1
|
Singh M, Krishnamoorthy VR, Kim S, Khurana S, LaPorte HM. Brain-derived neuerotrophic factor and related mechanisms that mediate and influence progesterone-induced neuroprotection. Front Endocrinol (Lausanne) 2024; 15:1286066. [PMID: 38469139 PMCID: PMC10925611 DOI: 10.3389/fendo.2024.1286066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
Historically, progesterone has been studied significantly within the context of reproductive biology. However, there is now an abundance of evidence for its role in regions of the central nervous system (CNS) associated with such non-reproductive functions that include cognition and affect. Here, we describe mechanisms of progesterone action that support its brain-protective effects, and focus particularly on the role of neurotrophins (such as brain-derived neurotrophic factor, BDNF), the receptors that are critical for their regulation, and the role of certain microRNA in influencing the brain-protective effects of progesterone. In addition, we describe evidence to support the particular importance of glia in mediating the neuroprotective effects of progesterone. Through this review of these mechanisms and our own prior published work, we offer insight into why the effects of a progestin on brain protection may be dependent on the type of progestin (e.g., progesterone versus the synthetic, medroxyprogesterone acetate) used, and age, and as such, we offer insight into the future clinical implication of progesterone treatment for such disorders that include Alzheimer's disease, stroke, and traumatic brain injury.
Collapse
Affiliation(s)
- Meharvan Singh
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | | | | | | | | |
Collapse
|
2
|
Shayestehfar M, Salari M, Karimi S, Vosough M, Memari A, Nabavi SM. Sex hormone therapy in Multiple Sclerosis: A systematic review of randomized clinical trials. J Cent Nerv Syst Dis 2024; 16:11795735231223411. [PMID: 38188227 PMCID: PMC10768623 DOI: 10.1177/11795735231223411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Background In spite of the observed immunomodulatory properties of different sex hormones on Multiple Sclerosis (MS) in different investigations, to date, there has been no study to systematically review the documents to add more powerful data to the field. Objectives Therefore, in this paper we aim to systematically review clinical and randomized controlled trials (RCT) assessing the effect of sex hormone therapies on individuals with MS. Design A comprehensive search of electronic databases including PubMed, EMBASE, and Scopus was conducted. Clinical trials and RCTs that assessed the impact of sex hormones on individuals with MS were selected and included in the systematic review. Data sources and methods In the final phase of the search strategy, 9 papers reached the criteria for entering in the systematic review. Two independent reviewers extracted the relevant data from each article according to the standardized data extraction form. Two reviewers also assessed the quality of each study independently using PEDro scale. Results We categorized three different classifications of outcomes including clinical, MRI, and immune system findings and put each measured outcome in the category which matched best. Conclusion In conclusion, the existed investigations on the effect of sex hormones on inflammatory and neurodegenerative components of MS are promising particularly in relapsing-remitting MS (RRMS).
Collapse
Affiliation(s)
- Monir Shayestehfar
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Salari
- Neuro Functional Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahedeh Karimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Amirhossein Memari
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Massood Nabavi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| |
Collapse
|
3
|
Stewart AN, Lowe JL, Glaser EP, Mott CA, Shahidehpour RK, McFarlane KE, Bailey WM, Zhang B, Gensel JC. Acute inflammatory profiles differ with sex and age after spinal cord injury. J Neuroinflammation 2021; 18:113. [PMID: 33985529 PMCID: PMC8120918 DOI: 10.1186/s12974-021-02161-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
Background Sex and age are emerging as influential variables that affect spinal cord injury (SCI) recovery. Despite a changing demographic towards older age at the time of SCI, the effects of sex or age on inflammation remain to be elucidated. This study determined the sex- and age-dependency of the innate immune response acutely after SCI. Methods Male and female mice of ages 4- and 14-month-old received T9 contusion SCI and the proportion of microglia, monocyte-derived macrophages (MDM), and neutrophils surrounding the lesion were determined at 3- and 7-day post-injury (DPI) using flow cytometry. Cell counts of microglia and MDMs were obtained using immunohistochemistry to verify flow cytometry results at 3-DPI. Microglia and MDMs were separately isolated using fluorescence-activated cell sorting (FACS) at 3-day post-injury (DPI) to assess RNA expression of 27 genes associated with activation, redox, and debris metabolism/clearance. Results Flow cytometry revealed that being female and older at the time of injury significantly increased MDMs relative to other phagocytes, specifically increasing the ratio of MDMs to microglia at 3-DPI. Cell counts using immunohistochemistry revealed that male mice have more total microglia within SCI lesions that can account for a lower MDM/microglia ratio. With NanoString analyses of 27 genes, only 1 was differentially expressed between sexes in MDMs; specifically, complement protein C1qa was increased in males. No genes were affected by age in MDMs. Only 2 genes were differentially regulated in microglia between sexes after controlling for false discovery rate, specifically CYBB (NOX2) as a reactive oxygen species (ROS)-associated marker as well as MRC1 (CD206), a gene associated with reparative phenotypes. Both genes were increased in female microglia. No microglial genes were differentially regulated between ages. Differences between microglia and MDMs were found in 26 of 27 genes analyzed, all expressed higher in MDMs with three exceptions. Specifically, C1qa, cPLA2, and CD86 were expressed higher in microglia. Conclusions These findings indicate that inflammatory responses to SCI are sex-dependent at both the level of cellular recruitment and gene expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02161-8.
Collapse
Affiliation(s)
- Andrew N Stewart
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - John L Lowe
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.,Science Honors Program of Georgetown College, Georgetown, KY, 40324, USA
| | - Ethan P Glaser
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Caitlin A Mott
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Ryan K Shahidehpour
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Katelyn E McFarlane
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - William M Bailey
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Bei Zhang
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.,Present address: Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - John C Gensel
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
4
|
Marques DA, Gargaglioni LH, Joseph V, Bretzner F, Bícego KC, Fournier S, Kinkead R. Impact of ovariectomy and CO 2 inhalation on microglia morphology in select brainstem and hypothalamic areas regulating breathing in female rats. Brain Res 2021; 1756:147276. [PMID: 33422531 DOI: 10.1016/j.brainres.2021.147276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 01/02/2021] [Indexed: 11/17/2022]
Abstract
The neural network that regulates breathing shows a significant sexual dimorphism. Ovarian hormones contribute to this distinction as, in rats, ovariectomy reduces the ventilatory response to CO2. Microglia are neuroimmune cells that are sensitive to neuroendocrine changes in their environment. When reacting to challenging conditions, these cells show changes in their morphology that reflect an augmented capacity for producing pro- and anti-inflammatory cytokines. Based on evidence suggesting that microglia contribute to sex-based differences in reflexive responses to hypercapnia, we hypothesized that ovariectomy and hypercapnia promote microglial reactivity in selected brain areas that regulate breathing. We used ionized calcium-binding-adapter molecule-1 (Iba1) immunolabeling to compare the density and morphology of microglia in the locus coeruleus (LC), the caudal medullary raphe, the caudal part of the nucleus of the tractus solitarius (cNTS), and the paraventricular nucleus of the hypothalamus (PVN). Tissue was obtained from SHAM (metaestrus) female rats or following ovariectomy. Rats were exposed to normocapnia or hypercapnia (5% CO2, 20 min). Ovariectomy and hypercapnia did not affect microglial density in any of the structures studied. Ovariectomy promoted a reactive phenotype in the cNTS and LC, as indicated by a larger morphological index. In these structures, hypercapnia had a relatively modest opposing effect; the medullary raphe or the PVN were not affected. We conclude that ovarian hormones attenuate microglial reactivity in CO2/H+ sensing structures. These data suggest that microglia may contribute to neurological diseases in which anomalies of respiratory control are associated with cyclic fluctuations of ovarian hormones or menopause.
Collapse
Affiliation(s)
- Danuzia A Marques
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada.
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Vincent Joseph
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Frédéric Bretzner
- Département de Psychiatrie et Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University, UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Stéphanie Fournier
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada
| |
Collapse
|
5
|
Breton JM, Long KLP, Barraza MK, Perloff OS, Kaufer D. Hormonal Regulation of Oligodendrogenesis II: Implications for Myelin Repair. Biomolecules 2021; 11:290. [PMID: 33669242 PMCID: PMC7919830 DOI: 10.3390/biom11020290] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Alterations in myelin, the protective and insulating sheath surrounding axons, affect brain function, as is evident in demyelinating diseases where the loss of myelin leads to cognitive and motor dysfunction. Recent evidence suggests that changes in myelination, including both hyper- and hypo-myelination, may also play a role in numerous neurological and psychiatric diseases. Protecting myelin and promoting remyelination is thus crucial for a wide range of disorders. Oligodendrocytes (OLs) are the cells that generate myelin, and oligodendrogenesis, the creation of new OLs, continues throughout life and is necessary for myelin plasticity and remyelination. Understanding the regulation of oligodendrogenesis and myelin plasticity within disease contexts is, therefore, critical for the development of novel therapeutic targets. In our companion manuscript, we review literature demonstrating that multiple hormone classes are involved in the regulation of oligodendrogenesis under physiological conditions. The majority of hormones enhance oligodendrogenesis, increasing oligodendrocyte precursor cell differentiation and inducing maturation and myelin production in OLs. Thus, hormonal treatments present a promising route to promote remyelination. Here, we review the literature on hormonal regulation of oligodendrogenesis within the context of disorders. We focus on steroid hormones, including glucocorticoids and sex hormones, peptide hormones such as insulin-like growth factor 1, and thyroid hormones. For each hormone, we describe whether they aid in OL survival, differentiation, or remyelination, and we discuss their mechanisms of action, if known. Several of these hormones have yielded promising results in both animal models and in human conditions; however, a better understanding of hormonal effects, interactions, and their mechanisms will ultimately lead to more targeted therapeutics for myelin repair.
Collapse
Affiliation(s)
- Jocelyn M Breton
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Kimberly L P Long
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Matthew K Barraza
- Molecular and Cellular Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Olga S Perloff
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA
- Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Canadian Institute for Advanced Research, Toronto, ON M5G1M1, Canada
| |
Collapse
|
6
|
Naffaa V, Laprévote O, Schang AL. Effects of endocrine disrupting chemicals on myelin development and diseases. Neurotoxicology 2020; 83:51-68. [PMID: 33352275 DOI: 10.1016/j.neuro.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In the central and peripheral nervous systems, myelin is essential for efficient conduction of action potentials. During development, oligodendrocytes and Schwann cells differentiate and ensure axon myelination, and disruption of these processes can contribute to neurodevelopmental disorders. In adults, demyelination can lead to important disabilities, and recovery capacities by remyelination often decrease with disease progression. Among environmental chemical pollutants, endocrine disrupting chemicals (EDCs) are of major concern for human health and are notably suspected to participate in neurodevelopmental and neurodegenerative diseases. In this review, we have combined the current knowledge on EDCs impacts on myelin including several persistent organic pollutants, bisphenol A, triclosan, heavy metals, pesticides, and nicotine. Besides, we presented several other endocrine modulators, including pharmaceuticals and the phytoestrogen genistein, some of which are candidates for treating demyelinating conditions but could also be deleterious as contaminants. The direct impacts of EDCs on myelinating cells were considered as well as their indirect consequences on myelin, particularly on immune mechanisms associated with demyelinating conditions. More studies are needed to describe the effects of these compounds and to further understand the underlying mechanisms in relation to the potential for endocrine disruption.
Collapse
Affiliation(s)
- Vanessa Naffaa
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Laprévote
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 20 rue Leblanc, 75015 Paris, France.
| | - Anne-Laure Schang
- Université de Paris, UMR 1153 (CRESS), Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
7
|
Mallah K, Couch C, Borucki DM, Toutonji A, Alshareef M, Tomlinson S. Anti-inflammatory and Neuroprotective Agents in Clinical Trials for CNS Disease and Injury: Where Do We Go From Here? Front Immunol 2020; 11:2021. [PMID: 33013859 PMCID: PMC7513624 DOI: 10.3389/fimmu.2020.02021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Neurological disorders are major contributors to death and disability worldwide. The pathology of injuries and disease processes includes a cascade of events that often involve molecular and cellular components of the immune system and their interaction with cells and structures within the central nervous system. Because of this, there has been great interest in developing neuroprotective therapeutic approaches that target neuroinflammatory pathways. Several neuroprotective anti-inflammatory agents have been investigated in clinical trials for a variety of neurological diseases and injuries, but to date the results from the great majority of these trials has been disappointing. There nevertheless remains great interest in the development of neuroprotective strategies in this arena. With this in mind, the complement system is being increasingly discussed as an attractive therapeutic target for treating brain injury and neurodegenerative conditions, due to emerging data supporting a pivotal role for complement in promoting multiple downstream activities that promote neuroinflammation and degeneration. As we move forward in testing additional neuroprotective and immune-modulating agents, we believe it will be useful to review past trials and discuss potential factors that may have contributed to failure, which will assist with future agent selection and trial design, including for complement inhibitors. In this context, we also discuss inhibition of the complement system as a potential neuroprotective strategy for neuropathologies of the central nervous system.
Collapse
Affiliation(s)
- Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Christine Couch
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Davis M. Borucki
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Amer Toutonji
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Mohammed Alshareef
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Ralph Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
8
|
Stewart AN, MacLean SM, Stromberg AJ, Whelan JP, Bailey WM, Gensel JC, Wilson ME. Considerations for Studying Sex as a Biological Variable in Spinal Cord Injury. Front Neurol 2020; 11:802. [PMID: 32849242 PMCID: PMC7419700 DOI: 10.3389/fneur.2020.00802] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
In response to NIH initiatives to investigate sex as a biological variable in preclinical animal studies, researchers have increased their focus on male and female differences in neurotrauma. Inclusion of both sexes when modeling neurotrauma is leading to the identification of novel areas for therapeutic and scientific exploitation. Here, we review the organizational and activational effects of sex hormones on recovery from injury and how these changes impact the long-term health of spinal cord injury (SCI) patients. When determining how sex affects SCI it remains imperative to expand outcomes beyond locomotor recovery and consider other complications plaguing the quality of life of patients with SCI. Interestingly, the SCI field predominately utilizes female rodents for basic science research which contrasts most other male-biased research fields. We discuss the unique caveats this creates to the translatability of preclinical research in the SCI field. We also review current clinical and preclinical data examining sex as biological variable in SCI. Further, we report how technical considerations such as housing, size, care management, and age, confound the interpretation of sex-specific effects in animal studies of SCI. We have uncovered novel findings regarding how age differentially affects mortality and injury-induced anemia in males and females after SCI, and further identified estrus cycle dysfunction in mice after injury. Emerging concepts underlying sexually dimorphic responses to therapy are also discussed. Through a combination of literature review and primary research observations we present a practical guide for considering and incorporating sex as biological variable in preclinical neurotrauma studies.
Collapse
Affiliation(s)
- Andrew N Stewart
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Steven M MacLean
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Arnold J Stromberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| | - Jessica P Whelan
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - William M Bailey
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - John C Gensel
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Melinda E Wilson
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
9
|
Yilmaz C, Karali K, Fodelianaki G, Gravanis A, Chavakis T, Charalampopoulos I, Alexaki VI. Neurosteroids as regulators of neuroinflammation. Front Neuroendocrinol 2019; 55:100788. [PMID: 31513776 DOI: 10.1016/j.yfrne.2019.100788] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/12/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Neuroinflammation is a physiological protective response in the context of infection and injury. However, neuroinflammation, especially if chronic, may also drive neurodegeneration. Neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and traumatic brain injury (TBI), display inflammatory activation of microglia and astrocytes. Intriguingly, the central nervous system (CNS) is a highly steroidogenic environment synthesizing steroids de novo, as well as metabolizing steroids deriving from the circulation. Neurosteroid synthesis can be substantially affected by neuroinflammation, while, in turn, several steroids, such as 17β-estradiol, dehydroepiandrosterone (DHEA) and allopregnanolone, can regulate neuroinflammatory responses. Here, we review the role of neurosteroids in neuroinflammation in the context of MS, AD, PD and TBI and describe underlying molecular mechanisms. Moreover, we introduce the concept that synthetic neurosteroid analogues could be potentially utilized for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Canelif Yilmaz
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Kanelina Karali
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Georgia Fodelianaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas, Heraklion, Greece
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
| |
Collapse
|
10
|
Intracochlear administration of steroids with a catheter during human cochlear implantation: a safety and feasibility study. Drug Deliv Transl Res 2018; 8:1191-1199. [PMID: 29761349 DOI: 10.1007/s13346-018-0539-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Suppression of foreign body reaction, improvement of electrode-nerve interaction, and preservation of residual hearing are essential research topics in cochlear implantation. Intracochlear pharmaco- or cell-based therapies can open new horizons in this field. Local drug delivery strategies are desirable as higher local concentrations of agents can be realized and side effects can be minimized compared to systemic administrations. When administered locally at accessible, basal parts of the cochlea, drugs reach apical regions later and in much lower concentrations due to poor diffusion patterns in cochlear fluids. Therefore, new devices are needed to warrant rapid distribution of agents into all parts of the cochlea. Five patients received a deep intracochlear injection of triamcinolone with a specifically designed cochlear catheter during cochlear implantation right before inserting a cochlear implant electrode. As a measure for formation of fibrous tissue around the electrode, electrical impedances were measured in the operation room and over 4 months thereafter. No adverse events were observed peri- and postoperatively. The handling of the device was easy. Severe damage to the microstructure of the cochlea was excluded as far as possible by cone beam computed tomography and vestibular testing. A delayed rise of the impedances was seen in the catheter group compared to controls over all regions of the cochlea. A statistical significance, however, was only obtained at the midregion of the cochlea. Consequently, the cochlear catheter is a safe and feasible device for local drug delivery of pharmaceutical agents into deeper regions of the cochlea.
Collapse
|
11
|
Single Intravenous High Dose Administration of Prednisolone Has No Influence on Postoperative Impedances in the Majority of Cochlear Implant Patients. Otol Neurotol 2018; 39:e1002-e1009. [DOI: 10.1097/mao.0000000000002033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Jeon SW, Kim YK. The role of neuroinflammation and neurovascular dysfunction in major depressive disorder. J Inflamm Res 2018; 11:179-192. [PMID: 29773951 PMCID: PMC5947107 DOI: 10.2147/jir.s141033] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although depression has generally been explained with monoamine theory, it is far more multifactorial, and therapies that address the disease’s pathway have not been developed. In this context, an understanding of neuroinflammation and neurovascular dysfunction would enable a more comprehensive approach to depression. Inflammation is in a sense a type of allostatic load involving the immune, endocrine, and nervous systems. Neuroinflammation is involved in the pathophysiology of depression by increasing proinflammatory cytokines, activating the hypothalamus–pituitary–adrenal axis, increasing glucocorticoid resistance, and affecting serotonin synthesis and metabolism, neuronal apoptosis and neurogenesis, and neuroplasticity. In future, identifying the subtypes of depression with increased vulnerability to inflammation and testing the effects of inflammatory modulating agents in these patient groups through clinical trials will lead to more concrete conclusions on the matter. The vascular depression hypothesis is supported by evidence for the association between vascular disease and late-onset depression and between ischemic brain lesions and distinctive depressive symptoms. Vascular depression may be the entity most suitable for studies of the mechanisms of depression. Pharmacotherapies used in the prevention and treatment of cerebrovascular disease may help prevent vascular depression. In future, developments in structural and functional imaging, electrophysiology, chronobiology, and genetics will reveal the association between depression and brain lesions. This article aims to give a general review of the existing issues examined in the literature pertaining to depression-related neuroinflammatory and vascular functions, related pathophysiology, applicability to depression treatment, and directions for future research.
Collapse
Affiliation(s)
- Sang Won Jeon
- Department of Psychiatry, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| |
Collapse
|
13
|
Larson TA. Sex Steroids, Adult Neurogenesis, and Inflammation in CNS Homeostasis, Degeneration, and Repair. Front Endocrinol (Lausanne) 2018; 9:205. [PMID: 29760681 PMCID: PMC5936772 DOI: 10.3389/fendo.2018.00205] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 01/16/2023] Open
Abstract
Sex steroidal hormones coordinate the development and maintenance of tissue architecture in many organs, including the central nervous systems (CNS). Within the CNS, sex steroids regulate the morphology, physiology, and behavior of a wide variety of neural cells including, but not limited to, neurons, glia, endothelial cells, and immune cells. Sex steroids spatially and temporally control distinct molecular networks, that, in turn modulate neural activity, synaptic plasticity, growth factor expression and function, nutrient exchange, cellular proliferation, and apoptosis. Over the last several decades, it has become increasingly evident that sex steroids, often in conjunction with neuroinflammation, have profound impact on the occurrence and severity of neuropsychiatric and neurodegenerative disorders. Here, I review the foundational discoveries that established the regulatory role of sex steroids in the CNS and highlight recent advances toward elucidating the complex interaction between sex steroids, neuroinflammation, and CNS regeneration through adult neurogenesis. The majority of recent work has focused on neuroinflammatory responses following acute physical damage, chronic degeneration, or pharmacological insult. Few studies directly assess the role of immune cells in regulating adult neurogenesis under healthy, homeostatic conditions. As such, I also introduce tractable, non-traditional models for examining the role of neuroimmune cells in natural neuronal turnover, seasonal plasticity of neural circuits, and extreme CNS regeneration.
Collapse
Affiliation(s)
- Tracy A. Larson
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
14
|
Saraceno GE, Bellini MJ, Garcia-Segura LM, Capani F. Estradiol Activates PI3K/Akt/GSK3 Pathway Under Chronic Neurodegenerative Conditions Triggered by Perinatal Asphyxia. Front Pharmacol 2018; 9:335. [PMID: 29686616 PMCID: PMC5900006 DOI: 10.3389/fphar.2018.00335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/22/2018] [Indexed: 11/24/2022] Open
Abstract
Perinatal asphyxia (PA) remains as one of the most important causes of short-term mortality, psychiatric and neurological disorders in children, without an effective treatment. In previous studies we have observed that the expression of different neurodegenerative markers increases in CA1 hippocampal area of 4-months-old male rats born by cesarean section and exposed for 19 min to PA. We have also shown that a late treatment with 17β estradiol (daily dose of 250 μg/kg for 3 days) was able to revert the brain alterations observed in those animals. Based on these previous results, the main aim of the present study was to explore the mechanism by which the estrogenic treatment is involved in the reversion of the chronic neurodegenerative conditions induced by PA. We demonstrated that estradiol treatment of adult PA exposed animals induced an increase in estrogen receptor (ER) α and insulin-like growth factor receptor (IGF-1R) protein levels, an activation of the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3 beta/β-catenin signaling pathway and an increase in Bcl-2/Bax ratio in the hippocampus in comparison to PA exposed animals treated with vehicle. Taking together, our data suggest that the interaction between ERα and IGF-IR, with the subsequent downstream activation, underlies the beneficial effects of estradiol observed in late treatment of PA.
Collapse
Affiliation(s)
- G Ezequiel Saraceno
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini", Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina.,Interdisciplinary Institute for Neuroscience, Centre Broca Nouvelle-Aquitaine, UMR 5297, Université de Bordeaux, Bordeaux, France
| | - Maria J Bellini
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Nacional de Investigaciones Científicas y Técnicas, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Capani
- Laboratorio de Citoarquitectura y Plasticidad Neuronal, Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini", Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina.,Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
15
|
Habib P, Dreymueller D, Rösing B, Botung H, Slowik A, Zendedel A, Habib S, Hoffmann S, Beyer C. Estrogen serum concentration affects blood immune cell composition and polarization in human females under controlled ovarian stimulation. J Steroid Biochem Mol Biol 2018; 178:340-347. [PMID: 29448043 DOI: 10.1016/j.jsbmb.2018.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 12/24/2022]
Abstract
Estrogens modulate the immune system and possess anti-inflammatory properties. In line, immune cells express a variety of estrogen receptors (ER) including ER-alpha and -beta. In the present study, we examined the influence of 17beta-estradiol (E2) serum concentrations on blood leukocyte composition and their ex vivo polarization/activation status by FACS analysis in sub-fertile human females under controlled ovarian stimulation (COS). Using a set of cell-type and polarization-specific markers, we demonstrate that increased 17ß-estradiol (E2) serum concentrations yield an overall increase in leukocytes, neutrophils and monocytes but decreased lymphocytes. There was a clear ratio shift towards an increase in M2 monocytes with a protective quality and an increase in T-helper cells compared to a decrease in cytotoxic T-cells. These data support experimental findings and clinical trials, i.e. related to multiple sclerosis and other autoimmune-related diseases, that have shown a down-regulation of CD8(+) T cells and up-regulation of T-regulatory cells. Further studies have to pinpoint to which extent the immune system/-responsiveness of otherwise healthy female patients is affected by medium-term systemic E2 variations.
Collapse
Affiliation(s)
- Pardes Habib
- Department of Neurology, Institute of Neuroanatomy, Medical Clinic, RWTH Aachen University, 52074 Aachen, Germany
| | - Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Medical Clinic, RWTH Aachen University, 52074 Aachen, Germany
| | - Benjamin Rösing
- Clinic for Gynecological Endocrinology and Reproductive Medicine, RWTH Aachen University Clinics, 52074 Aachen, Germany
| | - Hannes Botung
- Institute of Neuroanatomy, Medical Clinic, RWTH Aachen University, 52074 Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Medical Clinic, RWTH Aachen University, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Medical Clinic, RWTH Aachen University, 52074 Aachen, Germany
| | - Shahin Habib
- Medical Biochemistry, Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Stefanie Hoffmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Clinic, RWTH Aachen University, 52074 Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Medical Clinic, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
16
|
Slowik A, Lammerding L, Hoffmann S, Beyer C. Brain inflammasomes in stroke and depressive disorders: Regulation by oestrogen. J Neuroendocrinol 2018; 30. [PMID: 28477436 DOI: 10.1111/jne.12482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 12/28/2022]
Abstract
Neuroinflammation is a devastating pathophysiological process that results in brain damage and neuronal death. Pathogens, cell fragments and cellular dysfunction trigger inflammatory responses. Irrespective of the cause, inflammasomes are key intracellular multiprotein signalling platforms that sense neuropathological conditions. The activation of inflammasomes leads to the auto-proteolytic cleavage of caspase-1, resulting in the proteolysis of the pro-inflammatory cytokines interleukin (IL)1β and IL18 into their bioactive forms. It also initiates pyroptosis, a type of cell death. The two cytokines contribute to the pathogenesis in acute and chronic brain diseases and also play a central role in human aging and psychiatric disorders. Sex steroids, in particular oestrogens, are well-described neuroprotective agents in the central nervous system. Oestrogens improve the functional outcome after ischaemia and traumatic brain injury, reduce neuronal death in Parkinson's and Alzheimer's disease, as well as in amyotrophic lateral sclerosis, attenuate glutamate excitotoxicity and the formation of radical oxygen species, and lessen the spread of oedema after damage. Moreover, oestrogens alleviate menopause-related depressive symptoms and have a positive influence on depressive disorders probably by influencing growth factor production and serotonergic brain circuits. Recent evidence also suggests that inflammasome signalling affects anxiety- and depressive-like behaviour and that oestrogen ameliorates depression-like behaviour through the suppression of inflammasomes. In the present review, we highlight the most recent findings demonstrating that oestrogens selectively suppress the activation of the neuroinflammatory cascade in the brain in acute and chronic brain disease models. Furthermore, we aim to describe putative regulatory signalling pathways involved in the control of inflammasomes. Finally, we consider that psychiatric disorders such as depression also contain an inflammatory component that could be modulated by oestrogen.
Collapse
Affiliation(s)
- A Slowik
- Medical Faculty, Institute of Neuroanatomy, RWTH Aachen, Aachen, Germany
| | - L Lammerding
- Medical Faculty, Institute of Neuroanatomy, RWTH Aachen, Aachen, Germany
| | - S Hoffmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
- JARA - Translational Brain Medicine, Aachen, Germany
| | - C Beyer
- Medical Faculty, Institute of Neuroanatomy, RWTH Aachen, Aachen, Germany
- JARA - Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
17
|
Taleb O, Patte-Mensah C, Meyer L, Kemmel V, Geoffroy P, Miesch M, Mensah-Nyagan AG. Evidence for effective structure-based neuromodulatory effects of new analogues of neurosteroid allopregnanolone. J Neuroendocrinol 2018; 30. [PMID: 29265686 DOI: 10.1111/jne.12568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
Abstract
The neurosteroid allopregnanolone (AP) modulates neuroendocrine/neurobiological processes, including hypothalamic-pituitary-adrenocortical activities, pain, anxiety, neurogenesis and neuroprotection. These observations raised the hope of developing AP-based therapies against neuroendocrine and/or neurodegenerative disorders. However, the pleiotropic actions of AP, particularly its cell-proliferation-promoting effects, hamper the development of selective/targeted therapies. For example, although AP-induced neurogenesis may serve to compensate neuronal loss in degenerative brains, AP-evoked cell-proliferation is contraindicated for steroid-sensitive cancer patients. To foster progress, we synthesised 4 novel AP analogues of neurosteroids (ANS) designated BR053 (12-oxo-epi-AP), BR297 (O-allyl-epi-AP), BR351 (O-allyl-AP) and BR338 (12-oxo-AP). First, because AP is well-known as allosteric modulator of GABAA receptors (GABAA-R), we used the electrophysiological patch-clamp technique to determine the structure-activity relationship of our ANS on GABAA-activated current in NCB20 cells expressing functional GABAA-R. We found that the addition of 12-oxo-group did not significantly change the respective positive or negative allosteric effects of 3α-AP or 3β-(epi)-AP analogues. Importantly, substitution of the 3α-hydroxyl-group by 3α-O-allyl highly modified the ANS activities. Unlike AP, BR351 induced a long-lasting desensitisation/inhibition of GABAA-R. Interestingly, replacement of the 3β-hydroxyl by 3β-O-allyl (BR297) completely reversed the activity from negative to positive allosteric action. In a second step, we compared the actions of AP and ANS on SH-SY5Y neuronal cell viability/proliferation using MTT-reduction assays. Different dose-response curves were demonstrated for AP and the ANS. By contrast to AP, BR297 was totally devoid of cell-proliferative effect. Finally, we compared AP and ANS abilities to protect against oxidative stress-induced neuronal death pivotally involved in neurodegenerative diseases. Both BR351 and BR297 had notable advantages over AP in protecting SH-SY5Y cells against oxidative stress-induced death. Thus, BR297 appears to be a potent neuroprotective compound devoid of cell-proliferative activity. Altogether, our results suggest promising perspectives for the development of neurosteroid-based selective and effective strategies against neuroendocrine and/or neurodegenerative disorders.
Collapse
Affiliation(s)
- O Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - C Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - L Meyer
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - V Kemmel
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - P Geoffroy
- Laboratoire de Chimie Organique Synthétique, UMR 7177, Institut de Chimie de l'Université de Strasbourg, Strasbourg, France
| | - M Miesch
- Laboratoire de Chimie Organique Synthétique, UMR 7177, Institut de Chimie de l'Université de Strasbourg, Strasbourg, France
| | - A-G Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
18
|
Singh SK, Prasad KN, Singh AK, Gupta KK, Singh A, Tripathi M, Gupta RK. Adhesion molecules, chemokines and matrix metallo-proteinases response after albendazole and albendazole plus steroid therapy in swine neurocysticercosis. Exp Parasitol 2017; 182:1-8. [DOI: 10.1016/j.exppara.2017.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 06/23/2017] [Accepted: 08/13/2017] [Indexed: 01/15/2023]
|
19
|
Bansal R, Singh R. Exploring the potential of natural and synthetic neuroprotective steroids against neurodegenerative disorders: A literature review. Med Res Rev 2017; 38:1126-1158. [PMID: 28697282 DOI: 10.1002/med.21458] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/01/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022]
Abstract
Neurodegeneration is a complex process, which leads to progressive brain damage due to loss of neurons. Despite exhaustive research, the cause of neuronal loss in various degenerative disorders is not entirely understood. Neuroprotective steroids constitute an important line of attack, which could play a major role against the common mechanisms associated with various neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Natural endogenous steroids induce the neuroprotection by protecting the nerve cells from neuronal injury through multiple mechanisms, therefore the structural modifications of the endogenous steroids could be helpful in the generation of new therapeutically useful neuroprotective agents. The review article will keep the readers apprised of the detailed description of natural as well as synthetic neuroprotective steroids from the medicinal chemistry point of view, which would be helpful in drug discovery efforts aimed toward neurodegenerative diseases.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ranjit Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
20
|
Afraei S, D’Aniello A, Sedaghat R, Ekhtiari P, Azizi G, Tabrizian N, Magliozzi L, Aghazadeh Z, Mirshafiey A. Therapeutic effects of D-aspartate in a mouse model of multiple sclerosis. J Food Drug Anal 2017; 25:699-708. [PMID: 28911655 PMCID: PMC9328824 DOI: 10.1016/j.jfda.2016.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/21/2016] [Accepted: 10/30/2016] [Indexed: 11/30/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis. EAE is mainly mediated by adaptive and innate immune responses that leads to an inflammatory demyelization and axonal damage. The aim of the present research was to examine the therapeutic efficacy of D-aspartic acid (D-Asp) on a mouse EAE model. EAE induction was performed in female C57BL/6 mice by myelin 40 oligodendrocyte glycoprotein (35-55) in a complete Freund's adjuvant emulsion, and D-Asp was used to test its efficiency in the reduction of EAE. During the course of study, clinical evaluation was assessed, and on Day 21, post-immunization blood samples were taken from the heart of mice for the evaluation of interleukin 6 and other chemical molecules. The mice were sacrificed, and their brain and cerebellum were removed for histological analysis. Our findings indicated that D-Asp had beneficial effects on EAE by attenuation in the severity and delay in the onset of the disease. Histological analysis showed that treatment with D-Asp can reduce inflammation. Moreover, in D-Asp-treated mice, the serum level of interleukin 6 was significantly lower than that in control animals, whereas the total antioxidant capacity was significantly higher. The data indicates that D-Asp possess neuroprotective property to prevent the onset of the multiple sclerosis.
Collapse
Affiliation(s)
- Sanaz Afraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran,
Iran
| | - Antimo D’Aniello
- Laboratory of Neurobiology, Zoological Station of Naples “Anton Dohrn”, Villa Comunale, Napoli,
Italy
| | - Reza Sedaghat
- Departments of Anatomy and Pathology, Faculty of Medicine, Shahed University, Tehran,
Iran
| | - Parvin Ekhtiari
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran,
Iran
| | - Gholamreza Azizi
- Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj,
Iran
- Research Centre for Immunodeficiencies, Pediatrics Centre of Excellence, Children's Medical Centre, Tehran University of Medical Sciences, Tehran,
Iran
| | - Nakisa Tabrizian
- Department of Cellular and Molecular Biology, Kish International Campus, University of Tehran, Tehran,
Iran
| | - Laura Magliozzi
- Department of Biology, University of Naples, “Federico II” Via Cinthia, MSA Campus, bldg. 7, Naples,
Italy
| | - Zahra Aghazadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran,
Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran,
Iran
| |
Collapse
|
21
|
Zendedel A, Mönnink F, Hassanzadeh G, Zaminy A, Ansar MM, Habib P, Slowik A, Kipp M, Beyer C. Estrogen Attenuates Local Inflammasome Expression and Activation after Spinal Cord Injury. Mol Neurobiol 2017; 55:1364-1375. [PMID: 28127698 DOI: 10.1007/s12035-017-0400-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
17-estradiol (E2) is a neuroprotective hormone with a high anti-inflammatory potential in different neurological disorders. The inflammatory response initiated by spinal cord injury (SCI) involves the processing of interleukin-1beta (IL-1b) and IL-18 mediated by caspase-1 which is under the control of an intracellular multiprotein complex called inflammasome. We recently described in a SCI model that between 24 and 72 h post-injury, most of inflammasome components including IL-18, IL-1b, NLRP3, ASC, and caspase-1 are upregulated. In this study, we investigated the influence of E2 treatment after spinal cord contusion on inflammasome regulation. After contusion of T9 spinal segment, 12-week-old male Wistar rats were treated subcutaneously with E2 immediately after injury and every 12 h for the next 3 days. Behavioral scores were significantly improved in E2-treated animals compared to vehicle-treated groups. Functional improvement in E2-treated animals was paralleled by the attenuated expression of certain inflammasome components such as ASC, NLRP1b, and NLRP3 together with IL1b, IL-18, and caspase-1. On the histopathological level, microgliosis and oligodendrocyte injury was ameliorated. These findings support and extend the knowledge of the E2-mediated neuroprotective function during SCI. The control of the inflammasome machinery by E2 might be a missing piece of the puzzle to understand the anti-inflammatory potency of E2.
Collapse
Affiliation(s)
- Adib Zendedel
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.,Giulan Neuroscience Research Center, Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fabian Mönnink
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Arash Zaminy
- Giulan Neuroscience Research Center, Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Malek Masoud Ansar
- Giulan Neuroscience Research Center, Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pardes Habib
- Department of Neurology, RWTH Aachen, 52074, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Markus Kipp
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.,JARA-Brain, 52074, Aachen, Germany
| |
Collapse
|
22
|
Bethea CL, Reddy AP, Christian FL. How Studies of the Serotonin System in Macaque Models of Menopause Relate to Alzheimer's Disease1. J Alzheimers Dis 2017; 57:1001-1015. [PMID: 27662311 PMCID: PMC5575917 DOI: 10.3233/jad-160601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Serotonin plays a key role in mood or affect, and dysfunction of the serotonin system has been linked to depression in humans and animal models. Depression appears prior to or coincident with overt symptoms of Alzheimer's disease (AD) in about 50% of patients, and some experts consider it a risk factor for the development of AD. In addition, AD is more prevalent in women, who also show increased incidence of depression. Indeed, it has been proposed that mechanisms underlying depression overlap the mechanisms thought to hasten AD. Women undergo ovarian failure and cessation of ovarian steroid production in middle age and the postmenopausal period correlates with an increase in the onset of depression and AD. This laboratory has examined the many actions of ovarian steroids in the serotonin system of non-human primates using a rhesus macaque model of surgical menopause with short or long-term estradiol (E) or estradiol plus progesterone (E+P) replacement therapy. In this mini-review, we present a brief synopsis of the relevant literature concerning AD, depression, and serotonin. We also present some of our data on serotonin neuron viability, the involvement of the caspase-independent pathway, and apoptosis-inducing factor in serotonin-neuron viability, as well as gene expression related to neurodegeneration and neuron viability in serotonin neurons from adult and aged surgical menopausal macaques. We show that ovarian steroids, particularly E, are crucial for serotonin neuron function and health. In the absence of E, serotonin neurons are endangered and deteriorating toward apoptosis. The possibility that this scenario may proceed or accompany AD in postmenopausal women seems likely.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97229 and Department of Obstetrics and Gynecology, Oregon Health and Sciences University, Portland, OR 97239
| | - Arubala P Reddy
- Department of Internal Medicine, Texas Tech Health Science Center, Lubbock, Texas 79430
| | - Fernanda Lima Christian
- Federal University of Santa Catarina, Center of Biological Sciences, Department of Physiological Sciences, Florianópolis, SC - Brazil 88040-900
| |
Collapse
|
23
|
Selvaraj V, Tu LN. Current status and future perspectives: TSPO in steroid neuroendocrinology. J Endocrinol 2016; 231:R1-R30. [PMID: 27422254 DOI: 10.1530/joe-16-0241] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
The mitochondrial translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), has received significant attention both as a diagnostic biomarker and as a therapeutic target for different neuronal disease pathologies. Recently, its functional basis believed to be mediating mitochondrial cholesterol import for steroid hormone production has been refuted by studies examining both in vivo and in vitro genetic Tspo-deficient models. As a result, there now exists a fundamental gap in the understanding of TSPO function in the nervous system, and its putative pharmacology in neurosteroid production. In this review, we discuss several recent findings in steroidogenic cells that are in direct contradiction to previous studies, and necessitate a re-examination of the purported role for TSPO in de novo neurosteroid biosynthesis. We critically examine the pharmacological effects of different TSPO-binding drugs with particular focus on studies that measure neurosteroid levels. We highlight the basis of key misconceptions regarding TSPO that continue to pervade the literature, and the need for interpretation with caution to avoid negative impacts. We also summarize the emerging perspectives that point to new directions that need to be investigated for understanding the molecular function of TSPO, only after which the true potential of this therapeutic target in medicine may be realized.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Department of Animal ScienceCornell University, Ithaca, New York, USA
| | - Lan N Tu
- Department of Animal ScienceCornell University, Ithaca, New York, USA
| |
Collapse
|
24
|
Paulukat L, Frintrop L, Liesbrock J, Heussen N, Johann S, Exner C, Kas MJ, Tolba R, Neulen J, Konrad K, Herpertz-Dahlmann B, Beyer C, Seitz J. Memory impairment is associated with the loss of regular oestrous cycle and plasma oestradiol levels in an activity-based anorexia animal model. World J Biol Psychiatry 2016; 17:274-84. [PMID: 27160428 DOI: 10.3109/15622975.2016.1173725] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Patients with anorexia nervosa (AN) suffer from neuropsychological deficits including memory impairments. Memory partially depends on 17β-oestradiol (E2), which is reduced in patients with AN. We assessed whether memory functions correlate with E2 plasma levels in the activity-based anorexia (ABA) rat model. METHODS Nine 4-week-old female Wistar rats were sacrificed directly after weight loss of 20-25% (acute starvation), whereas 17 animals had additional 2-week weight-holding (chronic starvation). E2 serum levels and novel object recognition tasks were tested before and after starvation and compared with 21 normally fed controls. RESULTS Starvation disrupted menstrual cycle and impaired memory function, which became statistically significant in the chronic state (oestrous cycle (P < 0.001), E2 levels (P = 0.011) and object recognition memory (P = 0.042) compared to controls). E2 reduction also correlated with the loss of memory in the chronic condition (r = 0.633, P = 0.020). CONCLUSIONS Our results demonstrate that starvation reduces the E2 levels which are associated with memory deficits in ABA rats. These effects might explain reduced memory capacity in patients with AN as a consequence of E2 deficiency and the potentially limited effectiveness of psychotherapeutic interventions in the starved state. Future studies should examine whether E2 substitution could prevent cognitive deficits and aid in earlier readiness for therapy.
Collapse
Affiliation(s)
- Lisa Paulukat
- a Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital Aachen, RWTH Aachen University , Aachen , Germany ;,b Institute of Neuroanatomy , RWTH Aachen University , Aachen , Germany
| | - Linda Frintrop
- b Institute of Neuroanatomy , RWTH Aachen University , Aachen , Germany
| | - Johanna Liesbrock
- a Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital Aachen, RWTH Aachen University , Aachen , Germany ;,b Institute of Neuroanatomy , RWTH Aachen University , Aachen , Germany
| | - Nicole Heussen
- c Department of Medical Statistics , University Hospital Aachen, RWTH Aachen University , Aachen , Germany
| | - Sonja Johann
- b Institute of Neuroanatomy , RWTH Aachen University , Aachen , Germany
| | - Cornelia Exner
- d Department of Animal Physiology , Philipps-University Marburg , Marburg , Germany
| | - Martien J Kas
- e Department of Translational Neuroscience, Brain Center Rudolf Magnus , University Medical Center Utrecht , Utrecht , the Netherlands
| | - Rene Tolba
- f Institute for Laboratory Animal Science and Experimental Surgery , University Hospital Aachen, RWTH Aachen University , Aachen , Germany
| | - Joseph Neulen
- g Department of Gynecological Endocrinology and Reproductive Medicine , University Hospital, RWTH Aachen University , Aachen , Germany
| | - Kerstin Konrad
- a Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital Aachen, RWTH Aachen University , Aachen , Germany
| | - Beate Herpertz-Dahlmann
- a Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital Aachen, RWTH Aachen University , Aachen , Germany
| | - Cordian Beyer
- b Institute of Neuroanatomy , RWTH Aachen University , Aachen , Germany
| | - Jochen Seitz
- a Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital Aachen, RWTH Aachen University , Aachen , Germany
| |
Collapse
|
25
|
Orefice N, Carotenuto A, Mangone G, Bues B, Rehm R, Cerillo I, Saccà F, Calignano A, Orefice G. Assessment of neuroactive steroids in cerebrospinal fluid comparing acute relapse and stable disease in relapsing-remitting multiple sclerosis. J Steroid Biochem Mol Biol 2016; 159:1-7. [PMID: 26892094 DOI: 10.1016/j.jsbmb.2016.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022]
Abstract
Previous studies have reported an involvement of neuroactive steroids as neuroprotective and anti-inflammatory agents in neurological disorders such as multiple sclerosis (MS); an analysis of their profile during a specific clinical phase of MS is largely unknown. The pregnenolone (PREG), dehydroepiandrosterone (DHEA), and allopregnanolone (ALLO) profile was evaluated in cerebrospinal fluid (CSF) in relapsing-remitting multiple sclerosis (RR-MS) patients as well as those in patients affected by non-inflammatory neurological (control group I) and without neurological disorders (control group II). An increase of PREG and DHEA values was shown in CSF of male and female RR-MS patients compared to those observed in both control groups. The ALLO values were significantly lower in female RR-MS patients than those found in male RR-MS patients and in female without neurological disorder. During the clinical relapse, we observed female RR-MS patients showing significantly increased PREG values compared to female RR-MS patients in stable phase, while their ALLO values showed a significant decrease compared to male RR-MS patients of the same group. Male RR-MS patients with gadolinium-enhanced lesions showed PREG and DHEA values higher than those found in female RR-MS patients with gadolinium-enhanced lesions. Similary, male RR-MS patients with gadolinium-enhanced lesions showed PREG and DHEA values higher than male without gadolinium-enhanced lesions. Female RR-MS patients with gadolinium-enhanced lesions showed DHEA values higher than those found in female RR-MS patients with gadolinium-enhanced lesions. Male and female RR-MS patients with gadolinium-enhanced lesions showed ALLO values higher than those found in respective gender groups without gadolinium-enhanced lesions. ALLO values were lower in male than in female RR-MS patients without gadolinium-enhanced lesions. Considering the pharmacological properties of neuroactive steroids and the observation that neurological disorders influence their concentrations, these endogenous compounds may have an important role as prognostic factors of the disease and used as markers of MS activity such as relapses.
Collapse
Affiliation(s)
- Ns Orefice
- Department of Pharmacy, "Federico II" University, Naples, Italy.
| | - A Carotenuto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| | - G Mangone
- Clinical Investigation Center for Neurosciences, Pitié-Salpêtrière Hospital, Paris, France.
| | - B Bues
- University Medical Center, Göttingen, Germany.
| | - R Rehm
- University Medical Center, Göttingen, Germany.
| | - I Cerillo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| | - F Saccà
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| | - A Calignano
- Department of Pharmacy, "Federico II" University, Naples, Italy.
| | - G Orefice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy.
| |
Collapse
|
26
|
Harlow DE, Honce JM, Miravalle AA. Remyelination Therapy in Multiple Sclerosis. Front Neurol 2015; 6:257. [PMID: 26696956 PMCID: PMC4674562 DOI: 10.3389/fneur.2015.00257] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/23/2015] [Indexed: 01/10/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder of the central nervous system that results in destruction of the myelin sheath that surrounds axons and eventual neurodegeneration. Current treatments approved for the treatment of relapsing forms of MS target the aberrant immune response and successfully reduce the severity of attacks and frequency of relapses. Therapies are still needed that can repair damage particularly for the treatment of progressive forms of MS for which current therapies are relatively ineffective. Remyelination can restore neuronal function and prevent further neuronal loss and clinical disability. Recent advancements in our understanding of the molecular and cellular mechanisms regulating myelination, as well as the development of high-throughput screens to identify agents that enhance myelination, have lead to the identification of many potential remyelination therapies currently in preclinical and early clinical development. One problem that has plagued the development of treatments to promote remyelination is the difficulty in assessing remyelination in patients with current imaging techniques. Powerful new imaging technologies are making it easier to discern remyelination in patients, which is critical for the assessment of these new therapeutic strategies during clinical trials. This review will summarize what is currently known about remyelination failure in MS, strategies to overcome this failure, new therapeutic treatments in the pipeline for promoting remyelination in MS patients, and new imaging technologies for measuring remyelination in patients.
Collapse
Affiliation(s)
- Danielle E Harlow
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Justin M Honce
- Department of Radiology, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| | - Augusto A Miravalle
- Department of Neurology, University of Colorado Anschutz Medical Campus , Aurora, CO , USA
| |
Collapse
|
27
|
Kashani IR, Hedayatpour A, Pasbakhsh P, Kafami L, Khallaghi B, Malek F. Progesterone Enhanced Remyelination in the Mouse Corpus Callosum after Cuprizone Induced Demyelination. IRANIAN JOURNAL OF MEDICAL SCIENCES 2015; 40:507-14. [PMID: 26538779 PMCID: PMC4628141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Progesterone as a sex steroid hormone is thought to affect and prevent demyelination, but its role in promoting myelin repair is far less investigated. In this study, remyelinating potential of progesterone in corpus callosum was evaluated on an experimental model of MS. METHODS In this experimental study, adult male C57BL/6 mice were fed with 0.2% (w/w) cuprizone in ground breeder chow ad libitum for 6 weeks. At day zero, after cuprizone removal, mice were divided randomly into two groups: (a) placebo group, which received saline pellet implant, (b) progesterone group, which received progesterone pellet implant. Some mice of the same age were fed with their normal diet to serve as the healthy control group. Two weeks after progesterone administration, Myelin content was assessed by Luxol-fast blue staining. The myelin basic protein (MBP) and proteolipid protein (PLP) expression were assessed using Western blot analysis and the changes in the number of oligodendrocytes and oligodendroglial progenitor cells were assessed by immunohistochemistry (IHC) and flow cytometry. RESULTS Luxol-fast blue staining revealed enhanced remyelination in the progesterone group when compared with the placebo group. Densitometry measurements of immunoblots demonstrated that MBP and PLP proteins contents were significantly increased in the progesterone group compared with the placebo group. Flow cytometry and IHC analysis showed increases in Olig2 and O4 cells in the progesterone group compared with the placebo group. CONCLUSION Overall, our results indicate that progesterone treatment can stimulate myelin production and that it may provide a feasible and practical way for remyelination in diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Iraj Ragerdi Kashani
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Correspondence: Iraj Ragerdi Kashani, PhD; Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, 16 Azar Street, Poursina Street, Tehran, Iran Tel: +98 21 64053410 Fax: +98 21 66419072
| | - Azim Hedayatpour
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parichehr Pasbakhsh
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Laya Kafami
- Department of Pathobiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran,Shefa Neurosciences Research Center, Tehran, Iran
| | | | - Fatemeh Malek
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Giatti S, Garcia-Segura LM, Melcangi RC. New steps forward in the neuroactive steroid field. J Steroid Biochem Mol Biol 2015; 153:127-34. [PMID: 25797031 DOI: 10.1016/j.jsbmb.2015.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/07/2015] [Accepted: 03/17/2015] [Indexed: 12/12/2022]
Abstract
Evidence accumulated in recent years suggests that the systemic treatment with neuroactive steroids, or the pharmacological modulation of its production by brain cells, represent therapeutic options to promote neuroprotection. However, new findings, which are reviewed in this paper, suggest that the factors to be considered for the design of possible therapies based on neuroactive steroids are more complex than previously thought. Thus, although as recently reported, the nervous system regulates neuroactive steroid synthesis and metabolism in adaptation to modifications in peripheral steroidogenesis, the neuroactive steroid levels in the brain do not fully reflect its levels in plasma. Even, in some cases, neuroactive steroid level modifications occurring in the nervous tissues, under physiological and pathological conditions, are in the opposite direction than in the periphery. This suggests that the systemic treatment with these molecules may have unexpected outcomes on neural steroid levels. In addition, the multiple metabolic pathways and signaling mechanisms of neuroactive steroids, which may change from one brain region to another, together with the existence of regional and sex differences in its neural levels are additional sources of complexity that should be clarified. This complexity in the levels and actions of these molecules may explain why in some cases these molecules have detrimental rather than beneficial actions for the nervous system. This article is part of a Special Issue entitled 'Steroid Perspectives'.
Collapse
Affiliation(s)
- Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
29
|
Rottlaender A, Kuerten S. Stepchild or Prodigy? Neuroprotection in Multiple Sclerosis (MS) Research. Int J Mol Sci 2015; 16:14850-65. [PMID: 26140377 PMCID: PMC4519875 DOI: 10.3390/ijms160714850] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 06/23/2015] [Accepted: 06/26/2015] [Indexed: 11/20/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system (CNS) and characterized by the infiltration of immune cells, demyelination and axonal loss. Loss of axons and nerve fiber pathology are widely accepted as correlates of neurological disability. Hence, it is surprising that the development of neuroprotective therapies has been neglected for a long time. A reason for this could be the diversity of the underlying mechanisms, complex changes in nerve fiber pathology and the absence of biomarkers and tools to quantify neuroregenerative processes. Present therapeutic strategies are aimed at modulating or suppressing the immune response, but do not primarily attenuate axonal pathology. Yet, target-oriented neuroprotective strategies are essential for the treatment of MS, especially as severe damage of nerve fibers mostly occurs in the course of disease progression and cannot be impeded by immune modulatory drugs. This review shall depict the need for neuroprotective strategies and elucidate difficulties and opportunities.
Collapse
Affiliation(s)
- Andrea Rottlaender
- Department of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg 97070, Germany.
| | - Stefanie Kuerten
- Department of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg 97070, Germany.
| |
Collapse
|
30
|
Babri S, Mehrvash F, Mohaddes G, Hatami H, Mirzaie F. Effect of intrahippocampal administration of vitamin C and progesterone on learning in a model of multiple sclerosis in rats. Adv Pharm Bull 2015; 5:83-7. [PMID: 25789223 DOI: 10.5681/apb.2015.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/18/2014] [Accepted: 05/23/2014] [Indexed: 11/17/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate the effect of intrahippocampal injection of vitamin C and progesterone, alone or in combination, on passive avoidance learning (PAL) in multiple sclerosis. METHODS Sixty- three male wistar rats were divided into nine groups (n=7) as following: control (saline), lesion, vitamin C (0.2, 1, 5 mg/kg), progesterone (0.01, 0.1, 1 µg/µl) and combination therapy. Lesion was induced by intrahippocampal injection of ethidium bromide. In combination therapy, animals were treated with vitamin C (5 mg/kg) plus progesterone (0.01 mg/kg). Animals in experimental groups received different treatments for 7 days, and then all groups were tested for step through latency (STL). RESULTS Our results showed that intrahippocampal injection of ethidium bromide destroys PAL significantly (p<0.001). Treatment with vitamin C (5mg/kg) significantly (p<0.05) improved PAL. Lower doses of progesterone did not affect latency but dose of 1 µg/µl significantly (p<0.05) increased STL. In combination therapy group STL was significantly (p<0.05) more than in the lesion group, although it was not significantly different from the vitamin C group. CONCLUSION Based on our results, we concluded that intrahippocampal injection of vitamin C improves memory for PAL, but progesterone alone or in combination with vitamin C had no improving effects on memory.
Collapse
Affiliation(s)
- Shirin Babri
- Neuroscience Research Center of Tabriz University of Medical Sciences (NSRC), Tabriz, 51666-14766, Iran
| | - Faezeh Mehrvash
- Neuroscience Research Center of Tabriz University of Medical Sciences (NSRC), Tabriz, 51666-14766, Iran
| | - Gisou Mohaddes
- Drug Applied Research Center of Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Homeira Hatami
- Department of Biology, Faculty of Science, University of Tabriz, Tabriz, 51666-14761, Iran
| | - Fariba Mirzaie
- Neuroscience Research Center of Tabriz University of Medical Sciences (NSRC), Tabriz, 51666-14766, Iran
| |
Collapse
|
31
|
Habib P, Beyer C. Regulation of brain microglia by female gonadal steroids. J Steroid Biochem Mol Biol 2015; 146:3-14. [PMID: 24607811 DOI: 10.1016/j.jsbmb.2014.02.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 02/24/2014] [Indexed: 12/31/2022]
Abstract
Microglial cells are the primary mediators of the CNS immune defense system and crucial for shaping inflammatory responses. They represent a highly dynamic cell population which is constantly moving and surveying their environment. Acute brain damage causes a local attraction and activation of this immune cell type which involves neuron-to-glia and glia-to-glia interactions. The prevailing view attributes microglia a "negative" role such as defense and debris elimination. More topical studies also suggest a protective and "positive" regulatory function. Estrogens and progestins exert anti-inflammatory and neuroprotective effects in the CNS in acute and chronic brain diseases. Recent work revealed that microglial cells express subsets of classical and non-classical estrogen and progesterone receptors in a highly dynamic way. In this review article, we would like to stress the importance of microglia for the spreading of neural damage during hypoxia, their susceptibility to functional modulation by sex steroids, the potency of sex hormones to switch microglia from a pro-inflammatory M1 to neuroprotective M2 phenotype, and the regulation of pro- and anti-inflammatory properties including the inflammasome. We will further discuss the possibility that the neuroprotective action of sex steroids in the brain involves an early and direct modulation of local microglia cell function. This article is part of a Special Issue entitled 'Sex steroids and brain disorders'.
Collapse
Affiliation(s)
- Pardes Habib
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
32
|
Pietranera L, Brocca ME, Roig P, Lima A, Garcia-Segura LM, De Nicola AF. Estrogens are neuroprotective factors for hypertensive encephalopathy. J Steroid Biochem Mol Biol 2015; 146:15-25. [PMID: 24736028 DOI: 10.1016/j.jsbmb.2014.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
Estrogens are neuroprotective factors for brain diseases, including hypertensive encephalopathy. In particular, the hippocampus is highly damaged by high blood pressure, with several hippocampus functions being altered in humans and animal models of hypertension. Working with a genetic model of primary hypertension, the spontaneously hypertensive rat (SHR), we have shown that SHR present decreased dentate gyrus neurogenesis, astrogliosis, low expression of brain derived neurotrophic factor (BDNF), decreased number of neurons in the hilus of the dentate gyrus, increased basal levels of the estrogen-synthesizing enzyme aromatase, and atrophic dendritic arbor with low spine density in the CA1 region compared to normotensive Wistar Kyoto (WKY) ratsl. Changes also occur in the hypothalamus of SHR, with increased expression of the hypertensinogenic peptide arginine vasopressin (AVP) and its V1b receptor. Following chronic estradiol treatment, SHR show decreased blood pressure, enhanced hippocampus neurogenesis, decreased the reactive astrogliosis, increased BDNF mRNA and protein expression in the dentate gyrus, increased neuronal number in the hilus of the dentate gyrus, further increased the hyperexpression of aromatase and replaced spine number with remodeling of the dendritic arbor of the CA1 region. We have detected by qPCR the estradiol receptors ERα and ERβ in hippocampus from both SHR and WKY rats, suggesting direct effects of estradiol on brain cells. We hypothesize that a combination of exogenously given estrogens plus those locally synthesized by estradiol-stimulated aromatase may better alleviate the hippocampal and hypothalamic encephalopathy of SHR. This article is part of a Special Issue entitled "Sex steroids and brain disorders".
Collapse
Affiliation(s)
- Luciana Pietranera
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina
| | - Maria Elvira Brocca
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Obligado 2490, 1428 Buenos Aires, Argentina
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Cientificas, Avenida Doctor Arce 37, E-28002 Madrid, Spain
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Obligado 2490, 1428 Buenos Aires, Argentina; Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425 Buenos Aires, Argentina.
| |
Collapse
|
33
|
Noorbakhsh F, Baker GB, Power C. Allopregnanolone and neuroinflammation: a focus on multiple sclerosis. Front Cell Neurosci 2014; 8:134. [PMID: 24917787 PMCID: PMC4042158 DOI: 10.3389/fncel.2014.00134] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/29/2014] [Indexed: 12/20/2022] Open
Abstract
The progesterone derivative allopregnanolone (ALLO) is one of the most widely studied compounds among neurosteroids. Through interactions with GABA-A receptors expressed by neurons and glial cells, ALLO has been shown to affect diverse aspects of neural cell physiology, including cell proliferation and survival, migration, and gene expression. Recent data point to important roles for ALLO in different neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis (MS). Dysregulation in ALLO biosynthesis pathways has been reported in brain tissue from MS patients as well as in the central nervous system (CNS) tissue derived from MS animal models. Administration of ALLO has been shown to ameliorate neurobehavioral deficits together with neuropathology and inflammation in the CNS of animals with autoimmune demyelination. These findings are in line with previous reports indicating growth- and differentiation-promoting actions of ALLO on neurons and glial cells as well as its neuroprotective effects in the context of other CNS diseases. Nonetheless, these findings have also raised the possibility that ALLO might influence leukocyte biology and associated neuroinflammatory mechanisms independent of its neuroregenerative properties. Herein, we review the current knowledge regarding the role of ALLO in the pathogenesis of MS, and discuss the potential cellular and molecular pathways that might be influenced by ALLO in the context of disease.
Collapse
Affiliation(s)
- Farshid Noorbakhsh
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences Tehran, Iran
| | - Glen B Baker
- Department of Psychiatry, University of Alberta Edmonton, AB, Canada
| | - Christopher Power
- Department of Psychiatry, University of Alberta Edmonton, AB, Canada ; Department of Medicine (Neurology), University of Alberta Edmonton, AB, Canada
| |
Collapse
|
34
|
Caruso D, Melis M, Fenu G, Giatti S, Romano S, Grimoldi M, Crippa D, Marrosu MG, Cavaletti G, Melcangi RC. Neuroactive steroid levels in plasma and cerebrospinal fluid of male multiple sclerosis patients. J Neurochem 2014; 130:591-7. [PMID: 24766130 DOI: 10.1111/jnc.12745] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/11/2022]
Abstract
Neuroactive steroid family includes molecules synthesized in peripheral glands (i.e., hormonal steroids) and directly in the nervous system (i.e., neurosteroids) which are key regulators of the nervous function. As already reported in clinical and experimental studies, neurodegenerative diseases affect the levels of neuroactive steroids. However, a careful analysis comparing the levels of these molecules in cerebrospinal fluid (CSF) and in plasma of multiple sclerosis (MS) patients is still missing. To this aim, the levels of neuroactive steroids were evaluated by liquid chromatography-tandem mass spectrometry in CSF and plasma of male adults affected by Relapsing-Remitting MS and compared with those collected in control patients. An increase in pregnenolone and isopregnanolone levels associated with a decrease in progesterone metabolites, dihydroprogesterone, and tetrahydroprogesterone was observed in CSF of MS patients. Moreover, an increase of 5α-androstane-3α,17β-diol and of 17β-estradiol levels associated with a decrease of dihydrotestosterone also occurred. In plasma, an increase in pregnenolone, progesterone, and dihydrotestosterone and a decrease in dihydroprogesterone and tetrahydroprogesterone levels were reported. This study shows for the first time that the levels of several neuroactive steroids, and particularly those of progesterone and testosterone metabolites, are deeply affected in CSF of relapsing-remitting MS male patients. We here demonstrated that, the cerebrospinal fluid and plasma levels of several neuroactive steroids are modified in relapsing remitting multiple sclerosis male patients. Interestingly, we reported for the first time that, the levels of progesterone and testosterone metabolites are deeply affected in cerebrospinal fluid. These findings may have an important relevance in therapeutic and/or diagnostic field of multiple sclerosis.
Collapse
Affiliation(s)
- Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences - Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hahn YK, Podhaizer EM, Farris SP, Miles MF, Hauser KF, Knapp PE. Effects of chronic HIV-1 Tat exposure in the CNS: heightened vulnerability of males versus females to changes in cell numbers, synaptic integrity, and behavior. Brain Struct Funct 2013; 220:605-23. [PMID: 24352707 PMCID: PMC4341022 DOI: 10.1007/s00429-013-0676-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/11/2013] [Indexed: 01/11/2023]
Abstract
HIV-associated damage to the central nervous system results in cognitive and motor deficits. Anti-retroviral therapies reduce the severity of symptoms, yet the proportion of patients affected has remained the same or increased. Although approximately half of HIV-infected patients worldwide are women, the question of whether biological sex influences outcomes of HIV infection has received little attention. We explored this question for both behavioral and cellular/morphologic endpoints, using a transgenic mouse that inducibly expresses HIV-1 Tat in the brain. After 3 months of HIV-1 Tat exposure, both sexes showed similar reduced open field ambulation. Male Tat+ mice also showed reduced forelimb grip strength and enhanced anxiety in a light–dark box assay. Tat+ males did not improve over 12 weeks of repeated rotarod testing, indicating a motor memory deficit. Male mice also had more cellular deficits in the striatum. Neither sex showed a change in volume or total neuron numbers. Both had equally reduced oligodendroglial populations and equivalent microglial increases. However, astrogliosis and microglial nitrosative stress were higher in males. Dendrites on medium spiny neurons in male Tat+ mice had fewer spines, and levels of excitatory and inhibitory pre- and post-synaptic proteins were disrupted. Our results predict sex as a determinant of HIV effects in brain. Increased behavioral deficits in males correlated with glial activation and synaptic damage, both of which are implicated in cognitive/motor impairments in patients. Tat produced by residually infected cells despite antiretroviral therapy may be an important determinant of the synaptodendritic instability and behavioral deficits accompanying chronic infection.
Collapse
Affiliation(s)
- Yun Kyung Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, PO Box 980709, Richmond, VA, 23298-0709, USA
| | | | | | | | | | | |
Collapse
|
36
|
Habib P, Dreymueller D, Ludwig A, Beyer C, Dang J. Sex steroid hormone-mediated functional regulation of microglia-like BV-2 cells during hypoxia. J Steroid Biochem Mol Biol 2013; 138:195-205. [PMID: 23792783 DOI: 10.1016/j.jsbmb.2013.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 01/04/2023]
Abstract
17β-estradiol (E2) and progesterone (P) are neuroprotective hormones in different neurological disorders and in particular under hypoxic conditions in the brain. Both hormones dampen brain-intrinsic immune responses and regulate local glial cell function. Besides astrocytes which are functionally regulated in a manifold and complex manner, especially microglial cells are in the focus of steroid-mediated neuroprotection. In previous studies using a transient brain artery occlusion model, we demonstrated that microglial characteristics are critically modified after the administration of either E2 or P. We here studied the influence of sex steroids on the murine BV-2 microglia cell line under hypoxic conditions. Hypoxia changed the cell morphology from an amoeboid-like phenotype with processes to a rounded shape of secreting cell type. BV-2 cells expressed both estrogen receptor-β and progesterone receptors under each condition. Oxygen deprivation increased the expression of inducible nitric oxide synthetase (iNOS) and up-regulated selected cytokines and chemokines. Both hormones selectively prevented the induction of pro-inflammatory iNOS, interleukin IL-1ß, and chemokine ligand CCL5, whereas anti-inflammatory IL-10 and protective TREM 2 were up-regulated by sex steroids. Sex hormones abrogated hypoxia-dependent reduction of BV-2 phagocytic activity. We demonstrate that BV-2 microglia cells respond to hypoxia by enhanced pro-inflammatory cytokine secretion and reduced phagocytic activity. This effect is prevented by sex steroids resulting in a switch of BV-2 cells from a pro-inflammatory to a more anti-inflammatory phenotype. Anti-inflammatory effects of gonadal steroids might directly be mediated through hormone-microglia interactions in addition to known effects via astroglial regulation.
Collapse
Affiliation(s)
- Pardes Habib
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
37
|
Habib P, Slowik A, Zendedel A, Johann S, Dang J, Beyer C. Regulation of hypoxia-induced inflammatory responses and M1-M2 phenotype switch of primary rat microglia by sex steroids. J Mol Neurosci 2013; 52:277-85. [PMID: 24163150 DOI: 10.1007/s12031-013-0137-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/03/2013] [Indexed: 01/17/2023]
Abstract
Microglia cells are the primary mediators of the CNS immune defense system and crucial for the outcome of shaping inflammatory responses. They are highly dynamic, moving constantly, and become activated by neuronal signaling under pathological conditions. They fulfill a dual role by not only regulating local neuroinflammation but also conferring neuronal protection. Gonadal steroids are known to exert anti-inflammatory effects in the CNS. Recently, we have shown that the microglial-like cell line BV-2 is hypoxia-sensitive and regulated by gonadal steroids. The present study used primary rat cerebral cortex-derived microglia to analyze whether this cell type directly perceive and respond to acute hypoxia. Second, we investigated whether 17β-estradiol (E2) and progesterone (P) interfere with hypoxia-induced changes. Short-term hypoxia increased the expression of a subset of pro-inflammatory (TNFa, IL1b) and oxidative stress-related (Hif1a) genes. The induction of TNFa and IL1b was counteracted by P. Hypoxia shifted the primary microglia to the pro-inflammatory M1 phenotype. The administration of E2 and P favored the neuroprotective M2 phenotype. Our findings extend previous data obtained with BV-2 cells and show that the primary microglia directly perceive hypoxia which increase their inflammatory activity. Both steroid hormones directly and indirectly interact with the microglia cells by reducing the inflammatory scenario and stimulating neuroprotection.
Collapse
Affiliation(s)
- Pardes Habib
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF, Guennoun R. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2013; 113:6-39. [PMID: 24172649 DOI: 10.1016/j.pneurobio.2013.09.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/15/2013] [Accepted: 09/21/2013] [Indexed: 02/08/2023]
Abstract
Progesterone is commonly considered as a female reproductive hormone and is well-known for its role in pregnancy. It is less well appreciated that progesterone and its metabolite allopregnanolone are also male hormones, as they are produced in both sexes by the adrenal glands. In addition, they are synthesized within the nervous system. Progesterone and allopregnanolone are associated with adaptation to stress, and increased production of progesterone within the brain may be part of the response of neural cells to injury. Progesterone receptors (PR) are widely distributed throughout the brain, but their study has been mainly limited to the hypothalamus and reproductive functions, and the extra-hypothalamic receptors have been neglected. This lack of information about brain functions of PR is unexpected, as the protective and trophic effects of progesterone are much investigated, and as the therapeutic potential of progesterone as a neuroprotective and promyelinating agent is currently being assessed in clinical trials. The little attention devoted to the brain functions of PR may relate to the widely accepted assumption that non-reproductive actions of progesterone may be mainly mediated by allopregnanolone, which does not bind to PR, but acts as a potent positive modulator of γ-aminobutyric acid type A (GABA(A) receptors. The aim of this review is to critically discuss effects of progesterone on the nervous system via PR, and of allopregnanolone via its modulation of GABA(A) receptors, with main focus on the brain.
Collapse
Affiliation(s)
- M Schumacher
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France.
| | - C Mattern
- M et P Pharma AG, Emmetten, Switzerland
| | - A Ghoumari
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - J P Oudinet
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - P Liere
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| | - F Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Sitruk-Ware
- Population Council and Rockefeller University, New York, USA
| | - A F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - R Guennoun
- UMR 788 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
39
|
Patas K, Engler JB, Friese MA, Gold SM. Pregnancy and multiple sclerosis: feto-maternal immune cross talk and its implications for disease activity. J Reprod Immunol 2013; 97:140-6. [PMID: 23432880 DOI: 10.1016/j.jri.2012.10.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/30/2012] [Accepted: 10/01/2012] [Indexed: 11/16/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system of presumed autoimmune origin. Intriguingly, pregnancy in female MS patients is associated with a substantial decrease in relapse rate. However, post-partum the relapse rate increases in a rebounding fashion above the rate seen before pregnancy. Wide gaps remain in our understanding of the biological mechanisms underlying these pregnancy-related effects in MS patients. To date, most attempts to explain MS disease amelioration during pregnancy have focused on levels of circulating hormones with immunomodulatory properties such as estrogens and global shifts in systemic maternal immune cell composition. However, recent advances in our understanding of feto-maternal tolerance have provided evidence that fetal antigens directly interact with the maternal immune system. This results in specific immunomodulation such as fetal-antigen-dependent induction of regulatory T cells. Thus, the "shaping" of maternal immune responses by fetal antigens may represent an endogenous pathway by which antigen-specific immunomodulation might also contribute to reinstalling tolerance to autoantigens in MS. Reproductive immunology therefore has great potential to provide insights into MS immunopathogenesis and highlight novel avenues for treatment of MS and other autoimmune diseases.
Collapse
Affiliation(s)
- Konstantinos Patas
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
40
|
Johann S, Beyer C. Neuroprotection by gonadal steroid hormones in acute brain damage requires cooperation with astroglia and microglia. J Steroid Biochem Mol Biol 2013. [PMID: 23196064 DOI: 10.1016/j.jsbmb.2012.11.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neuroactive steroids 17β-estradiol and progesterone control a broad spectrum of neural functions. Besides their roles in the regulation of classical neuroendocrine loops, they strongly influence motor and cognitive systems, behavior, and modulate brain performance at almost every level. Such a statement is underpinned by the widespread and lifelong expression pattern of all types of classical and non-classical estrogen and progesterone receptors in the CNS. The life-sustaining power of neurosteroids for tattered or seriously damaged neurons aroused interest in the scientific community in the past years to study their ability for therapeutic use under neuropathological challenges. Documented by excellent studies either performed in vitro or in adequate animal models mimicking acute toxic or chronic neurodegenerative brain disorders, both hormones revealed a high potency to protect neurons from damage and saved neural systems from collapse. Unfortunately, neurons, astroglia, microglia, and oligodendrocytes are comparably target cells for both steroid hormones. This hampers the precise assignment and understanding of neuroprotective cellular mechanisms activated by both steroids. In this article, we strive for a better comprehension of the mutual reaction between these steroid hormones and the two major glial cell types involved in the maintenance of brain homeostasis, astroglia and microglia, during acute traumatic brain injuries such as stroke and hypoxia. In particular, we attempt to summarize steroid-activated cellular signaling pathways and molecular responses in these cells and their contribution to dampening neuroinflammation and neural destruction. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Sonja Johann
- Institute of Neuroanatomy, RWTH Aachen University, D-52074 Aachen, Germany
| | | |
Collapse
|
41
|
Sex differences in the effects of adolescent stress on adult brain inflammatory markers in rats. Brain Behav Immun 2013; 30:88-94. [PMID: 23348027 PMCID: PMC3641183 DOI: 10.1016/j.bbi.2013.01.075] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 11/21/2022] Open
Abstract
Both basic and clinical research indicates that females are more susceptible to stress-related affective disorders than males. One of the mechanisms by which stress induces depression is via inflammatory signaling in the brain. Stress during adolescence, in particular, can also disrupt the activation and continued development of both the hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) axes, both of which modulate inflammatory pathways and brain regions involved in affective behavior. Therefore, we tested the hypothesis that adolescent stress differentially alters brain inflammatory mechanisms associated with affective-like behavior into adulthood based on sex. Male and female Wistar rats underwent mixed-modality stress during adolescence (PND 37-48) and were challenged with lipopolysaccharide (LPS; 250μg/kg, i.p.) or saline 4.5weeks later (in adulthood). Hippocampal inflammatory marker gene expression and circulating HPA and HPG axes hormone concentrations were then determined. Despite previous studies indicating that adolescent stress induces affective-like behaviors in female rats only, this study demonstrated that adolescent stress increased hippocampal inflammatory responses to LPS in males only, suggesting that differences in neuroinflammatory signaling do not drive the divergent affective-like behaviors. The sex differences in inflammatory markers were not associated with differences in corticosterone. In females that experienced adolescent stress, LPS increased circulating estradiol. Estradiol positively correlated with hippocampal microglial gene expression in control female rats, whereas adolescent stress negated this relationship. Thus, estradiol in females may potentially protect against stress-induced increases in neuroinflammation.
Collapse
|
42
|
Magyari M, Koch-Henriksen N, Pfleger CC, Sørensen PS. Reproduction and the risk of multiple sclerosis. Mult Scler 2013; 19:1604-9. [PMID: 23508651 DOI: 10.1177/1352458513481397] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The incidence of multiple sclerosis (MS) in Denmark has doubled in women since 1970, whereas it has been almost unchanged in men. OBJECTIVES To investigate whether age at first childbirth and number of births have an effect on the risk of developing MS. METHODS The cohort consisted of 1403 patients with MS of both sexes, identified through the Danish Multiple Sclerosis Registry, with clinical onset between 2000 and 2004. For each case, 25 control persons were drawn by random from the Danish Civil Registration System matched by sex, year of birth, and residential municipality. RESULTS More female cases than controls had no childbirths or fewer births before clinical onset (p=0.018) but only in the last five years preceding onset (p<0.0001). Childbirths within five years before clinical onset reduced the risk of MS onset in women: OR=0.54 (95% CI 0.41-0.70, p<0.0001) for one child and OR=0.68 (95% CI 0.53-0.87, p=0.002) for more than one child. Parental age at first childbirth had no effect on the risk of MS. CONCLUSIONS The data did not suggest reversed causality between childbirth and MS.
Collapse
Affiliation(s)
- Melinda Magyari
- Department of Neurology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
43
|
Arevalo MA, Santos-Galindo M, Acaz-Fonseca E, Azcoitia I, Garcia-Segura LM. Gonadal hormones and the control of reactive gliosis. Horm Behav 2013; 63:216-21. [PMID: 22401743 DOI: 10.1016/j.yhbeh.2012.02.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 01/08/2023]
Abstract
Astrocytes and microglia respond to central nervous system (CNS) injury with changes in morphology, proliferation, migration and expression of inflammatory regulators. This phenomenon is known as reactive gliosis. Activation of astrocytes and microglia after acute neural insults, such as stroke or traumatic CNS injury, is considered to be an adaptive response that contributes to minimize neuronal damage. However, reactive gliosis may amplify CNS damage under chronic neurodegenerative conditions. Progesterone, estradiol and testosterone have been shown to control reactive gliosis in different models of CNS injury, modifying the number of reactive astrocytes and reactive microglia and the expression of anti-inflammatory and proinflammatory mediators. The actions of gonadal hormones on reactive gliosis involve different mechanisms, including the modulation of the activity of steroid receptors, such as estrogen receptors α and β, the regulation of nuclear factor-κB mediated transcription of inflammatory molecules and the recruitment of the transcriptional corepressor c-terminal binding protein to proinflammatory promoters. In addition, the Parkinson's disease related gene parkin and the endocannabinoid system also participate in the regulation of reactive gliosis by estradiol. The control exerted by gonadal hormones on reactive gliosis may affect the response of neural tissue to trauma and neurodegeneration and may contribute to sex differences in the manifestation of neurodegenerative diseases. However, the precise functional consequences of the regulation of reactive gliosis by gonadal hormones under acute and chronic neurodegenerative conditions are still not fully clarified.
Collapse
|
44
|
Gomez FP, Steelman AJ, Young CR, Welsh CJ. Hormone and immune system interactions in demyelinating disease. Horm Behav 2013; 63:315-21. [PMID: 23137721 DOI: 10.1016/j.yhbeh.2012.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 11/17/2022]
Abstract
The immune, endocrine and nervous systems communicate with each other through a myriad of molecules including cytokines, hormones and neurotransmitters. Alterations in the balance of the products of these systems affect susceptibility to autoimmune disease and also the progression of disease. One of the most intensely studied autoimmune diseases is multiple sclerosis (MS). The purpose of this review is to explore the relationships between sex hormones and MS disease progression and to attempt to understand the paradox that although women are more likely to develop MS, female sex hormones appear to be beneficial in symptom amelioration. The proposed mechanisms of the therapeutic action of estrogens will be discussed with respect to T cell polarization and also on CNS cell populations. Investigations into the pathogenesis of multiple sclerosis (MS) and animal models of MS have given insights into the interactions between the neuroendocrine systems and provide important potential therapeutic venues that may be expanded to other autoimmune and neurodegenerative conditions.
Collapse
Affiliation(s)
- Francisco P Gomez
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA
| | | | | | | |
Collapse
|
45
|
Hirahara Y, Matsuda KI, Yamada H, Saitou A, Morisaki S, Takanami K, Boggs JM, Kawata M. G protein-coupled receptor 30 contributes to improved remyelination after cuprizone-induced demyelination. Glia 2012; 61:420-31. [PMID: 23281138 DOI: 10.1002/glia.22445] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 10/24/2012] [Indexed: 11/09/2022]
Abstract
Estrogen exerts neuroprotective and promyelinating actions. The therapeutic effect has been shown in animal models of multiple sclerosis, in which the myelin sheath is specifically destroyed in the central nervous system. However, it remains unproven whether estrogen is directly involved in remyelination via the myelin producing cells, oligodendrocytes, or which estrogen receptors are involved. In this study, we found that the membrane-associated estrogen receptor, the G protein-coupled receptor 30 (GPR30), also known as GPER, was expressed in oligodendrocytes in rat spinal cord and corpus callosum. Moreover, GPR30 was expressed throughout oligodendrocyte differentiation and promyelinating stages in primary oligodendrocyte cultures derived from rat spinal cords and brains. To evaluate the role of signaling via GPR30 in promyelination, a specific agonist for GPR30, G1, was administered to a rat model of demyelination induced by cuprizone treatment. Histological examination of the corpus callosum with oligodendrocyte differentiation stage-specific markers showed that G1 enhanced oligodendrocyte maturation in corpus callosum of cuprizone-treated animals. It also enhanced oligodendrocyte ensheathment of dorsal root ganglion (DRG) neurons in co-culture and myelination in cuprizone-treated animals. This study is the first evidence that GPR30 signaling promotes remyelination by oligodendrocytes after demyelination. GPR30 ligands may provide a novel therapy for the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Yukie Hirahara
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Multimodal Analysis in Acute and Chronic Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol 2012; 8:238-50. [DOI: 10.1007/s11481-012-9385-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/19/2012] [Indexed: 01/01/2023]
|
47
|
Giatti S, Caruso D, Boraso M, Abbiati F, Ballarini E, Calabrese D, Pesaresi M, Rigolio R, Santos-Galindo M, Viviani B, Cavaletti G, Garcia-Segura LM, Melcangi RC. Neuroprotective effects of progesterone in chronic experimental autoimmune encephalomyelitis. J Neuroendocrinol 2012; 24:851-61. [PMID: 22283602 DOI: 10.1111/j.1365-2826.2012.02284.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Observations so far obtained in experimental autoimmune encephalomyelitis (EAE) have revealed the promising neuroprotective effects exerted by progesterone (PROG). The findings suggest that this neuroactive steroid may potentially represent a therapeutic tool for multiple sclerosis (MS). However, up to now, the efficacy of PROG has been only tested in the acute phase of the disease, whereas it is well known that MS expresses different features depending on the phase of the disease. Accordingly, we have evaluated the effect of PROG treatment in EAE induced in Dark Agouti rats (i.e. an experimental model showing a protracted relapsing EAE). Data obtained 45 days after EAE induction show that PROG treatment exerts a beneficial effect on clinical score, confirming surrogate parameters of spinal cord damage in chronic EAE (i.e. reactive microglia, cytokine levels, activity of the Na(+) ,K(+) -ATPase pump and myelin basic protein expression). An increase of the levels of dihydroprogesterone and isopregnanolone (i.e. two PROG metabolites) was also observed in the spinal cord after PROG treatment. Taken together, these results indicate that PROG is effective in reducing the severity of chronic EAE and, consequently, may have potential with respect to MS treatment.
Collapse
Affiliation(s)
- S Giatti
- Department of Endocrinology, Pathophysiology and Applied Biology, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Xiao L, Guo D, Hu C, Shen W, Shan L, Li C, Liu X, Yang W, Zhang W, He C. Diosgenin promotes oligodendrocyte progenitor cell differentiation through estrogen receptor-mediated ERK1/2 activation to accelerate remyelination. Glia 2012; 60:1037-52. [PMID: 22461009 DOI: 10.1002/glia.22333] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/01/2012] [Indexed: 01/12/2023]
Abstract
Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is a prerequisite for remyelination after demyelination, and impairment of this process is suggested to be a major reason for remyelination failure. Diosgenin, a plant-derived steroid, has been implicated for therapeutic use in many diseases, but little is known about its effect on the central nervous system. In this study, using a purified rat OPC culture model, we show that diosgenin significantly and specifically promotes OPC differentiation without affecting the viability, proliferation, or migration of OPC. Interestingly, the effect of diosgenin can be blocked by estrogen receptor (ER) antagonist ICI 182780 but not by glucocorticoid and progesterone receptor antagonist RU38486, nor by mineralocorticoid receptor antagonist spirolactone. Moreover, it is revealed that both ER-alpha and ER-beta are expressed in OPC, and diosgenin can activate the extracellular signal-regulated kinase 1/2 (ERK1/2) in OPC via ER. The pro-differentiation effect of diosgenin can also be obstructed by the ERK inhibitor PD98059. Furthermore, in the cuprizone-induced demyelination model, it is demonstrated that diosgenin administration significantly accelerates/enhances remyelination as detected by Luxol fast blue stain, MBP immunohistochemistry and real time RT-PCR. Diosgenin also increases the number of mature oligodendrocytes in the corpus callosum while it does not affect the number of OPCs. Taking together, our results suggest that diosgenin promotes the differentiation of OPC into mature oligodendrocyte through an ER-mediated ERK1/2 activation pathway to accelerate remyelination, which implicates a novel therapeutic usage of this steroidal natural product in demyelinating diseases such as multiple sclerosis (MS).
Collapse
Affiliation(s)
- Lin Xiao
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Neuroscience Center of Changzheng Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Voskuhl RR, Gold SM. Sex-related factors in multiple sclerosis susceptibility and progression. Nat Rev Neurol 2012; 8:255-63. [PMID: 22450508 DOI: 10.1038/nrneurol.2012.43] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The pathogenesis of multiple sclerosis (MS) involves complex interactions between genetic susceptibility and environmental triggers. Clinical observations suggest that the study of sex differences might provide important insight into mechanisms of pathogenesis and progression of the disease in patients. MS occurs more frequently in women than in men, indicating that sex-related factors have an effect on an individual's susceptibility to developing the condition. These factors include hormonal, genetic and environmental influences, as well as gene-environment interactions and epigenetic mechanisms. Interestingly, women do not have a poorer prognosis than men with MS despite a higher incidence of the disease and more-robust immune responses, which suggests a mechanism of resilience. Furthermore, the state of pregnancy has a substantial effect on disease activity, characterized by a reduction in relapse rates during the third trimester but an increased relapse rate in the postpartum period. However, pregnancy has little effect on long-term disability in women with MS. The unravelling of the mechanisms underlying these clinical observations in the laboratory and application of the results to the clinical setting is a unique and potentially fruitful strategy to develop novel therapeutic approaches for MS.
Collapse
Affiliation(s)
- Rhonda R Voskuhl
- Department of Neurology, University of California Los Angeles, Neuroscience Research Building 1, Room 475D, 635 Charles Young Drive South, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
50
|
Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghoumari AM. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci 2012; 6:10. [PMID: 22347156 PMCID: PMC3274763 DOI: 10.3389/fnins.2012.00010] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/16/2012] [Indexed: 11/15/2022] Open
Abstract
Progesterone is well known as a female reproductive hormone and in particular for its role in uterine receptivity, implantation, and the maintenance of pregnancy. However, neuroendocrine research over the past decades has established that progesterone has multiple functions beyond reproduction. Within the nervous system, its neuromodulatory and neuroprotective effects are much studied. Although progesterone has been shown to also promote myelin repair, its influence and that of other steroids on myelination and remyelination is relatively neglected. Reasons for this are that hormonal influences are still not considered as a central problem by most myelin biologists, and that neuroendocrinologists are not sufficiently concerned with the importance of myelin in neuron functions and viability. The effects of progesterone in the nervous system involve a variety of signaling mechanisms. The identification of the classical intracellular progesterone receptors as therapeutic targets for myelin repair suggests new health benefits for synthetic progestins, specifically designed for contraceptive use and hormone replacement therapies. There are also major advantages to use natural progesterone in neuroprotective and myelin repair strategies, because progesterone is converted to biologically active metabolites in nervous tissues and interacts with multiple target proteins. The delivery of progesterone however represents a challenge because of its first-pass metabolism in digestive tract and liver. Recently, the intranasal route of progesterone administration has received attention for easy and efficient targeting of the brain. Progesterone in the brain is derived from the steroidogenic endocrine glands or from local synthesis by neural cells. Stimulating the formation of endogenous progesterone is currently explored as an alternative strategy for neuroprotection, axonal regeneration, and myelin repair.
Collapse
|