1
|
Zakeri D, Pazooki J, Mohseni M, Jamshidi S. Effect of dietary chitosan on the growth performance, intestinal histology and growth-related gene expression in stellate sturgeon (Acipenser stellatus) juveniles. J Anim Physiol Anim Nutr (Berl) 2024; 108:1152-1163. [PMID: 38602249 DOI: 10.1111/jpn.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/24/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
As sturgeon breeding has proliferated, there has been a heightened demand for growth stimulators in their diets. This study aimed to determine the impact of dietary chitosan on growth performance, whole-body proximate composition, growth-related gene expression, and intestinal histology in juvenile Acipenser stellatus. A total of 180 A. stellatus juveniles with an average weight of 31.90 ± 0.73 g were fed with diets containing 0 (control), 1.5, 3.0, 4.5, and 6.0 g chitosan.kg-1 basic diet for eight weeks. The findings revealed a significant enhancement in growth performance with rising chitosan concentrations. Furthermore, chitosan supplementation upregulated the expression of the growth hormone gene in both brain and liver tissues. In liver samples, the most pronounced expression of the insulin-like growth factor-1 gene was noted at 6.0 g chitosan.kg-1, while in brain samples, peak expressions were observed in both the 4.5 and 6.0 g chitosan.kg-1 treatments. While the whole-body proximate composition remained relatively stable, there was a notable decrease in whole-body lipids with the escalation of chitosan dosage. Intestinal villi dimensions, both height and width, were amplified in the chitosan-supplemented groups compared to controls. In summation, chitosan supplementation showed promise in bolstering growth performance, refining intestinal morphology, and enhancing growth-related gene expression. Analysis of the polynomial regression of weight gain and specific growth rate revealed that the optimum dietary chitosan requirements in A. stellatus were 5.32 and 5.21 g chitosan.kg-1, respectively.
Collapse
Affiliation(s)
- Donya Zakeri
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Jamileh Pazooki
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahmoud Mohseni
- International Sturgeon Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Rasht, Iran
| | - Shirin Jamshidi
- International Sturgeon Research Institute, Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization (AREEO), Rasht, Iran
| |
Collapse
|
2
|
Liu Q, Hu J, Lin Y, Wu X, Feng Y, Ye J, Zhang K, Zheng S. Effects of exogenous steroid hormones on growth, body color, and gonadal development in the Opsariichthys bidens. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:449-461. [PMID: 38079050 DOI: 10.1007/s10695-023-01275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/24/2023] [Indexed: 04/17/2024]
Abstract
To investigate the effects of exogenous steroid hormones on growth, body color, and gonadal development in the Opsariichthys bidens (O. bidens), synthetic methyltestosterone (MT) and 17β-estradiol (E2) were used for 28 days' treatment of 4-month-old O. bidens before the breeding season. Our results suggested that MT had a significant growth-promoting effect (P < 0.05), whereas E2 played an inhibitory role. On the body surface, the females in the MT group showed gray stripes, and the fish in other groups showed no obvious stripes. The males with MT treatment displayed brighter blue-green stripes compared to the CK and E2 groups. The histological analysis showed that the MT significantly promoted testes development in males, blocked oocyte development, and caused massive apoptosis in females, whereas the E2 group promoted ovarian development and inhibited testes development. Based on qRT-PCR analysis, in females, the expression of igf-1, dmrt1, and cyp19a1a genes revealed that E2 treatment resulted in down-regulation of igf-1 expression and up-regulation of cyp19a1a expression. In males, igf-1 and dmrt1 were significantly up-regulated after MT treatment, and E2 treatment led to down-regulation of igf-1. Therefore, this study demonstrates that MT and E2 play an important role in reversing the morphological sex characteristics of females and males.
Collapse
Affiliation(s)
- Qingyuan Liu
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Jinchun Hu
- Quzhou Aquatic Technology Promotion Station, Quzhou, China
| | - Yurui Lin
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Xinrui Wu
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Yujun Feng
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Jiazheng Ye
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Kai Zhang
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Shanjian Zheng
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China.
| |
Collapse
|
3
|
Bersin TV, Cordova KL, Journey ML, Beckman BR, Lema SC. Food deprivation reduces sensitivity of liver Igf1 synthesis pathways to growth hormone in juvenile gopher rockfish (Sebastes carnatus). Gen Comp Endocrinol 2024; 346:114404. [PMID: 37940008 DOI: 10.1016/j.ygcen.2023.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Growth hormone (Gh) regulates growth in part by stimulating the liver to synthesize and release insulin-like growth factor-1 (Igf1), which then promotes somatic growth. However, for fish experiencing food limitation, elevated blood Gh can occur even with low circulating Igf1 and slow growth, suggesting that nutritional stress can alter the sensitivity of liver Igf1 synthesis pathways to Gh. Here, we examined how recent feeding experience affected Gh regulation of liver Igf1 synthesis pathways in juvenile gopher rockfish (Sebastes carnatus) to illuminate mechanisms underlying the nutritional modulation of Igf1 production. Juvenile gopher rockfish were maintained under conditions of feeding or complete food deprivation (fasting) for 14 d and then treated with recombinant sea bream (Sparus aurata) Gh or saline control. Gh upregulated hepatic igf1 mRNA levels in fed fish but not in fasted fish. The liver of fasted rockfish also showed a lower relative abundance of gene transcripts encoding teleost Gh receptors 1 (ghr1) and 2 (ghr2), as well as reduced protein levels of phosphorylated janus tyrosine kinase 2 (pJak2) and signal transducer and activator of transcription 5 (pStat5), which function to induce igf1 gene transcription following Gh binding to Gh receptors. Relative hepatic mRNA levels for suppressors of cytokine signaling (Socs) genes socs2, socs3a, and socs3b were also lower in fasted rockfish. Socs2 can suppress Gh activation of Jak2/Stat5, and fasting-related variation in socs expression may reflect modulated inhibitory control of igf1 gene transcription. Fasted rockfish also had elevated liver mRNA abundances for lipolytic hormone-sensitive lipase 1 (hsl1) and Igf binding proteins igfbp1a, -1b and -3a, reduced liver mRNAs encoding igfbp2b and an Igfbp acid labile subunit-like (igfals) gene, and higher transcript abundances for Igf1 receptors igf1ra and igf1rb in skeletal muscle. Together, these findings suggest that food deprivation impacts liver Igf1 responsiveness to Gh via multiple mechanisms that include a downregulation of hepatic Gh receptors, modulation of the intracellular Jak2/Stat5 transduction pathway, and possible shifts in Socs-inhibitory control of igf1 gene transcription, while also demonstrating that these changes occur in concert with shifts in liver Igfbp expression and muscle Gh/Igf1 signaling pathway components.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
4
|
Hue I, Capilla E, Rosell-Moll E, Balbuena-Pecino S, Goffette V, Gabillard JC, Navarro I. Recent advances in the crosstalk between adipose, muscle and bone tissues in fish. Front Endocrinol (Lausanne) 2023; 14:1155202. [PMID: 36998471 PMCID: PMC10043431 DOI: 10.3389/fendo.2023.1155202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Control of tissue metabolism and growth involves interactions between organs, tissues, and cell types, mediated by cytokines or direct communication through cellular exchanges. Indeed, over the past decades, many peptides produced by adipose tissue, skeletal muscle and bone named adipokines, myokines and osteokines respectively, have been identified in mammals playing key roles in organ/tissue development and function. Some of them are released into the circulation acting as classical hormones, but they can also act locally showing autocrine/paracrine effects. In recent years, some of these cytokines have been identified in fish models of biomedical or agronomic interest. In this review, we will present their state of the art focusing on local actions and inter-tissue effects. Adipokines reported in fish adipocytes include adiponectin and leptin among others. We will focus on their structure characteristics, gene expression, receptors, and effects, in the adipose tissue itself, mainly regulating cell differentiation and metabolism, but in muscle and bone as target tissues too. Moreover, lipid metabolites, named lipokines, can also act as signaling molecules regulating metabolic homeostasis. Regarding myokines, the best documented in fish are myostatin and the insulin-like growth factors. This review summarizes their characteristics at a molecular level, and describes both, autocrine effects and interactions with adipose tissue and bone. Nonetheless, our understanding of the functions and mechanisms of action of many of these cytokines is still largely incomplete in fish, especially concerning osteokines (i.e., osteocalcin), whose potential cross talking roles remain to be elucidated. Furthermore, by using selective breeding or genetic tools, the formation of a specific tissue can be altered, highlighting the consequences on other tissues, and allowing the identification of communication signals. The specific effects of identified cytokines validated through in vitro models or in vivo trials will be described. Moreover, future scientific fronts (i.e., exosomes) and tools (i.e., co-cultures, organoids) for a better understanding of inter-organ crosstalk in fish will also be presented. As a final consideration, further identification of molecules involved in inter-tissue communication will open new avenues of knowledge in the control of fish homeostasis, as well as possible strategies to be applied in aquaculture or biomedicine.
Collapse
Affiliation(s)
- Isabelle Hue
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Encarnación Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Enrique Rosell-Moll
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sara Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Valentine Goffette
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Jean-Charles Gabillard
- Laboratory of Fish Physiology and Genomics, UR1037, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Rennes, France
| | - Isabel Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Mohammady EY, Soaudy MR, Mohamed AE, EL-Erian MMA, Farag A, Badr AM, Bassuony NI, Ragaza JA, El-Haroun ER, Hassaan MS. Can dietary phytogenic mixture improve performance for growth, digestive enzyme activity, blood parameters, and antioxidant and related gene expressions of Nile tilapia, Oreochromis niloticus? Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
6
|
Aase-Remedios ME, Coll-Lladó C, Ferrier DEK. Amphioxus muscle transcriptomes reveal vertebrate-like myoblast fusion genes and a highly conserved role of insulin signalling in the metabolism of muscle. BMC Genomics 2022; 23:93. [PMID: 35105312 PMCID: PMC8805411 DOI: 10.1186/s12864-021-08222-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The formation and functioning of muscles are fundamental aspects of animal biology, and the evolution of 'muscle genes' is central to our understanding of this tissue. Feeding-fasting-refeeding experiments have been widely used to assess muscle cellular and metabolic responses to nutrition. Though these studies have focused on vertebrate models and only a few invertebrate systems, they have found similar processes are involved in muscle degradation and maintenance. Motivation for these studies stems from interest in diseases whose pathologies involve muscle atrophy, a symptom also triggered by fasting, as well as commercial interest in the muscle mass of animals kept for consumption. Experimentally modelling atrophy by manipulating nutritional state causes muscle mass to be depleted during starvation and replenished with refeeding so that the genetic mechanisms controlling muscle growth and degradation can be understood. RESULTS Using amphioxus, the earliest branching chordate lineage, we address the gap in previous work stemming from comparisons between distantly related vertebrate and invertebrate models. Our amphioxus feeding-fasting-refeeding muscle transcriptomes reveal a highly conserved myogenic program and that the pro-orthologues of many vertebrate myoblast fusion genes were present in the ancestral chordate, despite these invertebrate chordates having unfused mononucleate myocytes. We found that genes differentially expressed between fed and fasted amphioxus were orthologous to the genes that respond to nutritional state in vertebrates. This response is driven in a large part by the highly conserved IGF/Akt/FOXO pathway, where depleted nutrient levels result in activation of FOXO, a transcription factor with many autophagy-related gene targets. CONCLUSION Reconstruction of these gene networks and pathways in amphioxus muscle provides a key point of comparison between the distantly related groups assessed thus far, significantly refining the reconstruction of the ancestral state for chordate myoblast fusion genes and identifying the extensive role of duplicated genes in the IGF/Akt/FOXO pathway across animals. Our study elucidates the evolutionary trajectory of muscle genes as they relate to the increased complexity of vertebrate muscles and muscle development.
Collapse
Affiliation(s)
- Madeleine E Aase-Remedios
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - Clara Coll-Lladó
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK.
| |
Collapse
|
7
|
Effects of starvation and refeeding on growth performance, appetite, growth hormone-insulin-like growth factor axis levels and digestive function of Acipenser dabryanus. Br J Nutr 2021; 126:695-707. [PMID: 33143764 DOI: 10.1017/s0007114520004389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to explore the effects and mechanisms of different starvation treatments on the compensatory growth of Acipenser dabryanus. A total of 120 fish (60·532 (sem 0·284) g) were randomly assigned to four groups (fasting 0, 3, 7 or 14 d and then refed for 14 d). During fasting, middle body weight decreased significantly with prolonged starvation. The whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had been effected with varying degrees of changes. The growth hormone (GH) level in serum was significantly increased in 14D; however, insulin-like growth factor-1 (IGF-1) showed the opposite trend. The neuropeptide Y (npy) mRNA level in brain was significantly improved in 7D; peptide YY (pyy) mRNA level in intestine was significantly decreased during fasting. After refeeding, the final body weight, percentage weight gain, specific growth rate, feed intake, feed efficiency and protein efficiency ratio showed no difference between 0D and 3D. The changes of whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had taken place in varying degrees. GH levels in 3D and 7D were significantly higher than those in the 0D; the IGF-1 content decreased significantly during refeeding. There was no significant difference in npy and pyy mRNA levels. These results indicated that short-term fasting followed by refeeding resulted in full compensation and the physiological and biochemical effects on A. dabryanus were the lowest after 3 d of starvation and 14 d of refeeding. Additionally, compensation in A. dabryanus may be mediated by appetite genes and GH, and the degree of compensation is also affected by the duration of starvation.
Collapse
|
8
|
Si Y, He F, Wen H, Li S, He H. Effects of low salinity on epigenetic changes of growth hormone and growth hormone receptor in half smooth tongue sole (Cynoglossus semilaevis). REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
9
|
Petro-Sakuma C, Celino-Brady FT, Breves JP, Seale AP. Growth hormone regulates intestinal gene expression of nutrient transporters in tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 2020; 292:113464. [PMID: 32171745 PMCID: PMC7253219 DOI: 10.1016/j.ygcen.2020.113464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Among the various ways that growth hormone (GH) underlies the growth physiology of teleost fishes, GH stimulates transport pathways that facilitate the absorption of nutrients across intestinal epithelia. The current study investigated the effects of GH on the gene expression of nutrient transporters in an omnivorous teleost, the Mozambique tilapia (Oreochromis mossambicus). We employed pituitary gland removal (hypophysectomy) and hormone replacement to assess whether GH directs the gene expression of the GH receptor (ghr2), the peptide transporters, pept1a, pept1b and pept2, the amino acid transporter, slc7a9, the Na+/glucose cotransporter, sglt1, the glucose transporter, glut2, and the myo-inositol transporter, smit2, in anterior, middle, and posterior intestine. ghr2 was predominantly expressed in posterior intestine, while pept1a, pept1b, slc7a9, sglt1, glut2, and smit2 exhibited the highest mRNA levels in anterior and/or middle intestine. While hypophysectomized tilapia exhibited diminished expression of ghr2, pept1a, pept1b, slc7a9, and glut2 compared with intact and sham-operated controls, only ghr2, pept1a, pept1b and glut2 levels were restored by GH replacement. Our findings indicate that GH supports growth, at least in part, by stimulating the gene expression of its cognate receptor and key nutrient transporters in the intestine.
Collapse
Affiliation(s)
- Cody Petro-Sakuma
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Fritzie T Celino-Brady
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Andre P Seale
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA; Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI 96744, USA.
| |
Collapse
|
10
|
Lu X, Chen HM, Qian XQ, Gui JF. Transcriptome analysis of grass carp (Ctenopharyngodon idella) between fast- and slow-growing fish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100688. [PMID: 32454298 DOI: 10.1016/j.cbd.2020.100688] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/11/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
Grass carp is one of the most important freshwater aquaculture species in China. However, the mechanisms underlying the growth of muscle tissue in the fish are unclear. High-throughput RNA-Seq was used to analyze the transcriptome of grass carp muscle tissue between fast- and slow-growing fish family groups. Twenty-four individuals each from 4 fast-growing families and 4 slow-growing families were used to reduce background noise. 71 up-regulated and 35 down-regulated genes were identified in the differentially expressed genes (DEGs). GO and KEGG enrichment analyses revealed the DEGs were involved in the GH/IGF axis, calcium metabolism, protein and glycogen synthesis, oxygen transport, cytoskeletal and myofibrillar components. IGFBP1 was up-regulated in big fish while GHR2 was down-regulated. Glutamic pyruvate transaminase 2, an indicator of liver tissue damage, was down-regulated in big grass carp, which indicates that the fish was better adapted to an artificially formulated diet. GAPDH, the rate-limiting enzyme in glycolytic flux was highly expressed in fast-growing grass carp, reflecting enhanced carbohydrate metabolism. Higher expression of ALAS2 and myoglobin 1 in big grass carp, related to oxygen transport might promote aerobic exercise along with food intake and muscle growth. Genes for cytoskeletal and myofibrillar components such as tropomyosin, meromyosin, and troponin I were also up-regulated in big grass carp. These results provide valuable information about the key genes for use as biomarkers of growth in selective breeding programs for grass carp and contribute to our understanding of the molecular mechanisms and regulative pathways regulating growth in fish.
Collapse
Affiliation(s)
- Xue Lu
- Key Laboratory of Utilization for Microbiological Resources in Breeding Industries, Ministry of Agriculture and Rural Affairs, Haid Central Research Institute, Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Hui-Min Chen
- Key Laboratory of Utilization for Microbiological Resources in Breeding Industries, Ministry of Agriculture and Rural Affairs, Haid Central Research Institute, Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Xue-Qiao Qian
- Key Laboratory of Utilization for Microbiological Resources in Breeding Industries, Ministry of Agriculture and Rural Affairs, Haid Central Research Institute, Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511400, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
11
|
Weidner J, Jensen CH, Giske J, Eliassen S, Jørgensen C. Hormones as adaptive control systems in juvenile fish. Biol Open 2020; 9:bio046144. [PMID: 31996351 PMCID: PMC7044463 DOI: 10.1242/bio.046144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Growth is an important theme in biology. Physiologists often relate growth rates to hormonal control of essential processes. Ecologists often study growth as a function of gradients or combinations of environmental factors. Fewer studies have investigated the combined effects of environmental and hormonal control on growth. Here, we present an evolutionary optimization model of fish growth that combines internal regulation of growth by hormone levels with the external influence of food availability and predation risk. The model finds a dynamic hormone profile that optimizes fish growth and survival up to 30 cm, and we use the probability of reaching this milestone as a proxy for fitness. The complex web of interrelated hormones and other signalling molecules is simplified to three functions represented by growth hormone, thyroid hormone and orexin. By studying a range from poor to rich environments, we find that the level of food availability in the environment results in different evolutionarily optimal strategies of hormone levels. With more food available, higher levels of hormones are optimal, resulting in higher food intake, standard metabolism and growth. By using this fitness-based approach we also find a consequence of evolutionary optimization of survival on optimal hormone use. Where foraging is risky, the thyroid hormone can be used strategically to increase metabolic potential and the chance of escaping from predators. By comparing model results to empirical observations, many mechanisms can be recognized, for instance a change in pace-of-life due to resource availability, and reduced emphasis on reserves in more stable environments.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jacqueline Weidner
- University of Bergen, Department of Biological Sciences, Postboks 7803, N-5020 Bergen, Norway
| | | | - Jarl Giske
- University of Bergen, Department of Biological Sciences, Postboks 7803, N-5020 Bergen, Norway
| | - Sigrunn Eliassen
- University of Bergen, Department of Biological Sciences, Postboks 7803, N-5020 Bergen, Norway
| | - Christian Jørgensen
- University of Bergen, Department of Biological Sciences, Postboks 7803, N-5020 Bergen, Norway
| |
Collapse
|
12
|
Strobel JS, Hack NL, Label KT, Cordova KL, Bersin TV, Journey ML, Beckman BR, Lema SC. Effects of food deprivation on plasma insulin-like growth factor-1 (Igf1) and Igf binding protein (Igfbp) gene transcription in juvenile cabezon (Scorpaenichthys marmoratus). Gen Comp Endocrinol 2020; 286:113319. [PMID: 31715138 DOI: 10.1016/j.ygcen.2019.113319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022]
Abstract
The growth hormone (GH)/insulin-like growth factor (Igf) endocrine axis regulates somatic growth in the face of changing environmental conditions. In actinopterygian fishes, food availability is a key modulator of the somatotropic axis, with lower food intake generally depressing liver Igf1 release to diminish growth. Igf1 signaling, however, also involves several distinct IGF binding proteins (Igfbps), and the functional roles of many of these Igfbps in affecting growth during shifting food availability remain uncertain. Here, we tested how complete food deprivation (fasting) affected gene transcription for paralogs of all six types of Igfbps in the liver and fast-twitch skeletal muscle of cabezon (Scorpaenichthys marmoratus), a nearshore marine fish important for recreational fisheries in the eastern North Pacific Ocean. Juvenile cabezon were maintained as either fed (6% mass food⋅g fish wet mass-1⋅d-1) or fasted for 14 d. Fasted fish exhibited a lower body condition (K), a depressed mass-specific growth rate (SGR), and reduced plasma concentrations of Igf1. In the liver, fasting reduced the relative abundance of gene transcripts encoding Igfbps igfbp2a and igfbp2b, while significantly elevating mRNA levels for igfbp1a, igfbp1b, igfbp3b, and igfbp4. Fasting also reduced hepatic mRNA levels of GH receptor-1 (ghr1) - but not GH receptor-2 (ghr2) - supporting the idea that changes in liver sensitivity to GH may underlie the decline in plasma Igf1 during food deprivation. In skeletal muscle, fasting downregulated gene transcripts encoding igf1, igfbp2b, igfbp5b, and igfbp6b, while also upregulating mRNAs for igf2 and ghr2. These data demonstrate isoform-specific regulation of Igfbps in liver and skeletal muscle in cabezon experiencing food deprivation and reinforce the idea that the repertoire of duplicated Igfbp genes that evolved in actinopterygian fishes supports a diverse scope of endocrine and paracrine functions.
Collapse
Affiliation(s)
- Jackson S Strobel
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Nicole L Hack
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kevin T Label
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle Washington 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
13
|
Jia J, Qin J, Yuan X, Liao Z, Huang J, Wang B, Sun C, Li W. Microarray and metabolome analysis of hepatic response to fasting and subsequent refeeding in zebrafish (Danio rerio). BMC Genomics 2019; 20:919. [PMID: 31791229 PMCID: PMC6889435 DOI: 10.1186/s12864-019-6309-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background Compensatory growth refers to the phenomenon in which organisms grow faster after the improvement of an adverse environment and is thought to be an adaptive evolution to cope with the alleviation of the hostile environment. Many fish have the capacity for compensatory growth, but the underlying cellular mechanisms remain unclear. In the present study, microarray and nontargeted metabolomics were performed to characterize the transcriptome and metabolome of zebrafish liver during compensatory growth. Results Zebrafish could regain the weight they lost during 3 weeks of fasting and reach a final weight similar to that of fish fed ad libitum when refed for 15 days. When refeeding for 3 days, the liver displayed hyperplasia accompanied with decreased triglyceride contents and increased glycogen contents. The microarray results showed that when food was resupplied for 3 days, the liver TCA cycle (Tricarboxylic acid cycle) and oxidative phosphorylation processes were upregulated, while DNA replication and repair, as well as proteasome assembly were also activated. Integration of transcriptome and metabolome data highlighted transcriptionally driven alterations in metabolism during compensatory growth, such as altered glycolysis and lipid metabolism activities. The metabolome data also implied the participation of amino acid metabolism during compensatory growth in zebrafish liver. Conclusion Our study provides a global resource for metabolic adaptations and their transcriptional regulation during refeeding in zebrafish liver. This study represents a first step towards understanding of the impact of metabolism on compensatory growth and will potentially aid in understanding the molecular mechanism associated with compensatory growth.
Collapse
Affiliation(s)
- Jirong Jia
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Jingkai Qin
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Xi Yuan
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Zongzhen Liao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Jinfeng Huang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Bin Wang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China.,Present address: Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, No.135 Xingang West Road, Guangzhou, 510275, China.
| |
Collapse
|
14
|
Hack NL, Cordova KL, Glaser FL, Journey ML, Resner EJ, Hardy KM, Beckman BR, Lema SC. Interactions of long-term food ration variation and short-term fasting on insulin-like growth factor-1 (IGF-1) pathways in copper rockfish (Sebastes caurinus). Gen Comp Endocrinol 2019; 280:168-184. [PMID: 31022390 DOI: 10.1016/j.ygcen.2019.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/13/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022]
Abstract
Variation in food intake affects somatic growth by altering the expression of hormones in the somatotropic endocrine axis including insulin-like growth factor-1 (IGF-1). Here, we examined IGF-1 pathway responses to long- and short-term variation in food availability in copper rockfish (Sebastes caurinus), a nearshore Pacific rockfish important for commercial and recreational fisheries. Juvenile copper rockfish were raised under differing ration amounts (3% or 9% mass feed·g-1 fish wet mass·day-1) for 140 d to simulate 'long-term' feeding variation, after which some fish from both rations were fasted for 12 d to generate 'short-term' conditions of food deprivation. Rockfish on the 9% ration treatment grew more quickly than those on the 3% ration and were larger in mass, length, and body condition (k) after 152 d. Fish on the 9% ration had higher blood glucose than those on the 3% ration, with fasting decreasing blood glucose in both ration treatments, indicating that both long-term and short-term feed treatments altered energy status. Plasma IGF-1 was higher in rockfish from the 9% ration than those in the 3% ration and was also higher in fed fish than fasted fish. Additionally, plasma IGF-1 related positively to individual variation in specific growth rate (SGR). The positive association between IGF-1 and SGR showed discordance in fish that had experienced different levels of food and growth over the long-term but not short-term, suggesting that long-term nutritional experience can influence the relationship between IGF-1 and growth in this species. Rockfish on the 3% ration showed a lower relative abundance of gene transcripts encoding igf1 in the liver, but higher hepatic mRNAs for IGF binding proteins igfbp1a and igfbp1b. Fasting similarly decreased the abundance of igf1 mRNAs in the liver of fish reared under both the 9% and 3% rations, while concurrently increasing mRNAs encoding the IGF binding proteins igfbp1a, -1b, and -3a. Hepatic mRNAs for igfbp2b, -5a, and -5b were lower with long-term ration variation (3% ration) and fasting. Fish that experienced long-term reduced rations also had higher mRNA levels for igfbp3a, -3b, and IGF receptors isoforms A (igf1rA) and B (igf1rB) in skeletal muscle, but lower mRNA levels for igf1. Fasting increased muscle mRNA abundance for igfbp3a, igf1rA, and igf1rB, and decreased levels for igfbp2a and igf1. These data show that a positive relationship between circulating IGF-1 and individual growth rate is maintained in copper rockfish even when that growth variation relates to differences in food consumption across varying time scales, but that long- and short-term variation in food quantity can shift basal concentrations of circulating IGF-1 in this species.
Collapse
Affiliation(s)
- Nicole L Hack
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Frances L Glaser
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Emily J Resner
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kristin M Hardy
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
15
|
The Dietary Lipid Content Affects the Tissue Gene Expression of Muscle Growth Biomarkers and the GH/IGF System of Pejerrey (Odontesthes bonariensis) Juveniles. FISHES 2019. [DOI: 10.3390/fishes4030037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gene expression of growth hormone receptors (GHRs), insulin-like growth factors (IGFs), myostatin (MSTN) and myogenin (MyoG) was analyzed in juveniles pejerrey fed with graded levels of lipids (L): 6% (L6), 10% (L10), 25% (L25). After 14 weeks, no changes were found in liver GHR-I GHR-II and IGF-II mRNA levels whereas IGF-I decreased in L10 and L25. Muscle GHR-I gene expression increased in L25 whereas GHR-II, IGF-II and MyoG were higher in L6. IGF-I and MSTN expression was not affected by the different diets. Adipose IGF-I mRNA levels decreased in L10. Correlations between body weight and members of GH/IGF system in liver and skeletal muscle were found only in L10 group. Correlations found in L10 group between both liver and skeletal muscle GHR-I and IGF-I were lost in either L6 or L25 groups. Thus, fish fed with apparently unbalanced dietary lipid contents (6% and 25%) exhibit a compensatory regulation of systemic and local components of the GH/IGF axis. Furthermore, the marked inhibition of muscle MyoG gene expression in L25 might limit excessive lipid deposition and fish growth. Our data suggest that a dietary lipid contents of 10% would promote a particular adjustment of the endocrine and autocrine/paracrine GH/IGF system, stimulating body growth and perhaps muscle hyperplasia. On the other hand, a higher dietary lipid content would uncouple the GH/IGF system, reducing hepatic IGF-I, while slightly increasing hepatic GHR-I, probably to prompt lipolysis.
Collapse
|
16
|
Yang S, He K, Yan T, Wu H, Zhou J, Zhao L, Wang Y, Gong Q. Effect of starvation and refeeding on oxidative stress and antioxidant defenses in Yangtze sturgeon (Acipenser dabryanus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:987-995. [PMID: 30830564 DOI: 10.1007/s10695-019-0609-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/07/2019] [Indexed: 05/22/2023]
Abstract
The present research aimed to evaluate the effects of long-term fasting and refeeding on the growth and antioxidant defenses in the liver and serum in Yangtze sturgeon (Acipenser dabryanus). The results showed that body mass and hepatosomatic index significantly decreased with long-term fasting, but they could be recovered after 4 weeks refeeding. Compared with controls, the antioxidant defense parameters of starvation indicated that the malondialdehyde (MDA) levels increased significantly in both tissues; the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) increased obviously in serum and liver, respectively (p < 0.05). However, the activities of catalase (CAT) always decreased in two tissues including liver and serum during the whole starvation, as was the SOD in the liver (p < 0.05). Interestingly, the T-AOC levels of Yangtze sturgeon presented higher at early stage of starvation and dropped down at the end of starvation (p < 0.05). However, all of the antioxidant index above returned to origin level after 4 weeks refeeding. In conclusion, the present study indicated that long-time fasting induced oxidative stress in Yangtze sturgeon and it may easily adjust their physiological status under situations characterized by a long-term starvation and refeeding.
Collapse
Affiliation(s)
- Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Tao Yan
- Fisheries Institute of Sichuan, Academy of Agricultural Science, Chengdu, 611731, Sichuan, China
| | - Hao Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Jian Zhou
- Fisheries Institute of Sichuan, Academy of Agricultural Science, Chengdu, 611731, Sichuan, China.
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Quan Gong
- Fisheries Institute of Sichuan, Academy of Agricultural Science, Chengdu, 611731, Sichuan, China
| |
Collapse
|
17
|
Ghelichpour M, Taheri Mirghaed A, Hoseinifar SH, Khalili M, Yousefi M, Van Doan H, Perez-Jimenez A. Expression of immune, antioxidant and stress related genes in different organs of common carp exposed to indoxacarb. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:208-216. [PMID: 30684893 DOI: 10.1016/j.aquatox.2019.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
The aim of the present study was to investigate the effects of chronic exposure of common carp (Cyprinus carpio) to indoxacarb on immune, antioxidant and stress gene expression. After 21 days exposure to 0, 0.75, 1.5 and 3 ppm indoxacarb, expression of IL-1β, IL-8, IL-10, TNF-α, IFN-γ, SOD, CAT, HSP70, IGF-I and IGF-II were assessed in liver, kidney and gills. In general, exposure to low concentration of indoxacarb increased inflammatory cytokine gene expression (IL-1β, IL-8, IL-10, TNF-α and IFN-γ) and inhibits inflammatory cytokines' expression at higher concentrations. The assessment of antioxidant gene expression (SOD and CAT) in different organs indicate that they were increased by low concentrations of indoxacarb to deal with primary oxidative situation. However, higher concentrations of indoxacarb caused reduction in oxidative gene expression. IGF genes expression in liver significantly increased at a concentration of 0.75 ppm treatment, then it decreased at 1.5 ppm indoxacarb and increased again by increasing in the indoxacarb concentration to 3 ppm. The expression of HSP70 in kidney showed a significant elevation in 0.75 and 1.5 ppm treatments compared with 3 ppm treatment and the control group. The expression of this gene in liver was significantly increased in 1.5 and 3 ppm treatments. The same pattern of expression was also observed in gill. Overall, indoxacarb exposure affects common carp health at transcription levels. Changes in the genes expression generally suggest that indoxacarb exposure led to interference in inflammation, oxidative stress and tissue damage.
Collapse
Affiliation(s)
- Melika Ghelichpour
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Taheri Mirghaed
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohsen Khalili
- Medical Cellular & Molecular Research Center, Golestan University of Medical Science, Gorgan, Iran
| | - Morteza Yousefi
- Department of Veterinary Medicine, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Amalia Perez-Jimenez
- Departamento de Zoología, Universidad de Granada, Campus de Fuentenueva, Granada, Spain; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| |
Collapse
|
18
|
Bertucci JI, Blanco AM, Sundarrajan L, Rajeswari JJ, Velasco C, Unniappan S. Nutrient Regulation of Endocrine Factors Influencing Feeding and Growth in Fish. Front Endocrinol (Lausanne) 2019; 10:83. [PMID: 30873115 PMCID: PMC6403160 DOI: 10.3389/fendo.2019.00083] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
Endocrine factors regulate food intake and growth, two interlinked physiological processes critical for the proper development of organisms. Somatic growth is mainly regulated by growth hormone (GH) and insulin-like growth factors I and II (IGF-I and IGF-II) that act on target tissues, including muscle, and bones. Peptidyl hormones produced from the brain and peripheral tissues regulate feeding to meet metabolic demands. The GH-IGF system and hormones regulating appetite are regulated by both internal (indicating the metabolic status of the organism) and external (environmental) signals. Among the external signals, the most notable are diet availability and diet composition. Macronutrients and micronutrients act on several hormone-producing tissues to regulate the synthesis and secretion of appetite-regulating hormones and hormones of the GH-IGF system, eventually modulating growth and food intake. A comprehensive understanding of how nutrients regulate hormones is essential to design diet formulations that better modulate endogenous factors for the benefit of aquaculture to increase yield. This review will discuss the current knowledge on nutritional regulation of hormones modulating growth and food intake in fish.
Collapse
Affiliation(s)
- Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxìa Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jithine Jayakumar Rajeswari
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cristina Velasco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxìa Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Suraj Unniappan
| |
Collapse
|
19
|
Hack NL, Strobel JS, Journey ML, Beckman BR, Lema SC. Response of the insulin-like growth factor-1 (Igf1) system to nutritional status and growth rate variation in olive rockfish (Sebastes serranoides). Comp Biochem Physiol A Mol Integr Physiol 2018; 224:42-52. [DOI: 10.1016/j.cbpa.2018.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
|
20
|
Jafari N, Falahatkar B, Sajjadi MM. Growth performance and plasma metabolites in juvenile Siberian sturgeon Acipenser baerii (Brandt, 1869) subjected to various feeding strategies at different sizes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1363-1374. [PMID: 29909519 DOI: 10.1007/s10695-018-0527-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
The effect of various feeding strategies was evaluated on growth performance and biochemical parameters in two sizes of Siberian sturgeon (465.75 ± 11.18 and 250.40 ± 12 g) during 45 days. Fish were distributed into six experimental treatments including large fish with satiation feeding (LA), small fish with satiation feeding (SA), large fish with 50% satiation feeding (LR), small fish with 50% satiation feeding (SR), large starved fish (LS), and small starved fish (SS). Differences in final weight between LA and LR treatments were not noticeable, whereas SA and SR treatments showed significant differences. Growth parameters were more affected in small fish. In condition factor and weight gain in starved treatments, a considerable reduction occurred by interaction between feeding strategies and fish size, so the lowest values were obtained in SS treatment. Glucose levels significantly decreased in small fish during the starvation. Interaction between feeding strategy and fish size indicated the highest and lowest albumin level in SA and SS treatment, respectively. Cholesterol, triglyceride, total protein, and globulin showed no significant differences. It can be deduced that small fish are more sensitive to starvation than the large fish. Since glucose and albumin showed significant decrease in starved small fish, these parameters can help to monitor nutritional status and feeding practices. It was indicated that in both sizes of Siberian sturgeon, feeding 50% satiation reduced the food cost without negative impact on physiological condition, and it can be considered as an appropriate strategy to face unfavorable circumstances.
Collapse
Affiliation(s)
- Naghmeh Jafari
- Fisheries Department, Faculty of Natural Resources, University of Guilan, P.O. Box 1144, Sowmeh Sara, Iran
| | - Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, P.O. Box 1144, Sowmeh Sara, Iran.
- Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Mir Masoud Sajjadi
- Fisheries Department, Faculty of Natural Resources, University of Guilan, P.O. Box 1144, Sowmeh Sara, Iran
| |
Collapse
|
21
|
Bergan-Roller HE, Sheridan MA. The growth hormone signaling system: Insights into coordinating the anabolic and catabolic actions of growth hormone. Gen Comp Endocrinol 2018; 258:119-133. [PMID: 28760716 DOI: 10.1016/j.ygcen.2017.07.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/19/2017] [Accepted: 07/27/2017] [Indexed: 12/16/2022]
Abstract
Although growth hormone (GH) is a multifunctional factor that coordinates various aspects of feeding, reproduction, osmoregulation, and immune system function, perhaps two of its most studied actions are the regulation of growth and metabolism, particularly lipid metabolism. In this review, we describe the major growth-promoting and lipid metabolic actions of GH and then discuss how the GH system regulates these actions. Numerous intrinsic and extrinsic factors provide information about the metabolic status of the organism and influence the production of release of GH. The actions of GH are mediated by GH receptors (GHR), which are widely distributed among tissues. Teleosts possess multiple forms of GHRs that arose through the evolution of this group. Modulation of tissue responsiveness to GH is regulated by molecular and functional expression of GHRs, and in teleosts GHR subtypes, by various factors that reflect the metabolic and growth status of the organism, including nutritional state. The action of GH is propagated by the linkage of GHRs to several cellular effector systems, including JAK-STAT, ERK, PI3K-Akt, and PKC. The differential activation of these pathways, which is governed by nutrient status, underlies GH stimulation of growth or GH stimulation of lipolysis. Taken together, the multi-functional actions of GH are determined by the distribution and abundance of GHRs (and GHR subtypes in teleosts) as well as by the GHR-effector system linkages.
Collapse
Affiliation(s)
| | - Mark A Sheridan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409 USA.
| |
Collapse
|
22
|
Alzaid A, Kim JH, Devlin RH, Martin SAM, Macqueen DJ. Growth hormone transgenesis in coho salmon disrupts muscle immune function impacting cross-talk with growth systems. J Exp Biol 2018; 221:jeb.173146. [DOI: 10.1242/jeb.173146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
Abstract
Suppression of growth during infection may aid resource allocation towards effective immune function. Past work supporting this hypothesis in salmonid fish revealed an immune-responsive regulation of the insulin-like growth factor (IGF) system, an endocrine pathway downstream of growth hormone (GH). Skeletal muscle is the main target for growth and energetic storage in fish, yet little is known about how its growth is regulated during an immune response. We addressed this knowledge gap by characterizing muscle immune responses in size-matched coho salmon (Oncorhynchus kisutch) achieving different growth rates. We compared a wild-type strain with two GH transgenic groups from the same genetic background achieving either maximal or suppressed growth, a design separating GH's direct effects from its influence on growth rate and nutritional state. Fish were sampled 30h post-injection with PBS (control) or mimics of bacterial or viral infection. We quantified mRNA expression levels for genes from the GH, GH receptor, IGF hormone, IGF1 receptor and IGF-binding protein families, along with immune genes involved in inflammatory or antiviral responses and muscle growth status marker genes. We demonstrate dampened immune function in GH transgenics compared to wild-type. The muscle of GH transgenics achieving rapid growth showed no detectable antiviral response, coupled with evidence of a constitutive inflammatory state. GH and IGF system gene expression was strongly altered by GH transgenesis and fast growth, both for baseline expression and responses to immune stimulation. Thus, GH transgenesis strongly disrupts muscle immune status and normal GH and IGF system expression responses to immune stimulation.
Collapse
Affiliation(s)
- Abdullah Alzaid
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Jin-Hyoung Kim
- Fisheries and Oceans Canada, West Vancouver, British Columbia, V7V 1N6, Canada
- Current address: Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Korea
| | - Robert H. Devlin
- Fisheries and Oceans Canada, West Vancouver, British Columbia, V7V 1N6, Canada
| | - Samuel A. M. Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Daniel J. Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
23
|
Global gene expression in muscle from fasted/refed trout reveals up-regulation of genes promoting myofibre hypertrophy but not myofibre production. BMC Genomics 2017; 18:447. [PMID: 28592307 PMCID: PMC5463356 DOI: 10.1186/s12864-017-3837-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Compensatory growth is a phase of rapid growth, greater than the growth rate of control animals, that occurs after a period of growth-stunting conditions. Fish show a capacity for compensatory growth after alleviation of dietary restriction, but the underlying cellular mechanisms are unknown. To learn more about the contribution of genes regulating hypertrophy (an increase in muscle fibre size) and hyperplasia (the generation of new muscle fibres) in the compensatory muscle growth response in fish, we used high-density microarray analysis to investigate the global gene expression in muscle of trout during a fasting-refeeding schedule and in muscle of control-fed trout displaying normal growth. RESULTS The compensatory muscle growth signature, as defined by genes up-regulated in muscles of refed trout compared with control-fed trout, showed enrichment in functional categories related to protein biosynthesis and maturation, such as RNA processing, ribonucleoprotein complex biogenesis, ribosome biogenesis, translation and protein folding. This signature was also enriched in chromatin-remodelling factors of the protein arginine N-methyl transferase family. Unexpectedly, functional categories related to cell division and DNA replication were not inferred from the molecular signature of compensatory muscle growth, and this signature contained virtually none of the genes previously reported to be up-regulated in hyperplastic growth zones of the late trout embryo myotome and to potentially be involved in production of new myofibres, notably genes encoding myogenic regulatory factors, transmembrane receptors essential for myoblast fusion or myofibrillar proteins predominant in nascent myofibres. CONCLUSION Genes promoting myofibre growth, but not myofibre formation, were up-regulated in muscles of refed trout compared with continually fed trout. This suggests that a compensatory muscle growth response, resulting from the stimulation of hypertrophy but not the stimulation of hyperplasia, occurs in trout after refeeding. The generation of a large set of genes up-regulated in muscle of refed trout may yield insights into the molecular and cellular mechanisms controlling skeletal muscle mass in teleost and serve as a useful list of potential molecular markers of muscle growth in fish.
Collapse
|
24
|
Malandrakis EE, Dadali O, Golomazou E, Kavouras M, Dailianis S, Chadio S, Exadactylos A, Panagiotaki P. DNA damage and differential gene expression associated with physical stress in gilthead seabream (Sparus aurata). Gen Comp Endocrinol 2016; 236:98-104. [PMID: 27401265 DOI: 10.1016/j.ygcen.2016.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 06/05/2016] [Accepted: 07/07/2016] [Indexed: 11/25/2022]
Abstract
Fish stress may result in inhibition of reproduction, development and growth. Thus, appropriate indices should be developed to accurately define the physiological plasticity of fish, in terms of coping with stress. Sea bream individuals were subjected to physical stress (fasting and confinement). DNA fragmentation of liver cells was assessed, in addition to gene expression of selected genes and plasma cortisol levels determination. Stress response was characterized with significant temporal alterations. Increased DNA fragmentation was observed as an aftereffect of physical stress and consequently gene expression of tp53 was stimulated. The expression pattern of glucocorticoid receptor (nr3c1) was directly correlated with plasma cortisol. Furthermore, glucokinase (gk) gene expression was considerably upregulated under acute stress, depicting putative energetic demands. Finally, igf1 downregulation during stress, reflects the suppression of the GH/IGF axis and the substantial stress effects on growth. To conclude, most of the indices described in the present study could be synergistically used, in order to robustly quantify physical stress in marine teleosts.
Collapse
Affiliation(s)
- E E Malandrakis
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Str., Volos, Greece.
| | - O Dadali
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Str., Volos, Greece
| | - E Golomazou
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Str., Volos, Greece
| | - M Kavouras
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Str., Volos, Greece
| | - S Dailianis
- Department of Biology, Section of Animal Biology, University of Patras, 26500 Patra, Greece
| | - S Chadio
- Department of Anatomy and Physiology of Domestic Animals, Faculty of Animal Science, Agricultural University of Athens, 75 Iera Odos, 18855 Athens, Greece
| | - A Exadactylos
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Str., Volos, Greece
| | - P Panagiotaki
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fitokou Str., Volos, Greece
| |
Collapse
|
25
|
Taniyama N, Kaneko N, Inatani Y, Miyakoshi Y, Shimizu M. Effects of seawater transfer and fasting on the endocrine and biochemical growth indices in juvenile chum salmon (Oncorhynchus keta). Gen Comp Endocrinol 2016; 236:146-156. [PMID: 27444127 DOI: 10.1016/j.ygcen.2016.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 01/23/2023]
Abstract
Insulin-like growth factor (IGF)-I, IGF-binding protein (IGFBP)-1 and RNA/DNA ratio are endocrine and biochemical parameters used as growth indices in fish, however, they are subjected to environmental modulation. Chum salmon (Oncorhynchus keta) migrate from freshwater (FW) to seawater (SW) at fry/juvenile stage weighing around 1g and suffer growth-dependent mortality during the early phase of their marine life. In order to reveal environmental modulation of the IGF/IGFBP system and establish a reliable growth index for juvenile chum salmon, we examined effects of SW transfer and fasting on IGF-I, IGFBP-1 and RNA/DNA ratio, and correlated them to individual growth rate. Among serum IGF-I, liver and muscle igf-1, igfbp-1a, igfbp-1b and RNA/DNA ratio examined, muscle RNA/DNA ratio and muscle igfbp-1a responded to SW transfer. Serum IGF-I, liver igf-1 and liver RNA/DNA ratio were sensitive to nutritional change by being reduced in 1week in both FW and SW while muscle igf-1 was reduced 2weeks after fasting. In contrast, igfbp-1a in both tissues was increased by 2weeks of fasting and igfbp-1b in the liver of SW fish was increased in 1week. These results suggest that the sensitivity of igf-1 and igfbp-1s to fasting differs between tissues and subtypes, respectively. When chum salmon juveniles in SW were marked and subjected to feeding or fasting, serum IGF-I showed the highest correlation with individual growth rate. Liver igfbp-1a and -1b, and muscle igf-1 exhibited moderate correlation coefficients with growth rate. These results show that serum IGF-I is superior to the other parameters as a growth index in juvenile chum salmon in term of its stability to salinity change, high sensitivity to fasting and strong relationship with growth rate. On the one hand, when collecting blood from chum salmon fry/juveniles is not practical, measuring liver igfbp-1a and -1b, or/and muscle igf-1 is an alternative.
Collapse
Affiliation(s)
- Natsumi Taniyama
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Nobuto Kaneko
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Yu Inatani
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Yasuyuki Miyakoshi
- Salmon and Freshwater Fisheries Research Institute, Hokkaido Research Organization, 3-373 Kitakashiwagi, Eniwa, Hokkaido 061-1433, Japan
| | - Munetaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
26
|
Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis. Comp Biochem Physiol A Mol Integr Physiol 2016; 198:8-14. [DOI: 10.1016/j.cbpa.2016.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 01/18/2023]
|
27
|
Botta PE, Simó I, Sciara AA, Arranz SE. Growth hormone receptors in the atherinid Odontesthes bonariensis: characterization and expression profile after fasting-refeeding and growth hormone administration. JOURNAL OF FISH BIOLOGY 2016; 88:1870-1885. [PMID: 27097742 DOI: 10.1111/jfb.12954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
In order to improve the understanding of pejerrey Odontesthes bonariensis, growth hormone (Gh)-insulin-like growth factor-1(Igf1) axis, O. bonariensis growth hormone receptor type 1 (ghr1) and type 2 (ghr2) mRNA sequences were obtained. Both transcripts were ubiquitously expressed except in kidney, encephalon and anterior intestine. Alternative transcripts of both receptors were found in muscle. Interestingly, two different ghr2 transcripts with alternative polyadenylation (APA) sites located in the long 3' untranslated region (UTR-APA) were also found in liver. Hepatic ghr1, ghr2 and insulin-like growth factor type 1 (igf1) transcript levels were examined under two different metabolic conditions. In the first experimental condition, fish were fasted for 2 weeks and then re-fed for another 2 weeks. Despite igf1 mRNA relative expression did not show significant differences under the experimental period of time examined, both ghr transcripts decreased their expression levels after the fasting period and returned to their control levels after re-feeding. In the second treatment, recombinant O. bonariensis growth hormone (r-pjGh) was orally administered once a week. After 4 weeks of treatment, liver igf1, ghr1 and ghr2 mRNA relative expression increased (13, 4·5 and 2·1 fold, P < 0·05) compared to control values. These results add novel information to the growth hormone-insulin-like growth factor system in teleosts.
Collapse
Affiliation(s)
- P E Botta
- Instituto de Biología Molecular y Celular de Rosario, CONICET - Área Biología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - I Simó
- Instituto de Biología Molecular y Celular de Rosario, CONICET - Área Biología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - A A Sciara
- Instituto de Biología Molecular y Celular de Rosario, CONICET - Área Biología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - S E Arranz
- Instituto de Biología Molecular y Celular de Rosario, CONICET - Área Biología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| |
Collapse
|
28
|
Zhao JL, Si YF, He F, Wen HS, Li JF, Ren YY, Zhao ML, Huang ZJ, Chen SL. Polymorphisms and DNA methylation level in the CpG site of the GHR1 gene associated with mRNA expression, growth traits and hormone level of half-smooth tongue sole (Cynoglossus semilaevis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:853-865. [PMID: 25893903 DOI: 10.1007/s10695-015-0052-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
The objectives of the present study were to estimate the GHR1 gene mutations and methylation status of CpGs, and whether those mutations and methylation were involved in the regulation of GHR1 gene expression, hormone level and growth traits in half-smooth tongue sole (Cynoglossus semilaevis). Identification of single-nucleotide polymorphisms was performed on 43 male fish. Through polymerase chain reaction-single-strand conformation polymorphism and sequencing, two SNPs were found. SNP1 [c.G1357A (p.Val376Ile)] creating one CpG site located in exon 8 was named L1 locus, and SNP2 (c.G1479A) located in exon 9 was named L2 locus. Individuals were divided into three genotypes, AA, AG and GG according to L1 locus (GG genotype had one more CpG site because of the mutation), and into two genotypes, AA- and GG-based on L2 locus. The results showed that only L1 locus was significantly associated with body weight (P < 0.01), gonad weight (P ≤ 0.05), triiodothyronine (T3) level (P ≤ 0.05) and mRNA expression (P < 0.01). At L1 locus, newly created CpG site in GG genotype was highly methylated (93.3 %), while there was no difference of methylation level in the other two CpG sites among three genotypes. AA genotype and AG genotype having higher T3 level were significantly different (P ≤ 0.05) from GG genotype. There were significant differences among body weights of AA, AG and GG genotypes (P < 0.01). Gonad weights of AA genotype and AG genotype were significantly lower than GG genotype. The GHR1 mRNA expression of GG genotype was significantly lower than AA and AG genotypes (P < 0.01). These implied that mutations and methylation status of GHR1 gene might influence the hormone level, growth traits and gene expression in male half-smooth tongue sole and the L1 locus could be regarded as a potential candidate genetic and epigenetic marker in half-smooth tongue sole selection.
Collapse
Affiliation(s)
- J L Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cleveland BM, Weber GM. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2015; 216:103-15. [PMID: 25482545 DOI: 10.1016/j.ygcen.2014.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 11/12/2014] [Accepted: 11/24/2014] [Indexed: 12/17/2022]
Abstract
Effects of a single injection of 17β-estradiol (E2), testosterone (T), or 5β-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, transforming growth factor-beta (TGFβ) superfamily signaling cascade, and estrogen receptors were determined in rainbow trout (Oncorhynchus mykiss) liver and white muscle tissue. In liver in addition to regulating GH sensitivity and IGF production, sex steroids also affected expression of IGF binding proteins, as E2, T, and DHT increased expression of igfbp2b and E2 also increased expression of igfbp2 and igfbp4. Regulation of this system also occurred in white muscle in which E2 increased expression of igf1, igf2, and igfbp5b1, suggesting anabolic capacity may be maintained in white muscle in the presence of E2. In contrast, DHT decreased expression of igfbp5b1. DHT and T decreased expression of myogenin, while other muscle regulatory factors were either not affected or responded similarly for all steroid treatments. Genes within the TGFβ superfamily signaling cascade responded to steroid treatment in both liver and muscle, suggesting a regulatory role for sex steroids in the ability to transmit signals initiated by TGFβ superfamily ligands, with a greater number of genes responding in liver than in muscle. Estrogen receptors were also regulated by sex steroids, with era1 expression increasing for all treatments in muscle, but only E2- and T-treatment in liver. E2 reduced expression of erb2 in liver. Collectively, these data identify how physiological mechanisms are regulated by sex steroids in a manner that promotes the disparate effects of androgens and estrogens on growth in salmonids.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, USA.
| | - Gregory M Weber
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, USA
| |
Collapse
|
30
|
Duncan CA, Jetzt AE, Cohick WS, John-Alder HB. Nutritional modulation of IGF-1 in relation to growth and body condition in Sceloporus lizards. Gen Comp Endocrinol 2015; 216:116-24. [PMID: 25709095 DOI: 10.1016/j.ygcen.2015.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 02/11/2015] [Accepted: 02/14/2015] [Indexed: 01/22/2023]
Abstract
Nutrition and energy balance are important regulators of growth and the growth hormone/insulin-like growth factor (GH/IGF) axis. However, our understanding of these functions does not extend uniformly to all classes of vertebrates and is mainly limited to controlled laboratory conditions. Lizards can be useful models to improve our understanding of the nutritional regulation of the GH/IGF-1 axis because many species are relatively easy to observe and manipulate both in the laboratory and in the field. In the present study, the effects of variation in food intake on growth, body condition, and hepatic IGF-1 mRNA levels were measured in (1) juveniles of Sceloporus jarrovii maintained on a full or 1/3 ration and (2) hatchlings of Sceloporus undulatus subjected to full or zero ration with or without re-feeding. These parameters plus plasma IGF-1 were measured in a third experiment using adults of S. undulatus subjected to full or zero ration with or without re-feeding. In all experiments, plasma corticosterone was measured as an anticipated indicator of nutritional stress. In S. jarrovii, growth and body condition were reduced but lizards remained in positive energy balance on 1/3 ration, and hepatic IGF-1 mRNA and plasma corticosterone were not affected in comparison to full ration. In S. undulatus, growth, body condition, hepatic IGF-1 mRNA, and plasma IGF-1 were all reduced by zero ration and restored by refeeding. Plasma corticosterone was increased in response to zero ration and restored by full ration in hatchlings but not adults of S. undulatus. These data indicate that lizards conform to the broader vertebrate model in which severe food deprivation and negative energy balance is required to attenuate systemic IGF-1 expression. However, when animals remain in positive energy balance, reduced food intake does not appear to affect systemic IGF-1. Consistent with other studies on lizards, the corticosterone response to reduced food intake is an unreliable indicator of nutritional stress. Further studies on ecologically relevant variation in food intake are required to establish the importance of nutrition as an environmental regulator of the GH/IGF axis. Within the range of positive energy balance, the potential involvement of molecular signals in growth regulation requires further investigation.
Collapse
Affiliation(s)
- Christine A Duncan
- Graduate Program in Endocrinology and Animal Biosciences, Rutgers University, 84 Lipman Drive, New Brunswick, NJ 08901, USA.
| | - Amanda E Jetzt
- Department of Animal Sciences, Rutgers University, 84 Lipman Drive, New Brunswick, NJ 08901, USA.
| | - Wendie S Cohick
- Graduate Program in Endocrinology and Animal Biosciences, Rutgers University, 84 Lipman Drive, New Brunswick, NJ 08901, USA; Department of Animal Sciences, Rutgers University, 84 Lipman Drive, New Brunswick, NJ 08901, USA.
| | - Henry B John-Alder
- Graduate Program in Endocrinology and Animal Biosciences, Rutgers University, 84 Lipman Drive, New Brunswick, NJ 08901, USA; Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
31
|
Andoh T. Plasma insulin levels are regulated by release, rather than transcription or translation, in barfin flounder, Verasper moseri. Comp Biochem Physiol A Mol Integr Physiol 2015; 184:27-33. [PMID: 25660295 DOI: 10.1016/j.cbpa.2015.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 11/19/2022]
Abstract
We evaluated whether transcription or translation of the preproinsulin gene or insulin release into plasma is the primary regulator of plasma insulin level in barfin flounder. Three experimental groups were used: one tested 2h after feeding (Fed), one tested after fasting for 5 days (Fasted), and one tested 2 h after feeding following 5 days of fasting (Refed). No significant differences in insulin transcription, insulin concentrations in the principal islets (PI), or plasma total insulin-like growth factor-I (IGF-I) levels were observed between the three groups. In contrast, plasma insulin level in the Fasted group was significantly lower (P<0.002) than that in the other groups. These results suggest that insulin release is the primary regulator of plasma insulin level and is more sensitive to short-term changes in nutritional conditions than IGF-I level. Furthermore, we estimated the capacity for insulin release. Based on various individual measures, the average insulin stored in the PI was 82.8 μg/kg body weight (BW), and the maximum plasma content of insulin was estimated to be <1.7 μg/kg BW. The half-life of plasma insulin in diabetogenic chemically (alloxan) treated flounder injected with insulin was estimated to be 2.79 h, which is much longer than that in mammals, assuming a two-compartment model for the β phase. These results suggest that the capacity for insulin release in fish is ensured by at least two systems, such as the ability to store excess insulin in Brockman bodies, and enhanced efficiency of insulin storage by elongating its half-life.
Collapse
Affiliation(s)
- Tadashi Andoh
- Seikai National Fisheries Research Institute, Fisheries Research Agency, Taira-machi 1551-8, Nagasaki 851-2213, Japan.
| |
Collapse
|
32
|
Delgadin TH, Pérez Sirkin DI, Di Yorio MP, Arranz SE, Vissio PG. GH, IGF-I and GH receptors mRNA expression in response to growth impairment following a food deprivation period in individually housed cichlid fish Cichlasoma dimerus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:51-60. [PMID: 25351458 DOI: 10.1007/s10695-014-0005-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
Cichlasoma dimerus is a social cichlid fish capable of growing at high rates under laboratory conditions, but knowledge on somatic growth regulation is still unclear. Growth hormone (GH)/insulin-like growth factor I (IGF-I) axis is the key regulator of somatic growth in vertebrates. Two types of growth hormone receptors have been described in teleost fish, named GH receptor type 1 (GHR1) and type 2 (GHR2). In addition, isoforms of these receptors lacking part of the intracellular region have been described. The aim of this study was to evaluate the somatic growth, liver histology and changes in the GH/IGF-I axis after 4 weeks of food deprivation in C. dimerus. Four-week fasted fish showed reductions in specific growth rates in body weight (p < 0.001) and standard length (p < 0.001). Additionally, the hepatosomatic index (p < 0.001) and hepatocyte area (p < 0.001) decreased in fasted fish, while no changes in glucose levels were detected in plasma. The starvation protocol failed to induce changes in GH mRNA levels in the pituitary and IGF-I mRNA levels in liver. In contrast, IGF-I mRNA levels in muscle decreased in fasted fish (p = 0.002). On the other hand, GHR2 (detected with primer sets designed over the extracellular and intracellular region) was upregulated by starvation both in liver and muscle (p < 0.05), while GHR1 remained unchanged. These results show that a fasting period reduced somatic growth both in length and body weight concomitantly with alterations on liver and muscle GHR2 and muscle IGF-I mRNA expression.
Collapse
Affiliation(s)
- Tomás Horacio Delgadin
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
33
|
Starving/re-feeding processes induce metabolic modifications in thick-lipped grey mullet (Chelon labrosus, Risso 1827). Comp Biochem Physiol B Biochem Mol Biol 2015; 180:57-67. [DOI: 10.1016/j.cbpb.2014.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/24/2022]
|
34
|
Breves JP, Tipsmark CK, Stough BA, Seale AP, Flack BR, Moorman BP, Lerner DT, Grau EG. Nutritional status and growth hormone regulate insulin-like growth factor binding protein (igfbp) transcripts in Mozambique tilapia. Gen Comp Endocrinol 2014; 207:66-73. [PMID: 24818968 PMCID: PMC4226746 DOI: 10.1016/j.ygcen.2014.04.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/09/2014] [Accepted: 04/22/2014] [Indexed: 01/28/2023]
Abstract
Growth in teleosts is controlled in large part by the activities of the growth hormone (Gh)/insulin-like growth factor (Igf) system. In this study, we initially identified igf-binding protein (bp)1b, -2b, -4, -5a and -6b transcripts in a tilapia EST library. In Mozambique tilapia (Oreochromis mossambicus), tissue expression profiling of igfbps revealed that igfbp1b and -2b had the highest levels of expression in liver while igfbp4, -5a and -6b were expressed at comparable levels in most other tissues. We compared changes in hepatic igfbp1b, -2b and -5a expression during catabolic conditions (28days of fasting) along with key components of the Gh/Igf system, including plasma Gh and Igf1 and hepatic gh receptor (ghr2), igf1 and igf2 expression. In parallel with elevated plasma Gh and decreased Igf1 levels, we found that hepatic igfbp1b increased substantially in fasted animals. We then tested whether systemic Gh could direct the expression of igfbps in liver. A single intraperitoneal injection of ovine Gh into hypophysectomized tilapia specifically stimulated liver igfbp2b expression along with plasma Igf1 and hepatic ghr2 levels. Our collective data suggest that hepatic endocrine signaling during fasting may involve post-translational regulation of plasma Igf1 via a shift towards the expression of igfbp1b. Thus, Igfbp1b may operate as a molecular switch to restrict Igf1 signaling in tilapia; furthermore, we provide new details regarding isoform-specific regulation of igfbp expression by Gh.
Collapse
Affiliation(s)
- Jason P Breves
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA; Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| | - Christian K Tipsmark
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Beth A Stough
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Brenda R Flack
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Benjamin P Moorman
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Darren T Lerner
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA; Sea Grant College Program, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - E Gordon Grau
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| |
Collapse
|
35
|
Cleveland BM, Weber GM. Ploidy effects on genes regulating growth mechanisms during fasting and refeeding in juvenile rainbow trout (Oncorhynchus mykiss). Mol Cell Endocrinol 2014; 382:139-149. [PMID: 24076188 DOI: 10.1016/j.mce.2013.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022]
Abstract
Diploid and triploid rainbow trout weighing approximately 3g were either fed for five weeks, or feed deprived for one week, followed by refeeding. During feed deprivation gastrointestinal somatic index decreased in diploids, but not triploids, and during refeeding, carcass growth rate recovered more quickly in triploids. Although not affected by ploidy, liver ghr2 and igfbp2b expression increased and igfbp1b decreased in fasted fish. Effects of ploidy on gene expression indicate potential mechanisms associated with improved recovery growth in triploids, which include decreased hepatic igfbp expression, which could influence IGF-I bioavailability, differences in tissue sensitivity to TGFbeta ligands due to altered tgfbr and smad expression, and differences in expression of muscle regulatory genes (myf5, mstn1a, and mstn1b). These data suggest that polyploidy influences the expression of genes critical to muscle development and general growth regulation, which may explain why triploid fish recover from nutritional insult better than diploid fish.
Collapse
Affiliation(s)
- Beth M Cleveland
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, United States.
| | - Gregory M Weber
- National Center for Cool and Cold Water Aquaculture, USDA/ARS, 11861 Leetown Rd, Kearneysville, WV 25427, United States
| |
Collapse
|
36
|
Yarmohammadi M, Pourkazemi M, Kazemi R, Hallajian A, Soltanloo H, Hassanzadeh Saber M, Abbasalizadeh A. Persian sturgeon insulin-like growth factor I: molecular cloning and expression during various nutritional conditions. J Appl Genet 2014; 55:239-47. [PMID: 24430509 DOI: 10.1007/s13353-013-0192-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 11/27/2013] [Accepted: 12/30/2013] [Indexed: 01/18/2023]
Abstract
The effects of different periods of starvation (1, 2, 3, and 4 weeks) and subsequent re-feeding (over a 4 week) on the compensatory growth performance and insulin-like growth factor I (IGF-I) mRNA expression in liver and white muscle were investigated in juvenile Persian sturgeon (Acipenser persicus). First, a fragment of 617 nucleotides coding for IGF-I was cloned from liver, which included an open reading frame of 486 nucleotides, encoding a 162 amino acid preproIGF-I. This is composed of a 45 aa for signal peptide, a 117 aa for the mature peptide comprising the B, C, A, and D domains, and a 47 aa for E domain. The mature Persian sturgeon IGF-I exhibits high sequence identities with other sturgeon species and teleost, ranging between 68 and 95 %. The pattern of IGF-I mRNA expression in the liver and white muscle was measured in response to different periods of starvation and subsequent re-feeding. Nutritional status influenced IGF-I mRNA expression pattern in both liver and muscle. IGF-I mRNA expression in the liver increased during starvation, before decreasing after re-feeding. Furthermore, white muscle IGF-I mRNA expression showed better responses to nutritional status and decreased following starvation and increased by re-feeding. However, changes in the expression of IGF-I mRNA were not significantly different between any of the treatments in both tissues. These data suggest that muscle and liver IGF-I mRNA expression do not have a regulatory role for somatic growth induced by compensatory growth in Persain sturgeon.
Collapse
|
37
|
Walock CN, Kittilson JD, Sheridan MA. Characterization of a novel growth hormone receptor-encoding cDNA in rainbow trout and regulation of its expression by nutritional state. Gene 2014; 533:286-94. [DOI: 10.1016/j.gene.2013.09.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 11/25/2022]
|
38
|
Caldwell LK, Pierce AL, Nagler JJ. Metabolic endocrine factors involved in spawning recovery and rematuration of iteroparous female rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2013; 194:124-32. [PMID: 24060463 DOI: 10.1016/j.ygcen.2013.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 11/23/2022]
Abstract
To determine how energy balance affects metabolic hormones hypothesized to play a role in the onset of a new reproductive cycle in iteroparous salmonids, food availability after spawning was restricted in female rainbow trout. These fish were compared with a control group that was fed a standard brood stock ration. Bodyweight, length, and muscle lipid content were determined, and blood was collected from fish at regular intervals; a subset of fish from each group was sacrificed at each sampling time for the collection of liver and ovary tissue, and to calculate hepatosomatic index (HSI) and gonadosomatic index (GSI). Plasma hormone levels were quantified by radioimmunoassay, and tissue gene expression levels were analyzed using q-RT-PCR. The experiment was conducted twice, using two-year-old and three-year-old post-spawned fish. Food-restriction arrested ovarian growth and development within 15-20 weeks, as evidenced by lower GSI in restricted-ration fish. Food restriction also reduced Fulton's condition factor, muscle lipid content, and specific growth rate from one month onward, and reduced HSI after 3 months. In the liver, insulin-like growth factor (igf1 and igf2) gene expression was reduced in three-year-old food-restricted fish within 2 months; however, no effect of ration on igf1 or igf2 expression was detected in two-year-old fish. In both years, IGF binding protein-1 (igfbp1) gene expression decreased over time in both treatment groups. Liver leptin (slepA1) gene expression was lower in two-year-old food-restricted fish at 4 months. These results show that this feed restriction regime arrested reproductive development and affected factors associated with energy balance purported to play a role in initiating reproductive development within 2-4months after spawning.
Collapse
Affiliation(s)
- Lucius K Caldwell
- University of Idaho, Department of Biological Sciences & Center for Reproductive Biology, United States.
| | | | | |
Collapse
|
39
|
Fuentes EN, Pino K, Navarro C, Delgado I, Valdés JA, Molina A. Transient inactivation of myostatin induces muscle hypertrophy and overcompensatory growth in zebrafish via inactivation of the SMAD signaling pathway. J Biotechnol 2013; 168:295-302. [PMID: 24184273 DOI: 10.1016/j.jbiotec.2013.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/30/2013] [Accepted: 10/21/2013] [Indexed: 12/30/2022]
Abstract
Myostatin (MSTN) is the main negative regulator of muscle growth and development in vertebrates. In fish, little is known about the molecular mechanisms behind how MSTN inactivation triggers skeletal muscle enhancement, particularly regarding the signaling pathways involved in this process. Moreover, there have not been reports on the biotechnological applications of MSTN and its signal transduction. In this context, zebrafish underwent compensatory growth using fasting and refeeding trials, and MSTN activity was inactivated with dominant negative LAPD76A recombinant proteins during the refeeding period, when a rapid, compensatory muscle growth was observed. Treated fish displayed an overcompensation of growth characterized by higher muscle hypertrophy and growth performance than constantly fed, control fish. Treatment with LAPD76A recombinant proteins triggered inactivation of the SMAD signaling pathway in skeletal muscle, the main signal transduction used by MSTN to achieve its biological actions. Therefore, transient inactivation of MSTN during the compensatory growth of zebrafish led to a decrease in the SMAD signaling pathway in muscle, triggering muscle hypertrophy and finally improving growth performance, thus, zebrafish achieved an overcompensation of growth. The present study shows an attractive strategy for improving muscle growth in a fish species by mixing a classical strategy, such as compensatory growth, and a biotechnological approach, such as the use of recombinant proteins for inhibiting the biological actions of MSTN. The mix of both strategies may represent a method that could be applied in order to improve growth in commercial fish of interest for aquaculture.
Collapse
Affiliation(s)
- Eduardo N Fuentes
- Universidad Andres Bello, Departmento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Av. Republica 217, Santiago, Chile; FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
40
|
Pohlenz C, Buentello A, Miller T, Small BC, MacKenzie DS, Gatlin DM. Effects of dietary arginine on endocrine growth factors of channel catfish, Ictalurus punctatus. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:215-21. [DOI: 10.1016/j.cbpa.2013.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
|
41
|
Effects of triploidy on growth and protein degradation in skeletal muscle during recovery from feed deprivation in juvenile rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 2013; 166:128-37. [DOI: 10.1016/j.cbpa.2013.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 01/10/2023]
|
42
|
Kawaguchi K, Kaneko N, Fukuda M, Nakano Y, Kimura S, Hara A, Shimizu M. Responses of insulin-like growth factor (IGF)-I and two IGF-binding protein-1 subtypes to fasting and re-feeding, and their relationships with individual growth rates in yearling masu salmon (Oncorhynchus masou). Comp Biochem Physiol A Mol Integr Physiol 2013; 165:191-8. [DOI: 10.1016/j.cbpa.2013.02.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 01/25/2023]
|
43
|
Pierce AL, Breves JP, Moriyama S, Uchida K, Grau EG. Regulation of growth hormone (GH) receptor (GHR1 and GHR2) mRNA level by GH and metabolic hormones in primary cultured tilapia hepatocytes. Gen Comp Endocrinol 2012; 179:22-9. [PMID: 22820350 DOI: 10.1016/j.ygcen.2012.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/07/2012] [Accepted: 07/12/2012] [Indexed: 01/28/2023]
Abstract
Growth hormone (GH) regulates essential physiological functions in teleost fishes, including growth, metabolism, and osmoregulation. Recent studies have identified two clades of putative receptors for GH (GHR1 clade and GHR2 clade) in fishes, both of which are highly expressed in the liver. Moreover, the liver is an important target for the anabolic effects of GH via endocrine IGFs, and liver sensitivity to GH is modulated by metabolic hormones. We investigated the effects of GH, insulin, glucagon, cortisol and triiodothyronine on GHR1 and GHR2 mRNA levels in primary cultured tilapia hepatocytes. Physiological concentrations of GH strongly stimulated GHR2 mRNA level (0.5-50×10(-9) M), but did not affect GHR1 mRNA level. Insulin suppressed stimulation of GHR2 mRNA level by GH (10(-8)-10(-6) M). Insulin increased basal GHR1 mRNA level (10(-8)-10(-6) M). Cortisol increased basal GHR2 mRNA level (10(-7)-10(-6) M), but did not consistently affect GH-stimulated GHR2 mRNA level. Cortisol increased basal GHR1 mRNA level (10(-9)-10(-6) M). Glucagon suppressed GH-stimulated GHR2 mRNA level and increased basal GHR1 mRNA level at a supraphysiological concentration (10(-6) M). A single injection of GH (5 μg/g) increased liver GHR2 mRNA level, and insulin injection (5 μg/g) decreased both basal and GH-stimulated GHR2 mRNA levels after 6 h. In contrast, insulin and GH injection had little effect on liver GHR1 mRNA level. This study shows that GHR1 and GHR2 gene expression are differentially regulated by physiological levels of GH and insulin in tilapia primary hepatocytes.
Collapse
Affiliation(s)
- A L Pierce
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | | | | | | | | |
Collapse
|
44
|
Safian D, Fuentes EN, Valdés JA, Molina A. Dynamic transcriptional regulation of autocrine/paracrine igfbp1, 2, 3, 4, 5, and 6 in the skeletal muscle of the fine flounder during different nutritional statuses. J Endocrinol 2012; 214:95-108. [PMID: 22499735 DOI: 10.1530/joe-12-0057] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The IGF-binding proteins (IGFBPs) play a dual role in the regulation of the activity and bioavailability of IGFs in different tissues. Diverse evidence has shown that IGFBPs can inhibit and/or potentiate IGF actions. In this study, igfbp1, 2, 3, 4, 5, and 6 were isolated in the fine flounder, a flat fish species that shows slow growth and inherent Gh resistance in muscle. Subsequently, the expression of all igfbps was assessed in the skeletal muscle of flounder that underwent different nutritional statuses. igfbp1 was not expressed in muscle during any of the nutritional conditions, whereas igfbp3 and igfbp5 were the lowest and the highest igfbps expressed respectively. A dynamic expression pattern was found in all the igfbps expressed in skeletal muscle, which depended on the nutritional status and sampling period. During the fasting period, igfbp2, 4, and 5 were downregulated, whereas igfbp3 was upregulated during part of the fasting period. The restoration of food modulated the expression of the igfbps dynamically, showing significant changes during both the long- and short-term refeeding. igfbp3 and igfbp6 were downregulated during short-term refeeding, whereas igfbp5 was upregulated, and igfbp2 and igfbp4 remained stable. During long-term refeeding, the expression of igfbp2, 4, 5, and 6 increased, while igfbp3 remained unchanged. In conclusion, this study shows for the first time the isolation of all igfbps in a single fish species, in addition to describing a dynamic nutritional and time-dependent response in the expression of igfbps in the skeletal muscle of a nonmammalian species.
Collapse
Affiliation(s)
- Diego Safian
- Laboratorio de Biotecnologia Molecular, Departmento de Ciencias Biologicas, Facultad de Biologia, Universidad Andres Bello, Avenida Republica 217, 8370146 Santiago, Chile
| | | | | | | |
Collapse
|
45
|
Kroupova H, Trubiroha A, Wuertz S, Frank SN, Sures B, Kloas W. Nutritional status and gene expression along the somatotropic axis in roach (Rutilus rutilus) infected with the tapeworm Ligula intestinalis. Gen Comp Endocrinol 2012; 177:270-7. [PMID: 22542897 DOI: 10.1016/j.ygcen.2012.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/16/2012] [Accepted: 04/10/2012] [Indexed: 12/23/2022]
Abstract
The tapeworm Ligula intestinalis inhibits gametogenesis of its fish host, the roach (Rutilus rutilus). We investigated whether L. intestinalis infection makes significant demands on nutritional resources and consequently manipulates the endocrine somatotropic axis of roach. Two groups of naturally infected and uninfected roach were studied: a field group (natural feeding) and a laboratory group (ad libitum food supply). In females, no significant impact of parasitization on storage substrates (glycogen, lipids, and protein) was detected, whereas in males, either lipid content of the liver (field group) or lipid of the muscle and glycogen of the liver (laboratory group) were slightly decreased. Except for the females of the field group, higher mRNA expression of growth hormone (gh) in the pituitary of infected fish was observed. Furthermore, the expression of hypophyseal somatolactin α and β (slα, slβ) was up-regulated in infected females of the field and laboratory group, respectively. In liver and muscle, mRNA expression of insulin-like growth factors (igf1, igf2) and igf receptor (igfr) remained either unchanged or were up-regulated with infection. Parasitization showed inconsistent effects on gh receptor 1 (ghr1) expression in liver and muscle, whereas ghr2 mRNA was mostly not influenced by infection. In general, the expression profile of genes involved in the somatotropic axis as well as the content of storage substances in infected roach did not resemble that of food-deprived fish either under natural or ad libitum feeding. In conclusion, the present study does not indicate starvation of L. intestinalis infected roach, and it is suggested that the inhibition of reproduction attenuated the nutritional demand of parasitization.
Collapse
Affiliation(s)
- H Kroupova
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, CZ-38925 Vodnany, Czech Republic.
| | | | | | | | | | | |
Collapse
|
46
|
Fukada H, Murashita K, Furutani T, Masumoto T. Yellowtail insulin-like growth factor 1: molecular cloning and response to various nutritional conditions. Domest Anim Endocrinol 2012; 42:220-9. [PMID: 22265757 DOI: 10.1016/j.domaniend.2011.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 11/30/2022]
Abstract
Insulin-like growth factor 1 (IGF1) plays an important role in fish growth. This study investigated the IGF1 response to various nutritional conditions in yellowtail. First, we cloned 1,075 bp of yellowtail IGF1 cDNA, which codes for a protein of 185 amino acids (aa). This is composed of 44 aa for the signal peptide; 68 aa for the mature peptide comprising the B, C, A, and D domains; and 73 aa for the E domain. The mature yellowtail IGF1 showed high identity to IGF1 of other teleosts. Insulin-like growth factor 1 mRNA expression in the liver and white muscle was measured to observe the IGF1 response to various nutritional conditions, because the liver has the highest IGF1 expression and white muscle comprises the largest fraction of the fish body. Only white muscle IGF1 mRNA expression decreased significantly by 3 wk of fasting and recovered by refeeding. In subsequent feeding ratio (1%, 2%, and 3%/BW/d) experiments, significant correlations to growth were observed in white muscle IGF1 mRNA expression at 2- and 6-wk points and in hepatic IGF1 mRNA expression at 4 wk point. These data suggest that IGF1 expression both in hepatic and white muscle is important for somatic growth in yellowtail. Furthermore, white muscle IGF1 mRNA expression showed better responses to somatic growth and nutrition status in our two experiments than hepatic IGF1 mRNA expression.
Collapse
Affiliation(s)
- H Fukada
- Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan.
| | | | | | | |
Collapse
|
47
|
Fuentes EN, Einarsdottir IE, Valdes JA, Alvarez M, Molina A, Björnsson BT. Inherent growth hormone resistance in the skeletal muscle of the fine flounder is modulated by nutritional status and is characterized by high contents of truncated GHR, impairment in the JAK2/STAT5 signaling pathway, and low IGF-I expression. Endocrinology 2012; 153:283-94. [PMID: 22028448 DOI: 10.1210/en.2011-1313] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A detailed understanding of how the GH and IGF-I regulate muscle growth, especially in early vertebrates, is still lacking. The fine flounder is a flatfish species exhibiting remarkably slow growth, representing an intriguing model for elucidating growth regulatory mechanisms. Key components of the GH system were examined in groups of fish during periods of feeding, fasting, and refeeding. Under feeding conditions, there is an inherent systemic and local (muscle) GH resistance, characterized by higher levels of plasma GH than of IGF-I, skeletal muscle with a greater content of the truncated GH receptor (GHRt) than of full-length GHR (GHRfl), an impaired activation of the Janus kinase 2 (JAK2)-signal transducers and activators of transcription 5 (STAT5) signaling pathway, and low IGF-I expression. Fasting leads to further elevation of plasma GH levels concomitant with suppressed IGF-I levels. The ratio of GHRfl to GHRt in muscle decreases during fasting, causing an inactivation of the JAK2/STAT5 signaling pathway and suppressed IGF-I expression, further impairing growth. When fish are returned to nutritionally favorable conditions, plasma GH levels decrease, and the ratio of GHRfl to GHRt in muscle increases, triggering JAK2/STAT5 reactivation and local IGF-I expression, concomitant with increased growth. The study suggests that systemic IGF-I is supporting basal slow growth in this species, without ruling out that local IGF-I is participating in muscle growth. These results reveal for the first time a unique model of inherent GH resistance in the skeletal muscle of a nonmammalian species and contribute to novel insights of the endocrine and molecular basis of growth regulation in earlier vertebrates.
Collapse
Affiliation(s)
- Eduardo N Fuentes
- Laboratorio de Biotecnologia Molecular, Departamento de Ciencias Biologicas, Facultad Ciencias Biologicas, Universidad Andrés Bello, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
48
|
Kaneko G, Furukawa S, Kurosu Y, Yamada T, Takeshima H, Nishida M, Mitsuboshi T, Otaka T, Shirasu K, Koda T, Takemasa Y, Aki S, Mochizuki T, Fukushima H, Fukuda Y, Kinoshita S, Asakawa S, Watabe S. Correlation with larval body size of mRNA levels of growth hormone, growth hormone receptor I and insulin-like growth factor I in larval torafugu Takifugu rubripes. JOURNAL OF FISH BIOLOGY 2011; 79:854-874. [PMID: 21967578 DOI: 10.1111/j.1095-8649.2011.03037.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The full-length of insulin-like growth factor (IGF) complementary (c)DNAs encoded by igf-I and igf-II from torafugu pufferfish Takifugu rubripes were cloned in the present study. The deduced amino acid sequences of the two genes showed c. 80% identity each with those of Igf-I and Igf-II from other teleosts, respectively. Two growth hormone (GH) receptors, ghr1 and ghr2, were also cloned in silico using the T. rubripes Fugu genome database. The transcripts of T. rubripes igf-I were detected in slow muscle, heart, skin, gill, liver and intestine but not in fast muscle, spleen and testis of adult fish, whereas those of igf-II were found in all tissues examined. Subsequently, the accumulated messenger (m)RNA levels of igf-I and igf-II were investigated in an F(2) population derived from a male of an apparent fast-growing T. rubripes strain and a wild female T. rubripes together with those of other growth-related genes encoding Gh, Ghr1 and Ghr2, and with those of prolactin (Prl) and leptin (Lep) previously reported. The accumulated mRNA levels of igf-I, gh and ghr1 were significantly correlated to growth rate at larval stages in the population, but not for those of igf-II, prl, ghr2 and lep. Although it is unclear whether or not this phenotype is directly related to the heredity of the fast-growing strain, the findings suggest that the expression of igf-I, gh and ghr1 is involved in the regulation of growth rate at larval stages in T. rubripes.
Collapse
Affiliation(s)
- G Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Palstra AP, Tudorache C, Rovira M, Brittijn SA, Burgerhout E, van den Thillart GEEJM, Spaink HP, Planas JV. Establishing zebrafish as a novel exercise model: swimming economy, swimming-enhanced growth and muscle growth marker gene expression. PLoS One 2010; 5:e14483. [PMID: 21217817 PMCID: PMC3013094 DOI: 10.1371/journal.pone.0014483] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 12/13/2010] [Indexed: 12/05/2022] Open
Abstract
Background Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish. Methodology/Principal Findings Individual zebrafish (n = 10) were able to swim at a critical swimming speed (Ucrit) of 0.548±0.007 m s−1 or 18.0 standard body lengths (BL) s−1. The optimal swimming speed (Uopt) at which energetic efficiency is highest was 0.396±0.019 m s−1 (13.0 BL s−1) corresponding to 72.26±0.29% of Ucrit. The cost of transport at optimal swimming speed (COTopt) was 25.23±4.03 µmol g−1 m−1. A group-wise experiment was conducted with zebrafish (n = 83) swimming at Uopt for 6 h day−1 for 5 days week−1 for 4 weeks vs. zebrafish (n = 84) that rested during this period. Swimming zebrafish increased their total body length by 5.6% and body weight by 41.1% as compared to resting fish. For the first time, a highly significant exercise-induced growth is demonstrated in adult zebrafish. Expression analysis of a set of muscle growth marker genes revealed clear regulatory roles in relation to swimming-enhanced growth for genes such as growth hormone receptor b (ghrb), insulin-like growth factor 1 receptor a (igf1ra), troponin C (stnnc), slow myosin heavy chain 1 (smyhc1), troponin I2 (tnni2), myosin heavy polypeptide 2 (myhz2) and myostatin (mstnb). Conclusions/Significance From the results of our study we can conclude that zebrafish can be used as an exercise model for enhanced growth, with implications in basic, biomedical and applied sciences, such as aquaculture.
Collapse
Affiliation(s)
- Arjan P Palstra
- Departament de Fisiologia, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Breves JP, Seale AP, Helms RE, Tipsmark CK, Hirano T, Grau EG. Dynamic gene expression of GH/PRL-family hormone receptors in gill and kidney during freshwater-acclimation of Mozambique tilapia. Comp Biochem Physiol A Mol Integr Physiol 2010; 158:194-200. [PMID: 21056111 DOI: 10.1016/j.cbpa.2010.10.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/26/2010] [Accepted: 10/26/2010] [Indexed: 12/12/2022]
Abstract
In teleosts, prolactin (PRL) and growth hormone (GH) act at key osmoregulatory tissues to regulate hydromineral balance. This study was aimed at characterizing patterns of expression for genes encoding receptors for the GH/PRL-family of hormones in the gill and kidney of Mozambique tilapia (Oreochromis mossambicus) during freshwater (FW)-acclimation. Transfer of seawater (SW)-acclimated tilapia to FW elicited rapid and sustained increases in plasma levels and pituitary gene expression of PRL177 and PRL188; plasma hormone and pituitary mRNA levels of GH were unchanged. In the gill, PRL receptor 1 (PRLR1) mRNA increased markedly after transfer to FW by 6h, while increases in GH receptor (GHR) mRNA were observed 48 h and 14 d after the transfer. By contrast, neither PRLR2 nor the somatolactin receptor (SLR) was responsive to FW transfer. Paralleling these endocrine responses were marked increases in branchial gene expression of a Na+/Cl- cotransporter and a Na+/H+ exchanger, indicators of FW-type mitochondrion-rich cells (MRCs), at 24 and 48 h after FW transfer, respectively. Expression of Na+/K+/2Cl- cotransporter, an indicator of SW-type MRCs, was sharply down-regulated by 6h after transfer to FW. In kidney, PRLR1, PRLR2 and SLR mRNA levels were unchanged, while GHR mRNA was up-regulated from 6h after FW transfer to all points thereafter. Collectively, these results suggest that the modulation of the gene expression for PRL and GH receptors in osmoregulatory tissues represents an important aspect of FW-acclimation of tilapia.
Collapse
Affiliation(s)
- Jason P Breves
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | | | | | | | | | | |
Collapse
|