1
|
Zhang H, Cao X, Gui R, Li Y, Zhao X, Mei J, Zhou B, Wang M. Mesenchymal Stem/Stromal cells in solid tumor Microenvironment: Orchestrating NK cell remodeling and therapeutic insights. Int Immunopharmacol 2024; 142:113181. [PMID: 39305890 DOI: 10.1016/j.intimp.2024.113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs), originating from normal tissues, possess the capacity to home to tumor sites and differentiate into tumor-associated MSCs (TA-MSCs), which are instrumental in shaping an immunosuppressive milieu within tumors. Natural killer (NK) cells, integral to the innate immune system, are endowed with the ability to eradicate target cells autonomously, serving as an immediate defense against neoplastic growths. Nonetheless, within the tumor microenvironment (TME), NK cells often exhibit a decline in both their numerical presence and functionality. TA-MSCs have been shown to exert profound inhibitory effects on the functions of tumor-infiltrating immune cells, notably NK cells. Understanding the mechanisms by which TA-MSCs contribute to NK cell dysfunction is critical for the advancement of immune surveillance and the enhancement of tumoricidal responses. This review summarizes existing literature on NK cell modulation by TA-MSCs within the TME and proposes innovative strategies to augment antitumor immunity.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, 226321, China
| | - Rulin Gui
- Laboratory Animal Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China
| | - Yuanyuan Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xinlan Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jingyu Mei
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu Province, 222000, China.
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
2
|
Zheng J, Feng H, Lin J, Zhou J, Xi Z, Zhang Y, Ling F, Liu Y, Wang J, Hou T, Xing F, Li Y. KDM3A Ablation Activates Endogenous Retrovirus Expression to Stimulate Antitumor Immunity in Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309983. [PMID: 39031630 PMCID: PMC11515915 DOI: 10.1002/advs.202309983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/04/2024] [Indexed: 07/22/2024]
Abstract
The success of immunotherapy for cancer treatment is limited by the presence of an immunosuppressive tumor microenvironment (TME); Therefore, identifying novel targets to that can reverse this immunosuppressive TME and enhance immunotherapy efficacy is essential. In this study, enrichment analysis based on publicly available single-cell and bulk RNA sequencing data from gastric cancer patients are conducted, and found that tumor-intrinsic interferon (IFN) plays a central role in TME regulation. The results shows that KDM3A over-expression suppresses the tumor-intrinsic IFN response and inhibits KDM3A, either genomically or pharmacologically, which effectively promotes IFN responses by activating endogenous retroviruses (ERVs). KDM3A ablation reconfigures the dsRNA-MAVS-IFN axis by modulating H3K4me2, enhancing the infiltration and function of CD8 T cells, and simultaneously reducing the presence of regulatory T cells, resulting in a reshaped TME in vivo. In addition, combining anti-PD1 therapy with KDM3A inhibition effectively inhibited tumor growth. In conclusions, this study highlights KDM3A as a potential target for TME remodeling and the enhancement of antitumor immunity in gastric cancer through the regulation of the ERV-MAVS-IFN axis.
Collapse
Affiliation(s)
- Jiabin Zheng
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Huolun Feng
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Jiatong Lin
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Jianlong Zhou
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Zhihui Xi
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| | - Yucheng Zhang
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Fa Ling
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yongfeng Liu
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Junjiang Wang
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Tieying Hou
- Medical Experimental CenterShenzhen Nanshan People's HospitalShenzhenGuangdong518052China
- Shenzhen University Medical SchoolShenzhenGuangdong518073China
| | - Fan Xing
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouGuangdong510080China
| | - Yong Li
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- School of MedicineSouth China University of TechnologyGuangzhouGuangdong510006China
| |
Collapse
|
3
|
Yao J, Ma F, Shi D, Da M. ZFP1 is a biomarker related to poor prognosis and immunity in gastric cancer. Sci Rep 2024; 14:21233. [PMID: 39261568 PMCID: PMC11390720 DOI: 10.1038/s41598-024-72387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024] Open
Abstract
We aimed to determine the prognostic significance of ZFP1 in gastric cancer (GC), its role in the immune microenvironment, and its potential as a therapeutic target using data from The Cancer Genome Atlas (TCGA) database. ZFP1 overexpression was closely associated with tumour T stage and histological grade. Patients with GC and high ZFP1 expression had poor outcomes. Lower ZFP1 expression was associated with longer symptom-free intervals and disease-specific survival. Subgroup analyses of T3 and T4, N0, N1, and M0 patients showed that overall survival (OS), disease-specific survival, and progression-free interval (PFI) were worse in those with high ZFP1 expression. ZFP1 expression in GC was moderately to strongly positively correlated with the infiltration levels of effector central memory T cells and T helper cells and negatively correlated with Th17 cells and NK CD56bright cells. The lncRNA-miRNA-ZFP1 axis was predicted using a public database. CCK8, colony formation, and wound healing assays were conducted to investigate whether ZFP1 promoted the proliferation and migration of GC cells. Our study suggests that ZFP1 plays a key role in the prognosis, immune response, and progression of GC and is a significant factor in the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Jibin Yao
- The First School of Clinical Medicine, Lanzhou University, No.204 Donggang West Road, Lanzhou, 730000, People's Republic of China
- Department of Surgical Oncology, Gansu Province Hospital, Lanzhou, People's Republic of China
| | - Fubin Ma
- Department of Surgery, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Donghai Shi
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
| | - Mingxu Da
- The First School of Clinical Medicine, Lanzhou University, No.204 Donggang West Road, Lanzhou, 730000, People's Republic of China.
- Department of Surgical Oncology, Gansu Province Hospital, Lanzhou, People's Republic of China.
| |
Collapse
|
4
|
Mohamed AH, Shafie A, Abdulmonem WA, Alzahrani HS, Ashour AA, Hjazi A, Jamal A, Aldreiwish AD, Kamal MA, Ahmad F, Khan N. Mesenchymal stem cells and their potential therapeutic benefits and challenges in the treatment and pathogenesis of gastric cancer. Pathol Res Pract 2024; 260:155422. [PMID: 38981347 DOI: 10.1016/j.prp.2024.155422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs) are acknowledged for their remarkable ability to undergo differentiation into various cell types. In addition, they exhibit anti-tumor characteristics, prompting endeavors to modify MSCs for employment in cancer therapies. On the contrary, it is imperative to recognize that MSCs have been extensively linked to pathways that facilitate the advancement of tumors. Numerous research studies have sought to modify MSCs for clinical application; however, the outcomes have been ambiguous, potentially due to the heterogeneity of MSC populations. Furthermore, the conflicting roles of MSCs in suppressing and promoting tumor growth present a challenge to the appropriateness of their use in anti-cancer therapies. Currently, there exists a lack of comprehensive comprehension concerning the anti-tumor and pro-tumor characteristics of MSCs for gastric cancer (GC). This article discusses the influence of MSCs on GC, the underlying mechanisms, the origins of MSCs, and their effects. This review article also elucidates how MSCs exhibit dual characteristics of promoting and inhibiting tumor growth. Hence, it is of utmost importance that clinical inquiries aimed at utilizing MSCs as a therapeutic intervention for cancer consider the potentiality of MSCs to accelerate the progression of GC. It is crucial to exercise caution throughout the process of developing MSC-based cellular therapies to enhance their anti-cancer attributes while simultaneously eliminating their tumor-promoting impacts.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hilla, Babil 51001, Iraq.
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Hassan Swed Alzahrani
- Counselling healthy marriage, maternity and children hospital, Jeddah second cluster, Jeddah, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry. Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Allolo D Aldreiwish
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Nazia Khan
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| |
Collapse
|
5
|
Zhang Y, Wang C, Li JJ. Revisiting the role of mesenchymal stromal cells in cancer initiation, metastasis and immunosuppression. Exp Hematol Oncol 2024; 13:64. [PMID: 38951845 PMCID: PMC11218091 DOI: 10.1186/s40164-024-00532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Immune checkpoint blockade (ICB) necessitates a thorough understanding of intricate cellular interactions within the tumor microenvironment (TME). Mesenchymal stromal cells (MSCs) play a pivotal role in cancer generation, progression, and immunosuppressive tumor microenvironment. Within the TME, MSCs encompass both resident and circulating counterparts that dynamically communicate and actively participate in TME immunosurveillance and response to ICB. This review aims to reevaluate various facets of MSCs, including their potential self-transformation to function as cancer-initiating cells and contributions to the creation of a conducive environment for tumor proliferation and metastasis. Additionally, we explore the immune regulatory functions of tumor-associated MSCs (TA-MSCs) and MSC-derived extracellular vesicles (MSC-EVs) with analysis of potential connections between circulating and tissue-resident MSCs. A comprehensive understanding of the dynamics of MSC-immune cell communication and the heterogeneous cargo of tumor-educated versus naïve MSCs may unveil a new MSC-mediated immunosuppressive pathway that can be targeted to enhance cancer control by ICB.
Collapse
Affiliation(s)
- Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Charles Wang
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California Davis, Sacramento, CA, USA.
- NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
6
|
Dolatshahi M, Bahrami AR, Sheikh QI, Ghanbari M, Matin MM. Gastric cancer and mesenchymal stem cell-derived exosomes: from pro-tumorigenic effects to anti-cancer vehicles. Arch Pharm Res 2024; 47:1-19. [PMID: 38151649 DOI: 10.1007/s12272-023-01477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies in the world, with a high mortality rate in both women and men. Conventional treatments, like chemotherapy, radiotherapy and surgery, are facing some drawbacks like acquired drug resistance and various side effects, leading to cancer recurrence and increased morbidity; thus, development of novel approaches in targeted therapy would be very beneficial. Exosomes, extracellular vesicles with a size distribution of sub-150 nm, interplay in physiological and pathophysiological cell-cell communications and can pave the way for targeted cancer therapy. Accumulating pieces of evidence have indicated that exosomes derived from mesenchymal stem cells (MSC-EXs) can act as a double-edged sword in some cancers. The purpose of this review is to assess the differences between stem cell therapy and exosome therapy. Moreover, our aim is to demonstrate how naïve MSCs transform into GC-MSCs in the tumor microenvironment. Additionally, the tumorigenic and anti-proliferation effects of MSC-EXs derived from different origins were investigated. Finally, we suggest potential modifications and combination options that involve utilizing MSC-EXs from the foreskin and umbilical cord as promising sources to enhance the efficacy of gastric cancer treatment. This approach is presented in contrast to bone marrow cells, which are more heterogeneous, age-related, and are also easily affected by the patient's circulation system.
Collapse
Affiliation(s)
- Maryam Dolatshahi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Qaiser Iftikhar Sheikh
- School of Biosciences, Western Bank, Firth Court, University of Sheffield, Sheffield, S10 2TN, England, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
7
|
Shaopeng Z, Yang Z, Yuan F, Chen H, Zhengjun Q. Regulation of regulatory T cells and tumor-associated macrophages in gastric cancer tumor microenvironment. Cancer Med 2024; 13:e6959. [PMID: 38349050 PMCID: PMC10839124 DOI: 10.1002/cam4.6959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/15/2024] Open
Abstract
INTRODUCTION Despite advancements in the methods for prevention and early diagnosis of gastric cancer (GC), GC continues to be the fifth in incidence among major cancers and the third most common cause of cancer-related death. The therapeutic effects of surgery and drug treatment are still unsatisfied and show notable differences according to the tumor microenvironment (TME) of GC. METHODS Through screening Pubmed, Embase, and Web of Science, we identified and summarized the content of recent studies that focus on the investigation of Helicobacter pylori (Hp) infection, regulatory T cells (Tregs), and tumor-associated macrophages (TAMs) in the TME of GC. Furthermore, we searched and outlined the clinical research progress of various targeted drugs in GC treatment including CTLA-4, PD-1\PD-L1, and VEGF/VEGFR. RESULTS In this review, the findings indicate that Hp infection causes local inflammation and leads to immunosuppressive environment. High Tregs infiltration in the TME of GC is associated with increased induction and recruitment; the exact function of infiltrated Tregs in GC was also affected by phenotypes and immunosuppressive molecules. TAMs promote the development and metastasis of tumors, the induction, recruitment, and function of TAMs in the TME of gastric cancer are also regulated by various factors. CONCLUSION Discussing the distinct tumor immune microenvironment (TIME) of GC can deepen our understanding on the mechanism of cancer immune evasion, invasion, and metastasis, help us to reduce the incidence of GC, and guide the innovation of new therapeutic targets for GC eventually.
Collapse
Affiliation(s)
- Zhang Shaopeng
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Zheng Yang
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Fang Yuan
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Huang Chen
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Qiu Zhengjun
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
8
|
Sun L, Yao Y. Mesenchymal stem/stromal cells- a principal element for tumour microenvironment heterogeneity. Front Immunol 2023; 14:1274379. [PMID: 37885883 PMCID: PMC10599013 DOI: 10.3389/fimmu.2023.1274379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
The heterogeneity of the tumor microenvironment (TME) is a major obstacle in cancer treatment, making most therapeutic interventions palliative rather than curative. Previous studies have suggested that the reason for the low efficacy of immunotherapy and the relapse of the original responders over time may be due to the complex network of mesenchymal stem/stromal cells (MSCs), a population of multipotent progenitor cells existing in a variety of tissues. Cancer-associated MSCs (CA-MSCs) have already been isolated from various types of tumors and are characterized by their vigorous pro-tumorigenic functions. Although the roles of CA-MSCs from different sources vary widely, their origins are still poorly understood. Current evidence suggests that when local resident or distally recruited MSCs interact with tumor cells and other components in the TME, "naïve" MSCs undergo genetic and functional changes to form CA-MSCs. In this review, we mainly focus on the multiple roles of CA-MSCs derived from different sources, which may help in elucidating the formation and function of the entire TME, as well as discover innovative targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu University, Kunshan, China
| |
Collapse
|
9
|
Liang R, Tan H, Jin H, Wang J, Tang Z, Lu X. The tumour-promoting role of protein homeostasis: Implications for cancer immunotherapy. Cancer Lett 2023; 573:216354. [PMID: 37625777 DOI: 10.1016/j.canlet.2023.216354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Protein homeostasis, an important aspect of cellular fitness that encompasses the balance of production, folding and degradation of proteins, has been linked to several diseases of the human body. Multiple interconnected pathways coordinate to maintain protein homeostasis within the cell. Recently, the role of the protein homeostasis network in tumorigenesis and tumour progression has gradually come to light. Here, we summarize the involvement of the most prominent components of the protein quality control mechanisms (HSR, UPS, autophagy, UPR and ERAD) in tumour development and cancer immunity. In addition, evidence for protein quality control mechanisms and targeted drugs is outlined, and attempts to combine these drugs with cancer immunotherapy are discussed. Altogether, combination therapy represents a promising direction for future investigations, and this exciting insight will be further illuminated by the development of drugs that can reach a balance between the benefits and hazards associated with protein homeostasis interference.
Collapse
Affiliation(s)
- Rong Liang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huabing Tan
- Department of Infectious Diseases, Lab of Liver Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Honglin Jin
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jincheng Wang
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Faculty of Medicine, Hokkaido University, Japan
| | - Zijian Tang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
10
|
Huang C, Chen B, Wang X, Xu J, Sun L, Wang D, Zhao Y, Zhou C, Gao Q, Wang Q, Chen Z, Wang M, Zhang X, Xu W, Shen B, Zhu W. Gastric cancer mesenchymal stem cells via the CXCR2/HK2/PD-L1 pathway mediate immunosuppression. Gastric Cancer 2023; 26:691-707. [PMID: 37300724 DOI: 10.1007/s10120-023-01405-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Anti-PD-1 immunotherapy has emerged as an important therapeutic modality in advanced gastric cancer (GC). However, drug resistance frequently develops, limiting its effectiveness. METHODS The role of gastric cancer mesenchymal stem cells (GCMSCs) in anti-PD-1 resistance was evaluated in vivo in NPGCD34+ or NCGPBMC xenograft mouse model. In addition, we investigated CD8+T cell infiltration and effector function by spectral cytometry and IHC. The effects of GCMSCs conditional medium (GCMSC-CM) on GC cell lines were characterized at the level of the proteome, secretome using western blot, and ELISA assays. RESULTS We reported that GCMSCs mediated tolerance mechanisms contribute to tumor immunotherapy tolerance. GCMSC-CM attenuated the antitumor activity of PD-1 antibody and inhibited immune response in humanized mouse model. In GC cells under serum deprivation and hypoxia, GCMSC-CM promoted GC cells proliferation via upregulating PD-L1 expression. Mechanistically, GCMSC-derived IL-8 and AKT-mediated phosphorylation facilitated HK2 nuclear localization. Phosphorylated-HK2 promoted PD-L1 transcription by binding to HIF-1α. What is more, GCMSC-CM also induced lactate overproduction in GC cells in vitro and xenograft tumors in vivo, leading to impaired function of CD8+ T cells. Furthermore, CXCR1/2 receptor depletion, CXCR2 receptor antagonist AZD5069 and IL-8 neutralizing antibody application also significantly reversed GCMSCs mediated immunosuppression, restoring the antitumor capacity of PD-1 antibody. CONCLUSIONS Our findings reveal that blocking GCMSCs-derived IL-8/CXCR2 pathway decreasing PD-L1 expression and lactate production, improving antitumor efficacy of anti-PD-1 immunotherapy, may be of value for the treatment of advanced gastric carcinoma.
Collapse
Affiliation(s)
- Chao Huang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Bin Chen
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Xin Wang
- Department of Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Xu
- Department of Laboratory Medicine, Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Li Sun
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
- Department of Clinical Laboratory, Kunshan First People's Hospital, Kunshan, China
| | - Deqiang Wang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuanyuan Zhao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Chenglin Zhou
- Department of Laboratory Medicine, Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Qiuzhi Gao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Qianqian Wang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Zhihong Chen
- Department of Gastrointestinal Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Wang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Xu Zhang
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Wenrong Xu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, Jiangsu, China.
| |
Collapse
|
11
|
Wu C, Cao X, Xu J, Wang L, Huang J, Wen J, Wang X, Sang X, Zhu W, Yao Y, Zhou C, Huang F, Wang M. Hsa_circ_0073453 modulates IL-8 secretion by GC-MSCs to promote gastric cancer progression by sponging miR-146a-5p. Int Immunopharmacol 2023; 119:110121. [PMID: 37044033 DOI: 10.1016/j.intimp.2023.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
Gastric cancer associated mesenchymal stem cells (GC-MSCs) have been demonstrated to promote gastric cancer progression in a paracrine manner. IL-8 is highly secreted by GC-MSCs and is crucial for their oncogenic function. However, the mechanism underlying the modulation of IL-8 secretion by GC-MSCs has not been well elucidated. In this study, Shbio-human ceRNA array was used to identify dysregulated mRNAs and circRNAs between GC-MSCs and bone marrow derived mesenchymal stem cells (BM-MSCs). IL-8 was validated to be a critical paracrine cytokine for GC-MSCs promoting migration and invasion of gastric cancer cells. circ_0073453 was identified as a novel GC-MSC-derived circRNA which acted as a sponge of miR-146a-5p, thus increasing IL-8 expression and secretion to promote gastric cancer cell metastasis. Furthermore, circ_0073453 modulated IL-8 secretion by GC-MSCs to enhance gastric cancer cells PD-L1 expression to resist cytotoxic CD8+ T cell-killing. circ_0073453/miR-146a-5p/IL-8 axis was deregulated in gastric cancer tissues and associated with prognosis depending on MSC abundance in cancer tissues. Taken together, our findings suggest that circ_0073453/miR-146a-5p/IL-8 axis is critical for GC-MSCs promoting gastric cancer progression. Hence, hsa_circ_0073453 may be a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Chen Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, PR China
| | - Juan Xu
- Department of Laboratory Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province, PR China
| | - Lin Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| | - Jiaying Huang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| | - Jing Wen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| | - Xiang Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| | - Xiao Sang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| | - Wei Zhu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, PR China
| | - Yongliang Yao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu Province, PR China
| | - Chenglin Zhou
- Department of Laboratory Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province, PR China
| | - Feng Huang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, PR China; Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu Province, PR China; Department of Clinical Laboratory, Maternal and Child Health Care Hospital of Kunshan, Suzhou, Jiangsu Province, PR China.
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, PR China.
| |
Collapse
|
12
|
Akad F, Mocanu V, Peiu SN, Scripcariu V, Filip B, Timofte D, Zugun-Eloae F, Cuciureanu M, Hancianu M, Oboroceanu T, Condur L, Popa RF. Mesenchymal Stem Cell-Derived Exosomes Modulate Angiogenesis in Gastric Cancer. Biomedicines 2023; 11:biomedicines11041031. [PMID: 37189649 DOI: 10.3390/biomedicines11041031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Individualized gastric cancer (GC) treatment aims at providing targeted therapies that translate the latest research into improved management strategies. Extracellular vesicle microRNAs have been proposed as biomarkers for GC prognosis. Helicobacter pylori infection influences the therapeutic response to and the drivers of malignant changes in chronic gastritis. The successful use of transplanted mesenchymal stem cells (MSCs) for gastric ulcer healing has raised interest in studying their effects on tumor neovascularization and in potential antiangiogenic therapies that could use mesenchymal stem cell secretion into extracellular vesicles—such as exosomes—in GC cells. The use of MSCs isolated from bone marrow in order to achieve angiogenic modulation in the tumor microenvironment could exploit the inherent migration of MSCs into GC tissues. Bone marrow-derived MSCs naturally present in the stomach have been reported to carry a malignancy risk, but their effect in GC is still being researched. The pro- and antiangiogenic effects of MSCs derived from various sources complement their role in immune regulation and tissue regeneration and provide further understanding into the heterogeneous biology of GC, the aberrant morphology of tumor vasculature and the mechanisms of resistance to antiangiogenic drugs.
Collapse
|
13
|
Huang X, Zheng Z, Zeng B, Xiao H, Zheng H, Lin Z, Song J, Li A, Chi P, Yang Y, Xu B, Zheng R. Impact of glucocorticoids on the efficacy of neoadjuvant chemoradiotherapy and survival of patients with locally advanced rectal cancer: a retrospective study. BMC Cancer 2023; 23:238. [PMID: 36918865 PMCID: PMC10012496 DOI: 10.1186/s12885-023-10592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/31/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Preclinical studies suggest that glucocorticoids (GCs) promote the proliferation and development of colorectal cancer. Because GCs are broadly prescribed for treatment-related adverse events in patients with locally advanced rectal cancer (LARC) receiving neoadjuvant chemoradiotherapy (NCRT), it's essential to assess the effect of GCs on clinical outcomes. METHODS LARC cases treated with NCRT followed by surgery were assessed retrospectively. Evaluation of the relationship between GCs use (GCs vs. non-GCs) and neoadjuvant rectal (NAR) score (as a three-level categorical dependent variable) was performed using multivariable multinomial logistic regression (MLR). We also examined the relationship between the accumulated dose of GCs and NAR using multivariate MLR. Survival analysis of disease-free survival (DFS) and overall survival (OS) was performed using the Kaplan-Meier method. Multivariate Cox regression was used to assess confounding factors that could influence OS and DFS. RESULTS This retrospective cohort study included 790 patients with newly diagnosed non-metastatic LARC (T3-4/N + M0) who received NCRT followed by surgery between January 2012 and April 2017. The end of the follow-up period was May 11, 2022. Among the 790 patients with LARC, 342 (43.2%) received GCs treatment and 448 (56.8%) did not during the NCRT-to-surgery period. GCs medication was significantly different between mid-NAR (8-16) and low-NAR (< 8) (odds ratio [OR], 0.615; 95% CI, 0.420-0.901; P = 0.013), and the high-NAR (> 16) and low-NAR (0.563; 0.352-0.900; 0.016). Patients exposed to GCs, had a decreased 5-year OS (GCs vs. non-GCs = 80.01% (95% CI, 75.87%-84.37%) vs. 85.30% (82.06%-88.67%), P = 0.023) and poorer 5-year DFS (73.99% (69.45%-78.82%) vs. 78.7% (75.14%-82.78%), P = 0.045). The accumulated dose of GCs was an independent risk factor for OS (hazard ratio [HR], 1.007 [1.001-1.014], 0.036) and DFS (1.010 [1.004-1.017], 0.001). CONCLUSIONS AND RELEVANCE Our study revealed that GCs were associated with reduced efficacy of NCRT and worse clinical outcomes in patients with LARC during the NCRT-to-surgery period.
Collapse
Affiliation(s)
- Xiaoxue Huang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, No.29 XinQuan Road, Gulou District, Fuzhou, Fujian, 350001, People's Republic of China
| | - Zhiyuan Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, No.29 XinQuan Road, Gulou District, Fuzhou, Fujian, 350001, People's Republic of China.,Medical Technology and Engineering College of Fujian Medical University, Fuzhou, Fujian, 350001, People's Republic of China
| | - Bangwei Zeng
- Nosocomial Infection Control Branch, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Han Xiao
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Hao Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, No.29 XinQuan Road, Gulou District, Fuzhou, Fujian, 350001, People's Republic of China
| | - Zhuangbin Lin
- Department of Radiation Oncology, Fujian Medical University Union Hospital, No.29 XinQuan Road, Gulou District, Fuzhou, Fujian, 350001, People's Republic of China
| | - Jianyuan Song
- Department of Radiation Oncology, Fujian Medical University Union Hospital, No.29 XinQuan Road, Gulou District, Fuzhou, Fujian, 350001, People's Republic of China.,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.,Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Anchuan Li
- Department of Radiation Oncology, Fujian Medical University Union Hospital, No.29 XinQuan Road, Gulou District, Fuzhou, Fujian, 350001, People's Republic of China.,Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.,School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Pan Chi
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Yinghong Yang
- Nosocomial Infection Control Branch, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, People's Republic of China
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, No.29 XinQuan Road, Gulou District, Fuzhou, Fujian, 350001, People's Republic of China. .,Department of Medical Imaging Technology, College of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China. .,Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China. .,School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, No.29 XinQuan Road, Gulou District, Fuzhou, Fujian, 350001, People's Republic of China. .,Fujian Medical University Union Clinical Medicine College, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China. .,Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, Fujian Province, People's Republic of China. .,Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive,Hematological and Breast Malignancies), Fuzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
14
|
Wang J, Liu T, Huang T, Shang M, Wang X. The mechanisms on evasion of anti-tumor immune responses in gastric cancer. Front Oncol 2022; 12:943806. [PMID: 36439472 PMCID: PMC9686275 DOI: 10.3389/fonc.2022.943806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/02/2022] [Indexed: 10/22/2023] Open
Abstract
The immune system and the tumor have been at each other's throats for so long that the neoplasm has learned to avoid detection and avoid being attacked, which is called immune evasion. Malignant tumors, such as gastric cancer (GC), share the ability to evade the body's immune system as a defining feature. Immune evasion includes alterations to tumor-associated antigens (TAAs), antigen presentation mechanisms (APMs), and the tumor microenvironment (TME). While TAA and APM are simpler in nature, they both involve mutations or epigenetic regulation of genes. The TME is comprised of numerous cell types, cytokines, chemokines and extracellular matrix, any one of which might be altered to have an effect on the surrounding ecosystem. The NF-kB, MAPK, PI3K/AKT, JAK/STAT, Wnt/β-catenin, Notch, Hippo and TGF-β/Smad signaling pathways are all associated with gastric cancer tumor immune evasion. In this review, we will delineate the functions of these pathways in immune evasion.
Collapse
Affiliation(s)
| | | | | | | | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Zhao Y, Bai Y, Shen M, Li Y. Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Front Immunol 2022; 13:992762. [PMID: 36225938 PMCID: PMC9549957 DOI: 10.3389/fimmu.2022.992762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is a malignancy with a high incidence and mortality, and the emergence of immunotherapy has brought survival benefits to GC patients. Compared with traditional therapy, immunotherapy has the advantages of durable response, long-term survival benefits, and lower toxicity. Therefore, targeted immune cells are the most promising therapeutic strategy in the field of oncology. In this review, we introduce the role and significance of each immune cell in the tumor microenvironment of GC and summarize the current landscape of immunotherapy in GC, which includes immune checkpoint inhibitors, adoptive cell therapy (ACT), dendritic cell (DC) vaccines, reduction of M2 tumor-associated macrophages (M2 TAMs), N2 tumor-associated neutrophils (N2 TANs), myeloid-derived suppressor cells (MDSCs), effector regulatory T cells (eTregs), and regulatory B cells (Bregs) in the tumor microenvironment and reprogram TAMs and TANs into tumor killer cells. The most widely used immunotherapy strategies are the immune checkpoint inhibitor programmed cell death 1/programmed death-ligand 1 (PD-1/PD-L1) antibody, cytotoxic T lymphocyte–associated protein 4 (CTLA-4) antibody, and chimeric antigen receptor T (CAR-T) in ACT, and these therapeutic strategies have significant anti-tumor efficacy in solid tumors and hematological tumors. Targeting other immune cells provides a new direction for the immunotherapy of GC despite the relatively weak clinical data, which have been confirmed to restore or enhance anti-tumor immune function in preclinical studies and some treatment strategies have entered the clinical trial stage, and it is expected that more and more effective immune cell–based therapeutic methods will be developed and applied.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| | - Yapeng Li
- The National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| |
Collapse
|
16
|
Wang KH, Ding DC. Role of cancer-associated mesenchymal stem cells in the tumor microenvironment: A review. Tzu Chi Med J 2022; 35:24-30. [PMID: 36866340 PMCID: PMC9972927 DOI: 10.4103/tcmj.tcmj_138_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022] Open
Abstract
Mesenchymal stem cells (MSCs) were applied to the therapy for degenerative diseases, immune, and inflammation. In tumor microenvironments (TME), different sources of MSCs showed that tumor-promoting and -inhibiting effects were mediated by different signaling pathways. Cancer-associated MSCs (CaMSCs) could be recruited from bone marrow or local tissues and mainly showed tumor-promoting and immunosuppressive effects. The transformed CaMSCs preserve the characteristics of stem cells, but the properties of regulating TME are different. Hence, we specifically focus on CaMSCs and discuss the detailed mechanisms of regulating the development of cancer cells and immune cells. CaMSCs could be a potential therapeutic target in various types of cancer. However, the detailed mechanisms of CaMSCs in the TME are relatively less known and need further study.
Collapse
Affiliation(s)
- Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan,Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Dah-Ching Ding, Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707, Section 3, Chung-Yang Road, Hualien, Taiwan. E-mail:
| |
Collapse
|
17
|
Zhang Z, Zhou X, Guo J, Zhang F, Qian Y, Wang G, Duan M, Wang Y, Zhao H, Yang Z, Liu Z, Jiang X. TA-MSCs, TA-MSCs-EVs, MIF: their crosstalk in immunosuppressive tumor microenvironment. J Transl Med 2022; 20:320. [PMID: 35842634 PMCID: PMC9287873 DOI: 10.1186/s12967-022-03528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
As an important component of the immunosuppressive tumor microenvironment (TME), it has been established that mesenchymal stem cells (MSCs) promote the progression of tumor cells. MSCs can directly promote the proliferation, migration, and invasion of tumor cells via cytokines and chemokines, as well as promote tumor progression by regulating the functions of anti-tumor immune and immunosuppressive cells. MSCs-derived extracellular vesicles (MSCs-EVs) contain part of the plasma membrane and signaling factors from MSCs; therefore, they display similar effects on tumors in the immunosuppressive TME. The tumor-promoting role of macrophage migration inhibitory factor (MIF) in the immunosuppressive TME has also been revealed. Interestingly, MIF exerts similar effects to those of MSCs in the immunosuppressive TME. In this review, we summarized the main effects and related mechanisms of tumor-associated MSCs (TA-MSCs), TA-MSCs-EVs, and MIF on tumors, and described their relationships. On this basis, we hypothesized that TA-MSCs-EVs, the MIF axis, and TA-MSCs form a positive feedback loop with tumor cells, influencing the occurrence and development of tumors. The functions of these three factors in the TME may undergo dynamic changes with tumor growth and continuously affect tumor development. This provides a new idea for the targeted treatment of tumors with EVs carrying MIF inhibitors.
Collapse
Affiliation(s)
- Zhenghou Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiangyu Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinshuai Guo
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiping Qian
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiying Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zunpeng Liu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
18
|
Wu D, Wang Z. Gastric Cancer Cell-Derived Kynurenines Hyperactive Regulatory T Cells to Promote Chemoresistance via the IL-10/STAT3/BCL2 Signaling Pathway. DNA Cell Biol 2022; 41:447-455. [PMID: 35353612 PMCID: PMC9063152 DOI: 10.1089/dna.2021.0936] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy resistance is frequently observed in gastric cancer patients and is associated with poor prognosis; tryptophan (Trp) catabolism has been recognized as a key metabolic regulator of many types of cancer progression. Regulatory T cells (Tregs) and Trp metabolite kynurenine (Kyn) were analyzed using tumor tissues. Chemotherapy resistance induced by IL-10 or Treg was detected by flow cytometry assay. The activation of STAT3/BCL2 signaling pathways in gastric cells cocultured by Treg was illustrated by western blotting. Patients' Treg and human gastric cancer organoid model were established to examine the anticancer effects of STAT3 inhibitor. We found that a higher level of IL-10 secreted by Kyn-induced Tregs was responsible for the 5-fluorouracil-induced resistance of gastric cancer cell lines. STAT3 and BCL2 knockout significantly abrogated Treg supernatant- or IL-10-induced chemoresistance in SGC7901 and BGC823 cell lines. Furthermore, STAT3 inhibitor significantly reduced the organoid and clonogenicity of organoids cocultured with Treg. Our data suggested that tumor-derived Kyn may hyperactivate Tregs and induce chemoresistance through the IL-10/STAT3/BCL2 signaling pathway.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhongli Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
19
|
Xiang Z, Hua M, Hao Z, Biao H, Zhu C, Zhai G, Wu J. The Roles of Mesenchymal Stem Cells in Gastrointestinal Cancers. Front Immunol 2022; 13:844001. [PMID: 35281017 PMCID: PMC8907448 DOI: 10.3389/fimmu.2022.844001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) were reported to have strong immunomodulatory ability, and inhibit the proliferation of T cells and their immune response through cell-to-cell interactions and the generation of cytokines. With high differentiation potential and self-renewal ability, MSCs are considered to function in alleviating inflammatory responses, promoting tissue regeneration and inhibiting tissue fibrosis formation. As the most common malignancies, gastrointestinal (GI) cancers have high incidence and mortality. The accurate diagnosis, exact prognosis and treatment of GI cancers have always been a hot topic. Therefore, the potential applications of MSCs in terms of GI cancers are receiving more and more attention. Recently, there is increasing evidence that MSCs may serve as a key point in the growth, metastasis, inhibition, treatment and prognosis of GI cancers. In this review, we summarized the roles of MSCs in GI cancers, mainly focusing on esophageal cancer (EC), gastric cancer (GC), liver cancer (LC), colorectal cancer (CRC) and pancreatic cancer. Besides, we proposed MSCs as potential targets and treatment strategies for the effective treatment of GI cancers, which may provide better guidance for the clinical treatment of GI cancers.
Collapse
Affiliation(s)
- Ze Xiang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Menglu Hua
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhou Hao
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huang Biao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chaojie Zhu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Guanghua Zhai
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
20
|
Wang J, Xiong M, Sun Q, Tan WS, Cai H. Three-Dimension Co-culture of Hematopoietic Stem Cells and Differentiated Osteoblasts on Gallic Acid Grafted-Chitosan Scaffold as a Model of Hematopoietic Stem Cells Niche. Stem Cell Rev Rep 2022; 18:1168-1180. [PMID: 34985623 DOI: 10.1007/s12015-021-10325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 11/26/2022]
Abstract
The existing approaches of hematopoietic stem cells (HSCs) expansion in vitro were difficult to meet the needs of clinical application. While in vivo, HSCs efficiently self-renew in niche where they interact with three dimension extracellular matrix and stromal cells. Osteoblasts (OBs) are one of most significant stromal cells of HSCs niche. Here, we proposed a three-dimensional environment based on gallic acid grafted-chitosan (2c) scaffold and OBs differentiated from human umbilical cord mesenchymal stem cells (HUMSCs) to recapitulate the main components of HSCs niche. The results of alkaline phosphatase staining and alizarin red staining demonstrated that HUMSCs were successfully induced into OBs. The results showed that the expansions of CD34+cells, CD34+CD38- cells and CD34+CD38-CD45RA-CD49f+CD90+ cells (primitive hematopoietic stem cells, pHSCs) harvested from the biomimetic HSCs niche based on 2c scaffold and OBs (IV) group were larger than those harvested from other three culture groups. Importantly, it was found that the CD34+ cells harvested from IV group had better secondary expansion capability and colony forming potential, indicating better self-renewal ability. In addition, the biomimetic HSCs niche based on 2c scaffold and OBs protected HSCs apoptosis and promoted HSCs division. Taken together, the biomimetic HSCs niche based on 2c scaffold and OBs was an effective strategy for ex vivo expansion of HSCs in clinical scale.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Minghao Xiong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Qihao Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
21
|
Xu QF, Peng HP, Lu XR, Hu Y, Xu ZH, Xu JK. Oleanolic acid regulates the Treg/Th17 imbalance in gastric cancer by targeting IL-6 with miR-98-5p. Cytokine 2021; 148:155656. [PMID: 34388475 DOI: 10.1016/j.cyto.2021.155656] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/22/2021] [Accepted: 07/19/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gastric cancer (GC) was a type of malignant tumor with a very high fatality rate. Oleanolic acid (OA) was a class of pentacyclic triterpenes which was proved to have anti-cancer activity. While the specific molecular mechanism of OA's role in inhibiting GC was not fully understood. This study aimed to explore how OA played an anti-cancer role in GC. METHODS Expression of miR-98-5p was examined using qPCR, and expression levels of Treg/Th17-related factors were evaluated using qPCR and western blot. Flow cytometry was conducted to assess the proportion of Treg cells and Th17 cells. Besides, dual luciferase reporter assay was performed to verify that IL-6 was a target of miR-98-5p. RESULTS Downregulation of miR-98-5p and upregulation of Treg/Th17-related factors were observed in GC tissues. What's more, the Treg/Th17 imbalance was found in PBMCs of GC patients. Overexpression of miR-98-5p promoted balance of Treg/Th17 cells via directly targeting IL-6 to downregulate expression of IL-6. Finally, OA could promote balance of Treg/Th17 cells by upregulating expression of miR-98-5p. DISCUSSION All our results proved that OA could promote balance of Treg/Th17 cells in GC by targeting IL-6 with miR-98-5p, indicating a potential drug for treatment of GC.
Collapse
Affiliation(s)
- Qian-Fei Xu
- Department of Spleen and Stomach and Hepatology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, PR China
| | - Hui-Ping Peng
- Department of Spleen and Stomach and Hepatology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, PR China
| | - Xi-Rong Lu
- Department of Spleen and Stomach and Hepatology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, PR China
| | - Yun Hu
- Department of Spleen and Stomach and Hepatology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, PR China
| | - Zou-Hua Xu
- Department of Spleen and Stomach and Hepatology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, PR China.
| | - Jin-Kang Xu
- Department of Spleen and Stomach and Hepatology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, PR China.
| |
Collapse
|
22
|
Gastric Cancer Mesenchymal Stem Cells Inhibit NK Cell Function through mTOR Signalling to Promote Tumour Growth. Stem Cells Int 2021; 2021:9989790. [PMID: 34306099 PMCID: PMC8263240 DOI: 10.1155/2021/9989790] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
The dysfunction of natural killer (NK) cells has been increasingly reported in malignancies, especially in solid tumours. Mesenchymal stem cells (MSCs) exhibit pleiotropic functions that include mediating immune cell exhaustion which is implicated in cancer progression. However, the association of MSCs derived from gastric cancer (gastric cancer mesenchymal stem cells: GCMSCs) with the dysfunction of NK cells remains poorly understood. In this study, we demonstrated that GCMSCs effectively contributed to the exhaustion of NK cells through the release of soluble factors. Furthermore, passivation of the antitumour effect in NK cells was closely associated with their dysfunctional state. The GCMSC-conditioned medium prevented the frequency and effector function of infiltrating NK cells in tumour-bearing mouse models, thus promoting tumour growth. Mechanistically, mammalian target of rapamycin (mTOR) signalling, a critical regulator of cellular metabolism that mediates the function of immune cells, was inhibited in NK cells treated with GCMSCs. However, the checkpoint receptor PD-1 was still present at minimal levels with or without GCMSCs. The study results revealed that GCMSCs contributed to dysfunctional NK cells involved at least partially in the inhibition of mTOR signalling, suggesting potential directions for NK cell-based cancer immunotherapy.
Collapse
|
23
|
Li Y, Zhong X, Zhang Y, Lu X. Mesenchymal Stem Cells in Gastric Cancer: Vicious but Hopeful. Front Oncol 2021; 11:617677. [PMID: 34046337 PMCID: PMC8144497 DOI: 10.3389/fonc.2021.617677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor progression depends on the collaborative interactions between tumor cells and the surrounding stroma. First-line therapies direct against cancer cells may not reach a satisfactory outcome, such as gastric cancer (GC), with high risk of recurrence and metastasis. Therefore, novel treatments and drugs target the effects of stroma components are to be promising alternatives. Mesenchymal stem cells (MSC) represent the decisive components of tumor stroma that are found to strongly affect GC development and progression. MSC from bone marrow or adjacent normal tissues express homing profiles in timely response to GC-related inflammation signals and anchor into tumor bulks. Then the newly recruited “naïve” MSC would achieve phenotype and functional alternations and adopt the greater tumor-supporting potential under the reprogramming of GC cells. Conversely, both new-comers and tumor-resident MSC are able to modulate the tumor biology via aberrant activation of oncogenic signals, metabolic reprogramming and epithelial-to-mesenchymal transition. And they also engage in remodeling the stroma better suited for tumor progression through immunosuppression, pro-angiogenesis, as well as extracellular matrix reshaping. On the account of tumor tropism, MSC could be engineered to assist earlier diagnosis of GC and deliver tumor-killing agents precisely to the tumor microenvironment. Meanwhile, intercepting and abrogating vicious signals derived from MSC are of certain significance for the combat of GC. In this review, we mainly summarize current advances concerning the reciprocal metabolic interactions between MSC and GC and their underlying therapeutic implications in the future.
Collapse
Affiliation(s)
- Yuyi Li
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingwei Zhong
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunzhu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinliang Lu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Terraza-Aguirre C, Campos-Mora M, Elizondo-Vega R, Contreras-López RA, Luz-Crawford P, Jorgensen C, Djouad F. Mechanisms behind the Immunoregulatory Dialogue between Mesenchymal Stem Cells and Th17 Cells. Cells 2020; 9:cells9071660. [PMID: 32664207 PMCID: PMC7408034 DOI: 10.3390/cells9071660] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) exhibit potent immunoregulatory abilities by interacting with cells of the adaptive and innate immune system. In vitro, MSCs inhibit the differentiation of T cells into T helper 17 (Th17) cells and repress their proliferation. In vivo, the administration of MSCs to treat various experimental inflammatory and autoimmune diseases, such as rheumatoid arthritis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, and bowel disease showed promising therapeutic results. These therapeutic properties mediated by MSCs are associated with an attenuated immune response characterized by a reduced frequency of Th17 cells and the generation of regulatory T cells. In this manuscript, we review how MSC and Th17 cells interact, communicate, and exchange information through different ways such as cell-to-cell contact, secretion of soluble factors, and organelle transfer. Moreover, we discuss the consequences of this dynamic dialogue between MSC and Th17 well described by their phenotypic and functional plasticity.
Collapse
Affiliation(s)
- Claudia Terraza-Aguirre
- IRMB, University of Montpellier, INSERM, F-34090 Montpellier, France; (C.T.-A.); (R.A.C.-L.)
| | | | - Roberto Elizondo-Vega
- Facultad de Ciencias Biológicas, Departamento de Biología Celular, Laboratorio de Biología Celular, Universidad de Concepción, Concepción 4030000, Chile;
| | | | - Patricia Luz-Crawford
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago 7620001, Chile;
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, F-34090 Montpellier, France; (C.T.-A.); (R.A.C.-L.)
- CHU Montpellier, F-34295 Montpellier, France
- Correspondence: (C.J.); (F.D.); Tel.: +33-(0)-4-67-33-77-96 (C.J.); +33-(0)-4-67-33-04-75 (F.D.)
| | - Farida Djouad
- IRMB, University of Montpellier, INSERM, F-34090 Montpellier, France; (C.T.-A.); (R.A.C.-L.)
- Correspondence: (C.J.); (F.D.); Tel.: +33-(0)-4-67-33-77-96 (C.J.); +33-(0)-4-67-33-04-75 (F.D.)
| |
Collapse
|
25
|
Baj J, Brzozowska K, Forma A, Maani A, Sitarz E, Portincasa P. Immunological Aspects of the Tumor Microenvironment and Epithelial-Mesenchymal Transition in Gastric Carcinogenesis. Int J Mol Sci 2020; 21:E2544. [PMID: 32268527 PMCID: PMC7177728 DOI: 10.3390/ijms21072544] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Infection with Helicobacter pylori, a Gram-negative, microaerophilic pathogen often results in gastric cancer in a subset of affected individuals. This explains why H. pylori is the only bacterium classified as a class I carcinogen by the World Health Organization. Several studies have pinpointed mechanisms by which H. pylori alters signaling pathways in the host cell to cause diseases. In this article, the authors have reviewed 234 studies conducted over a span of 18 years (2002-2020). The studies investigated the various mechanisms associated with gastric cancer induction. For the past 1.5 years, researchers have discovered new mechanisms contributing to gastric cancer linked to H. pylori etiology. Alongside alteration of the host signaling pathways using oncogenic CagA pathways, H. pylori induce DNA damage in the host and alter the methylation of DNA as a means of perturbing downstream signaling. Also, with H. pylori, several pathways in the host cell are activated, resulting in epithelial-to-mesenchymal transition (EMT), together with the induction of cell proliferation and survival. Studies have shown that H. pylori enhances gastric carcinogenesis via a multifactorial approach. What is intriguing is that most of the targeted mechanisms and pathways appear common with various forms of cancer.
Collapse
Affiliation(s)
- Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (A.M.)
| | - Karolina Brzozowska
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (A.M.)
| | - Amr Maani
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (A.M.)
| | - Elżbieta Sitarz
- Chair and 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
26
|
Shi L, Feng M, Du S, Wei X, Song H, Yixin X, Song J, Wenxian G. Adenosine Generated by Regulatory T Cells Induces CD8 + T Cell Exhaustion in Gastric Cancer through A2aR Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4093214. [PMID: 31930120 PMCID: PMC6942766 DOI: 10.1155/2019/4093214] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/14/2019] [Accepted: 09/02/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Adenosine, derived from the degradation of ATP via ectonucleotidases CD39 and CD73, is a critical immunosuppressive metabolite in the hypoxic microenvironment of tumor tissue. Adenosine signaling via A2aR can inhibit the antitumor immune response of CD8+ T cells. CD39 and CD73 high-expressing Tregs play a critical role in tumor immune evasion of gastric cancer (GC). The present study investigated the underlying mechanism by which Tregs suppress antitumor immune responses in GC. MATERIALS AND METHODS Fifty-two GC samples were collected, and the frequency of FoxP3+ Tregs and CD8+ T cells and density ratios of A2aR+/CD8+ T cells, CD39+/FoxP3+ Tregs, and CD73+/FoxP3+ Tregs in GC were assessed with multiplex immunofluorescence. The expression of FoxP3 and A2aR in GC tissues was also detected by the immunoblotting assay. We next investigated the relationship between density of FoxP3+ Tregs, ratio of A2aR+/CD8+ T cells, and clinicopathological parameters. At the same time, Tregs and CD8+ T cells were isolated from peripheral blood of five GC patients, and the antagonists of CD39 and CD73 were used to assess the ability of Tregs to decompose ATP into adenosine. In addition, we cocultured CD8+ T cells and Tregs with antagonists of A2aR and A2bR in order to examine the alterations in immune function of CD8+ T cells. RESULTS The density of both FoxP3+ Tregs and A2aR+/CD8+ T cells was higher in GC tissue compared to peritumoral normal tissue and significantly correlated with the TNM stage, lymph node metastasis, and distant metastasis of GC. The process of Treg hydrolysis of ATP into adenosine was blocked by the antagonists of CD39 and CD73. In addition, Tregs could induce apoptosis and inhibit proliferation of CD8+ T cells, while this effect could be obviously reduced by applying the antagonist of A2aR or A2aR+A2bR. Moreover, IFN-γ, TNF-α, and perforin generated by CD8+ T cells could also be inhibited through the adenosine A2aR pathway. CONCLUSIONS The FoxP3+ Tregs and A2aR+/CD8+ T cells were excessively infiltrated in GC tissue. Tregs from GC can decompose ATP to adenosine and in turn induce apoptosis and inhibit the proliferation of CD8+ T cells through the A2aR pathway, further leading to immune escape of GC.
Collapse
Affiliation(s)
- Linsen Shi
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- The Affiliated Drum Tower Clinical College of Nanjing Medical University, Nanjing, China
| | - Min Feng
- Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Shangce Du
- The Affiliated Drum Tower Clinical College of Nanjing Medical University, Nanjing, China
| | - Xu Wei
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hu Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xu Yixin
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jun Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guan Wenxian
- Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, Zheng P, Zhao S. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis 2019; 10:918. [PMID: 31801938 PMCID: PMC6892854 DOI: 10.1038/s41419-019-2131-y] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022]
Abstract
Resident macrophages in the tumor microenvironment exert a dual role in tumor progression. So far, the mechanism of intratumoral macrophage generation is still largely unknown. In the present study, the importance of macrophages in the pro-tumor role of gastric cancer-derived mesenchymal stromal cells (GC-MSCs) was observed in a mouse xenograft model with macrophage depletion. In gastric cancer tissues, high expression levels of Ym-1, Fizz-1, arginase-1, and CCR-2, as well as a low expression level of iNOS, were verified, and co-localization of GC-MSCs and tumor-associated macrophages (TAMs) was observed by dual immunofluorescence histochemistry. TAMs isolated from gastric cancer tissues predominantly displayed an M2 phenotype. In a co-culture system, the contribution of GC-MSCs to M2 polarization of macrophages was confirmed by the M2-related protein expression, M2-like immunophenotype and cytokine profile of GC-MSC-primed macrophages in vitro. Blockade of IL-6/IL-8 by neutralizing antibodies significantly attenuated the promoting effect of GC-MSCs on M2-like macrophage polarization via the JAK2/STAT3 signaling pathway. In addition, GC-MSC-primed macrophages promoted the migration and invasion of gastric cancer cells, and the process of EMT in gastric cancer cells was significantly enhanced by GC-MSC-primed macrophage treatment. Our study showed that tumor-promoting GC-MSCs contribute to M2 macrophage polarization within the gastric cancer niche through considerable secretion of IL-6 and IL-8. These GC-MSC-primed macrophages can subsequently prompt gastric cancer metastasis via EMT promotion in gastric cancer cells.
Collapse
Affiliation(s)
- Wei Li
- Center of Research Laboratory, The First People's Hospital of Lianyungang, Lianyungang, 222001, China.
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Fenglei Wu
- Department of Oncology, The First People's Hospital of Lianyungang, Lianyungang, 222001, China
| | - Ying Zhou
- Center of Research Laboratory, The First People's Hospital of Lianyungang, Lianyungang, 222001, China
| | - Zengtao Bao
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222001, China
| | - Haining Li
- Center of Research Laboratory, The First People's Hospital of Lianyungang, Lianyungang, 222001, China
- Department of Clinical Laboratory Diagnostics, Kangda College of Nanjing Medical University, Lianyungang, 222000, China
| | - Ping Zheng
- Center of Research Laboratory, The First People's Hospital of Lianyungang, Lianyungang, 222001, China
| | - Shaolin Zhao
- Center of Research Laboratory, The First People's Hospital of Lianyungang, Lianyungang, 222001, China.
| |
Collapse
|
28
|
The Emerging Role of GC-MSCs in the Gastric Cancer Microenvironment: From Tumor to Tumor Immunity. Stem Cells Int 2019; 2019:8071842. [PMID: 31885627 PMCID: PMC6914970 DOI: 10.1155/2019/8071842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been declared to not only participate in wound repair but also affect tumor progression. Tumor-associated MSCs, directly existing in the tumor microenvironment, play a critical role in tumor initiation, progression, and development. And different tumor-derived MSCs have their own unique characteristics. In this review, we mainly describe and discuss recent advances in our understanding of the emerging role of gastric cancer-derived MSC-like cells (GC-MSCs) in regulating gastric cancer progression and development, as well as the bidirectional influence between GC-MSCs and immune cells of the tumor microenvironment. Moreover, we also discuss the potential biomarker and therapeutic role of GC-MSCs. It is anticipated that new and deep insights into the functionality of GC-MSCs and the underlying mechanisms will promote the novel and promising therapeutic strategies against gastric cancer.
Collapse
|
29
|
Wang M, Zhang H, Yang F, Qiu R, Zhao X, Gong Z, Yu W, Zhou B, Shen B, Zhu W. miR-188-5p suppresses cellular proliferation and migration via IL6ST: A potential noninvasive diagnostic biomarker for breast cancer. J Cell Physiol 2019; 235:4890-4901. [PMID: 31650530 DOI: 10.1002/jcp.29367] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/07/2019] [Indexed: 12/29/2022]
Abstract
Previously, serum miR-188-5p is differentially expressed in breast cancer, but the diagnostic potential of circulating miR-188-5p as well as its regulatory mechanism in breast cancer remain uncertain. Herein, serum miR-188-5p was detected by real-time polymerase chain reaction in patients with breast cancer, breast fibroadenoma, and healthy subjects. Circulating miR-188-5p was abnormally elevated in patients with breast cancer as compared with these other two groups, and was reduced in patients with breast cancer following surgical treatment. Increased serum miR-188-5p corresponded to lymph node metastasis status and TNM stages of breast cancer. A receiver operating characteristic curve analysis of the ability to circulate miR-188-5p to distinguish between patients with breast cancer and either noncancerous patients or patients with breast fibroadenoma yielded corresponding areas under the curve of 0.894 and 8.814. miR-188-5p was downregulated in the highly malignant cancer line MDA-MB-231 relative to the less malignant MCF-7 cells. In vitro, functional analyses conducted via transfecting cells with mimics and inhibitors revealed miR-188-5p to suppress breast cancer cell proliferation and migration, which was mediated by its downstream target IL6ST. Comparison of intracellular and exosomal miR-188-5p levels indicated that miR-188-5p was selectively sorted into exosomes derived from MDA-MB-231 cells rather than those from MCF-7 cells. However, exosomal miR-188-5p levels in the serum of patients with breast cancer were reduced compared to healthy controls and did not differ relative to patients with breast fibroadenoma. In summary, miR-188-5p acts in a tumor-suppressive manner in breast cancer progression and may serve as a noninvasive early diagnostic biomarker and therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huiling Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Clinical Laboratory Medicine, Huai'an Maternity and Child Health Care Hospital, Huai'an, Jiangsu, China
| | - Fang Yang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China
| | - Rong Qiu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxin Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zheng Gong
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wanjun Yu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Wei Zhu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
30
|
Recent advances in the study of regulatory T cells in gastric cancer. Int Immunopharmacol 2019; 73:560-567. [PMID: 31181438 DOI: 10.1016/j.intimp.2019.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022]
Abstract
Gastric cancer (GC), which features a complex pathogenesis and mechanism, remains refractory. FOXP3+ regulatory T cells (Tregs), which have been implicated in the progression of gastric cancer, play an immunosuppressive role in the tumor microenvironment. However, the prognostic value of Treg infiltration is still controversial in GC patients. Recently, the association of Tregs with the clinicopathological characteristics of GC patients, the prognostic value of Tregs alone or its combination with other factors to GC patients, the role of Tregs in GC tumor microenvironment, clinical applications and Tregs-targeted therapies for GC patients have become hot issues. In this review, we are going to discuss these scientific researches which focused on these topics.
Collapse
|
31
|
Zheng Y, Dong C, Yang J, Jin Y, Zheng W, Zhou Q, Liang Y, Bao L, Feng G, Ji J, Feng X, Gu Z. Exosomal microRNA‐155‐5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin‐1 in chronic periodontitis. J Cell Physiol 2019; 234:20662-20674. [PMID: 31016751 DOI: 10.1002/jcp.28671] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ya Zheng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Chen Dong
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Junling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi Jin
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiao Zhou
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi Liang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Liuliu Bao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Juan Ji
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
32
|
Wang M, Qiu R, Gong Z, Zhao X, Wang T, Zhou L, Lu W, Shen B, Zhu W, Xu W. miR-188-5p emerges as an oncomiRNA to promote gastric cancer cell proliferation and migration via upregulation of SALL4. J Cell Biochem 2019; 120:15027-15037. [PMID: 31009138 DOI: 10.1002/jcb.28764] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) play pivotal roles in modulating key biological processes in gastric cancer (GC). As a newly identified miRNA, the function and potential mechanism of miR-188-5p in GC has not been thoroughly elucidated. Here, quantitative real-time polymerase chain reaction detection showed abnormally higher expression of miR-188-5p in GC cells and tissues. Gain-of-function analysis in vitro showed that miR-188-5p promoted GC cell proliferation and migration, while loss-of-function studies showed the reverse. Targetscan has predicted that phosphatase and tensin homolog (PTEN) was a potential target gene of miR-188-5p. miR-188-5p suppressed PTEN messenger RNA and protein expression and activated downstream AKT/mTOR signaling in GC cells, but luciferase reporter analysis showed that PTEN was not regulated by miR-188-5p via the 3' untranslated region. Furthermore, we observed that miR-188-5p overexpression promoted Sal-like protein 4 (SALL4) protein expression, cellular nuclear translocation, and transcription. Knockdown of SALL4 eliminated the effect of miR-188-5p in GC cells as well as suppression of PTEN. Taken together, our results demonstrate that miR-188-5p promotes GC cell proliferation and migration while suppressing tumor suppressor gene PTEN expression via transcriptional upregulation of oncogene SALL4. We conclude that miR-188-5p acts as an oncomiRNA in GC and may be a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rong Qiu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zheng Gong
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxin Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tingting Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lulu Zhou
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weiwei Lu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
| | - Wei Zhu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenrong Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
33
|
Cari L, De Rosa F, Nocentini G, Riccardi C. Context-Dependent Effect of Glucocorticoids on the Proliferation, Differentiation, and Apoptosis of Regulatory T Cells: A Review of the Empirical Evidence and Clinical Applications. Int J Mol Sci 2019; 20:E1142. [PMID: 30845709 PMCID: PMC6429178 DOI: 10.3390/ijms20051142] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids (GCs) are widely used to treat several diseases because of their powerful anti-inflammatory and immunomodulatory effects on immune cells and non-lymphoid tissues. The effects of GCs on T cells are the most relevant in this regard. In this review, we analyze how GCs modulate the survival, maturation, and differentiation of regulatory T (Treg) cell subsets into both murine models and humans. In this way, GCs change the Treg cell number with an impact on the mid-term and long-term efficacy of GC treatment. In vitro studies suggest that the GC-dependent expansion of Treg cells is relevant when they are activated. In agreement with this observation, the GC treatment of patients with established autoimmune, allergic, or (auto)inflammatory diseases causes an expansion of Treg cells. An exception to this appears to be the local GC treatment of psoriatic lesions. Moreover, the effects on Treg number in patients with multiple sclerosis are uncertain. The effects of GCs on Treg cell number in healthy/diseased subjects treated with or exposed to allergens/antigens appear to be context-dependent. Considering the relevance of this effect in the maturation of the immune system (tolerogenic response to antigens), the success of vaccination (including desensitization), and the tolerance to xenografts, the findings must be considered when planning GC treatment.
Collapse
Affiliation(s)
- Luigi Cari
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia I-06129, Italy.
| | - Francesca De Rosa
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia I-06129, Italy.
| | - Giuseppe Nocentini
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia I-06129, Italy.
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia I-06129, Italy.
| |
Collapse
|
34
|
Wang Q, Li Z, Sun L, Chen B, Zhao Y, Shen B, Zhu M, Zhao X, Xu C, Wang M, Xu W, Zhu W. Platelets enhance the ability of bone-marrow mesenchymal stem cells to promote cancer metastasis. Onco Targets Ther 2018; 11:8251-8263. [PMID: 30538494 PMCID: PMC6254656 DOI: 10.2147/ott.s181673] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Bone marrow-derived mesenchymal stem cells (BM-MSCs) have been identified to be closely associated with cancer progression. Our previous experimental results showed that BM-MSCs promote tumor growth and metastasis of gastric cancer through paracrine-soluble cytokines or exosomes. However, the elements that affect the role of BM-MSCs in promoting tumor metastasis are not clear. It is known that thrombocytosis in cancer patients is very common. Recently, platelets are recognized to play a critical role in tumor progression. Purpose This study aims to observe the effect of BM-MSCs which were co-cultured with platelets on tumor cell metastasis. Methods Platelet aggregation rate and the expression of P-selectin of platelets co-incubated with conditioned medium of SGC-7901 cells and BM-MSCs were detected by flow cytometry and platelet aggregometer. We also analyzed the change of BM-MSCs after co-incubation with platelets or platelets which were treated with SGC-7901 cells using transwell assay and Western blot analysis. The proliferation and migration ability and expression of VEGF, c-Myc, and sall-4 in SGC-7901 cells treated with medium of BM-MSCs which were co-cultured with platelets were detected. SGC-7901 cells were injected into Balb/c nude mice and the extent of lung metastasis was observed. Both in vitro and in vivo assays were used to analyze the effect of platelets on enhancing the ability of BM-MSCs to promote cancer metastasis. Results Results suggested that BM-MSCs and tumor cells can promote platelet aggregation rate and the expression of P-selectin. The protein levels of α-smooth muscle actin, vimentin, and fibroblast activation protein in BM-MSCs were higher after co-incubation with platelets, and SB431542 was used to confirm the effect of TGF-β on transdifferentiation of BM-MSCs into cancer-associated fibroblasts. Medium of BM-MSCs treated with platelets enhanced the proliferation and migration ability of SGC-7901 cells. More lung metastases were found in mice which were injected with SGC-7901 cells treated with conditioned medium from BM-MSCs co-incubated with platelets. Conclusion Tumor cells and BM-MSCs activate platelets which can change the characteristics of BM-MSCs through secretion of TGF-β. Moreover, we found that platelets enhanced the effect of BM-MSCs on tumor metastasis, which suggested a potential target and approach for gastric cancer therapy.
Collapse
Affiliation(s)
- Qianqian Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China,
| | - Zhuqian Li
- Department of Clinical Laboratory, Zhenjiang Provincial Blood Center, Zhenjiang, Jiangsu, China
| | - Li Sun
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China,
| | - Bin Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China,
| | - Yuanyuan Zhao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China,
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Miaolin Zhu
- Department of Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangdong Zhao
- Department of Clinical Laboratory, Zhenjiang Provincial Blood Center, Zhenjiang, Jiangsu, China
| | - Changgen Xu
- Department of Clinical Laboratory, Zhenjiang Provincial Blood Center, Zhenjiang, Jiangsu, China
| | - Mei Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China,
| | - Wenrong Xu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China,
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China,
| |
Collapse
|
35
|
Sun L, Wang Q, Chen B, Zhao Y, Shen B, Wang H, Xu J, Zhu M, Zhao X, Xu C, Chen Z, Wang M, Xu W, Zhu W. Gastric cancer mesenchymal stem cells derived IL-8 induces PD-L1 expression in gastric cancer cells via STAT3/mTOR-c-Myc signal axis. Cell Death Dis 2018; 9:928. [PMID: 30206229 PMCID: PMC6134105 DOI: 10.1038/s41419-018-0988-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022]
Abstract
The expression of PD-L1 in tumor cells is one of the main causes of tumor immune escape. However, the exact mechanism for regulating PD-L1 expression in gastric cancer (GC) cells remains unclear. Our previous studies have shown that mesenchymal stem cells (MSCs) exert broad immunosuppressive potential, modulating the activity of cells either in innate or adaptive immune system to promote tumor progress. This study aims to investigate whether GCMSCs regulate the PD-L1 expression in GC cells and explore the specific molecular mechanism. The results have shown that GCMSCs enhanced PD-L1 expression in GC cells resulting in the resistance of GC cells to CD8+ T cells cytotoxicity. However, this resistance was attenuated with IL-8 inhibition. Further studies proved that IL-8 derived from GCMSCs induced PD-L1 expression in GC cells via c-Myc regulated by STAT3 and mTOR signaling pathways. Our data indicated that blocking IL-8 derived from GCMSCs may overcome the immune escape induced by PD-L1 in GC cells and provide a potential strategy to enhance the immunotherapy efficiency in GC.
Collapse
Affiliation(s)
- Li Sun
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qianqian Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Chen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuanyuan Zhao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bo Shen
- Department of oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hua Wang
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jing Xu
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Miaolin Zhu
- Department of oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangdong Zhao
- Zhenjiang Provincial Blood Center, Zhenjiang, Jiangsu, China
| | - Changgen Xu
- Zhenjiang Provincial Blood Center, Zhenjiang, Jiangsu, China
| | - Zhihong Chen
- Department of Gastrointestinal Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenrong Xu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|