ICAM-1 induced by tumor necrosis factor alpha (TNF-alpha) in EA.hy926 cells and the possible mechanisms involved. Andrographolide (2.5-7.5 microM) inhibited the TNF-alpha-induced expression of ICAM-1 in a dose-dependent manner and resulted in a decrease in HL-60 cell adhesion to EA.hy926 cells (p < 0.05). In parallel, andrographolide significantly induced the expression of HO-1 in a concentration-dependent fashion (p < 0.05). Andrographolide increased the rate of nuclear translocation of nuclear factor erythroid 2-related 2 (Nrf2) and induced antioxidant response element-luciferase reporter activity. Transfection with HO-1-specific small interfering RNA knocked down HO-1 expression, and the inhibition of expression of ICAM-1 by andrographolide was significantly reversed. These results suggest that stimulation of Nrf2-dependent HO-1 expression is involved in the suppression of TNF-alpha-induced ICAM-1 expression exerted by andrographolide.
Collapse
Affiliation(s)
- Ai-Lin Yu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shen Q, Lee ES, Pitts RL, Wu MH, Yuan SY. Tissue inhibitor of metalloproteinase-2 regulates matrix metalloproteinase-2-mediated endothelial barrier dysfunction and breast cancer cell transmigration through lung microvascular endothelial cells. Mol Cancer Res 2010; 8:939-51. [PMID: 20571065 PMCID: PMC5584073 DOI: 10.1158/1541-7786.mcr-09-0523] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Matrix metalloproteinases (MMP) have been implicated in multiple stages of cancer metastasis. Tissue inhibitor of metalloproteinase-2 (TIMP-2) plays an important role in regulating MMP-2 activity. By forming a ternary complex with pro-MMP-2 and its activator MMP-14 on the cell surface, TIMP-2 can either initiate or restrain the cleavage and subsequent activation of MMP-2. Our recent work has shown that breast cancer cell adhesion to vascular endothelial cells activates endothelial MMP-2, promoting tumor cell transendothelial migration (TEM(E)). However, the mechanism of MMP-2 regulation during TEM(E) remains unclear. In the current study, we present evidence that MMP-14 is expressed in both invasive breast cancer cells (MDA-MB-231 and MDA-MB-436) and lung microvascular endothelial cells (HBMVEC-L), whereas TIMP-2 is exclusively expressed and released from the cancer cells. The tumor cell-derived TIMP-2 was further identified as a major determinant of endothelial MMP-2 activity during tumor cell transmigration in the presence of MMP-14. This response was associated with endothelial barrier dysfunction because coculture of MDA-MB-231 or MDA-MB-436 with HBMVEC-L caused a significant decrease in transendothelial electrical resistance concomitantly with endothelial cell-cell junction disruption and tumor cell transmigration. Knockdown of TIMP-2 or inhibition of TIMP-2/MMP-14 attenuated MMP-2-dependent transendothelial electrical resistance response and TEM(E). These findings suggest a novel interactive role of breast cancer cells and vascular endothelial cells in regulating the TIMP-2/MMP-14/MMP-2 pathway during tumor metastasis.
Collapse
Affiliation(s)
- Qiang Shen
- Division of Research, Department of Surgery, University of California at Davis School of Medicine, Sacramento, California 95817, USA
| | | | | | | | | |
Collapse
|
36
|
Stoletov K, Kato H, Zardouzian E, Kelber J, Yang J, Shattil S, Klemke R. Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 2010; 123:2332-41. [PMID: 20530574 DOI: 10.1242/jcs.069443] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Little is known about how metastatic cancer cells arrest in small capillaries and traverse the vascular wall during extravasation in vivo. Using real-time intravital imaging of human tumor cells transplanted into transparent zebrafish, we show here that extravasation of cancer cells is a highly dynamic process that involves the modulation of tumor cell adhesion to the endothelium and intravascular cell migration along the luminal surface of the vascular wall. Tumor cells do not damage or induce vascular leak at the site of extravasation, but rather induce local vessel remodeling characterized by clustering of endothelial cells and cell-cell junctions. Intravascular locomotion of tumor cells is independent of the direction of blood flow and requires beta1-integrin-mediated adhesion to the blood-vessel wall. Interestingly, the expression of the pro-metastatic gene Twist in tumor cells increases their intravascular migration and extravasation through the vessel wall. However, in this case, Twist expression causes the tumor cells to switch to a beta1-integrin-independent mode of extravasation that is associated with the formation of large dynamic rounded membrane protrusions. Our results demonstrate that extravasation of tumor cells is a highly dynamic process influenced by metastatic genes that target adhesion and intravascular migration of tumor cells, and induce endothelial remodeling.
Collapse
Affiliation(s)
- Konstantin Stoletov
- Department of Pathology and Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, MC0612, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|