1
|
Patel AH, Koysombat K, Pierret A, Young M, Comninos AN, Dhillo WS, Abbara A. Kisspeptin in functional hypothalamic amenorrhea: Pathophysiology and therapeutic potential. Ann N Y Acad Sci 2024; 1540:21-46. [PMID: 39287750 DOI: 10.1111/nyas.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Functional hypothalamic amenorrhea (FHA) is one of the most common causes of secondary amenorrhea, resulting in anovulation and infertility, and is a low estrogen state that increases the risk of cardiovascular disease and impairs bone health. FHA is characterized by acquired suppression of physiological pulsatile gonadotropin-releasing hormone (GnRH) release by the hypothalamus in the absence of an identifiable structural cause, resulting in a functional hypogonadotropic hypogonadism. FHA results from either decreased energy intake and/or excessive exercise, leading to low energy availability and weight loss-often in combination with psychological stress on top of a background of genetic susceptibility. The hypothalamic neuropeptide kisspeptin is a key component of the GnRH pulse generator, tightly regulating pulsatile GnRH secretion and the downstream reproductive axis. Here, we review the physiological regulation of pulsatile GnRH secretion by hypothalamic kisspeptin neurons and how their activity is modulated by signals of energy status to affect reproductive function. We explore endocrine factors contributing to the suppression of GnRH pulsatility in the pathophysiology of FHA and how hypothalamic kisspeptin neurons likely represent a final common pathway through which these factors affect GnRH pulse generation. Finally, we discuss the therapeutic potential of kisspeptin as a novel treatment for women with FHA.
Collapse
Affiliation(s)
- Aaran H Patel
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Chelsea and Westminster Hospital, London, UK
| | - Kanyada Koysombat
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Aureliane Pierret
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Megan Young
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
2
|
Maham S, Yoon MS. Clinical Spectrum of Long COVID: Effects on Female Reproductive Health. Viruses 2024; 16:1142. [PMID: 39066303 PMCID: PMC11281454 DOI: 10.3390/v16071142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has presented numerous health challenges, including long-term COVID, which affects female reproductive health. This review consolidates the current research on the impact of SARS-CoV-2 on the menstrual cycle, ovarian function, fertility, and overall gynecological health. This study emphasizes the role of angiotensin-converting enzyme receptors in viral entry and the subsequent tissue-specific pathological effects. It also explores the potential influence of long COVID on hormonal balance and immune responses, contributing to menstrual irregularities and impaired ovarian function. The findings indicate a higher prevalence of long-term COVID-19 among women, highlighting the substantial implications for reproductive health and the need for sex-sensitive longitudinal studies. Enhanced surveillance and targeted research are essential to develop effective interventions that prioritize women's reproductive well-being following SARS-CoV-2 infection. This review advocates for a sex-informed approach to ongoing COVID-19 research and healthcare strategies, aiming to provide up-to-date and pertinent data for healthcare providers and the general public, ultimately improving outcomes for females affected by long COVID.
Collapse
Affiliation(s)
- Syeda Maham
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea;
| | - Mee-Sup Yoon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea;
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
3
|
Gibson AG, Moenter SM. Early-Life Resource Scarcity in Mice Does Not Alter Adult Corticosterone or Preovulatory Luteinizing Hormone Surge Responses to Acute Psychosocial Stress. eNeuro 2024; 11:ENEURO.0125-24.2024. [PMID: 39009448 PMCID: PMC11287788 DOI: 10.1523/eneuro.0125-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Early-life stressors can affect reproductive development and change responses to adult stress. We tested if resource scarcity in the form of limited bedding and nesting (LBN) from postnatal days (PND) 4 to 11 delayed sexual maturation in male and female mice and/or altered the response to an acute, layered, psychosocial stress (ALPS) in adulthood. Contrary to the hypotheses, age and mass at puberty were unaffected by the present application of LBN. Under basal conditions and after ALPS, corticosterone concentrations in males, diestrous females, and proestrous females reared in standard (STD) or LBN environments were similar. ALPS disrupts the luteinizing hormone (LH) surge in most mice when applied on the morning of proestrus; this effect was not changed by resource scarcity. In this study, the paucity of effects in the offspring may relate to a milder response of CBA dams to the paradigm. While LBN dams exited the nest more often and their offspring were smaller than STD-reared offspring on PND11, dam corticosterone concentrations were similar on PND11. To test if ALPS disrupts the LH surge by blunting the increase in excitatory GABAergic input to gonadotropin-releasing hormone (GnRH) neurons on the afternoon of proestrus, we conducted whole-cell voltage-clamp recordings. The frequency of GABAergic postsynaptic currents in GnRH neurons was not altered by LBN, ALPS, or their interaction. It remains possible that ALPS acts at afferents of GnRH neurons, changes response of GnRH neurons to input, and/or alters pituitary responsiveness to GnRH and that a more pronounced resource scarcity would affect the parameters studied.
Collapse
Affiliation(s)
- Amanda G Gibson
- Neurocience Graduate Program, University of Michigan, Ann Arbor, Michigan 48109-5622
| | - Suzanne M Moenter
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-5622
- Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109-5622
- Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109-5622
| |
Collapse
|
4
|
Domes G, Linnig K, von Dawans B. Gonads under stress: A systematic review and meta-analysis on the effects of acute psychosocial stress on gonadal steroids secretion in humans. Psychoneuroendocrinology 2024; 164:107004. [PMID: 38471257 DOI: 10.1016/j.psyneuen.2024.107004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Animal research has shown that the hypothalamus-pituitary-gonadal (HPG) axis is inhibited by (chronic and/or severe) stress, which can lead to impaired fertility and reproductive functioning, presumably caused by the inhibition of gonadal steroid secretion and in interactions with glucocorticoids. However, what has not been clarified is how acute psychosocial stress modulates gonadal steroid secretion in humans. Here we summarize the experimental research on the acute effects of stress on the secretion of gonadal steroids in humans. A systematic literature search revealed 21 studies (with N=881 individuals) measuring testosterone, progesterone or estradiol in response to a standardized acute laboratory stressor in healthy humans. Both our literature review and quantitative meta-analysis suggest that in humans, acute stress stimulates rather than inhibits HPG axis activity, although there is a considerable heterogeneity in the reported methods and results. Increased gonadal steroids in response to acute stress contrasts with many animal studies reporting the opposite pattern, at least regarding severe and/or chronic stressors. We discuss methodological issues and challenges for future research and hope to stimulate experimental studies within this area. A better understanding of these mechanisms is needed, and may have important implications for health and disease, as well as the modulation of various behaviors by acute stressors.
Collapse
Affiliation(s)
- Gregor Domes
- Department of Biological and Clinical Psychology, University of Trier, Germany; Institute for Cognitive and Affective Neuroscience, University of Trier, Germany.
| | - Katrin Linnig
- Department of Biological and Clinical Psychology, University of Trier, Germany; Institute for Cognitive and Affective Neuroscience, University of Trier, Germany
| | - Bernadette von Dawans
- Department of Biological and Clinical Psychology, University of Trier, Germany; Institute for Cognitive and Affective Neuroscience, University of Trier, Germany
| |
Collapse
|
5
|
Taylor JY, Jones-Patten A, Prescott L, Potts-Thompson S, Joyce C, Tayo B, Saban K. The race-based stress reduction intervention (RiSE) study on African American women in NYC and Chicago: Design and methods for complex genomic analysis. PLoS One 2024; 19:e0295293. [PMID: 38598554 PMCID: PMC11006145 DOI: 10.1371/journal.pone.0295293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/19/2023] [Indexed: 04/12/2024] Open
Abstract
RiSE study aims to evaluate a race-based stress-reduction intervention as an effective strategy to improve coping and decrease stress-related symptoms, inflammatory burden, and modify DNA methylation of stress response-related genes in older AA women. This article will describe genomic analytic methods to be utilized in this longitudinal, randomized clinical trial of older adult AA women in Chicago and NYC that examines the effect of the RiSE intervention on DNAm pre- and post-intervention, and its overall influence on inflammatory burden. Salivary DNAm will be measured at baseline and 6 months following the intervention, using the Oragene-DNA kit. Measures of perceived stress, depressive symptoms, fatigue, sleep, inflammatory burden, and coping strategies will be assessed at 4 time points including at baseline, 4 weeks, 8 weeks, and 6 months. Genomic data analysis will include the use of pre-processed and quality-controlled methylation data expressed as beta (β) values. Association analyses will be performed to detect differentially methylated sites on the targeted candidate genes between the intervention and non-intervention groups using the Δβ (changes in methylation) with adjustment for age, health behaviors, early life adversity, hybridization batch, and top principal components of the probes as covariates. To account for multiple testing, we will use FDR adjustment with a corrected p-value of <0.05 regarded as statistically significant. To assess the relationship between inflammatory burden and Δβ among the study samples, we will repeat association analyses with the inclusion of individual inflammation protein measures. ANCOVA will be used because it is more statistically powerful to detect differences.
Collapse
Affiliation(s)
- Jacquelyn Y. Taylor
- Center for Research on People of Color, Columbia University School of Nursing, New York, New York, United States of America
| | - Alexandria Jones-Patten
- Center for Research on People of Color, Columbia University School of Nursing, New York, New York, United States of America
| | - Laura Prescott
- Center for Research on People of Color, Columbia University School of Nursing, New York, New York, United States of America
| | - Stephanie Potts-Thompson
- Center for Research on People of Color, Columbia University School of Nursing, New York, New York, United States of America
| | - Cara Joyce
- Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Bamidele Tayo
- Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Karen Saban
- Marcella Niehoff School of Nursing, Center for Translational Research and Education, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
6
|
Wang Y, Chen J, Dong H, Ma RL, Zou Y, Wang W, Zheng Q, Feng Y, Tan Z, Zeng X, Zhao Y, Deng Y, Wang Y, Gu B, Sun A. Effect of Consultation Number on the Assessment and Treatment of Polycystic Ovary Syndrome. Int J Womens Health 2024; 16:527-541. [PMID: 38558831 PMCID: PMC10979685 DOI: 10.2147/ijwh.s445568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Background The basic medical education stage is not enough to support physicians to fully diagnose and evaluate polycystic ovary syndrome (PCOS). The study aims to discover the difference in treatment choice between participants with different annual consultation number of PCOS, to promote lifelong learning, and drive balanced development within healthcare. Methods This is a multicenter cross-sectional survey. Participants' basic information, knowledge of PCOS and treatment options were collected online. According to the annual consultation number of patients with PCOS, physicians were divided into three groups: 0-50 people/yr, 50-200 people/yr, and >200 people/yr, and the results were derived from χ2 test, Fisher exact test, and multivariate logistic regression analysis. Results The study analyzed 1689 questionnaires, and 1206 physicians (71.4%) received less than 50 women per year, 388 physicians (30.0%) with an annual number of 50-200 women, and 95 physicians (5.6%) with patient turnover for more than 200 people. Reproductive endocrinologists generally have higher access to the clinic. As the number of visits increases, more and more physicians would perceive patients as more likely to have abnormal blood glucose and heavy weight. Physicians with large numbers of consultations are more likely to use Asian or Chinese standards to assess obesity. The multivariate analysis involved variables such as age, hospital level, specialty, and patient turnover annually, and more young doctors actively assessed lipid profile (odds ratio (OR) 1.56, 95% confidence interval (CI) (1.16, 2.16)), and primary hospitals (OR 0.65 CI (0.44, 0.89)) chose OGTT for blood glucose assessment less than tertiary hospitals. Physicians in secondary hospitals are more aggressive in evaluating androgens. Conclusion Our survey found differences in endocrine assessment, metabolic screening, and treatment in PCOS women in terms of the number of obstetrician-gynecologists who received different patient consultation numbers. The importance of continuing education for physicians is emphasized, to promote lifelong learning.
Collapse
Affiliation(s)
- Yue Wang
- National Clinical Research Center for Obstetric & Gynecologic Diseases Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Jie Chen
- National Clinical Research Center for Obstetric & Gynecologic Diseases Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Han Dong
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Jinzhou, Jinzhou, Liaoning, 121000, People’s Republic of China
| | - Rui-Lin Ma
- National Clinical Research Center for Obstetric & Gynecologic Diseases Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Ying Zou
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, People’s Republic of China
| | - Wei Wang
- Department of Reproductive Medicine, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Qingmei Zheng
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266500, People’s Republic of China
| | - Ying Feng
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Zhangyun Tan
- Department of Obstetrics and Gynecology, Xinhui Maternity and Children’s Hospital, Nanning, Guangxi, 529100, People’s Republic of China
| | - Xiaoqin Zeng
- Department of Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, 510000, People’s Republic of China
| | - Yinqing Zhao
- Department of Obstetrics and Gynecology, Xinhui Maternity and Children’s Hospital, Nanning, Guangxi, 529100, People’s Republic of China
| | - Yan Deng
- National Clinical Research Center for Obstetric & Gynecologic Diseases Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Yanfang Wang
- National Clinical Research Center for Obstetric & Gynecologic Diseases Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Bei Gu
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Peking University Ninth School of Clinical Medicine, Beijing, 100038, People’s Republic of China
| | - Aijun Sun
- National Clinical Research Center for Obstetric & Gynecologic Diseases Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, People’s Republic of China
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Beijing, 100010, People’s Republic of China
| |
Collapse
|
7
|
Granata L, Fanikos M, Brenhouse HC. Early life adversity accelerates hypothalamic drive of pubertal timing in female rats with associated enhanced acoustic startle. Horm Behav 2024; 159:105478. [PMID: 38241961 PMCID: PMC10926229 DOI: 10.1016/j.yhbeh.2024.105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Early life adversity in the form of childhood maltreatment in humans or as modeled by maternal separation (MS) in rodents is often associated with an earlier emergence of puberty in females. Earlier pubertal initiation is an example of accelerated biological aging and predicts later risk for anxiety in women, especially in populations exposed to early life trauma. Here we investigated external pubertal markers as well as hypothalamic gene expression of pubertal regulators kisspeptin and gonadotropin-releasing hormone, to determine a biological substrate for MS-induced accelerated puberty. We further investigated a mechanism by which developmental stress might regulate pubertal timing. As kisspeptin and gonadotropin-releasing hormone secretion are typically inhibited by corticotropin releasing hormone at its receptor CRH-R1, we hypothesized that MS induces a downregulation of Crhr1 gene transcription in a cell-specific manner. Finally, we explored the association between pubertal timing and anxiety-like behavior in an acoustic startle paradigm, to drive future preclinical research linking accelerated puberty and anxiety. We replicated previous findings that MS leads to earlier puberty in females but not males, and found expression of kisspeptin and gonadotropin-releasing hormone mRNA to be prematurely increased in MS females. RNAscope confirmed increased expression of these genes, and further revealed that kisspeptin-expressing neurons in females were less likely to express Crhr1 after MS. Early puberty was associated with higher acoustic startle magnitude in females. Taken together, these findings indicate precocial maturation of central pubertal timing mechanisms after MS, as well as a potential role of CRH-R1 in these effects and an association with a translational measure of anxiety.
Collapse
Affiliation(s)
- Lauren Granata
- Psychology Department, Northeastern University, Boston, MA, United States of America
| | - Michaela Fanikos
- Psychology Department, Northeastern University, Boston, MA, United States of America
| | - Heather C Brenhouse
- Psychology Department, Northeastern University, Boston, MA, United States of America.
| |
Collapse
|
8
|
Herman AP, Tomczyk M, Wójcik M, Bochenek J, Antushevich H, Herman A, Wiechetek W, Szczepkowska A, Marciniak E, Tomaszewska-Zaremba D. Effect of Caffeine on the Inflammatory-Dependent Changes in the GnRH/LH Secretion in a Female Sheep Model. Int J Mol Sci 2024; 25:2663. [PMID: 38473910 DOI: 10.3390/ijms25052663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Caffeine is one of the most widely consumed psychoactive drugs in the world. It easily crosses the blood-brain barrier, and caffeine-interacting adenosine and ryanodine receptors are distributed in various areas of the brain, including the hypothalamus and pituitary. Caffeine intake may have an impact on reproductive and immune function. Therefore, in the present study performed on the ewe model, we decided to investigate the effect of peripheral administration of caffeine (30 mg/kg) on the secretory activity of the hypothalamic-pituitary unit which regulates the reproductive function in females during both a physiological state and an immune/inflammatory challenge induced by lipopolysaccharide (LPS; 400 ng/kg) injection. It was found that caffeine stimulated (p < 0.01) the biosynthesis of gonadotropin-releasing hormone (GnRH) in the hypothalamus of ewe under both physiological and inflammatory conditions. Caffeine also increased (p < 0.05) luteinizing hormone (LH) secretion in ewes in a physiological state; however, a single administration of caffeine failed to completely release the LH secretion from the inhibitory influence of inflammation. This could result from the decreased expression of GnRHR in the pituitary and it may also be associated with the changes in the concentration of neurotransmitters in the median eminence (ME) where GnRH neuron terminals are located. Caffeine and LPS increased (p < 0.05) dopamine in the ME which may explain the inhibition of GnRH release. Caffeine treatment also increased (p < 0.01) cortisol release, and this stimulatory effect was particularly evident in sheep under immunological stress. Our studies suggest that caffeine affects the secretory activity of the hypothalamic-pituitary unit, although its effect appears to be partially dependent on the animal's immune status.
Collapse
Affiliation(s)
- Andrzej Przemysław Herman
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Monika Tomczyk
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Maciej Wójcik
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Joanna Bochenek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Hanna Antushevich
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Anna Herman
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Wiktoria Wiechetek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, University of Life Sciences, 02-786 Warsaw, Poland
| | - Aleksandra Szczepkowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Elżbieta Marciniak
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| | - Dorota Tomaszewska-Zaremba
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
| |
Collapse
|
9
|
Sun Q, Li G, Zhao F, Dong M, Xie W, Liu Q, Yang W, Cui R. Role of estrogen in treatment of female depression. Aging (Albany NY) 2024; 16:3021-3042. [PMID: 38309292 PMCID: PMC10911346 DOI: 10.18632/aging.205507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/28/2023] [Indexed: 02/05/2024]
Abstract
Depression is a neurological disorder that profoundly affects human physical and mental health, resulting in various changes in the central nervous system. Despite several prominent hypotheses, such as the monoaminergic theory, hypothalamic-pituitary-adrenal (HPA) axis theory, neuroinflammation, and neuroplasticity, the current understanding of depression's pathogenesis remains incomplete. Importantly, depression is a gender-dimorphic disorder, with women exhibiting higher incidence rates than men. Given estrogen's pivotal role in the menstrual cycle, it is reasonable to postulate that its fluctuating levels could contribute to the pathogenesis of depression. Estrogen acts by binding to a diversity of receptors, which are widely distributed in the central nervous system. An abundance of research has established that estrogen and its receptors play a crucial role in depression, spanning pathogenesis and treatment. In this comprehensive review, we provide an in-depth analysis of the fundamental role of estrogen and its receptors in depression, with a focus on neuroinflammation, neuroendocrinology, and neuroplasticity. Furthermore, we discuss potential mechanisms underlying the therapeutic effects of estrogen in the treatment of depression, which may pave the way for new antidepressant drug development and alternative treatment options.
Collapse
Affiliation(s)
- Qihan Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Mengmeng Dong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Wei Xie
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Qianqian Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Wei Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
10
|
Maslahati T, Schultebraucks K, Galve Gómez M, Hellmann-Regen J, Otte C, Wingenfeld K, Roepke S. Effects of oral contraceptives on intrusive memories: a secondary analysis of two studies using the trauma film paradigm in healthy women. Eur J Psychotraumatol 2023; 14:2282003. [PMID: 38039055 PMCID: PMC10990444 DOI: 10.1080/20008066.2023.2282003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Background: Women are more likely to develop post-traumatic stress disorder (PTSD) than men. Recent research suggests an impact of oral contraceptive (OC) intake on PTSD and intrusive memories, a hallmark symptom of PTSD. Although a majority of women use OCs at some point in their lives, the effects on PTSD pathogenesis are only poorly understood.Objective: In the current paper, we aimed to investigate the impact of OC intake on the acquisition and consolidation of intrusive memories in healthy women after watching a trauma film paradigm.Methods: We performed a secondary analysis of a pooled dataset (N = 437) of two previously conducted and published studies investigating the effect of oxytocin on the development of intrusive memories.Results: Women taking OCs showed an attenuated decline of intrusive memories over time after having watched the trauma film compared to naturally cycling women (F(2.75, 1167) = 3.79, p = .03, η p 2 = .01).Conclusion: These findings indicate that the intake of OCs is associated with the development of intrusive memories after a trauma film paradigm. This indication emphasizes the need to further investigate the complex impact of OCs and gonadal hormones on fear learning processes and PTSD.
Collapse
Affiliation(s)
- Tolou Maslahati
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Katharina Schultebraucks
- Department of Psychiatry, NYU Grossman School of Medicine, New York City, NY, USA
- Division of Healthcare Delivery Science, Department of Population Health, NYU Grossman School of Medicine, New York City, NY, USA
| | - Milagros Galve Gómez
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Julian Hellmann-Regen
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christian Otte
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- DZPG (German Center for Mental Health), partner site Berlin, Germany
| | - Katja Wingenfeld
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- DZPG (German Center for Mental Health), partner site Berlin, Germany
| | - Stefan Roepke
- Clinic for Psychiatry and Neurosciences, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
11
|
Pokharel SS, Brown JL. Physiological plasticity in elephants: highly dynamic glucocorticoids in African and Asian elephants. CONSERVATION PHYSIOLOGY 2023; 11:coad088. [PMCID: PMC10673820 DOI: 10.1093/conphys/coad088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/04/2023] [Accepted: 11/01/2023] [Indexed: 09/27/2024]
Abstract
Slowly reproducing and long-lived terrestrial mammals are often more at risk from challenges that influence fitness and survival. It is, therefore, important to understand how animals cope with such challenges and how coping mechanisms translate over generations and affect phenotypic plasticity. Rapidly escalating anthropogenic challenges may further diminish an animal’s ability to reinstate homeostasis. Research to advance insights on elephant stress physiology has predominantly focused on relative or comparative analyses of a major stress response marker, glucocorticoids (GCs), across different ecological, anthropogenic, and reproductive contexts. This paper presents an extensive review of published findings on Asian and African elephants from 1980 to 2023 (May) and reveals that stress responses, as measured by alterations in GCs in different sample matrices, often are highly dynamic and vary within and across individuals exposed to similar stimuli, and not always in a predictable fashion. Such dynamicity in physiological reactivity may be mediated by individual differences in personality traits or coping styles, ecological conditions, and technical factors that often are not considered in study designs. We describe probable causations under the ‘Physiological Dynamicity Model’, which considers context–experience–individuality effects. Highly variable adrenal responses may affect physiological plasticity with potential fitness and survival consequences. This review also addresses the significance of cautious interpretations of GCs data in the context of normal adaptive stress versus distress. We emphasize the need for long-term assessments of GCs that incorporate multiple markers of ‘stress’ and ‘well-being’ to decipher the probable fitness consequences of highly dynamic physiological adrenal responses in elephants. Ultimately, we propose that assessing GC responses to current and future challenges is one of the most valuable and informative conservation tools we have for guiding conservation strategies.
Collapse
Affiliation(s)
- Sanjeeta Sharma Pokharel
- Center for Species Survival, Smithsonian National Zoo Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, USA
| | - Janine L Brown
- Center for Species Survival, Smithsonian National Zoo Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, USA
| |
Collapse
|
12
|
Mitra A, Verbakel JY, Kasaven LS, Tzafetas M, Grewal K, Jones B, Bennett PR, Kyrgiou M, Saso S. The menstrual cycle and the COVID-19 pandemic. PLoS One 2023; 18:e0290413. [PMID: 37819943 PMCID: PMC10566721 DOI: 10.1371/journal.pone.0290413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/08/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND The impact of COVID-19 virus on menstrual cycles in unvaccinated women is limited. OBJECTIVE To investigate the prevalence of changes to menstrual cycle characteristics, hormonal symptoms and lifestyle changes prior to and during the COVID-19 pandemic. METHODS A retrospective online cross-sectional survey completed by social media users between July 2020 to October 2020. Participants were living in the United Kingdom (UK), premenopausal status and, or over 18 years of age. MAIN OUTCOME(S) AND MEASURES(S) The primary outcome was to assess changes to menstrual cycle characteristics during the pandemic following the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). Secondary outcomes included assessment of hormonal and lifestyle changes. RESULTS 15,611 social media users completed the survey. Of which, 75% of participants experienced a change in their menstrual cycle, with significantly greater proportions reporting irregular menstrual cycles (P<0·001), bleeding duration more than seven days (P<0·001), longer mean cycle length (P<0·001) and overall bleeding duration (P<0·001). Over half the participants reported worsening of premenstrual symptoms including low mood/depression, anxiety and irritability. When stratified according to COVID-19 infection, there was no significant difference in menstrual cycle changes. CONCLUSION The COVID-19 pandemic resulted in considerable variation in menstrual cycle characteristics and hormonal symptoms. This appears to be related to societal and lifestyle changes resulting from the pandemic, rather than to the virus itself. We believe this may have an impact on the individual, as well as national economy, healthcare, and population levels, and therefore suggest this should be taken into consideration by governments, healthcare providers and employers when developing pandemic recovery plans.
Collapse
Affiliation(s)
- Anita Mitra
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
- Department of Obstetrics & Gynaecology, Imperial College NHS Trust, London, United Kingdom
| | - Jan Y. Verbakel
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Lorraine S. Kasaven
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
- Department of Cutrale and Perioperative Ageing Group, Imperial College London, London, United Kingdom
| | - Menelaos Tzafetas
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
- Department of Obstetrics & Gynaecology, Imperial College NHS Trust, London, United Kingdom
| | - Karen Grewal
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
- Department of Obstetrics & Gynaecology, Imperial College NHS Trust, London, United Kingdom
| | - Benjamin Jones
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
- Department of Obstetrics & Gynaecology, Imperial College NHS Trust, London, United Kingdom
| | - Phillip R. Bennett
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
- Department of Obstetrics & Gynaecology, Imperial College NHS Trust, London, United Kingdom
| | - Maria Kyrgiou
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
- Department of Obstetrics & Gynaecology, Imperial College NHS Trust, London, United Kingdom
| | - Srdjan Saso
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
- Department of Obstetrics & Gynaecology, Imperial College NHS Trust, London, United Kingdom
| |
Collapse
|
13
|
Duncan PJ, Romanò N, Nair SV, Murray JF, Le Tissier P, Shipston MJ. Sex differences in pituitary corticotroph excitability. Front Physiol 2023; 14:1205162. [PMID: 37534368 PMCID: PMC10391550 DOI: 10.3389/fphys.2023.1205162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
Stress-related illness represents a major burden on health and society. Sex differences in stress-related disorders are well documented, with women having twice the lifetime rate of depression compared to men and most anxiety disorders. Anterior pituitary corticotrophs are central components of the hypothalamic-pituitary-adrenal (HPA) axis, receiving input from hypothalamic neuropeptides corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP), while regulating glucocorticoid output from the adrenal cortex. The dynamic control of electrical excitability by CRH/AVP and glucocorticoids is critical for corticotroph function; however, whether corticotrophs contribute to sexually differential responses of the HPA axis, which might underlie differences in stress-related disorders, is very poorly understood. Using perforated patch clamp electrophysiology in corticotrophs from mice expressing green fluorescent protein under the control of the Pomc promoter, we characterized basal and secretagogue-evoked excitability. Both male and female corticotrophs show predominantly single-spike action potentials under basal conditions; however, males predominantly display spikes with small-amplitude (<20 mV) afterhyperpolarizations (B-type), whereas females displayed a mixture of B-type spikes and spikes with a large-amplitude (>25 mV) afterhyperpolarization (A-type). In response to CRH, or CRH/AVP, male cells almost exclusively transition to a predominantly pseudo-plateau bursting, whereas only female B-type cells display bursting in response to CRH±AVP. Treatment of male or female corticotrophs with 1 nM estradiol (E2) for 24-72 h has no effect on the proportion of cells with A- or B-type spikes in either sex. However, E2 results in the cessation of CRH-induced bursting in both male and female corticotrophs, which can be partially reversed by adding a BK current using a dynamic clamp. RNA-seq analysis of purified corticotrophs reveals extensive differential gene expression at the transcriptional level, including more than 71 mRNAs encoding ion channel subunits. Interestingly, there is a two-fold lower level (p < 0.01) of BK channel pore-forming subunit (Kcnma1) expression in females compared to males, which may partially explain the decrease in CRH-induced bursting. This study identified sex differences at the level of the anterior pituitary corticotroph ion channel landscape and control of both spontaneous and CRH-evoked excitability. Determining the mechanisms of sex differences of corticotroph and HPA activity at the cellular level could be an important step for better understanding, diagnosing, and treating stress-related disorders.
Collapse
|
14
|
He Y, Hou J, Qiu Y, Ouyang K, Li D, Li L. Microcystin-LR immersion caused sequential endocrine disruption and growth inhibition in zebrafish (Danio rerio) from fertilization to sexual differentiation completion. Toxicology 2023:153569. [PMID: 37295766 DOI: 10.1016/j.tox.2023.153569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Microcystin-LR (MC-LR) is a highly toxic congener and is also one of the most commonly found. Recent studies have demonstrated that MC-LR can disrupt growth and endocrine in fish, but how it works at the stage of the sex differentiation period had not been determined to date. In this study, zebrafish (Danio rerio) embryos were exposed to MC-LR (0 and 10μg/L), and sampled at 14, 28, and 42 days post fertilization (dpf), respectively. The results demonstrated that MC-LR caused the growth inhibition of zebrafish at 42 dpf. The expression levels of genes related to the growth hormone/insulin-like growth factor (GH/IGF) and hypothalamic-pituitary-thyroid (HPT) axes, as well as the levels of hormone 3,5,3'- Triiodothyronine (T3) and thyroxine (T4), were significantly decreased at all time points. A Significant decrease in the ratio of testosterone and estradiol (T/E2) were detected at 28 and 42 dpf in MC-LR group along with changes in genes related to the hypothalamic-pituitary-gonadal (HPG) axis. The result of sex ratio showed that the percentage of females was up to 61.84%, indicating a estrogenic effect induced by MC-LR. The significant changes on hormone levels and gene transcripts occurred mainly in the stage of sex differentiation. The correlation analysis further suggested that key cross-talks among three endocrine axes may be the growth hormone releasing hormone (GHRH), Transthyretin (TTR) and gonadotropin releasing hormone (GnRH) signaling molecules. Overall, our findings provide a new insight for understanding the mechanisms by which MC-LR affects fish growth and reproduction during gonadal development.
Collapse
Affiliation(s)
- Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jie Hou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yuming Qiu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, P.R. China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, P.R. China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, P.R. China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, P.R. China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, P.R. China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, P.R. China.
| |
Collapse
|
15
|
Culbert BM, Border SE, Fialkowski RJ, Bolitho I, Dijkstra PD. Social status influences relationships between hormones and oxidative stress in a cichlid fish. Horm Behav 2023; 152:105365. [PMID: 37119610 DOI: 10.1016/j.yhbeh.2023.105365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
An individual's social environment can have widespread effects on their physiology, including effects on oxidative stress and hormone levels. Many studies have suggested that variation in oxidative stress experienced by individuals of different social statuses might be due to endocrine differences, however, few studies have evaluated this hypothesis. Here, we assessed whether a suite of markers associated with oxidative stress in different tissues (blood/plasma, liver, and gonads) had social status-specific relationships with circulating testosterone or cortisol levels in males of a cichlid fish, Astatotilapia burtoni. Across all fish, blood DNA damage (a global marker of oxidative stress) and gonadal synthesis of reactive oxygen species [as indicated by NADPH-oxidase (NOX) activity] were lower when testosterone was high. However, high DNA damage in both the blood and gonads was associated with high cortisol in subordinates, but low cortisol in dominants. Additionally, high cortisol was associated with greater production of reactive oxygen species (greater NOX activity) in both the gonads (dominants only) and liver (dominants and subordinates). In general, high testosterone was associated with lower oxidative stress across both social statuses, whereas high cortisol was associated with lower oxidative stress in dominants and higher oxidative stress in subordinates. Taken together, our results show that differences in the social environment can lead to contrasting relationships between hormones and oxidative stress.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Shana E Border
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA; Illinois State University, School of Biological Sciences, Normal, IL, USA
| | | | - Isobel Bolitho
- University of Manchester, Department of Earth and Environmental Sciences, Manchester, UK
| | - Peter D Dijkstra
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA; Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA; Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
16
|
Ocañas SR, Ansere VA, Kellogg CM, Isola JVV, Chucair-Elliott AJ, Freeman WM. Chromosomal and gonadal factors regulate microglial sex effects in the aging brain. Brain Res Bull 2023; 195:157-171. [PMID: 36804773 PMCID: PMC10810555 DOI: 10.1016/j.brainresbull.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Biological sex contributes to phenotypic sex effects through genetic (sex chromosomal) and hormonal (gonadal) mechanisms. There are profound sex differences in the prevalence and progression of age-related brain diseases, including neurodegenerative diseases. Inflammation of neural tissue is one of the most consistent age-related phenotypes seen with healthy aging and disease. The pro-inflammatory environment of the aging brain has primarily been attributed to microglial reactivity and adoption of heterogeneous reactive states dependent upon intrinsic (i.e., sex) and extrinsic (i.e., age, disease state) factors. Here, we review sex effects in microglia across the lifespan, explore potential genetic and hormonal molecular mechanisms of microglial sex effects, and discuss currently available models and methods to study sex effects in the aging brain. Despite recent attention to this area, significant further research is needed to mechanistically understand the regulation of microglial sex effects across the lifespan, which may open new avenues for sex informed prevention and treatment strategies.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Collyn M Kellogg
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jose V V Isola
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
17
|
Casillas F, Flores-González A, Juárez-Rojas L, López A, Betancourt M, Casas E, Bahena I, Bonilla E, Retana-Márquez S. Chronic stress decreases fertility parameters in female rats. Syst Biol Reprod Med 2023; 69:234-244. [PMID: 36848400 DOI: 10.1080/19396368.2023.2171822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Multiple effects of stress on health have been reported; however, reproductive alterations in oocytes and cumulus cells have not been fully described. In females, chronic stress has been shown to produce alterations in the estrous cycle, to decrease oocyte in vivo maturation, and to increase the percentage of abnormal oocytes. The aim of this study was to evaluate whether the oocytes from chronically stressed female rats could recover and mature in vitro by providing them with all the necessary culture conditions, as well as to evaluate the functionality of the GAP junctions, and the viability and DNA integrity of the cumulus cells, which are crucial for the complete maturation and development of the oocyte. For this, rats were stressed daily by cold water immersion (15 °C) during 15 min for 30 consecutive days. Corticosterone serum levels in rats increased as an indicator of stress. Chronic stress decreased the percentage of in vitro matured oocytes because the cumulus cells presented irreparable damage to their DNA that led to their death, being unable to establish bidirectional communication with the oocyte for its meiotic resumption through the GAP junctions, which were also damaged. These findings could partially explain an association between stress and infertility.
Collapse
Affiliation(s)
- Fahiel Casillas
- Department of Biology of Reproduction, Metropolitan Autonomous University- Iztapalapa Unit, Mexico City, Mexico
| | - Alejandra Flores-González
- Master's Degree in Animal Reproduction Biology, Metropolitan Autonomous University- Iztapalapa Unit, Mexico City, Mexico
| | - Lizbeth Juárez-Rojas
- Department of Biology of Reproduction, Metropolitan Autonomous University- Iztapalapa Unit, Mexico City, Mexico
| | - Alma López
- Department of Health Sciences, Metropolitan Autonomous University- Iztapalapa Unit, Mexico City, Mexico
| | - Miguel Betancourt
- Department of Health Sciences, Metropolitan Autonomous University- Iztapalapa Unit, Mexico City, Mexico
| | - Eduardo Casas
- Department of Health Sciences, Metropolitan Autonomous University- Iztapalapa Unit, Mexico City, Mexico
| | - Iván Bahena
- Department of Health Sciences, Metropolitan Autonomous University- Iztapalapa Unit, Mexico City, Mexico
| | - Edmundo Bonilla
- Department of Health Sciences, Metropolitan Autonomous University- Iztapalapa Unit, Mexico City, Mexico
| | - Socorro Retana-Márquez
- Department of Biology of Reproduction, Metropolitan Autonomous University- Iztapalapa Unit, Mexico City, Mexico
| |
Collapse
|
18
|
Saadedine M, El Sabeh M, Borahay MA, Daoud G. The influence of COVID-19 infection-associated immune response on the female reproductive system†. Biol Reprod 2023; 108:172-182. [PMID: 36173920 PMCID: PMC9620712 DOI: 10.1093/biolre/ioac187] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a multi-system disease that has led to a pandemic with unprecedented ramifications. The pandemic has challenged scientists for the past 2 years and brought back previously abandoned research topics. COVID-19 infection causes a myriad of symptoms ranging from mild flu-like symptoms to severe illness requiring hospitalization. Case reports showed multiple systemic effects of COVID-19 infection, including acute respiratory distress syndrome, fibrosis, colitis, thyroiditis, demyelinating syndromes, and mania, indicating that COVID-19 can affect most human body systems. Unsurprisingly, a major concern for women all over the globe is whether a COVID-19 infection has any long-term effects on their menstrual cycle, fertility, or pregnancy. Published data have suggested an effect on the reproductive health, and we hypothesize that the reported reproductive adverse effects are due to the robust immune reaction against COVID-19 and the associated cytokine storm. While the COVID-19 receptor (angiotensin converting enzyme, ACE2) is expressed in the ovaries, uterus, vagina, and placenta, we hypothesize that it plays a less important role in the adverse effects on the reproductive system. Cytokines and glucocorticoids act on the hypothalamo-pituitary gonadal axis, arachidonic acid pathways, and the uterus, which leads to menstrual disturbances and pregnancy-related adverse events such as preterm labor and miscarriages. This hypothesis is further supported by the apparent lack of long-term effects on the reproductive health in females, indicating that when the cytokine storm and its effects are dampened, the reproductive health of women is no longer affected.
Collapse
Affiliation(s)
- Mariam Saadedine
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Malak El Sabeh
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Georges Daoud
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
19
|
Garcia de leon R, Baaske A, Albert AY, Booth A, Racey CS, Gordon S, Smith LW, Gottschlich A, Sadarangani M, Kaida A, Ogilvie GS, Brotto LA, Galea LA. Higher perceived stress during the COVID-19 pandemic increased menstrual dysregulation and menopause symptoms. WOMEN'S HEALTH (LONDON, ENGLAND) 2023; 19:17455057231199051. [PMID: 37732492 PMCID: PMC10515540 DOI: 10.1177/17455057231199051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND The increased stress the world experienced with the coronavirus disease (COVID-19) pandemic affected mental health, disproportionately affecting females. However, how perceived stress in the first year affected menstrual and menopausal symptoms has not yet been investigated. OBJECTIVES This study evaluates the effect that the first year of the COVID-19 pandemic had on female reproductive and mental health. METHODS Residents in British Columbia, Canada, were surveyed online as part of the COVID-19 Rapid Evidence Study of a Provincial Population-Based Cohort for Gender and Sex. A subgroup of participants (n = 4171), who were assigned female sex at birth (age 25-69 years) and were surveyed within the first 6-12 months of the pandemic (August 2020-February 2021), prior to the widespread rollout of vaccines, was retrospectively asked if they noticed changes in their menstrual or menopausal symptoms, and completing validated measures of stress, depression and anxiety. DESIGN This is a population-based online retrospective survey. RESULTS We found that 27.8% reported menstrual cycle disturbances and 6.7% reported increased menopause symptoms. Those who scored higher on perceived stress, depression and anxiety scales were more likely to report reproductive cycle disturbances. Free-text responses revealed that reasons for disturbances were perceived to be related to the pandemic. CONCLUSION The COVID-19 pandemic has highlighted the need to research female-specific health issues, such as menstruation. Our data indicate that in the first year of the pandemic, almost one-third of the menstruating population reported disturbances in their cycle, which was related to percieved stress, depression and anxiety scores.
Collapse
Affiliation(s)
| | | | | | - Amy Booth
- Women’s Health Research Institute, Vancouver, BC, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada
| | - C. Sarai Racey
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada
| | - Shanlea Gordon
- Women’s Health Research Institute, Vancouver, BC, Canada
| | | | - Anna Gottschlich
- Women’s Health Research Institute, Vancouver, BC, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada
| | - Manish Sadarangani
- Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Angela Kaida
- Women’s Health Research Institute, Vancouver, BC, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Gina S. Ogilvie
- Women’s Health Research Institute, Vancouver, BC, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, Canada
| | - Lori A. Brotto
- Women’s Health Research Institute, Vancouver, BC, Canada
- Department of Obstetrics and Gynaecology, The University of British Columbia, Vancouver, BC, Canada
| | - Liisa A.M. Galea
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
20
|
Wang H, Zhang S, Wu S, Qin S, Liu C. Cortisol awakening response and testosterone jointly affect adolescents' theory of mind. Horm Behav 2022; 146:105258. [PMID: 36116196 DOI: 10.1016/j.yhbeh.2022.105258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022]
Abstract
Adolescence is a critical period for the maturation of neurobiological processes and hormone secretion. Recent studies on the dual-hormone hypothesis have indicated that basal cortisol and testosterone jointly affect dominant and aggressive behavior among adolescents and adults. Whether this hypothesis applies to prosocial-related understanding of others' mental states remains unclear. The present study investigated associations between basal testosterone, basal cortisol (and cortisol awakening response [CAR]), and the cognitive/affective theory of mind (ToM) in 243 adolescents (67.9 % male, aged 14 to 17 years, Mage = 16.09, standard deviation = 0.62). Cognitive ToM (cToM) and affective ToM (aToM) were assessed with a cartoon story reasoning task: In the cToM condition, participants viewed a comic strip story and needed to predict what would happen based on a character's intentions, and in the aToM condition, they viewed a comic strip of two characters interacting and needed to think about what would make the protagonist feel better. The results showed that basal testosterone and basal cortisol did not interact with each other to affect the performance of ToM, either in terms of ToM accuracy or response speed. However, under the condition of low CAR, testosterone is associated with the fast performance of cToM, although the interaction of testosterone and CAR occurred only in female adolescents. Overall, our data provide new evidence for the dual-hormone hypothesis and further extend the hypothesis to social understanding.
Collapse
Affiliation(s)
- Huagen Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 100875 Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875 Beijing, China
| | - Sihui Zhang
- Department of General Adult Psychiatry, Heidelberg University, 69115 Heidelberg, Germany
| | - Simeng Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 100875 Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875 Beijing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 100875 Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875 Beijing, China.
| | - Chao Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 100875 Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875 Beijing, China.
| |
Collapse
|
21
|
Jamieson BB, Piet R. Kisspeptin neuron electrophysiology: Intrinsic properties, hormonal modulation, and regulation of homeostatic circuits. Front Neuroendocrinol 2022; 66:101006. [PMID: 35640722 DOI: 10.1016/j.yfrne.2022.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
Abstract
The obligatory role of kisspeptin (KISS1) and its receptor (KISS1R) in regulating the hypothalamic-pituitary-gonadal axis, puberty and fertility was uncovered in 2003. In the few years that followed, an impressive body of work undertaken in many species established that neurons producing kisspeptin orchestrate gonadotropin-releasing hormone (GnRH) neuron activity and subsequent GnRH and gonadotropin hormone secretory patterns, through kisspeptin-KISS1R signaling, and mediate many aspects of gonadal steroid hormone feedback regulation of GnRH neurons. Here, we review knowledge accrued over the past decade, mainly in genetically modified mouse models, of the electrophysiological properties of kisspeptin neurons and their regulation by hormonal feedback. We also discuss recent progress in our understanding of the role of these cells within neuronal circuits that control GnRH neuron activity and GnRH secretion, energy balance and, potentially, other homeostatic and reproductive functions.
Collapse
Affiliation(s)
| | - Richard Piet
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
22
|
Xi W, Mao H, Cui Z, Yao H, Shi R, Gao Y. Scream Sound-induced Chronic Psychological Stress Results in Diminished Ovarian Reserve in Adult Female Rat. Endocrinology 2022; 163:6580263. [PMID: 35536288 DOI: 10.1210/endocr/bqac042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 01/09/2023]
Abstract
It is well established that chronic psychological stress (PS) induces female reproductive dysfunction. However, the studies on the consequences of chronic PS exposure precisely targeting ovarian reserve are lacking. In the present study, we employed a chronic scream sound-induced PS model to investigate the potential effect of pure psychosocial stressors on ovary reserve. Female rats were subjected to scream sound stress, white noise, or background for 3 weeks. Animals were euthanized by cervical dislocation after stress for collection of blood or ovaries. Sex hormones were analyzed by enzyme-linked immunosorbent assay. The follicle number was examined by histopathology. Granulosa cell apoptosis of the ovaries was examined by in situ cell death detection kit. Finally, rats were mated with proven fertile male rats to study fertility parameters. Female rats exposed to scream sound were presented with reduced weight gain and sucrose preference, while immobility time in forced swim test and serum corticosterone concentration were significantly increased. Scream sound stress sequentially decreased plasma anti-Müllerian hormone and estradiol concentration, induced primordial and preantral follicles loss, augmented granulosa cell apoptosis in ovarian growing follicles, and eventually decreased litter sizes. Based on these results, we suggest that chronic PS induced loss of ovarian reserve by accelerated primordial follicle activation and destruction of growing follicles, which results in follicle depletion and decreased fertility.
Collapse
Affiliation(s)
- Wenyan Xi
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Hui Mao
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Zhiwei Cui
- The First Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Haoyan Yao
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Ruiting Shi
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| | - Yane Gao
- The Second Affiliation Hospital of Xi'an Jiao Tong University, Xi'an City, China
| |
Collapse
|
23
|
Prevot V, Sharif A. The polygamous GnRH neuron: Astrocytic and tanycytic communication with a neuroendocrine neuronal population. J Neuroendocrinol 2022; 34:e13104. [PMID: 35233849 DOI: 10.1111/jne.13104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
Abstract
To ensure the survival of the species, hypothalamic neuroendocrine circuits controlling fertility, which converge onto neurons producing gonadotropin-releasing hormone (GnRH), must respond to fluctuating physiological conditions by undergoing rapid and reversible structural and functional changes. However, GnRH neurons do not act alone, but through reciprocal interactions with multiple hypothalamic cell populations, including several glial and endothelial cell types. For instance, it has long been known that in the hypothalamic median eminence, where GnRH axons terminate and release their neurohormone into the pituitary portal blood circulation, morphological plasticity displayed by distal processes of tanycytes modifies their relationship with adjacent neurons as well as the spatial properties of the neurohemal junction. These alterations not only regulate the capacity of GnRH neurons to release their neurohormone, but also the activation of discrete non-neuronal pathways that mediate feedback by peripheral hormones onto the hypothalamus. Additionally, a recent breakthrough has demonstrated that GnRH neurons themselves orchestrate the establishment of their neuroendocrine circuitry during postnatal development by recruiting an entourage of newborn astrocytes that escort them into adulthood and, via signalling through gliotransmitters such as prostaglandin E2, modulate their activity and GnRH release. Intriguingly, several environmental and behavioural toxins perturb these neuron-glia interactions and consequently, reproductive maturation and fertility. Deciphering the communication between GnRH neurons and other neural cell types constituting hypothalamic neuroendocrine circuits is thus critical both to understanding physiological processes such as puberty, oestrous cyclicity and aging, and to developing novel therapeutic strategies for dysfunctions of these processes, including the effects of endocrine disruptors.
Collapse
Affiliation(s)
- Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| |
Collapse
|
24
|
Huang K, Gaml-Sørensen A, Lunddorf LLH, Ernst A, Brix N, Olsen J, Ramlau-Hansen CH. Caesarean delivery and pubertal timing in boys and girls: A Danish population-based cohort study. Paediatr Perinat Epidemiol 2022; 36:104-112. [PMID: 34825716 DOI: 10.1111/ppe.12827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND There is considerable public and scientific interest in the declining age of pubertal timing. Prenatal and postnatal stress has been proposed to relate with earlier pubertal timing, but it remains unknown whether intrapartum stress may affect pubertal timing as well. OBJECTIVE This study aims to examine the potential effect of caesarean delivery on pubertal timing in boys and girls. METHODS This study was based upon the nationwide Puberty Cohort nested within the Danish National Birth Cohort (DNBC) from 2000 to 2003. A total of 15,731 mother-child pairs with complete information on delivery mode and puberty were included in the main analysis. The delivery mode was categorised into non-instrumental vaginal delivery (reference), instrumental vaginal delivery, elective caesarean delivery before labour, emergency caesarean delivery during labour and un-specified caesarean delivery. Children's pubertal development were self-reported in web-based questionnaires from 11 years of age and every 6 months throughout puberty (2012-2019), including Tanner stages 2-5, menarche, voice break, first ejaculation, axillary hair growth and the onset of acne. Regression models for censored, normally distributed time-to-event data were used to estimate mean monthly differences in age at attaining the different pubertal milestones and the average of all these estimates for each sex (a combined indicator of pubertal timing). RESULTS A total of 2810 participants were born by caesarean delivery (17.9%). Neither elective nor emergency caesarean delivery was associated with earlier age at achieving the pubertal milestones in boys or in girls. For the combined indicator, the mean age differences for elective caesarean delivery and emergency caesarean delivery were 0.1 (95% CI -1.1, 1.4) months and -0.7 (95% CI -2.0, 0.5) months in boys and 0.7 (95% CI -0.7, 2.0) and 0.2 (95% CI -1.3, 1.7) in girls. CONCLUSIONS This study does not suggest a clinically important effect of caesarean delivery on children's pubertal timing.
Collapse
Affiliation(s)
- Kun Huang
- Department of Maternal, Child and Adolescent Health, Scientific Research Center in Preventive Medicine, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Provincial Key Laboratory of Population Health and Aristogenics, School of Public Health, Anhui Medical University, Hefei, China.,Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - Anne Gaml-Sørensen
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus C, Denmark
| | | | - Andreas Ernst
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus C, Denmark.,Department of Urology, Aarhus University Hospital, Aarhus N, Denmark
| | - Nis Brix
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus C, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, Denmark
| | - Jørn Olsen
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus C, Denmark.,Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | | |
Collapse
|