1
|
Wang L, Gao F, Chen L, Sun W, Liu H, Yang W, Zhang X, Bai J, Wang R. Remote Ischemia Postconditioning Mitigates Hippocampal Neuron Impairment by Modulating Cav1.2-CaMKIIα-Aromatase Signaling After Global Cerebral Ischemia in Ovariectomized Rats. Mol Neurobiol 2024; 61:6511-6527. [PMID: 38321351 PMCID: PMC11339123 DOI: 10.1007/s12035-024-03930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024]
Abstract
Brain-derived estrogen (BDE2) is gaining attention as an endogenous neurotransmitter. Recent research has revealed that selectively removing the aromatase gene, the pivotal enzyme responsible for BDE2 synthesis, in forebrain neurons or astrocytes can lead to synaptic loss and cognitive impairment. It is worth noting that remote ischemia post-conditioning (RIP), a non-invasive technique, has been shown to activate natural protective mechanisms against severe ischemic events. The aim of our study was to investigate whether RIP triggers aromatase-BDE2 signaling, shedding light on its neuroprotective mechanisms after global cerebral ischemia (GCI) in ovariectomized rats. Our findings are as follows: (1) RIP was effective in mitigating ischemic damage in hippocampal CA1 neurons and improved cognitive function after GCI. This was partially due to increased Aro-BDE2 signaling in CA1 neurons. (2) RIP intervention efficiently enhanced pro-survival kinase pathways, such as AKT, ERK1/2, CREB, and suppressed CaMKIIα signaling in CA1 astrocytes induced by GCI. Remarkably, inhibiting CaMKIIα activity led to elevated Aro-BDE2 levels and replicated the benefits of RIP. (3) We also identified the positive mediation of Cav1.2, an LVGCC calcium channel, on CaMKIIα-Aro/BDE2 pathway response to RIP intervention. (4) Significantly, either RIP or CaMKIIα inhibition was found to alleviate reactive astrogliosis, which was accompanied by increased pro-survival A2-astrocyte protein S100A10 and decreased pro-death A1-astrocyte marker C3 levels. In summary, our study provides compelling evidence that Aro-BDE2 signaling is a critical target for the reparative effects of RIP following ischemic insult. This effect may be mediated through the CaV1.2-CaMKIIα signaling pathway, in collaboration with astrocyte-neuron interactions, thereby maintaining calcium homeostasis in the neuronal microenvironment and reducing neuronal damage after ischemia.
Collapse
Affiliation(s)
- Lu Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Fujia Gao
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Lingling Chen
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Wuxiang Sun
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Huiyu Liu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Wei Yang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Xin Zhang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Jing Bai
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China
| | - Ruimin Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
- Dementia and Dyscognitive Key Lab., North China University of Science and Technology, International Science & Technology Cooperation Base of Geriatric Medicine of China, 21 Bohai Road, Caofeidian Xincheng, Tangshan, 063210, Hebei, China.
- Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, Tangshan, Hebei, China.
| |
Collapse
|
2
|
Mosconi L, Nerattini M, Matthews DC, Jett S, Andy C, Williams S, Yepez CB, Zarate C, Carlton C, Fauci F, Ajila T, Pahlajani S, Andrews R, Pupi A, Ballon D, Kelly J, Osborne JR, Nehmeh S, Fink M, Berti V, Dyke JP, Brinton RD. In vivo brain estrogen receptor density by neuroendocrine aging and relationships with cognition and symptomatology. Sci Rep 2024; 14:12680. [PMID: 38902275 PMCID: PMC11190148 DOI: 10.1038/s41598-024-62820-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
17β-estradiol, the most biologically active estrogen, exerts wide-ranging effects in brain through its action on estrogen receptors (ERs), influencing higher-order cognitive function and neurobiological aging. However, our knowledge of ER expression and regulation by neuroendocrine aging in the living human brain is limited. This in vivo brain 18F-fluoroestradiol (18F-FES) Positron Emission Tomography (PET) study of healthy midlife women reveals progressively higher ER density over the menopause transition in estrogen-regulated networks. Effects were independent of age, plasma estradiol and sex hormone binding globulin, and were highly consistent, correctly classifying all women as being postmenopausal or premenopausal. Higher ER density in target regions was associated with poorer memory performance for both postmenopausal and perimenopausal groups, and predicted presence of self-reported mood and cognitive symptoms after menopause. These findings provide novel insights on brain ER density modulation by female neuroendocrine aging, with clinical implications for women's health.
Collapse
Affiliation(s)
- Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA.
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| | - Matilde Nerattini
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
- Nuclear Medicine Unit, Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Steven Jett
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Camila Boneu Yepez
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Francesca Fauci
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Trisha Ajila
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Alberto Pupi
- Nuclear Medicine Unit, Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Douglas Ballon
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - James Kelly
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Joseph R Osborne
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Sadek Nehmeh
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew Fink
- Department of Neurology, Weill Cornell Medicine, 402 East 70th Street, LH-404, New York, NY, 10021, USA
| | - Valentina Berti
- Nuclear Medicine Unit, Department of Biomedical Experimental and Clinical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Roberta Diaz Brinton
- Department of Pharmacology and Neurology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Juutinen L, Ahinko K, Hagman S, Basnyat P, Jääskeläinen O, Herukka SK, Sumelahti ML. The association of menopausal hormone levels with progression-related biomarkers in multiple sclerosis. Mult Scler Relat Disord 2024; 85:105517. [PMID: 38442501 DOI: 10.1016/j.msard.2024.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) progression coincides temporally with menopause. However, it remains unclear whether the changes in disease course are related to the changes in reproductive hormone concentrations. We assessed the association of menopausal hormonal levels with progression-related biomarkers of MS and evaluated the changes in serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) levels during menopausal hormone therapy (MHT) in a prospective baseline-controlled design. METHODS The baseline serum estradiol, follicle stimulating hormone, and luteinizing hormone levels were measured from menopausal women with MS (n = 16) and healthy controls (HC, n = 15). SNfL and sGFAP were measured by single-molecule array. The associations of hormone levels with sNfL and sGFAP, and with Expanded Disability Status Scale (EDSS) and lesion load and whole brain volumes (WBV) in MRI were analyzed with Spearman's rank correlation and age-adjusted linear regression model. Changes in sNfL and sGFAP during one-year treatment with estradiol hemihydrate combined with cyclic dydrogesterone were assessed with Wilcoxon Signed Ranks Test. RESULTS In MS group, baseline estradiol had a positive correlation with WBV in MRI and an inverse correlation with lesion load, sNfL and sGFAP, but no correlation with EDSS. The associations of low estradiol with high sGFAP and low WBV were independent of age. During MHT, there was no significant change in sNfL and sGFAP levels in MS group while in HC, sGFAP slightly decreased at three months but returned to baseline at 12 months. CONCLUSION Our preliminary findings suggest that low estradiol in menopausal women with MS has an age-independent association with more pronounced brain atrophy and higher sGFAP and thus advanced astrogliosis which could partially explain the more rapid progression of MS after menopause. One year of MHT did not alter the sGFAP or sNfL levels in women with MS.
Collapse
Affiliation(s)
- Laura Juutinen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere University, Finland; Department of Neurosciences and Rehabilitation, Tampere University Hospital, P.O. Box 2000, FI, 33521, Tampere, Finland.
| | - Katja Ahinko
- Department of Obstetrics and Gynecology, Tampere University Hospital, P.O. Box 2000, FI, 33521 Tampere, Finland
| | - Sanna Hagman
- Neuroimmunology Research Group, Faculty of Medicine and Health Technology, Tampere University, FI, 33014 Tampere University, Finland
| | - Pabitra Basnyat
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere University, Finland
| | - Olli Jääskeläinen
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 1711, 70211, Kuopio, Finland
| | - Marja-Liisa Sumelahti
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere University, Finland
| |
Collapse
|
4
|
Zheng M, Ye H, Yang X, Shen L, Dang X, Liu X, Gong Y, Wu Q, Wang L, Ge X, Fang X, Hou B, Zhang P, Tang R, Zheng K, Huang XF, Yu Y. Probiotic Clostridium butyricum ameliorates cognitive impairment in obesity via the microbiota-gut-brain axis. Brain Behav Immun 2024; 115:565-587. [PMID: 37981012 DOI: 10.1016/j.bbi.2023.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Obesity is a risk factor for cognitive dysfunction and neurodegenerative disease, including Alzheimer's disease (AD). The gut microbiota-brain axis is altered in obesity and linked to cognitive impairment and neurodegenerative disorders. Here, we targeted obesity-induced cognitive impairment by testing the impact of the probiotic Clostridium butyricum, which has previously shown beneficial effects on gut homeostasis and brain function. Firstly, we characterized and analyzed the gut microbial profiles of participants with obesity and the correlation between gut microbiota and cognitive scores. Then, using an obese mouse model induced by a Western-style diet (high-fat and fiber-deficient diet), the effects of Clostridium butyricum on the microbiota-gut-brain axis and hippocampal cognitive function were evaluated. Finally, fecal microbiota transplantation was performed to assess the functional link between Clostridium butyricum remodeling gut microbiota and hippocampal synaptic protein and cognitive behaviors. Our results showed that participants with obesity had gut microbiota dysbiosis characterized by an increase in phylum Proteobacteria and a decrease in Clostridium butyricum, which were closely associated with cognitive decline. In diet-induced obese mice, oral Clostridium butyricum supplementation significantly alleviated cognitive impairment, attenuated the deficit of hippocampal neurite outgrowth and synaptic ultrastructure, improved hippocampal transcriptome related to synapses and dendrites; a comparison of the effects of Clostridium butyricum in mice against human AD datasets revealed that many of the genes changes in AD were reversed by Clostridium butyricum; concurrently, Clostridium butyricum also prevented gut microbiota dysbiosis, colonic barrier impairment and inflammation, and attenuated endotoxemia. Importantly, fecal microbiota transplantation from donor-obese mice with Clostridium butyricum supplementation facilitated cognitive variables and colonic integrity compared with from donor obese mice, highlighting that Clostridium butyricum's impact on cognitive function is largely due to its ability to remodel gut microbiota. Our findings provide the first insights into the neuroprotective effects of Clostridium butyricum on obesity-associated cognitive impairments and neurodegeneration via the gut microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huaiyu Ye
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lijun Shen
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xuemei Dang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoli Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuying Gong
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qingyuan Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Li Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoli Fang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221004, China
| | - Benchi Hou
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China
| | - Peng Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
5
|
Hirtz A, Rech F, Dubois-Pot-Schneider H, Dumond H. Estrogen signaling in healthy and tumor brain. Steroids 2023; 199:109285. [PMID: 37543222 DOI: 10.1016/j.steroids.2023.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Sex-specific differences in brain organization and function are widely explored in multidisciplinary studies, ranging from sociology and biology to digital modelling. In addition, there is growing evidence that natural or disturbed hormonal environments play a crucial role in the onset of brain disorders and pathogenesis. For example, steroid hormones, but also enzymes involved in steroidogenesis and receptors triggering hormone signaling are key players of gliomagenesis. In the present review we summarize the current knowledge about steroid hormone, particularly estrogens synthesis and signaling, in normal brain compared to the tumor brain. We will focus on two key molecular players, aromatase and the G Protein-Coupled Estrogen Receptor, GPER.
Collapse
Affiliation(s)
- Alex Hirtz
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| | - Fabien Rech
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France.
| | | | - Hélène Dumond
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
| |
Collapse
|
6
|
Terra L, Lee Meeuw Kjoe PR, Agelink van Rentergem JA, Beekman MJ, Heemskerk-Gerritsen BAM, van Beurden M, Roeters van Lennep JE, van Doorn HC, de Hullu JA, Mourits MJE, van Dorst EBL, Mom CH, Slangen BFM, Gaarenstroom KN, van der Kolk LE, Collée JM, Wevers MR, Ausems MGEM, van Engelen K, van de Beek I, Berger LPV, van Asperen CJ, Gomez Garcia EB, Maas AHEM, Hooning MJ, van der Wall E, van Leeuwen FE, Schagen SB. Long-term effects of premenopausal risk-reducing salpingo-oophorectomy on cognition in women with high familial risk of ovarian cancer: A cross-sectional study. BJOG 2023; 130:968-977. [PMID: 36715559 DOI: 10.1111/1471-0528.17415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/18/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To examine the effect of a premenopausal risk-reducing salpingo-oophorectomy (RRSO) in women at increased risk of ovarian cancer on objective and subjective cognition at least 10 years after RRSO. DESIGN A cross-sectional study with prospective follow-up, nested in a nationwide cohort. SETTING Multicentre in the Netherlands. POPULATION OR SAMPLE 641 women (66% BRCA1/2 pathogenic variant carriers) who underwent either a premenopausal RRSO ≤ age 45 (n = 436) or a postmenopausal RRSO ≥ age 54 (n = 205). All participants were older than 55 years at recruitment. METHODS Participants completed an online cognitive test battery and a questionnaire on subjective cognition. We used multivariable regression analyses, adjusting for age, education, breast cancer, hormone replacement therapy, cardiovascular risk factors and depression. MAIN OUTCOME MEASURES The influence of RRSO on objective and subjective cognition of women with a premenopausal RRSO compared with women with a postmenopausal RRSO. RESULTS After adjustment, women with a premenopausal RRSO (mean time since RRSO 18.2 years) performed similarly on objective cognitive tests compared with women with a postmenopausal RRSO (mean time since RRSO 11.9 years). However, they more frequently reported problems with reasoning (odds ratio [OR] 1.8, 95% confidence interval [95% CI] 1.1-3.1) and multitasking (OR 1.9, 95% CI 1.1-3.4) than women with a postmenopausal RRSO. This difference between groups disappeared in an analysis restricted to women of comparable ages (60-70 years). CONCLUSIONS Reassuringly, approximately 18 years after RRSO, we found no association between premenopausal RRSO and objective cognition.
Collapse
Affiliation(s)
- Lara Terra
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Philippe R Lee Meeuw Kjoe
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Maarten J Beekman
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Marc van Beurden
- Department of Gynaecological Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Helena C van Doorn
- Department for Gynaecologic Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Joanna A de Hullu
- Department for Gynaecology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marian J E Mourits
- Department for Gynaecologic Oncology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Eleonora B L van Dorst
- Department of Gynaecologic Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Constantijne H Mom
- Department of Gynaecological Oncology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Brigitte F M Slangen
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW-School for Oncology and Developmental Biology, Maastricht, The Netherlands
| | - Katja N Gaarenstroom
- Department of Obstetrics and Gynaecology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lizet E van der Kolk
- Family Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J Margriet Collée
- Department of Clinical Genetics, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marijke R Wevers
- Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Margreet G E M Ausems
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Klaartje van Engelen
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Irma van de Beek
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lieke P V Berger
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Christi J van Asperen
- Department for Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Encarna B Gomez Garcia
- Department for Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Angela H E M Maas
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Flora E van Leeuwen
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sanne B Schagen
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Suarez LM, Diaz-Del Cerro E, Felix J, Gonzalez-Sanchez M, Ceprian N, Guerra-Perez N, G Novelle M, Martinez de Toda I, De la Fuente M. Sex differences in neuroimmunoendocrine communication. Involvement on longevity. Mech Ageing Dev 2023; 211:111798. [PMID: 36907251 DOI: 10.1016/j.mad.2023.111798] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Endocrine, nervous, and immune systems work coordinately to maintain the global homeostasis of the organism. They show sex differences in their functions that, in turn, contribute to sex differences beyond reproductive function. Females display a better control of the energetic metabolism and improved neuroprotection and have more antioxidant defenses and a better inflammatory status than males, which is associated with a more robust immune response than that of males. These differences are present from the early stages of life, being more relevant in adulthood and influencing the aging trajectory in each sex and may contribute to the different life lifespan between sexes.
Collapse
Affiliation(s)
- Luz M Suarez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.
| | - Estefania Diaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Judith Felix
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Monica Gonzalez-Sanchez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Noemi Ceprian
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Natalia Guerra-Perez
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Marta G Novelle
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain
| | - Irene Martinez de Toda
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - Monica De la Fuente
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| |
Collapse
|
8
|
Mosconi L, Jett S, Nerattini M, Andy C, Yepez CB, Zarate C, Carlton C, Kodancha V, Schelbaum E, Williams S, Pahlajani S, Loeb-Zeitlin S, Havryliuk Y, Andrews R, Pupi A, Ballon D, Kelly J, Osborne J, Nehmeh S, Fink M, Berti V, Matthews D, Dyke J, Brinton RD. In vivo Brain Estrogen Receptor Expression By Neuroendocrine Aging And Relationships With Gray Matter Volume, Bio-Energetics, and Clinical Symptomatology. RESEARCH SQUARE 2023:rs.3.rs-2573335. [PMID: 36909660 PMCID: PMC10002830 DOI: 10.21203/rs.3.rs-2573335/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
17β-estradiol,the most biologically active estrogen, exerts wide-ranging effects in brain through its action on estrogen receptors (ERs), influencing higher-order cognitive function and neurobiological aging. However, our knowledge of ER expression and regulation by neuroendocrine aging in the living human brain is limited. This in vivo multi-modality neuroimaging study of healthy midlife women reveals progressively higher ER density over the menopause transition in estrogen-regulated networks. Effects were independent of age and plasma estradiol levels, and were highly consistent, correctly classifying all women as being post-menopausal or not. Higher ER density was generally associated with lower gray matter volume and blood flow, and with higher mitochondria ATP production, possibly reflecting compensatory mechanisms. Additionally, ER density predicted changes in thermoregulation, mood, cognition, and libido. Our data provide evidence that ER density impacts brainstructure, perfusion and energy production during female endocrine aging, with clinical implications for women's health.
Collapse
|
9
|
Williams VJ, Koscik R, Sicinski K, Johnson SC, Herd P, Asthana S. Associations Between Midlife Menopausal Hormone Therapy Use, Incident Diabetes, and Late Life Memory in the Wisconsin Longitudinal Study. J Alzheimers Dis 2023; 93:727-741. [PMID: 37092221 PMCID: PMC10551825 DOI: 10.3233/jad-221240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Prior research suggests a link between menopausal hormone therapy (MHT) use, memory function, and diabetes risk. The menopausal transition is a modifiable period to enhance long-term health and cognitive outcomes, although studies have been limited by short follow-up periods precluding a solid understanding of the lasting effects of MHT use on cognition. OBJECTIVE We examined the effects of midlife MHT use on subsequent diabetes incidence and late life memory performance in a large, same-aged, population-based cohort. We hypothesized that the beneficial effects of MHT use on late life cognition would be partially mediated by reduced diabetes risk. METHODS 1,792 women from the Wisconsin Longitudinal Study (WLS) were included in analysis. We employed hierarchical linear regression, Cox regression, and causal mediation models to test the associations between MHT history, diabetes incidence, and late life cognitive performance. RESULTS 1,088/1,792 women (60.7%) reported a history of midlife MHT use and 220/1,792 (12.3%) reported a history of diabetes. MHT use history was associated with better late life immediate recall (but not delayed recall), as well as a reduced risk of diabetes with protracted time to onset. Causal mediation models suggest that the beneficial effect of midlife MHT use on late life immediate recall were at least partially mediated by diabetes risk. CONCLUSION Our data support a beneficial effect of MHT use on late life immediate recall (learning) that was partially mediated by protection against diabetes risk, supporting MHT use in midlife as protective against late life cognitive decline and adverse health outcomes.
Collapse
Affiliation(s)
- Victoria J. Williams
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rebecca Koscik
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kamil Sicinski
- Center for Demography of Health and Aging, University of Wisconsin at Madison, Madison, WI, USA
| | - Sterling C. Johnson
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| | - Pamela Herd
- McCourt School of Public Policy, Georgetown University, Washington, DC, USA
| | - Sanjay Asthana
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
10
|
Zhou R, Wang Z, Zhou B, Yu Z, Wu C, Hou J, Cheng K, Liu TC. Estrogen receptors mediate the antidepressant effects of aerobic exercise: A possible new mechanism. Front Aging Neurosci 2022; 14:1040828. [PMID: 36570542 PMCID: PMC9780551 DOI: 10.3389/fnagi.2022.1040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose This study aimed to examine whether aerobic exercise exerts mood-modulating effects through an estrogen signaling mechanism. Method The experiment was divided into two parts. The first part is to compare the three modeling methods to obtain the most obvious method of depression-like phenotype for further study in the second part. The first part of ovariectomized rats (age, 13 weeks) was tested when rats were 14 or 22 weeks old or in the sixth week after 3 weeks of chronic restraint stress. The second part was to treat the animals with the most obvious depression-like phenotype in different ways, placebo treatment or estradiol (E2) replacement therapy was administered, aerobic training, or estrogen receptor antagonist treatment. The cognitive (Barnes maze and 3-chamber social tests), anxiety-like (open-field and elevated plus maze tests) and depression-like (sucrose preference and forced swim tests) behaviors of rats in both parts were analyzed to study the effects of estrogen depletion and aerobic exercise. Results Rats did not develop depressive symptoms immediately after ovariectomy, however, the symptoms became more pronounced with a gradual decrease in ovarian hormone levels. Compared with the placebo or control groups, the exercise and E2 groups showed improved performance in all behavioral test tasks, and the antidepressant effects of aerobic exercise were comparable to those of estrogen. Moreover, the estrogen receptor antagonist has markedly inhibited the antidepressant effects of aerobic exercise. Conclusion Estrogen receptors may mediate the antidepressant effects of aerobic exercise. In addition, an increasingly fragile ovarian hormonal environment may underlies chronic restraint stress-induced depression.
Collapse
|
11
|
Polyphenols for the Treatment of Ischemic Stroke: New Applications and Insights. Molecules 2022; 27:molecules27134181. [PMID: 35807426 PMCID: PMC9268254 DOI: 10.3390/molecules27134181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Currently, the main therapeutic strategy involves the use of intravenous thrombolysis to restore cerebral blood flow to prevent the transition of the penumbra to the infarct core. However, due to various limitations and complications, including the narrow time window in which this approach is effective, less than 10% of patients benefit from such therapy. Thus, there is an urgent need for alternative therapeutic strategies, with neuroprotection against the ischemic cascade response after IS being one of the most promising options. In the past few decades, polyphenolic compounds have shown great potential in animal models of IS because of their high biocompatibility and ability to target multiple ischemic cascade signaling pathways, although low bioavailability is an issue that limits the applications of several polyphenols. Here, we review the pathophysiological changes following cerebral ischemia and summarize the research progress regarding the applications of polyphenolic compounds in the treatment of IS over the past 5 years. Furthermore, we discuss several potential strategies for improving the bioavailability of polyphenolic compounds as well as some essential issues that remain to be addressed for the translation of the related therapies to the clinic.
Collapse
|
12
|
N-myc Downstream-Regulated Gene 2 (Ndrg2): A Critical Mediator of Estrogen-Induced Neuroprotection Against Cerebral Ischemic Injury. Mol Neurobiol 2022; 59:4793-4804. [PMID: 35622273 DOI: 10.1007/s12035-022-02877-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Growing evidence indicates that estrogen plays a pivotal role in neuroprotection against cerebral ischemia, but the molecular mechanism of this protection is still elusive. N-myc downstream-regulated gene 2 (Ndrg2), an estrogen-targeted gene, has been shown to exert neuroprotective effects against cerebral ischemia in male mice. However, the role of Ndrg2 in the neuroprotective effect of estrogen remains unknown. In this study, we first detected NDRG2 expression levels in the cortex and striatum in both female and male mice with western blot analyses. We then detected cerebral ischemic injury by constructing middle cerebral artery occlusion and reperfusion (MCAO-R) models in Ndrg2 knockout or conditional knockdown female mice. We further implemented estrogen, ERα, or ERβ agonist replacement in the ovariectomized (OVX) Ndrg2 knockout or conditional knockdown female mice, then tested for NDRG2 expression, glial fibrillary acidic protein (GFAP) expression, and extent of cerebral ischemic injury. We found that NDRG2 expression was significantly higher in female than in male mice in both the cortex and striatum. Ndrg2 knockouts and conditional knockdowns showed significantly aggravated cerebral ischemic injury in female mice. Estrogen and ERβ replacement treatment (DPN) led to NDRG2 upregulation in both the cortex and striatum of OVX mice. Estrogen and DPN also led to GFAP upregulation in OVX mice. However, the effect of estrogen and DPN in activating astrocytes was lost in Ndrg2 knockout OVX mice and primary cultured astrocytes, but partially retained in conditional knockdown OVX mice. Most importantly, we found that the neuroprotective effects of E2 and DPN against cerebral ischemic injury were lost in Ndrg2 knockout OVX mice but partially retained in conditional knockdown OVX mice. These findings demonstrate that estrogen alleviated cerebral ischemic injury via ERβ upregulation of Ndrg2, which could activate astrocytes, indicating that Ndrg2 is a critical mediator of E2-induced neuroprotection against cerebral ischemic injury.
Collapse
|
13
|
Frye BM, Craft S, Register TC, Kim J, Whitlow CT, Barcus RA, Lockhart SN, Sai KKS, Shively CA. Early Alzheimer's disease-like reductions in gray matter and cognitive function with aging in nonhuman primates. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12284. [PMID: 35310523 PMCID: PMC8918111 DOI: 10.1002/trc2.12284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 12/24/2021] [Accepted: 02/15/2022] [Indexed: 01/13/2023]
Abstract
Introduction Age-related neuropathology associated with sporadic Alzheimer's disease (AD) often develops well before the onset of symptoms. Given AD's long preclinical period, translational models are needed to identify early signatures of pathological decline. Methods Using structural magnetic resonance imaging and cognitive assessments, we examined the relationships among age, cognitive performance, and neuroanatomy in 48 vervet monkeys (Chlorocebus aethiops sabaeus) ranging from young adults to very old. Results We found negative associations of age with cortical gray matter volume (P = .003) and the temporal-parietal cortical thickness meta-region of interest (P = .001). Additionally, cortical gray matter volumes predicted working memory at approximately 1-year follow-up (correct trials at the 20s delay [P = .008]; correct responses after longer delays [P = .004]). Discussion Cortical gray matter diminishes with age in vervets in regions relevant to AD, which may increase risk of cognitive impairment. This study lays the groundwork for future investigations to test therapeutics to delay or slow pathological decline.
Collapse
Affiliation(s)
- Brett M. Frye
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Department of Internal Medicine/GerontologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Thomas C. Register
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Jeongchul Kim
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Christopher T. Whitlow
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Richard A. Barcus
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Samuel N. Lockhart
- Department of Internal Medicine/GerontologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Kiran Kumar Solingapuram Sai
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Carol A. Shively
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
14
|
Schindler LS, Subramaniapillai S, Barth C, van der Meer D, Pedersen ML, Kaufmann T, Maximov II, Linge J, Leinhard OD, Beck D, Gurholt TP, Voldsbekk I, Suri S, Ebmeier KP, Draganski B, Andreassen OA, Westlye LT, de Lange AMG. Associations between abdominal adipose tissue, reproductive span, and brain characteristics in post-menopausal women. Neuroimage Clin 2022; 36:103239. [PMID: 36451350 PMCID: PMC9668664 DOI: 10.1016/j.nicl.2022.103239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
The menopause transition involves changes in oestrogens and adipose tissue distribution, which may influence female brain health post-menopause. Although increased central fat accumulation is linked to risk of cardiometabolic diseases, adipose tissue also serves as the primary biosynthesis site of oestrogens post-menopause. It is unclear whether different types of adipose tissue play diverging roles in female brain health post-menopause, and whether this depends on lifetime oestrogen exposure, which can have lasting effects on the brain and body even after menopause. Using the UK Biobank sample, we investigated associations between brain characteristics and visceral adipose tissue (VAT) and abdominal subcutaneous adipose tissue (ASAT) in 10,251 post-menopausal females, and assessed whether the relationships varied depending on length of reproductive span (age at menarche to age at menopause). To parse the effects of common genetic variation, we computed polygenic scores for reproductive span. The results showed that higher VAT and ASAT were both associated with higher grey and white matter brain age, and greater white matter hyperintensity load. The associations varied positively with reproductive span, indicating more prominent associations between adipose tissue and brain measures in females with a longer reproductive span. The effects were in general small, but could not be fully explained by genetic variation or relevant confounders. Our findings indicate that associations between abdominal adipose tissue and brain health post-menopause may partly depend on individual differences in cumulative oestrogen exposure during reproductive years, emphasising the complexity of neural and endocrine ageing processes in females.
Collapse
Affiliation(s)
- Louise S Schindler
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway.
| | - Sivaniya Subramaniapillai
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway
| | - Claudia Barth
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dennis van der Meer
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; School of Mental Health and Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Mads L Pedersen
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | - Ivan I Maximov
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Jennifer Linge
- AMRA Medical AB, Linköping, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- AMRA Medical AB, Linköping, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Dani Beck
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tiril P Gurholt
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Irene Voldsbekk
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sana Suri
- Department of Psychiatry, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | | | - Bogdan Draganski
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Dept. of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ann-Marie G de Lange
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Ma Y, Niu E, Xie F, Liu M, Sun M, Peng Y, Guo H. Electroacupuncture reactivates estrogen receptors to restore the neuroprotective effect of estrogen against cerebral ischemic stroke in long-term ovariectomized rats. Brain Behav 2021; 11:e2316. [PMID: 34473429 PMCID: PMC8553307 DOI: 10.1002/brb3.2316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Stroke is a sexually dimorphic disease and a leading cause of death and disability. Estrogen replacement therapy (ERT) confers beneficial neuroprotective effects if administered within a widely accepted time window called the "critical period." However, very few studies have explored the idea of modulating the critical period to enable long-term post-menopausal women to regain more benefits from estrogen therapy. Here, motivated by previous findings that electroacupuncture could both alter estrogen metabolism and induce significant tolerance against stroke, it was explored whether EA could restore estrogen's neuroprotection against cerebral ischemia in long-term ovariectomized (OVX) rats. METHODS We implemented 1 week(w)-EA pretreatment on OVX-10w or OVX-20w rats, and tested the expression of estrogen receptors, and detected the ERT's neuroprotection against stroke induced by middle cerebral artery occlusion (MCAO). RESULTS We found that the expression levels of phospho-ERα-S118 and estrogen receptor β (ERβ) in the striatum of OVX-10w rats were significantly decreased and ERT's neuroprotection was abolished in the OVX-10w rats. However, EA-1w pretreatment could significantly recover the expression levels of phospho-ERα-S118 and ERβ, and also restored the neuroprotective effects of ERT in OVX-10w rats. However, EA-1w pretreatment could not restore the expression of estrogen receptors and ERT's neuroprotection in OVX-20w rats. CONCLUSION Taken together, our study indicates that EA may be an easy intervention that can restore the efficacy of estrogen therapy during the "critical period," which has the potential to improve the stroke outcomes of an enormous number of long-term post-menopausal women. However, the time-sensitive influences for how EA and estrogen metabolism interact with each other should be considered.
Collapse
Affiliation(s)
- Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Erlong Niu
- Department of Orthopedics, 305 Hospital of PLA, Beijing, China
| | - Fei Xie
- Department of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Min Liu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Miao Sun
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ye Peng
- Department of Orthopaedics, Air Force Medical Center, PLA, Beijing, China
| | - Hang Guo
- Department of Anesthesiology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Jia J, Jin H, Nan D, Yu W, Huang Y. New insights into targeting mitochondria in ischemic injury. Apoptosis 2021; 26:163-183. [PMID: 33751318 DOI: 10.1007/s10495-021-01661-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
Stroke is the leading cause of adult disability and death worldwide. Mitochondrial dysfunction has been recognized as a marker of neuronal death during ischemic stroke. Maintaining the function of mitochondria is important for improving the survival of neurons and maintaining neuronal function. Damaged mitochondria induce neuronal cell apoptosis by releasing reactive oxygen species (ROS) and pro-apoptotic factors. Mitochondrial fission and fusion processes and mitophagy are of great importance to mitochondrial quality control. This paper reviews the dynamic changes in mitochondria, the roles of mitochondria in different cell types, and related signaling pathways in ischemic stroke. This review describes in detail the role of mitochondria in the process of neuronal injury and protection in cerebral ischemia, and integrates neuroprotective drugs targeting mitochondria in recent years, which may provide a theoretical basis for the progress of treatment of ischemic stroke. The potential of mitochondrial-targeted therapy is also emphasized, which provides valuable insights for clinical research.
Collapse
Affiliation(s)
- Jingjing Jia
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Ding Nan
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Weiwei Yu
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
17
|
Clinical impact of estradiol/testosterone ratio in patients with acute ischemic stroke. BMC Neurol 2021; 21:91. [PMID: 33632142 PMCID: PMC7908649 DOI: 10.1186/s12883-021-02116-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/19/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Sex hormones may be associated with a higher incidence of ischemic stroke or stroke-related events. In observational studies, lower testosterone concentrations are associated with infirmity, vascular disease, and adverse cardiovascular risk factors. Currently, female sexual hormones are considered neuroprotective agents. The purpose of this study was to assess the role of sex hormones and the ratio of estradiol/testosterone (E/T) in patients with acute ischemic stroke (AIS). METHODS Between January 2011 and December 2016, 146 male patients with AIS and 152 age- and sex-matched control subjects were included in this study. Sex hormones, including estradiol, progesterone, and testosterone, were evaluated in the AIS patient and control groups. We analyzed the clinical and physiological levels of sex hormones and hormone ratios in these patients. RESULTS The E/T ratio was significantly elevated among patients in the stroke group compared to those in the control group (P = 0.001). Categorization of data into tertiles revealed that patients with the highest E/T ratio were more likely to have AIS [odds ratio (OR) 3.084; 95% Confidence interval (CI): 1.616-5.886; P < 0.001) compared with those in the first tertile. The E/T ratio was also an independent unfavorable outcome predictor with an adjusted OR of 1.167 (95% CI: 1.053-1.294; P = 0.003). CONCLUSIONS These findings support the hypothesis that increased estradiol and reduced testosterone levels are associated with AIS in men.
Collapse
|
18
|
Mentis AFA, Bougea AM, Chrousos GP. Amyotrophic lateral sclerosis (ALS) and the endocrine system: Are there any further ties to be explored? AGING BRAIN 2021; 1:100024. [PMID: 36911507 PMCID: PMC9997134 DOI: 10.1016/j.nbas.2021.100024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) belongs to the family of neurodegenerative disorders and is classified as fronto-temporal dementia (FTD), progressive muscular atrophy, primary lateral sclerosis, and pseudobulbar palsy. Even though endocrine dysfunction independently impacts the ALS-related survival rate, the complex connection between ALS and the endocrine system has not been studied in depth. Here we review earlier and recent findings on how ALS interacts with hormones a) of the hypothalamus and pituitary gland, b) the thyroid gland, c) the pancreas, d) the adipose tissue, e) the parathyroid glands, f) the bones, g) the adrenal glands, and h) the gonads (ovaries and testes). Of note, endocrine issues should always be explored in patients with ALS, especially those with low skeletal muscle and bone mass, vitamin D deficiency, and decreased insulin sensitivity (diabetes mellitus). Because ALS is a progressively deteriorating disease, addressing any potential endocrine co-morbidities in patients with this malady is quite important for decreasing the overall ALS-associated disease burden. Importantly, as this burden is estimated to increase globally in the decades to follow, in part because of an increasingly aging population, it is high time for future multi-center, multi-ethnic studies to assess the link between ALS and the endocrine system in significantly larger patient populations. Last, the psychosocial stress experienced by patients with ALS and its psycho-neuro-endocrinological sequelae, including hypothalamic-pituitaryadrenal dysregulation, should become an area of intensive study in the future.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Anastasia M Bougea
- Memory & Movement Disorders Clinic, 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
19
|
Hwang WJ, Lee TY, Kim NS, Kwon JS. The Role of Estrogen Receptors and Their Signaling across Psychiatric Disorders. Int J Mol Sci 2020; 22:ijms22010373. [PMID: 33396472 PMCID: PMC7794990 DOI: 10.3390/ijms22010373] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests estrogen and estrogen signaling pathway disturbances across psychiatric disorders. Estrogens are not only crucial in sexual maturation and reproduction but are also highly involved in a wide range of brain functions, such as cognition, memory, neurodevelopment, and neuroplasticity. To add more, the recent findings of its neuroprotective and anti-inflammatory effects have grown interested in investigating its potential therapeutic use to psychiatric disorders. In this review, we analyze the emerging literature on estrogen receptors and psychiatric disorders in cellular, preclinical, and clinical studies. Specifically, we discuss the contribution of estrogen receptor and estrogen signaling to cognition and neuroprotection via mediating multiple neural systems, such as dopaminergic, serotonergic, and glutamatergic systems. Then, we assess their disruptions and their potential implications for pathophysiologies in psychiatric disorders. Further, in this review, current treatment strategies involving estrogen and estrogen signaling are evaluated to suggest a future direction in identifying novel treatment strategies in psychiatric disorders.
Collapse
Affiliation(s)
- Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; (W.J.H.); (J.S.K.)
| | - Tae Young Lee
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
- Correspondence: ; Tel.: +82-55-360-2468
| | - Nahrie Suk Kim
- Department of Psychiatry, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
| | - Jun Soo Kwon
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; (W.J.H.); (J.S.K.)
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
20
|
Kövesdi E, Szabó-Meleg E, Abrahám IM. The Role of Estradiol in Traumatic Brain Injury: Mechanism and Treatment Potential. Int J Mol Sci 2020; 22:E11. [PMID: 33374952 PMCID: PMC7792596 DOI: 10.3390/ijms22010011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023] Open
Abstract
Patients surviving traumatic brain injury (TBI) face numerous neurological and neuropsychological problems significantly affecting their quality of life. Extensive studies over the past decades have investigated pharmacological treatment options in different animal models, targeting various pathological consequences of TBI. Sex and gender are known to influence the outcome of TBI in animal models and in patients, respectively. Apart from its well-known effects on reproduction, 17β-estradiol (E2) has a neuroprotective role in brain injury. Hence, in this review, we focus on the effect of E2 in TBI in humans and animals. First, we discuss the clinical classification and pathomechanism of TBI, the research in animal models, and the neuroprotective role of E2. Based on the results of animal studies and clinical trials, we discuss possible E2 targets from early to late events in the pathomechanism of TBI, including neuroinflammation and possible disturbances of the endocrine system. Finally, the potential relevance of selective estrogenic compounds in the treatment of TBI will be discussed.
Collapse
Affiliation(s)
- Erzsébet Kövesdi
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pecs, Hungary;
| | - István M. Abrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| |
Collapse
|
21
|
Selective Targeting of Non-nuclear Estrogen Receptors with PaPE-1 as a New Treatment Strategy for Alzheimer's Disease. Neurotox Res 2020; 38:957-966. [PMID: 33025361 PMCID: PMC7591444 DOI: 10.1007/s12640-020-00289-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Alzheimer’s disease (AD) is a multifactorial and severe neurodegenerative disorder characterized by progressive memory decline, the presence of Aβ plaques and tau tangles, brain atrophy, and neuronal loss. Available therapies provide moderate symptomatic relief but do not alter disease progression. This study demonstrated that PaPE-1, which has been designed to selectively activate non-nuclear estrogen receptors (ERs), has anti-AD capacity, as evidenced in a cellular model of the disease. In this model, the treatment of mouse neocortical neurons with Aβ (5 and 10 μM) induced apoptosis (loss of mitochondrial membrane potential, activation of caspase-3, induction of apoptosis-related genes and proteins) accompanied by increases in levels of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) as well as reduced cell viability. Following 24 h of exposure, PaPE-1 inhibited Aβ-evoked effects, as shown by reduced parameters of neurotoxicity, oxidative stress, and apoptosis. Because PaPE-1 downregulated Aβ-induced Fas/FAS expression but upregulated that of Aβ-induced FasL, the role of PaPE-1 in controlling the external apoptotic pathway is controversial. However, PaPE-1 normalized Aβ-induced loss of mitochondrial membrane potential and restored the BAX/BCL2 ratio, suggesting that the anti-AD capacity of PaPE-1 particularly relies on inhibition of the mitochondrial apoptotic pathway. These data provide new evidence for an anti-AD strategy that utilizes the selective targeting of non-nuclear ERs with PaPE-1.
Collapse
|
22
|
Joachim E, Barakat R, Lew B, Kim KK, Ko C, Choi H. Single intranasal administration of 17β-estradiol loaded gelatin nanoparticles confers neuroprotection in the post-ischemic brain. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102246. [PMID: 32590106 DOI: 10.1016/j.nano.2020.102246] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/11/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
Globally, ischemic stroke is a leading cause of death and adult disability. Previous efforts to repair damaged brain tissue following ischemic events have been hindered by the relative isolation of the central nervous system. We have developed a gelatin nanoparticle-mediated intranasal drug delivery system as an efficient, non-invasive method for delivering 17β-estradiol (E2) specifically to the brain, enhancing neuroprotection, and limiting systemic side effects. Young adult male C57BL/6 J mice subjected to 30 min of middle cerebral artery occlusion (MCAO) were administered intranasal preparations of E2-GNPs, water soluble E2, or saline as control 1 h after reperfusion. Following intranasal administration of 500 ng E2-GNPs, brain E2 content rose by 5.24 fold (P<0.0001) after 30 min and remained elevated by 2.5 fold at 2 h (P<0.05). The 100 ng dose of E2-GNPs reduced mean infarct volume by 54.3% (P<0.05, n=4) in comparison to saline treated controls, demonstrating our intranasal delivery system's efficacy.
Collapse
Affiliation(s)
- Elizabeth Joachim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Benha University, Qalyubia, Egypt
| | - Benjamin Lew
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kyekyoon Kevin Kim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - CheMyong Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Hyungsoo Choi
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
23
|
Abstract
OBJECTIVE Prevalence of Alzheimer's disease (AD) is higher for women, possibly influenced by sex-dependent effects of the estrogen. We examined the association between estrogen and cognitive decline in over 2,000 older adult women in a 12-year population-based study in Cache County, Utah. METHODS The baseline sample included 2,114 women (mean age = 74.94 y, SD = 6.71) who were dementia-free at baseline and completed a women's health questionnaire, asking questions regarding reproductive history and hormone therapy (HT). Endogenous estrogen exposure (EEE) was calculated taking the reproductive window (age at menarche to age at menopause), adjusted for pregnancy and breastfeeding. HT variables included duration of use, HT type (unopposed; opposed), and time of HT initiation. A modified version of the Mini-Mental State Examination (3MS) was administered at four triennial waves to assess cognitive status. Linear mixed-effects models examined the relationship between estrogen exposure and 3MS score over time. RESULTS EEE was positively associated with cognitive status (β = 0.03, P = 0.054). In addition, longer duration of HT use was positively associated with cognitive status (β = 0.02, P = 0.046) and interacted with age; older women had greater benefit compared with younger women. The timing of HT initiation was significantly associated with 3MS (β = 0.55, P = 0.048), with higher scores for women who initiated HT within 5 years of menopause compared with those initiating HT 6-or-more years later. CONCLUSIONS Our results suggest that longer EEE and HT use, especially in older women, are associated with higher cognitive status in late life.
Collapse
|
24
|
Acosta-Martínez M. Shaping Microglial Phenotypes Through Estrogen Receptors: Relevance to Sex-Specific Neuroinflammatory Responses to Brain Injury and Disease. J Pharmacol Exp Ther 2020; 375:223-236. [DOI: 10.1124/jpet.119.264598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
|
25
|
Sáez-Orellana F, Octave JN, Pierrot N. Alzheimer's Disease, a Lipid Story: Involvement of Peroxisome Proliferator-Activated Receptor α. Cells 2020; 9:E1215. [PMID: 32422896 PMCID: PMC7290654 DOI: 10.3390/cells9051215] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly. Mutations in genes encoding proteins involved in amyloid-β peptide (Aβ) production are responsible for inherited AD cases. The amyloid cascade hypothesis was proposed to explain the pathogeny. Despite the fact that Aβ is considered as the main culprit of the pathology, most clinical trials focusing on Aβ failed and suggested that earlier interventions are needed to influence the course of AD. Therefore, identifying risk factors that predispose to AD is crucial. Among them, the epsilon 4 allele of the apolipoprotein E gene that encodes the major brain lipid carrier and metabolic disorders such as obesity and type 2 diabetes were identified as AD risk factors, suggesting that abnormal lipid metabolism could influence the progression of the disease. Among lipids, fatty acids (FAs) play a fundamental role in proper brain function, including memory. Peroxisome proliferator-activated receptor α (PPARα) is a master metabolic regulator that regulates the catabolism of FA. Several studies report an essential role of PPARα in neuronal function governing synaptic plasticity and cognition. In this review, we explore the implication of lipid metabolism in AD, with a special focus on PPARα and its potential role in AD therapy.
Collapse
Affiliation(s)
- Francisco Sáez-Orellana
- Université Catholique de Louvain, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium; (F.S.-O.); (J.-N.O.)
- Institute of Neuroscience, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium
| | - Jean-Noël Octave
- Université Catholique de Louvain, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium; (F.S.-O.); (J.-N.O.)
- Institute of Neuroscience, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium
| | - Nathalie Pierrot
- Université Catholique de Louvain, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium; (F.S.-O.); (J.-N.O.)
- Institute of Neuroscience, Alzheimer Dementia, Avenue Mounier 53, SSS/IONS/CEMO-Bte B1.53.03, B-1200 Brussels, Belgium
| |
Collapse
|
26
|
Chen YC, Oyang YJ, Lin TY, Sun WZ. Risk assessment of dementia after hysterectomy: Analysis of 14-year data from the National Health Insurance Research Database in Taiwan. J Chin Med Assoc 2020; 83:394-399. [PMID: 32149891 DOI: 10.1097/jcma.0000000000000286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Anesthesia and surgery may increase the risk of dementia in the elderly, but the higher prevalence of dementia in women and other evidence suggest that dementia risk increases in younger women undergoing hysterectomy. In this study, we assessed the risk of dementia after hysterectomy. METHODS Hysterectomies registered in the National Health Insurance Research Database from 2000 to 2013 were evaluated using a retrospective generational research method. Multivariate Cox regression analysis was used to assess the effect of age at surgery, anesthesia method, and surgery type on the hazard ratio (HR) for the development of dementia. RESULTS Among 280 308 patients who underwent hysterectomy, 4753 (1.7%) developed dementia. Age at surgery and anesthesia method were associated with the occurrence of dementia, independent of surgery type. Among patients 30-49 years of age, general anesthesia (GA) was associated with a higher risk of dementia than spinal anesthesia (SA). The HR for GA was 2.678 (95% confidence interval [CI] = 1.269-5.650) and the risk of dementia increased by 7.4% for every 1-year increase in age (HR = 1.074; 95% CI = 1.048-1.101). In patients >50 years of age, the HR for GA was 1.206 (95% CI = 1.057-1.376), and the risk of dementia increased by 13.0% for every 1-year increase in age (HR = 1.130; 95% CI = 1.126-1.134). CONCLUSION The risk of dementia in women who underwent hysterectomy was significantly affected by older age at surgery, and the risk might not increase linearly with age, but show instead an S-curve with exponential increase at about 50 years of age. Although less significant, GA was associated with higher risk than SA, and the effect of the anesthesia method was greater in patients <50 years of age. In contrast, the surgical procedure used was not associated to the risk of dementia.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Yen-Jen Oyang
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering & Computer Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Tzu-Yun Lin
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Wei-Zen Sun
- Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering & Computer Science, National Taiwan University, Taipei, Taiwan, ROC
- Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
27
|
Ibrahim MMH, Bheemanapally K, Sylvester PW, Briski KP. Sex-specific estrogen regulation of hypothalamic astrocyte estrogen receptor expression and glycogen metabolism in rats. Mol Cell Endocrinol 2020; 504:110703. [PMID: 31931041 PMCID: PMC7325597 DOI: 10.1016/j.mce.2020.110703] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
Brain astrocytes are implicated in estrogenic neuroprotection against bio-energetic insults, which may involve their glycogen energy reserve. Forebrain estrogen receptors (ER)-alpha (ERα) and -beta (ERβ) exert differential control of glycogen metabolic enzyme [glycogen synthase (GS); phosphorylase (GP)] expression in hypoglycemic male versus female rats. Studies were conducted using a rat hypothalamic astrocyte primary culture model along with selective ER agonists to investigate the premise that estradiol (E2) exerts sex-dimorphic control over astrocyte glycogen mass and metabolism. Female astrocyte GS and GP profiles are more sensitive to E2 stimulation than the male. E2 did not regulate expression of phospho-GS (inactive enzyme form) in either sex. Data also show that transmembrane G protein-coupled ER-1 (GPER) signaling is implicated in E2 control of GS profiles in each sex and alongside ERα, GP expression in females. E2 increases total 5'-AMP-activated protein kinase (AMPK) protein in female astrocytes, but stimulated pAMPK (active form) expression with equivalent potency via GPER in females and ERα in males. In female astrocytes, ERα protein was up-regulated at a lower E2 concentration and over a broader dosage range compared to males, whereas ERβ was increased after exposure to 1-10 nM versus 100 pM E2 levels in females and males, respectively. GPER profiles were stimulated by E2 in female, but not male astrocytes. E2 increased astrocyte glycogen content in female, but not male astrocytes; selective ERβ or ERα stimulation elevated glycogen levels in the female and male, respectively. Outcomes imply that dimorphic astrocyte ER and glycogen metabolic responses to E2 may reflect, in part, differential steroid induction of ER variant expression and/or regulation of post-receptor signaling in each sex.
Collapse
Affiliation(s)
- Mostafa M H Ibrahim
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Paul W Sylvester
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA.
| |
Collapse
|
28
|
Yare K, Woodward M. Hormone Therapy and Effects on Sporadic Alzheimer’s Disease in Postmenopausal Women: Importance of Nomenclature. J Alzheimers Dis 2020; 73:23-37. [DOI: 10.3233/jad-190896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Katrine Yare
- Austin Health, Heidelberg Repatriation Hospital, Victoria, Australia
| | - Michael Woodward
- Austin Health, Heidelberg Repatriation Hospital, Victoria, Australia
| |
Collapse
|
29
|
Effects of Sex Hormones on Ocular Blood Flow and Intraocular Pressure in Primary Open-angle Glaucoma: A Review. J Glaucoma 2019; 27:1037-1041. [PMID: 30312278 DOI: 10.1097/ijg.0000000000001106] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Primary open-angle glaucoma (POAG) is a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and visual field loss. Some speculate that sex plays a role in the risk of developing POAG and that the physiological differences between men and women may be attributed to the variable effects of sex hormones on intraocular pressure, ocular blood flow, and/or neuroprotection. Estrogen, in the form of premenopausal status, pregnancy, and postmenopausal hormone therapy is associated with an increase in ocular blood flow, decrease in intraocular pressure and neuroprotective properties. The vasodilation caused by estrogen and its effects on aqueous humor outflow may contribute. In contrast, although testosterone may have known effects in the cardiovascular and cerebrovascular systems, there is no consensus as to its effects in ocular health or POAG. With a better understanding of sex hormones in POAG, sex hormone-derived preventative and therapeutic considerations in disease management may provide for improved sex-specific patient care.
Collapse
|
30
|
Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 2019; 55:100787. [PMID: 31513774 DOI: 10.1016/j.yfrne.2019.100787] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
Estradiol, either from peripheral or central origin, activates multiple molecular neuroprotective and neuroreparative responses that, being mediated by estrogen receptors or by estrogen receptor independent mechanisms, are initiated at the membrane, the cytoplasm or the cell nucleus of neural cells. Estrogen-dependent signaling regulates a variety of cellular events, such as intracellular Ca2+ levels, mitochondrial respiratory capacity, ATP production, mitochondrial membrane potential, autophagy and apoptosis. In turn, these molecular and cellular actions of estradiol are integrated by neurons and non-neuronal cells to generate different tissue protective responses, decreasing blood-brain barrier permeability, oxidative stress, neuroinflammation and excitotoxicity and promoting synaptic plasticity, axonal growth, neurogenesis, remyelination and neuroregeneration. Recent findings indicate that the neuroprotective and neuroreparative actions of estradiol are different in males and females and further research is necessary to fully elucidate the causes for this sex difference.
Collapse
Affiliation(s)
- Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - George E Barreto
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| | - Luis M Garcia-Segura
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludables (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain; Instituto Cajal, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| |
Collapse
|
31
|
Turkson S, Kloster A, Hamilton PJ, Neigh GN. Neuroendocrine drivers of risk and resilience: The influence of metabolism & mitochondria. Front Neuroendocrinol 2019; 54:100770. [PMID: 31288042 PMCID: PMC6886586 DOI: 10.1016/j.yfrne.2019.100770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The manifestation of risk versus resilience has been considered from varying perspectives including genetics, epigenetics, early life experiences, and type and intensity of the challenge with which the organism is faced. Although all of these factors are central to determining risk and resilience, the current review focuses on what may be a final common pathway: metabolism. When an organism is faced with a perturbation to the environment, whether internal or external, appropriate energy allocation is essential to resolving the divergence from equilibrium. This review examines the potential role of metabolism in the manifestation of stress-induced neural compromise. In addition, this review details the current state of knowledge on neuroendocrine factors which are poised to set the tone of the metabolic response to a systemic challenge. The goal is to provide an essential framework for understanding stress in a metabolic context and appreciation for key neuroendocrine signals.
Collapse
Affiliation(s)
- Susie Turkson
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Alix Kloster
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Peter J Hamilton
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
32
|
Samandari R, Hassanpour-Ezatti M, Fakhri S, Abbaszadeh F, Jorjani M. Sex Differences and Role of Gonadal Hormones on Glutamate LevelAfter Spinal Cord Injury in Rats: A Microdialysis Study. Basic Clin Neurosci 2019; 10:225-234. [PMID: 31462977 PMCID: PMC6712632 DOI: 10.32598/bcn.9.10.260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/28/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023] Open
Abstract
Introduction: Sex differences in outcomes of Spinal Cord Injury (SCI) suggest a sex-hormone-mediated effect on post-SCI pathological events, including glutamate excitotoxicity. This study aimed to investigate the importance of gonadal hormones on glutamate release subsequent to SCI in rats. Methods: After laminectomy at T8–T9, an electrolytic lesion was applied to the spinothalamic tracts of male and female rats. Using spinal microdialysis, we assessed glutamate levels at the site of lesion in both intact and gonadectomized rats for 4 hours. In this way, we examined the sex differences in the glutamate concentrations. Results: The peak retention time of glutamate level was 10.6 min and spinal glutamate concentration reached a maximum level 40 min following SCI. In male SCI rats, gonadectomy caused a significant elevation of glutamate level (P<0.001) following injury which was maximum 40 min post-SCI as well. However, no significant alterations were seen in gonadectomized female rats. Conclusion: The significant differences in glutamate levels between both intact and gonadectomized SCI male and female rats show the sex-hormone-related mechanisms underlying the molecular events in the second phase of SCI. It seems that the role of male gonadal hormones to prevent glutamate excitotoxicity is more prominent. The exact mechanisms of these hormones on the functional recovery after SCI should be clarified in further studies.
Collapse
Affiliation(s)
- Razieh Samandari
- Department of Physiology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | | | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Jorjani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Kurt AH, Yuksel KZ, Uremis N, Uremis MM, Altun I, Bosnak M, Kilicaslan D, Alli B. Protective Effects of G Protein-Coupled Estrogen Receptor 1 (GPER1) on β-Amyloid-Induced Neurotoxicity: Implications for Alzheimer’s Disease. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Roque C, Mendes-Oliveira J, Baltazar G. G protein-coupled estrogen receptor activates cell type-specific signaling pathways in cortical cultures: relevance to the selective loss of astrocytes. J Neurochem 2019; 149:27-40. [PMID: 30570746 DOI: 10.1111/jnc.14648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/23/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
Selective activation of the G protein-coupled estrogen receptor has been proposed to avoid some of the side effects elicited by the activation of classical estrogen receptors α and β. Although its contribution to neuroprotection triggered by estradiol in brain disorders has been explored, the results regarding ischemic stroke are contradictory, and currently, there is no consensus on the role that this receptor may play. The present study aimed to investigate the role of GPER in the ischemic insult. For that, primary cortical cultures exposed to oxygen and glucose deprivation (OGD) were used as a model. Our results demonstrate that neuronal survival was strongly affected by the ischemic insult and concurrent GPER activation with G1 had no further impact. In contrast, OGD had a smaller impact on astrocytes survival but G1, alone or combined with OGD, promoted their apoptosis. This effect was prevented by the GPER antagonist G15. The results also show that ischemia did not change the expression levels of GPER in neurons and astrocytes. In this study, we also demonstrate that selective activation of GPER induced astrocyte apoptosis via the phospholipase C pathway and subsequent intracellular calcium rise, whereas in neurons, this effect was not observed. Taken together, this evidence supports a direct impact of GPER activity on the viability of astrocytes, which seems to be associated with the regulation of different signaling pathways in astrocytes and neurons.
Collapse
Affiliation(s)
- Cláudio Roque
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | | | - Graça Baltazar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
35
|
Barnes JN, Harvey RE, Eisenmann NA, Miller KB, Johnson MC, Kruse SM, Lahr BD, Joyner MJ, Miller VM. Cerebrovascular reactivity after cessation of menopausal hormone treatment. Climacteric 2019; 22:182-189. [PMID: 30661405 DOI: 10.1080/13697137.2018.1538340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Women who are currently using menopausal hormone therapy (MHT) have higher cerebrovascular reactivity when compared with postmenopausal women who are not taking MHT; however, the effect of cessation of MHT on cerebrovascular reactivity is not known. Given that MHT can have structural and activational effects on vascular function, this study was performed to characterize cerebrovascular reactivity following cessation of MHT in women at low risk for cerebrovascular disease. METHODS Cerebrovascular reactivity was measured in a subset of women from the Kronos Early Estrogen Prevention Study (KEEPS) 3 years after cessation of the study drug (oral conjugated equine estrogen, transdermal 17β-estradiol, or placebo [PLA]). RESULTS Age, body mass index, and blood pressure were comparable among groups. At rest, the middle cerebral artery velocity (MCAv), cerebrovascular conductance index, mean arterial pressure, and cerebral pulsatility index did not differ among groups. Slope-based summary measures of cerebrovascular reactivity did not differ significantly among groups. However, utilizing repeated-measures modeling, there was a significant upward shift in MCAv responses (p = 0.029) in the combined MHT group compared with the PLA group. CONCLUSION MHT has a marginal sustained effect on cerebrovascular reactivity when measured 3 years after cessation of hormone treatment.
Collapse
Affiliation(s)
- J N Barnes
- a Department of Kinesiology , University of Wisconsin-Madison , Madison , WI , USA.,b Department of Anesthesiology , Mayo Clinic , Rochester , MN , USA
| | - R E Harvey
- b Department of Anesthesiology , Mayo Clinic , Rochester , MN , USA.,c College of Medicine and Science , Mayo Clinic , Rochester , MN , USA
| | - N A Eisenmann
- a Department of Kinesiology , University of Wisconsin-Madison , Madison , WI , USA
| | - K B Miller
- a Department of Kinesiology , University of Wisconsin-Madison , Madison , WI , USA
| | - M C Johnson
- b Department of Anesthesiology , Mayo Clinic , Rochester , MN , USA
| | - S M Kruse
- b Department of Anesthesiology , Mayo Clinic , Rochester , MN , USA
| | - B D Lahr
- d Department of Health Science Research , Mayo Clinic , Rochester , MN , USA
| | - M J Joyner
- b Department of Anesthesiology , Mayo Clinic , Rochester , MN , USA
| | - V M Miller
- e Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , MN , USA.,f Department of Surgery , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
36
|
Zhong YH, Wu HY, He RH, Zheng BE, Fan JZ. Sex Differences in Sex Hormone Profiles and Prediction of Consciousness Recovery After Severe Traumatic Brain Injury. Front Endocrinol (Lausanne) 2019; 10:261. [PMID: 31080439 PMCID: PMC6497747 DOI: 10.3389/fendo.2019.00261] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 04/08/2019] [Indexed: 12/16/2022] Open
Abstract
Objective: The clinical course of unconsciousness after traumatic brain injury (TBI) is commonly unpredictable and it remains a challenge with limited therapeutic options. The aim of this study was to evaluate the early changes in serum sex hormone levels after severe TBI (sTBI) and the use of these hormones to predict recovery from unconsciousness with regard to sex. Methods: We performed a retrospective study including patients with sTBI. A statistical of analysis of serum sex hormone levels and recovery of consciousness at 6 months was made to identify the effective prognostic indicators. Results: Fifty-five male patients gained recovery of consciousness, and 37 did not. Of the female patients, 22 out of 32 patients regained consciousness. Male patients (n = 92) with sTBI, compared with healthy subjects (n = 60), had significantly lower levels of follicular stimulating hormone (FSH), testosterone and progesterone and higher levels of prolactin. Female patients (n = 32) with sTBI, compared with controls (n = 60), had significantly lower levels of estradiol, progesterone, and testosterone and significantly higher levels of FSH and prolactin. Testosterone significantly predicted consciousness recovery in male patients. Normal or elevated testosterone levels in the serum were associated with a reduced risk of the unconscious state in male patients with sTBI. For women patients with sTBI, sex hormone levels did not contribute to the prediction of consciousness recovery. Conclusion: These findings indicate that TBI differentially affects the levels of sex-steroid hormones in men and women patients. Plasma levels of testosterone could be a good candidate blood marker to predict recovery from unconsciousness after sTBI for male patients.
Collapse
|
37
|
Effects of Ficus umbellata (Moraceae) Aqueous Extract and 7-Methoxycoumarin on Scopolamine-Induced Spatial Memory Impairment in Ovariectomized Wistar Rats. Behav Neurol 2018; 2018:5751864. [PMID: 30363978 PMCID: PMC6186347 DOI: 10.1155/2018/5751864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 07/10/2018] [Indexed: 11/29/2022] Open
Abstract
The present work was undertaken to evaluate the ability of F. umbellata aqueous extract and its major component 7-methoxycoumarin (MC) to improve scopolamine-induced spatial memory impairment in ovariectomized Wistar rats. For this to be done, 10 sham-operated and 30 postmenopausal-like rats were randomly distributed in eight groups (n = 5) and treated with distilled water (2 mL/250 g), estradiol valerate (1 mg/kg BW), piracetam (1.5 mg/kg BW), F. umbellata aqueous extract (50 and 200 mg/kg BW), or MC (1 mg/kg BW) for 21 consecutive days. Before and after the memory impairment with scopolamine (2 mg/kg BW), animals underwent behavioral evaluations on Y- and radial mazes. As results, age and ovariectomy did not induce significant changes in the reference memory errors. While age decreased working memory errors, ovariectomy increased it. The MC as well as F. umbellata extract significantly increased (p < 0.01) the percentage of spontaneous alternation and decreased (p < 0.001) working and spatial reference memory errors and anxiety parameters (rearing and grooming) in ovariectomized rats. MC significantly reduced (p < 0.05) the MDA level, but resulted in an increase in GSH level in brain homogenates. These results suggest that MC is endowed with neuroprotective effects and could account for the neuroprotective effects of F. umbellata in rats.
Collapse
|
38
|
Inoue-Yanagimachi M, Himori N, Sato K, Kokubun T, Asano T, Shiga Y, Tsuda S, Kunikata H, Nakazawa T. Association between mitochondrial DNA damage and ocular blood flow in patients with glaucoma. Br J Ophthalmol 2018; 103:1060-1065. [DOI: 10.1136/bjophthalmol-2018-312356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/24/2018] [Accepted: 08/13/2018] [Indexed: 02/03/2023]
Abstract
Background/AimsWe determined the relationship between tissue mean blur rate (MT) and mitochondrial dysfunction, represented by the mitochondrial/nuclear DNA (mtDNA/nDNA) ratio. We also investigated the usefulness of these biomarkers.MethodsWe assessed ocular blood flow in 123 eyes of 123 patients with open-angle glaucoma (OAG) and 37 control eyes of 37 healthy subjects by measuring MT in the optic nerve head with laser speckle flowgraphy. We measured mtDNA and nDNA with PCR, calculated the mtDNA/nDNA ratio and compared this ratio with MT using Spearman’s rank test. We used multiple regression analysis to further investigate the association between MT and glaucoma in the most severe group.ResultsThe control and the patients with glaucoma had significant differences in the mtDNA/nDNA ratio, circumpapillary retinal nerve fibre layer thickness and MT. There was no significant relationship between the mtDNA/nDNA ratio and MT in patients with OAG overall or the female patients with OAG, but there was a significant relationship between the mtDNA/nDNA ratio and MT, temporal-MT and superior-MT in male patients with severe OAG (r=−0.46, p=0.03; r=−0.51, p=0.02; r=−0.61, p<0.01, respectively). Furthermore, we found that the mtDNA/nDNA ratio was an independent contributor to temporal-MT and superior-MT in these patients (p<0.01 and p=0.03, respectively).ConclusionWe found that there was a significant relationship between the mtDNA/nDNA ratio and MT in male patients with severe OAG, suggesting that the mtDNA/nDNA ratio may be a new biomarker in glaucoma and may help research on the vulnerability of these patients to mitochondrial dysfunction.
Collapse
|
39
|
Meadows KL. Ischemic stroke and select adipose-derived and sex hormones: a review. Hormones (Athens) 2018; 17:167-182. [PMID: 29876798 DOI: 10.1007/s42000-018-0034-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/27/2018] [Indexed: 02/03/2023]
Abstract
Ischemic stroke is the fifth leading cause of death in the USA and is the leading cause of serious, long-term disability worldwide. The principle sex hormones (estrogen, progesterone, and testosterone), both endogenous and exogenous, have profound effects on various stroke outcomes and have become the focus of a number of studies evaluating risk factors and treatment options for ischemic stroke. In addition, the expression of other hormones that may influence stroke outcome, including select adipose-derived hormones (adiponectin, leptin, and ghrelin), can be regulated by sex hormones and are also the focus of several ischemic stroke studies. This review aims to summarize some of the preclinical and clinical studies investigating the principle sex hormones, as well as select adipose-derived hormones, as risk factors or potential treatments for ischemic stroke. In addition, the potential for relaxin, a lesser studied sex hormone, as a novel treatment option for ischemic stroke is explored.
Collapse
Affiliation(s)
- Kristy L Meadows
- Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Rd., North Grafton, MA, 01536, USA.
| |
Collapse
|
40
|
Sahin N, Altun H, Kurutaş EB, Fındıklı E. Evaluation of estrogen and G protein-coupled estrogen receptor 1 (GPER) levels in drug-naïve patients with attention deficit hyperactivity disorder (ADHD). Bosn J Basic Med Sci 2018; 18:126-131. [PMID: 29659348 DOI: 10.17305/bjbms.2018.2942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/28/2022] Open
Abstract
Estrogen has a crucial role in the regulation of reproductive and neuroendocrine function and exerts its effects through two classes of receptors, nuclear and membrane estrogen receptors (mERs). G protein-coupled estrogen receptor 1 (GPER) is a member of mERs, and despite limited research on the levels of GPER in patients with psychiatric diseases, a role of GPER in such conditions has been suggested. Here we evaluated serum estrogen and GPER levels in children with attention deficit hyperactivity disorder (ADHD) in relation to their age- and gender-matched healthy controls. A total of 82 children were included in the study, 47 drug- naïve patients with ADHD (age: 6-12 years; male/female: 34/13) and 35 healthy controls (age: 6-12 years; male/female: 19/16). The subgroups according to ADHD types were inattentive, hyperactive/impulsive, and combined. Serum estrogen was measured using an immunoassay system, while serum GPER was determined using a commercial sandwich enzyme-linked immunosorbent assay kit. Estrogen levels in children with ADHD were similar as in control group, while GPER levels were significantly lower in ADHD group compared to controls (p < 0.05). Logistic regression analysis showed a significant association between GPER levels and ADHD (p < 0.05), and no association between estrogen levels and ADHD (p > 0.05). No significant differences were found in GPER and estrogen levels between ADHD subgroups (p > 0.05). To the best of our knowledge, this study is the first to investigate estrogen and GPER levels in ADHD. Our preliminary findings suggest a relationship between serum GPER levels and ADHD, and this should be further investigated.
Collapse
Affiliation(s)
- Nilfer Sahin
- Department of Child and Adolescent Psychiatry, School of Medicine, Mugla Sitki Kocman University, Mugla, Turkey.
| | | | | | | |
Collapse
|
41
|
Céspedes Rubio ÁE, Pérez-Alvarez MJ, Lapuente Chala C, Wandosell F. Sex steroid hormones as neuroprotective elements in ischemia models. J Endocrinol 2018; 237:R65-R81. [PMID: 29654072 DOI: 10.1530/joe-18-0129] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
Among sex steroid hormones, progesterone and estradiol have a wide diversity of physiological activities that target the nervous system. Not only are they carried by the blood stream, but also they are locally synthesized in the brain and for this reason, estradiol and progesterone are considered 'neurosteroids'. The physiological actions of both hormones range from brain development and neurotransmission to aging, illustrating the importance of a deep understanding of their mechanisms of action. In this review, we summarize key roles that estradiol and progesterone play in the brain. As numerous reports have confirmed a substantial neuroprotective role for estradiol in models of neurodegenerative disease, we focus this review on traumatic brain injury and stroke models. We describe updated data from receptor and signaling events triggered by both hormones, with an emphasis on the mechanisms that have been reported as 'rapid' or 'cytoplasmic actions'. Data showing the therapeutic effects of the hormones, used alone or in combination, are also summarized, with a focus on rodent models of middle cerebral artery occlusion (MCAO). Finally, we draw attention to evidence that neuroprotection by both hormones might be due to a combination of 'cytoplasmic' and 'nuclear' signaling.
Collapse
Affiliation(s)
- Ángel Enrique Céspedes Rubio
- Departamento de Sanidad AnimalGrupo de Investigación en Enfermedades Neurodegenerativas, Universidad del Tolima, Ibagué, Colombia
| | - Maria José Pérez-Alvarez
- Departamento de Biología (Fisiología Animal)Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular 'Severo Ochoa'Departamento de Neuropatología Molecular CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| | - Catalina Lapuente Chala
- Grupo de Investigación en Enfermedades NeurodegenerativasInvestigador Asociado Universidad del Tolima, Ibagué, Colombia
| | - Francisco Wandosell
- Centro de Biología Molecular 'Severo Ochoa'Departamento de Neuropatología Molecular CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| |
Collapse
|
42
|
Lejri I, Grimm A, Eckert A. Mitochondria, Estrogen and Female Brain Aging. Front Aging Neurosci 2018; 10:124. [PMID: 29755342 PMCID: PMC5934418 DOI: 10.3389/fnagi.2018.00124] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondria play an essential role in the generation of steroid hormones including the female sex hormones. These hormones are, in turn, able to modulate mitochondrial activities. Mitochondria possess crucial roles in cell maintenance, survival and well-being, because they are the main source of energy as well as of reactive oxygen species (ROS) within the cell. The impairment of these important organelles is one of the central features of aging. In women’s health, estrogen plays an important role during adulthood not only in the estrous cycle, but also in the brain via neuroprotective, neurotrophic and antioxidant modes of action. The hypestrogenic state in the peri- as well as in the prolonged postmenopause might increase the vulnerability of elderly women to brain degeneration and age-related pathologies. However, the underlying mechanisms that affect these processes are not well elucidated. Understanding the relationship between estrogen and mitochondria might therefore provide better insights into the female aging process. Thus, in this review, we first describe mitochondrial dysfunction in the aging brain. Second, we discuss the estrogen-dependent actions on the mitochondrial activity, including recent evidence of the estrogen—brain-derived neurotrophic factor and estrogen—sirtuin 3 (SIRT3) pathways, as well as their potential implications during female aging.
Collapse
Affiliation(s)
- Imane Lejri
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland.,Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Amandine Grimm
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland.,Psychiatric University Clinics, University of Basel, Basel, Switzerland
| | - Anne Eckert
- Neurobiology Lab for Brain Aging and Mental Health, Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel, Switzerland.,Psychiatric University Clinics, University of Basel, Basel, Switzerland
| |
Collapse
|
43
|
Miao ZY, Xia X, Che L, Song YT. Genistein attenuates brain damage induced by transient cerebral ischemia through up-regulation of Nrf2 expression in ovariectomized rats. Neurol Res 2018; 40:689-695. [PMID: 29688134 DOI: 10.1080/01616412.2018.1462879] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Postmenopausal women possess higher incidence of stroke and worse prognosis. Although estrogen replacement therapy has obvious neuroprotective effects against stroke, it is always accompanied with several adverse effects and undesired outcomes. Genistein, a natural phytoestrogen, has been indicated to be a potential neuroprotective alternative for postmenopausal women against stroke. However, the role and mechanism of genistein's neuroprotective effects against stroke in ovariectomized rats have rarely been explored. METHODS In this study, ovariectomized rats were treated with genistein (10 mg/kg) or vehicle daily for two weeks before they received middle cerebral artery occlusion (MCAO) and reperfusion. After 72 hours of reperfusion, the neurological function was evaluated by Garcia test, infarct volume was detected by 2,3,5-triphenyltetrazolium chloride staining, and neuronal damage was detected by Nissl staining. In addition, ROS production and the expression of Nrf2, NQO1 and cleaved-Caspase3 in the ischemic penumbra were detected. RESULTS The results showed that genistein treatment significantly improved the neurological outcome, reduced infarct volume, increased Nrf2 and NQO1 expression, and reduced ROS production and cleaved-Caspase3 expression in ovariectomized rats. DISCUSSION Our findings indicated that treatment with genistein could alleviated oxidative stress injury induced by cerebral ischemia in ovariectomized rats via promoting Nrf2 and NQO1 expression, which provide a new molecular mechanism for the neuroprotective effects of genistein against stroke in postmenopausal women.
Collapse
Affiliation(s)
- Zhong-Yan Miao
- a Department of Medical Examination , The Second Affiliated Hospital of Mudanjiang Medical University , Heilongjiang , China
| | - Xu Xia
- b Department of Psychology , Hongqi Hospital Affiliated to Mudanjiang Medical University , Heilongjiang , China
| | - Lu Che
- c Department of Medical Record , Hongqi Hospital Affiliated to Mudanjiang Medical University , Heilongjiang , China
| | - Yan-Tao Song
- d Department of Teaching and Research , The Second Affiliated Hospital of Mudanjiang Medical University , Heilongjiang , China
| |
Collapse
|
44
|
Thakkar R, Wang R, Wang J, Vadlamudi RK, Brann DW. 17 β-Estradiol Regulates Microglia Activation and Polarization in the Hippocampus Following Global Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4248526. [PMID: 29849895 PMCID: PMC5932444 DOI: 10.1155/2018/4248526] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/16/2018] [Accepted: 02/13/2018] [Indexed: 02/08/2023]
Abstract
17β-Estradiol (E2) is a well-known neuroprotective hormone, but its role in regulation of neuroinflammation is less understood. Recently, our lab demonstrated that E2 could regulate the NLRP3 (NOD-like receptor protein 3) inflammasome pathway in the hippocampus following global cerebral ischemia (GCI). Here, we examined the ability of E2 to regulate activation and polarization of microglia phenotype in the hippocampus after global cerebral ischemia (GCI). Our in vivo study in young adult ovariectomized rats showed that exogenous low-dose E2 profoundly suppressed microglia activation and quantitatively shifted microglia from their "activated," amoeboid morphology to a "resting," ramified morphology after GCI. Further studies using M1 "proinflammatory" and M2 "anti-inflammatory" phenotype markers showed that E2 robustly suppressed the "proinflammatory" M1 phenotype, while enhancing the "anti-inflammatory" M2 microglia phenotype in the hippocampus after GCI. These effects of E2 may be mediated directly upon microglia, as E2 suppressed the M1 while enhancing the M2 microglia phenotype in LPS- (lipopolysaccharide-) activated BV2 microglia cells in vitro. E2 also correspondingly suppressed proinflammatory while enhancing anti-inflammatory cytokine gene expression in the LPS-treated BV2 microglia cells. Finally, E2 treatment abolished the LPS-induced neurotoxic effects of BV2 microglia cells upon hippocampal HT-22 neurons. Collectively, our study findings suggest a novel E2-mediated neuroprotective effect via regulation of microglia activation and promotion of the M2 "anti-inflammatory" phenotype in the brain.
Collapse
Affiliation(s)
- Roshni Thakkar
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antonio, TX, USA
| | - Darrell W. Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
45
|
Wu Y, Feng D, Lin J, Qu Y, He S, Wang Y, Gao G, Zhao T. Downregulation of G‑protein‑coupled receptor 30 in the hippocampus attenuates the neuroprotection of estrogen in the critical period hypothesis. Mol Med Rep 2018; 17:5716-5725. [PMID: 29484405 PMCID: PMC5866014 DOI: 10.3892/mmr.2018.8618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to investigate the role of G-protein-coupled receptor 30 (GPR30) in long-term 17β-estradiol (E2) deprivation (LTED) in a rat model with global cerebral ischemia (GCI), and its therapeutic target for ischemic stroke in the clinical setting. Following bilateral ovariectomy, GCI was induced in rats 1 or 10 weeks post-surgery. To determine the protein and mRNA expression levels of GPR30 in the hippocampal CA1 region of LTED rats, short-term E2 deprivation (STED) rats and naturally aging rats, western blot analysis and reverse transcription-quantitative polymerase chain reaction were performed. The results of the present study demonstrated that E2 treatment revealed significant neuroprotection post-GCI in STED rats, but not in LTED rats, as well as a decrease in the expression levels of GPR30 in the hippocampal CA1 region. In LTED rats,. Notably, no effects were observed on the ubiquitination of GPR30 following investigation in STED or LTED rats. While the protein and mRNA expression levels of GPR30 were also decreased in the hippocampal CA1 region of female 24-month-old rats compared with 3-month-old rats. E2 treatment initiated for the entire ovariectomy period elevated GPR30 mRNA and protein expression levels, and attenuated the loss of hippocampal neurons in the GCI-induced CA1 region, indicating that E2 treatment exerted robust neuroprotection within LTED rats. However, the neuroprotective effect of E2 may be blocked by G15. The results of the present study revealed that downregulation of GPR30 expression may attenuate the neuroprotection of E2 within LTED conditions in rats post-ovariectomy by leading to neuronal insensitivity to E2 neuroprotection following cerebral ischemia. These results provide evidence that GPR30 may have potential as a novel therapeutic target for the treatment of clinical ischemic stroke.
Collapse
Affiliation(s)
- Yingxi Wu
- Department of Neurosurgery, Tangdu Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jiaji Lin
- Department of Neurosurgery, Tangdu Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Shiming He
- Department of Neurosurgery, Tangdu Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Tianzhi Zhao
- Department of Neurosurgery, Tangdu Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
46
|
Thakkar R, Sareddy GR, Zhang Q, Wang R, Vadlamudi RK, Brann D. PELP1: a key mediator of oestrogen signalling and actions in the brain. J Neuroendocrinol 2018; 30:10.1111/jne.12484. [PMID: 28485080 PMCID: PMC5785553 DOI: 10.1111/jne.12484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023]
Abstract
Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) is an oestrogen receptor (ER) coregulator protein identified by our collaborative group. Work from our laboratory and others has shown that PELP1 is a scaffold protein that interacts with ERs and kinase signalling factors, as well as proteins involved in chromatin remodelling and DNA repair. Its role in mediating 17β-oestradiol (E2 ) signalling and actions has been studied in detail in cancer cells, although only recently has attention turned to its role in the brain. In this review, we discuss the tissue, cellular and subcellular localisation of PELP1 in the brain. We also discuss recent evidence from PELP1 forebrain-specific knockout mice demonstrating a critical role of PELP1 in mediating both extranuclear and nuclear ER signalling in the brain, as well as E2 -induced neuroprotection, anti-inflammatory effects and regulation of cognitive function. Finally, the PELP1 interactome and unique gene network regulated by PELP1 in the brain is discussed, especially because it provides new insights into PELP1 biology, protein interactions and mechanisms of action in the brain. As a whole, the findings discussed in the present review indicate that PELP1 functions as a critical ER coregulator in the brain to mediate E2 signalling and actions.
Collapse
Affiliation(s)
- Roshni Thakkar
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Gangadhara Reddy Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| | - Darrell Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
- Corresponding Author: Dr. Darrell Brann, Regents’ Professor and Vice Chair, Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15 Street, CA-4004, Augusta, GA 30912, USA. Phone: 1-706-721-7779
| |
Collapse
|
47
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2018. [PMID: 29311911 DOI: 10.3389/fnagi.2017.00430/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
48
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2017; 9:430. [PMID: 29311911 PMCID: PMC5743731 DOI: 10.3389/fnagi.2017.00430] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
49
|
Armeni E, Apostolakis M, Christidi F, Rizos D, Kaparos G, Panoulis K, Augoulea A, Alexandrou A, Karopoulou E, Zalonis I, Triantafyllou N, Lambrinoudaki I. Endogenous sex hormones and memory performance in middle-aged Greek women with subjective memory complaints. Neurol Sci 2017; 39:259-266. [DOI: 10.1007/s10072-017-3165-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/20/2017] [Indexed: 12/30/2022]
|
50
|
Roque C, Baltazar G. Impact of Astrocytes on the Injury Induced by In Vitro Ischemia. Cell Mol Neurobiol 2017; 37:1521-1528. [PMID: 28315110 DOI: 10.1007/s10571-017-0483-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/12/2017] [Indexed: 12/29/2022]
Abstract
Cell cultures are characterized by their simplicity, controllability, and ability to provide detailed basic information on how a particular cell population responds to specific stimuli or insult. These characteristics led to their extensive application in the study of molecular interactions and represent a valuable tool in the study of different pathologies. However, due to the lack of interactions between the different components that form an in vivo system, the results obtained in pure cell cultures not always translate what occurs in vivo. In this context, the use of co-cultures has the advantage of allowing the study of interactions between different types of cells present in a tissue, which in many situations are determinant for the effects obtained. The present study aimed to characterize cortical neuron-glia and neuron-enriched primary cultures and evaluate their response to an ischemic insult. Cell viability was assessed by the MTT assay and cell number/phenotype was analyzed by immunocytochemistry in control cultures and in cells subjected to 4 h of oxygen and glucose deprivation. The results obtained demonstrate that astrocytes have a substantial impact on the injury induced by an ischemic insult, thus suggesting that the crosstalk between glia and neurons is crucial to the neuronal protection in conditions of ischemia.
Collapse
Affiliation(s)
- Cláudio Roque
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Instituto Politécnico de Castelo Branco, Escola Superior de Saúde Dr. Lopes Dias, IPCB-ESALD, Castelo Branco, Portugal
| | - Graça Baltazar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|