1
|
Wang B, Paullada-Salmerón JA, Vergès-Castillo A, Muñoz-Cueto JA. Does the activation of sea bass GnIH receptor modulate GnRH receptor signaling? Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111693. [PMID: 38969290 DOI: 10.1016/j.cbpa.2024.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Previous studies have revealed the stimulatory and inhibitory actions of gonadotropin-releasing hormone (GnRH) and gonadotropin-inhibitory hormone (GnIH) on the control of reproduction in European sea bass (Dicentrarchus labrax) and other vertebrates, respectively. However, information on the possible interactions between GnRH and GnIH on cell signaling is sparse in vertebrates. In the current study, we investigated if activation of sea bass GnIH receptor (GnIHR) can interfere with GnRH receptor II-1a (GnRHR-II-1a) involving the PKA pathway. Our results showed that GnIH and GnRH functioned via their cognate receptors, respectively. However, it appears that neither GnIH1 nor GnIH2 can block GnRH/GnRHR-II-1a-induced PKA signaling in sea bass. This is the first study to examine the potential interactions of GnIH with GnRH receptor signaling in teleosts. Further research seems necessary to shed light on unknown interactions in other signaling pathways and other GnIH/GnRH receptors involved in the physiological functions of these two relevant neuropeptides, not only in sea bass but also in other species.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Cádiz, Spain; The European University of the Seas (SEA-EU), Cádiz, Spain
| | - Alba Vergès-Castillo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Cádiz, Spain; The European University of the Seas (SEA-EU), Cádiz, Spain
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Cádiz, Spain; The European University of the Seas (SEA-EU), Cádiz, Spain.
| |
Collapse
|
2
|
Wang B, Paullada-Salmerón JA, Muñoz-Cueto JA. Gonadotropin-inhibitory hormone and its receptors in teleosts: Physiological roles and mechanisms of actions. Gen Comp Endocrinol 2024; 350:114477. [PMID: 38387532 DOI: 10.1016/j.ygcen.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Gonadotropin-inhibitory hormone (GnIH) was the first reported hypothalamic neuropeptide inhibiting reproduction in vertebrates. Since its discovery in the quail brain, its orthologs have been identified in a variety of vertebrate species and even protochordates. Depending on the species, the GnIH precursor polypeptides comprise two, three or four mature peptides of the RFamide family. It has been well documented that GnIH inhibits reproduction at the brain-pituitary-gonadal levels and participates in metabolism, stress response, and social behaviors in birds and mammals. However, most studies in fish have mainly been focused on the physiological roles of GnIH in the control of reproduction and results obtained are in some cases conflicting, leaving aside its potential roles in the regulation of other functions. In this manuscript we summarize the information available in fish with respect to the structural diversity of GnIH peptides and functional roles of GnIH in reproduction and other physiological processes. We also highlight the molecular mechanisms of GnIH actions on target cells and possible interactions with other neuroendocrine factors.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China; Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real (Cádiz), Spain; Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain.
| |
Collapse
|
3
|
Yin L, Chen Q, Huang Q, Wang X, Zhang D, Lin Z, Wang Y, Liu Y. Physiological role of dietary energy in the sexual maturity: clues of body size, gonad development, and serum biochemical parameters of Chinese indigenous chicken. Poult Sci 2023; 102:103157. [PMID: 37862869 PMCID: PMC10590745 DOI: 10.1016/j.psj.2023.103157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023] Open
Abstract
Sexual maturity is a crucial factor in the formation and development of poultry reproductive capacity. The nutritional status has been confirmed to play an important role in the regulation of sexual maturity. To investigate the effect of dietary energy levels on sexual maturity in chicken, diets with 3 energy levels (group L: 2,573 kcal/kg, group C: 2,836 kcal/kg, group H: 3,122 kcal/kg) were implemented to feed Guangyuan Gray chickens. During this trial, body weight, body size, organ development, sexual maturity, reproductive performance and blood biochemical parameters were monitored. The earlier sexual maturity was observed in group H, as well as a heavier first egg weight, larger interpubic distance and higher total cholesterol (T-CHO) content at sexual maturity. The dietary energy levels had no significant effect on body weight at first egg and egg production at 300 d of age. Although dietary energy levels had a significant effect on body weight, comb length, tibia length and girth, abdominal fat weight, oviduct weight and length, T-CHO, triglyceride (TG) content and estradiol (E2) level during the rearing period. No significant difference of gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) level among 3 groups was observed during the trial. The dietary energy levels had effects on mRNA expression of GnRH, estrogen receptor 1 (ESR1), estrogen receptor 2 (ESR2) in hypothalamus, gonadotropin inhibitory hormone receptor (GnIHR) in pituitary and luteinizing hormone receptor (LHR), ESR2 in ovary. The GnIHR/GnRHR ratio in pituitary was higher before sexual maturity and decreased at sexual maturity. The results of correlations analysis found that all the body size, carcass traits, serum biochemical parameters negatively correlated with age at first egg except for interpubic distance and serum blood glucose content. Collectively, dietary energy levels had effects on sexual maturity of chicken, which may be achieved by affecting body weight, gonad development, endocrine and the mRNA expression of genes related to hypothalamus-pituitary-gonad axis. These results further set our understanding of how dietary energy regulates sexual maturity.
Collapse
Affiliation(s)
- Lingqian Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qian Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinke Huang
- Guangyuan Municipal Bureau of Agriculture and Rural Affairs, Guangyuan 628000, Sichuan, China
| | - Xinyu Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Donghao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Wang B, Cui A, Xu Y, Zhang Y, Jiang Y, Liu X. Food deprivation differentially modulates gene expression of LPXRFa and kisspeptin systems in the brain-pituitary axis of half-smooth tongue sole ( Cynoglossus semilaevis). Front Endocrinol (Lausanne) 2023; 14:1099832. [PMID: 37033260 PMCID: PMC10081681 DOI: 10.3389/fendo.2023.1099832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
LPXRFa, also known as gonadotropin-inhibitory hormone (GnIH), and kisspeptin (Kiss) are two major hypothalamic peptides that modulate the reproductive axis of vertebrates, including teleosts. However, little information is available regarding the actions of nutritional status on the regulation of these two neuroendocrine systems in fish. Herein, we assessed the effects of starvation and refeeding on the expression of lpxrfa, kiss2 and their receptors (lpxrfa-r and kiss2r respectively) at the brain-pituitary level of half-smooth tongue sole (Cynoglossus semilaevis). Food deprivation for 4 weeks induced a rise in brain lpxrfa as well as brain and pituitary lpxrfa-r mRNA levels, and refeeding restored brain lpxrfa and lpxrfa-r expression back to normal. However, pituitary lpxrfa-r mRNA levels still remained high after 1 week of refeeding. Neither lpxrfa nor kiss2 transcripts in the pituitary were altered by fasting, but their mRNA levels increased significantly after 1 week of refeeding, and declined back to the control levels after 2 weeks of refeeding. None of brain kiss2 and kiss2r along with pituitary kiss2r transcripts were modified by the nutritional status. In summary, our results revealed an interaction between energy status and the elements of LPXRFa and Kiss systems in the brain-pituitary axis of half-smooth tongue sole. Food deprivation and refeeding differentially regulated the two systems, which provided additional evidence for the involvement of the LPXRFa and Kiss systems in the regulation of reproduction by energy balance in non-mammalian species.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Aijun Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yongjiang Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Yongjiang Xu,
| | - Yaxing Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yan Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xuezhou Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
5
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
6
|
Singh P, Anjum S, Srivastava RK, Tsutsui K, Krishna A. Central and peripheral neuropeptide RFRP-3: A bridge linking reproduction, nutrition, and stress response. Front Neuroendocrinol 2022; 65:100979. [PMID: 35122778 DOI: 10.1016/j.yfrne.2022.100979] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
This article is an amalgamation of the current status of RFRP-3 (GnIH) in reproduction and its association with the nutrition and stress-mediated changes in the reproductive activities. GnIH has been demonstrated in the hypothalamus of all the vertebrates studied so far and is a well-known inhibitor of GnRH mediated reproduction. The RFRP-3 neurons interact with the other hypothalamic neurons and the hormonal signals from peripheral organs for coordinating the nutritional, stress, and environmental associated changes to regulate reproduction. RFRP-3 has also been shown to regulate puberty, reproductive cyclicity and senescence depending upon the nutritional status. A favourable nutritional status and the environmental cues which are permissive for the successful breeding and pregnancy outcome keep RFRP-3 level low, whereas unfavourable nutritional status and stressful conditions increase the expression of RFRP-3 which impairs the reproduction. Still our knowledge about RFRP-3 is incomplete regarding its therapeutic application for nutritional or stress-related reproductive disorders.
Collapse
Affiliation(s)
- Padmasana Singh
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Shabana Anjum
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Kagamiyama 1-7-1, Higashi-Hiroshima University 739-8521, Japan
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
7
|
Wang B, Paullada-Salmerón JA, Vergès-Castillo A, Gómez A, Muñoz-Cueto JA. Signaling pathways activated by sea bass gonadotropin-inhibitory hormone peptides in COS-7 cells transfected with their cognate receptor. Front Endocrinol (Lausanne) 2022; 13:982246. [PMID: 36051397 PMCID: PMC9424679 DOI: 10.3389/fendo.2022.982246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Results of previous studies provided evidence for the existence of a functional gonadotropin-inhibitory hormone (GnIH) system in the European sea bass, Dicentrarchus labrax, which exerted an inhibitory action on the brain-pituitary-gonadal axis of this species. Herein, we further elucidated the intracellular signaling pathways mediating in sea bass GnIH actions and the potential interactions with sea bass kisspeptin (Kiss) signaling. Although GnIH1 and GnIH2 had no effect on basal CRE-luc activity, they significantly decreased forskolin-elicited CRE-luc activity in COS-7 cells transfected with their cognate receptor GnIHR. Moreover, an evident increase in SRE-luc activity was noticed when COS-7 cells expressing GnIHR were challenged with both GnIH peptides, and this stimulatory action was significantly reduced by two inhibitors of the PKC pathway. Notably, GnIH2 antagonized Kiss2-evoked CRE-luc activity in COS-7 cells expressing GnIHR and Kiss2 receptor (Kiss2R). However, GnIH peptides did not alter NFAT-RE-luc activity and ERK phosphorylation levels. These data indicate that sea bass GnIHR signals can be transduced through the PKA and PKC pathways, and GnIH can interfere with kisspeptin actions by reducing its signaling. Our results provide additional evidence for the understanding of signaling pathways activated by GnIH peptides in teleosts, and represent a starting point for the study of interactions with multiple neuroendocrine factors on cell signaling.
Collapse
Affiliation(s)
- Bin Wang
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - José A. Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Cádiz, Spain
- The European University of the Seas (SEA-EU), Cádiz, Spain
| | - Alba Vergès-Castillo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Cádiz, Spain
- The European University of the Seas (SEA-EU), Cádiz, Spain
| | - Ana Gómez
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | - José A. Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Cádiz, Spain
- The European University of the Seas (SEA-EU), Cádiz, Spain
- *Correspondence: José A. Muñoz-Cueto,
| |
Collapse
|
8
|
Hamidatou Khati W, Al Mutery AF, Moudilou EN, Exbrayat JM, Hammouche S. Distribution of the Novel RFRP-3/receptors system in the epididymis of the seasonal desert rodent, Gerbillus tarabuli, during sexual activity. Morphologie 2021:S1286-0115(21)00233-2. [PMID: 34774455 DOI: 10.1016/j.morpho.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 12/06/2022]
Abstract
RFamide-related peptide (RFRP-3), the Mammalian ortholog of the Avian gonadotropin-inhibitory hormone (GnIH), is a novel neuropeptide known for its inhibitory regulatory effect on reproduction in various mammalian species. However, a stimulatory action has been reported. This paper aims to: i) study the histology of the epididymis (caput) of Gerbillus tarabuli during the breeding period; and ii) to determine the distribution of the "RFRP-3/receptors system" in the epididymis (caput) of this desert rodent during the active season, and thus, to inspect its potential local interfering in sperm maturation. For that, immunohistochemistry was performed to detect the epididymal immunolocalizations of the three molecules, RFRP-3, GPR147, and GPR74. This is the first report of the epididymis histology in Gerbillus tarabuli, as it is the first evidence of the existence of the RFRP-3/Receptor system in the same organ of the same species. During the breeding season, moderate immunostaining of the RFRP-3/receptors system was present in the caput epididymis' epithelial parts (basal and principal cells) and spermatozoa. In contrast, these three molecules were absent in the peritubular and muscle coat's myoid cells and of the interstitial part of the caput epididymis. The results suggest that the epididymis is a potential source of RFRP-3 in the desert Rodent, Gerbillus tarabuli, which may function as a paracrine and/or autocrine factor affecting the main epididymis' function: sperm maturation.
Collapse
Affiliation(s)
- W Hamidatou Khati
- USTHB, Arid Area Research Laboratory, Biological Sciences Faculty, University of Sciences and Technology of Houari-Boumediene, Algiers, Algeria.
| | - A F Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates; Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, United Arab Emirates; Molecular Genetics Research Laboratory, University of Sharjah, Sharjah, United Arab Emirates
| | - E N Moudilou
- UMRS 449 - General Biology - Reproduction and Comparative Development, UDL; École Pratique des Hautes Études, PSL, Lyon Catholic University, Lyon, France
| | - J-M Exbrayat
- UMRS 449 - General Biology - Reproduction and Comparative Development, UDL; École Pratique des Hautes Études, PSL, Lyon Catholic University, Lyon, France
| | - S Hammouche
- USTHB, Arid Area Research Laboratory, Biological Sciences Faculty, University of Sciences and Technology of Houari-Boumediene, Algiers, Algeria
| |
Collapse
|
9
|
Ontogeny of OPN4, OPN5, GnRH and GnIH mRNA Expression in the Posthatch Male and Female Pekin Duck ( Anas platyrhynchos domesticus) Suggests OPN4 May Have Additional Functions beyond Reproduction. Animals (Basel) 2021; 11:ani11041121. [PMID: 33919914 PMCID: PMC8070892 DOI: 10.3390/ani11041121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/18/2023] Open
Abstract
The hypothalamic-pituitary-gonadal axis (HPG) is known to be regulated by daylength through the deep brain photoreceptor (DBP) system. The post-hatch ontogeny is not known for any of the DBPs. We set out to determine the ontogeny of OPN4 and OPN5 gene expression relative to GnRH and GnIH using qRT-PCR. Brains and serum were collected from five drakes and five hens on the day of hatching (Day 0) and again at 2, 4, 6, 10, 14, 19, 25 and 31 weeks of age and analyzed by qRT-PCR. Hen and drake serum was assayed for circulating levels of estradiol and testosterone, respectively. Data were analyzed between sexes over time using a repeated measures two-way ANOVA. Interestingly, the results show that on the day of hatching (Day 0), ducks showed adult-like levels of relative OPN4, but not OPN5, gene expression. During week 10, DBP levels increased, achieving highest relative expression levels at week 19 that maintained through week 31, typically peak fertility in ducks. GnRH mRNA levels increased following the DBP expression at the onset of puberty, and gonadal steroids increased after GnRH at week 14 while estradiol preceded testosterone. GnIH mRNA levels did not appreciably change during the time course of this experiment. These observations suggest that OPN4 may be active during the peri-hatch period and may have physiological roles beyond puberty and fertility.
Collapse
|
10
|
Hanlon C, Takeshima K, Bédécarrats GY. Changes in the Control of the Hypothalamic-Pituitary Gonadal Axis Across Three Differentially Selected Strains of Laying Hens ( Gallus gallus domesticus). Front Physiol 2021; 12:651491. [PMID: 33841186 PMCID: PMC8027345 DOI: 10.3389/fphys.2021.651491] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
Genetic selection for earlier sexual maturation and extended production cycles in laying hens has significantly improved reproductive efficiency. While limited emphasis has been placed on the underlying physiological changes, we hypothesize that modifications in the control of the hypothalamic-pituitary gonadal (HPG) axis have occurred. Thus, three strains of White leghorn derivatives were followed from hatch to 100 weeks of age (woa), including Lohmann LSL-lite (n = 120) as current commercial hens, heritage Shaver White leghorns (n = 100) as 2000s commercial equivalents, and Smoky Joe hens (n = 68) as 1960s commercial equivalents. Body weight (BW) and egg production were monitored, and blood samples were collected throughout to monitor estradiol (E2) concentrations. Tissue samples were collected at 12, 17, 20, 25, 45, 60, 75, and 100 woa to capture changes in mRNA levels of key genes involved in the HPG axis and monitor ovarian follicular pools. All hens, regardless of strain, age or photoperiod laid their first egg within a 64-gram BW window and, as E2 levels increased prior to photostimulation (PS) in Lohmann and Shaver hens, a metabolic trigger likely induced sexual maturation. However, increased levels of Opsin 5 (OPN5) were observed during the maturation period. Although an elevation in gonadotrophin-releasing hormone I (GnRH-I) mRNA levels was associated with early maturation, no changes in gonadotrophin-inhibitory hormone (GnIH) mRNA levels were observed. Nonetheless, a significant shift in pituitary sensitivity to GnRH was associated with maturation. Throughout the trial, Lohmann, Shaver, and Smoky Joe hens laid 515, 417, and 257 eggs, respectively (p < 0.0001). Results show that the extended laying persistency in Lohmann hens was supported by sustained pituitary sensitivity to GnRH-I, recurrent elevations in follicle-stimulating hormone (FSH) mRNA levels, and five cyclical elevations in E2 levels. This was also associated with a consistently higher pool of small white ovarian follicles. In summary, our results demonstrate first that, regardless of photoperiodic cues, meeting a specific narrow body weight threshold is sufficient to initiate sexual maturation in Leghorn chicken derivatives. Furthermore, recurrent increases in E2 and FSH may be the key to sustain extended laying period, allowing modern layers to double their reproductive capacity compared to their 1960s-counterparts.
Collapse
Affiliation(s)
- Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Kayo Takeshima
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
11
|
Anjum S, Khattak MNK, Tsutsui K, Krishna A. RF-amide related peptide-3 (RFRP-3): a novel neuroendocrine regulator of energy homeostasis, metabolism, and reproduction. Mol Biol Rep 2021; 48:1837-1852. [PMID: 33566226 DOI: 10.1007/s11033-021-06198-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
A hypothalamic neuropeptide, RF-amide related peptide-3 (RFRP-3), the mammalian ortholog of the avian gonadotropin-inhibitory hormone (GnIH) has inhibitory signals for reproductive axis via G-protein coupled receptor 147 in mammals. Moreover, RFRP-3 has orexigenic action but the mechanism involved in energy homeostasis and glucose metabolism is not yet known. Though, the RFRP-3 modulates orexigenic action in co-operation with other neuropeptides, which regulates metabolic cues in the hypothalamus. Administration of GnIH/RFRP-3 suppresses plasma luteinizing hormone, at the same time stimulates feeding behavior in birds and mammals. Likewise, in the metabolically deficient conditions, its expression is up-regulated suggests that RFRP-3 contributes to the integration of energy balance and reproduction. However, in many other metabolic conditions like induced diabetes and high-fat diet obesity, etc. its role is still not clear while, RFRP-3 induces the glucose homeostasis by adipocytes is reported. The physiological role of RFRP-3 in metabolic homeostasis and the metabolic effects of RFRP-3 signaling in pharmacological studies need a detailed discussion. Further studies are required to find out whether RFRP-3 is associated with restricted neuroendocrine function observed in type II diabetes mellitus, aging, or sub-fertility. In this context, the current review is focused on the role of RFRP-3 in the above-mentioned mechanisms. Studies from search engines including PubMed, Google Scholar, and science.gov are included after following set inclusion/exclusion criteria. As a developing field few mechanisms are still inconclusive, however, based on the available information RFRP-3 seems to be a putative tool in future treatment strategies towards metabolic disease.
Collapse
Affiliation(s)
- Shabana Anjum
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Sharjah Institute of Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Kazuyoshi Tsutsui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima, 739-8521, Japan
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
12
|
Bédécarrats GY, Hanlon C, Tsutsui K. Gonadotropin Inhibitory Hormone and Its Receptor: Potential Key to the Integration and Coordination of Metabolic Status and Reproduction. Front Endocrinol (Lausanne) 2021; 12:781543. [PMID: 35095760 PMCID: PMC8792613 DOI: 10.3389/fendo.2021.781543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Since its discovery as a novel gonadotropin inhibitory peptide in 2000, the central and peripheral roles played by gonadotropin-inhibiting hormone (GnIH) have been significantly expanded. This is highlighted by the wide distribution of its receptor (GnIH-R) within the brain and throughout multiple peripheral organs and tissues. Furthermore, as GnIH is part of the wider RF-amide peptides family, many orthologues have been characterized across vertebrate species, and due to the promiscuity between ligands and receptors within this family, confusion over the nomenclature and function has arisen. In this review, we intend to first clarify the nomenclature, prevalence, and distribution of the GnIH-Rs, and by reviewing specific localization and ligand availability, we propose an integrative role for GnIH in the coordination of reproductive and metabolic processes. Specifically, we propose that GnIH participates in the central regulation of feed intake while modulating the impact of thyroid hormones and the stress axis to allow active reproduction to proceed depending on the availability of resources. Furthermore, beyond the central nervous system, we also propose a peripheral role for GnIH in the control of glucose and lipid metabolism at the level of the liver, pancreas, and adipose tissue. Taken together, evidence from the literature strongly suggests that, in fact, the inhibitory effect of GnIH on the reproductive axis is based on the integration of environmental cues and internal metabolic status.
Collapse
Affiliation(s)
- Grégoy Y. Bédécarrats
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- *Correspondence: Grégoy Y. Bédécarrats,
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Kazuyoshi Tsutsui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
13
|
Teo CH, Phon B, Parhar I. The Role of GnIH in Biological Rhythms and Social Behaviors. Front Endocrinol (Lausanne) 2021; 12:728862. [PMID: 34566893 PMCID: PMC8461181 DOI: 10.3389/fendo.2021.728862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) was first discovered in the Japanese quail, and peptides with a C-terminal LPXRFamide sequence, the signature protein structure defining GnIH orthologs, are well conserved across vertebrate species, including fish, reptiles, amphibians, avians, and mammals. In the mammalian brain, three RFamide-related proteins (RFRP-1, RFRP-2, RFRP-3 = GnIH) have been identified as orthologs to the avian GnIH. GnIH is found primarily in the hypothalamus of all vertebrate species, while its receptors are distributed throughout the brain including the hypothalamus and the pituitary. The primary role of GnIH as an inhibitor of gonadotropin-releasing hormone (GnRH) and pituitary gonadotropin release is well conserved in mammalian and non-mammalian species. Circadian rhythmicity of GnIH, regulated by light and seasons, can influence reproductive activity, mating behavior, aggressive behavior, and feeding behavior. There is a potential link between circadian rhythms of GnIH, anxiety-like behavior, sleep, stress, and infertility. Therefore, in this review, we highlight the functions of GnIH in biological rhythms, social behaviors, and reproductive and non-reproductive activities across a variety of mammalian and non-mammalian vertebrate species.
Collapse
|
14
|
Brady K, Long JA, Liu HC, Porter TE. Differences in invitro responses of the hypothalamo-pituitary-gonadal hormonal axis between low- and high-egg-producing turkey hens. Poult Sci 2020; 99:6221-6232. [PMID: 33142540 PMCID: PMC7647924 DOI: 10.1016/j.psj.2020.08.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/16/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Low-egg-producing hens (LEPH) ovulate less frequently than high-egg-producing hens (HEPH) and exhibit differences in mRNA levels for components of the hypothalamo–pituitary–gonadal (HPG) axis, suggesting differential responsiveness to trophic stimulation. Ovulation frequency is governed by the production of the pituitary gonadotropins and feedback of the ovarian follicle steroid hormones, which are regulated by HPG axis stimulation and inhibition at the hypothalamic level. The pituitary and follicle cells from LEPH and HEPH were subjected to in vitro hormonal treatments to stimulate or inhibit the HPG axis, followed by expression analysis of mRNA levels for HPG axis genes and radioimmunoassays for steroid hormone production. Statistical analysis was performed using the mixed models procedure of SAS. The pituitary cells from HEPH showed upregulation of genes associated with ovulation stimulation, whereas cells from LEPH showed upregulation of genes associated with inhibition of ovulation. High-egg-producing hens’ follicle cells displayed a higher sensitivity and responsiveness to gonadotropin treatment. Level of egg production impacted ovulation-related gene expression in the pituitary cells as well as steroid hormone production in the follicle cells, with HEPH displaying a greater positive response to stimulation. These findings indicate that differences in egg production among turkey hens likely involve differential responsiveness of the cells within the HPG axis.
Collapse
Affiliation(s)
- Kristen Brady
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, United States; Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, Beltsville, MD 20705, United States
| | - Julie A Long
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, Beltsville, MD 20705, United States
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, United States
| | - Tom E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
15
|
Yu S, Wang G, Liao J, Tang M, Chen J. Identification of differentially expressed genes associated with egg production in black-boned chicken. Br Poult Sci 2020; 61:3-7. [PMID: 32134329 DOI: 10.1080/00071668.2020.1736268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. Muchuan black-bone chicken is well known in China for its meat quality and medicinal properties; however, its egg-laying performance is not ideal. To better understand the molecular mechanisms of black-boned chicken egg-laying, high-throughput RNA sequencing was performed to compare differences in the pituitary transcriptome between three high-rate (group H) and three low-rate (group L) egg production chickens. 2. In total, 171 differentially expressed genes (DEGs) were identified between the two groups, of which 113 were upregulated and 58 were downregulated in group L. Some of these genes are known to be related to hormone secretion or the regulation of reproductive processes; these include prolactin-releasing hormone (PRLH), distal-less homeobox 6 (DLX6), interferon regulatory factor 4 (IRF4), and cilia and flagella associated protein 69 (CFAP69). Notably, expression pattern analysis indicated that both PRLH and DLX6 may influence egg-laying performance. 3. The dataset provided a foundation for discovering important genes and pathways involved in the chicken egg-laying process, and may help to improve understanding of the molecular mechanisms of chicken reproduction.
Collapse
Affiliation(s)
- S Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - G Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - J Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - M Tang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| | - J Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University , Leshan, China
| |
Collapse
|
16
|
Chen J, Huang S, Zhang J, Li J, Wang Y. Characterization of the neuropeptide FF (NPFF) gene in chickens: evidence for a single bioactive NPAF peptide encoded by the NPFF gene in birds. Domest Anim Endocrinol 2020; 72:106435. [PMID: 32247990 DOI: 10.1016/j.domaniend.2020.106435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/09/2019] [Accepted: 01/03/2020] [Indexed: 01/06/2023]
Abstract
The 2 structurally related peptides, neuropeptide FF (NPFF) and neuropeptide AF (NPAF), are encoded by the NPFF gene and have been identified as neuromodulators that regulate nociception and opiate-mediated analgesia via NPFF receptor (NPFFR2) in mammals. However, little is known about these 2 peptides in birds. In this study, we examined the structure, tissue expression profile, and functionality of NPAF and NPFF in chickens. Our results showed that: 1) unlike mammalian NPFF, NPFF from chicken and other avian species is predicted to produce a single bioactive NPAF peptide, whereas the putative avian NPFF peptide likely lacks activity due to the absence of functional RFamide motif at its C-terminus; 2) synthetic chicken (c-) NPAF can potently activate cNPFFR2 (and not cNPFFR1) expressed in HEK293 cells, as monitored by 3 cell-based luciferase reporter systems, indicating that cNPAF is a potent ligand for cNPFFR2, which activation could decrease intracellular cAMP levels and stimulate the MAPK/ERK signaling cascade; interestingly, gonadotropin-inhibitory hormone, a peptide sharing high structural similarity to NPAF, could specifically activate cNPFFR1 (but not cNPFFR2); 3) Quantitative real-time PCR revealed that cNPFF mRNA is widely expressed in chicken tissues with the highest level detected in the hypothalamus, whereas cNPFFR2 is expressed in all tissues examined with the highest level noted in the hypothalamus and anterior pituitary. Taken together, our data reveal that avian NPFF encodes a single bioactive NPAF peptide, which preferentially activates NPFFR2, and provides insights into potential structural and functional changes of NPFF-derived peptides during vertebrate evolution.
Collapse
Affiliation(s)
- J Chen
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - S Huang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - J Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - J Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Y Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
17
|
Hanlon C, Ramachandran R, Zuidhof MJ, Bédécarrats GY. Should I Lay or Should I Grow: Photoperiodic Versus Metabolic Cues in Chickens. Front Physiol 2020; 11:707. [PMID: 32670092 PMCID: PMC7332832 DOI: 10.3389/fphys.2020.00707] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
While photoperiod has been generally accepted as the primary if not the exclusive cue to stimulate reproduction in photoperiodic breeders such as the laying hen, current knowledge suggests that metabolism, and/or body composition can also play an influential role to control the hypothalamic-pituitary gonadal (HPG)-axis. This review thus intends to first describe how photoperiodic and metabolic cues can impact the HPG axis, then explore and propose potential common pathways and mechanisms through which both cues could be integrated. Photostimulation refers to a perceived increase in day-length resulting in the stimulation of the HPG. While photoreceptors are present in the retina of the eye and the pineal gland, it is the deep brain photoreceptors (DBPs) located in the hypothalamus that have been identified as the potential mediators of photostimulation, including melanopsin (OPN4), neuropsin (OPN5), and vertebrate-ancient opsin (VA-Opsin). Here, we present the current state of knowledge surrounding these DBPs, along with their individual and relative importance and, their possible downstream mechanisms of action to initiate the activation of the HPG axis. On the metabolic side, specific attention is placed on the hypothalamic integration of appetite control with the stimulatory (Gonadotropin Releasing Hormone; GnRH) and inhibitory (Gonadotropin Inhibitory Hormone; GnIH) neuropeptides involved in the control of the HPG axis. Specifically, the impact of orexigenic peptides agouti-related peptide (AgRP), and neuropeptide Y (NPY), as well as the anorexigenic peptides pro-opiomelanocortin (POMC), and cocaine-and amphetamine regulated transcript (CART) is reviewed. Furthermore, beyond hypothalamic control, several metabolic factors involved in the control of body weight and composition are also presented as possible modulators of reproduction at all three levels of the HPG axis. These include peroxisome proliferator-activated receptor gamma (PPAR-γ) for its impact in liver metabolism during the switch from growth to reproduction, adiponectin as a potential modulator of ovarian development and follicular maturation, as well as growth hormone (GH), and leptin (LEP).
Collapse
Affiliation(s)
- Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Ramesh Ramachandran
- Center for Reproductive Biology and Health, Department of Animal Science, Pennsylvania State University, University Park, PA, United States
| | - Martin J. Zuidhof
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
18
|
Hadinia SH, Carneiro PRO, Fitzsimmons CJ, Bédécarrats GY, Zuidhof MJ. Post-photostimulation energy intake accelerated pubertal development in broiler breeder pullets. Poult Sci 2020; 99:2215-2229. [PMID: 32241507 PMCID: PMC7587636 DOI: 10.1016/j.psj.2019.11.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/24/2023] Open
Abstract
The effect of ME intake (MEI) on the reproductive system was evaluated. Ross 308 broiler breeder pullets (n = 140) were assigned to 2 treatments from 22 to 26 wk of age: (1) Low-energy diet fed restricted (2,807 kcal/kg, low MEI) and (2) high-energy diet fed unrestricted (3,109 kcal/kg, high MEI). Daylength was increased from 8 to 14 h at 22 wk of age with a light intensity of 30 lux. Daily palpation was used to detect sexual maturity via the presence of a hard-shelled egg in the shell gland. Expression of gonadotropin releasing hormone-I (GnRH) and gonadotropin inhibitory hormone (GnIH) genes in the hypothalamus and GnRH receptor (GnRH-RI) and GnIH receptor (GnIH-R) genes in the anterior pituitary gland of each pullet was evaluated from 22 to 26 wk of age using quantitative real time-PCR. Blood samples were taken weekly and luteinizing hormone (LH), follicle stimulating-hormone (FSH), and 17-beta-estradiol (E2) determined using commercial ELISA kits. Carcass samples were used for determination of CP and fat content. Data were analyzed using the MIXED procedure in SAS, and differences were reported where P ≤ 0.05. High MEI treatment pullets had 2.3-fold higher GnRH and 1.8-fold higher GnRH-RI mRNA levels than low MEI pullets. MEI affected neither expression of GnIH and GnIH-R nor carcass protein content. For high MEI (489 kcal/D) and low MEI treatments (258 kcal/D), respectively, from 22 to 26 wk of age (P ≤ 0.05), LH concentration was 3.05 and 1.60 ng/mL; FSH concentration was 145 and 89.3 pg/mL; E2 concentration was 429 and 266 pg/mL, and carcass lipid was 13.9 and 10.3%. The onset of lay for pullets in the high MEI treatment advanced such that 100% had laid by 26 wk of age compared with 30% in the low MEI treatment. We concluded that higher MEI advanced the activation of the hypothalamic–pituitary–gonadal axis and also increased body lipid deposition, and moreover, stimulated reproductive hormone levels which overall accelerated puberty in broiler breeder pullets.
Collapse
Affiliation(s)
- S H Hadinia
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - P R O Carneiro
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - C J Fitzsimmons
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB, Canada, T6G 2P5; Agriculture and Agri-Food Canada, Edmonton, AB, Canada
| | - G Y Bédécarrats
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - M J Zuidhof
- Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB, Canada, T6G 2P5.
| |
Collapse
|
19
|
Huo K, Li X, Hu W, Song X, Zhang D, Zhang X, Chen X, Yuan J, Zuo J, Wang X. RFRP-3, the Mammalian Ortholog of GnIH, Is a Novel Modulator Involved in Food Intake and Glucose Homeostasis. Front Endocrinol (Lausanne) 2020; 11:194. [PMID: 32328034 PMCID: PMC7160250 DOI: 10.3389/fendo.2020.00194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Abstract
RF amide-related peptide 3 (RFRP-3) is a reproductive inhibitor and an endogenous orexigenic neuropeptide that may be involved in energy homeostasis. In this study, we evaluated the effect of acute or chronic RFRP-3 treatment (administered via intraperitoneal injection) on the food intake, meal microstructure and weight of rats, as well as the mechanism through which RFRP-3 is involved in glucose metabolism in the pancreas and glucose disposal tissues of rat in vivo. Our results showed that the intraperitoneal administration of RFRP-3 to rats resulted in marked body mass increased, hyperphagia, hyperlipidemia, hyperglycemia, glucose intolerance, hypoinsulinism, hyperglucagon, and insulin resistance, as well as significant increases in the size of pancreatic islets and the inflammatory reaction. Thus, we strongly assert that RFRP-3 as a novel neuroendocrine regulator involved in blood glucose homeostasis.
Collapse
|
20
|
Takeshima K, Hanlon C, Sparling B, Korver D, Bédécarrats G. Spectrum Lighting During Pullet Rearing and Its Impact on Subsequent Production Performance in Layers. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfz094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Mo C, Lv C, Huang L, Li Z, Zhang J, Li J, Wang Y. Regulation of Pituitary Cocaine- and Amphetamine-Regulated Transcript Expression and Secretion by Hypothalamic Gonadotropin-Releasing Hormone in Chickens. Front Physiol 2019; 10:882. [PMID: 31404152 PMCID: PMC6672714 DOI: 10.3389/fphys.2019.00882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence that cocaine- and amphetamine-regulated transcript (CART) peptide is abundantly expressed in the anterior pituitary of birds and mammals, suggesting that CART peptide may be a novel pituitary hormone and its expression and secretion is likely controlled by the hypothalamic factor(s). To substantiate this hypothesis, using chicken as an animal model, we examined the effects of gonadotropin-releasing hormone (GnRH) on pituitary CART secretion and expression and investigated whether GnRH could modulate plasma CART levels. The results showed that: (1) chicken GnRH (GnRH1 and GnRH2) could potently stimulate CART peptide secretion in intact pituitaries incubated in vitro, as detected by Western blot; (2) GnRH could also stimulate CART mRNA expression in cultured pituitary cells, as revealed by quantitative real-time polymerase chain reaction (qPCR) assay; (3) GnRH actions on pituitary CART expression and secretion are likely mediated by GnRH receptor coupled to the intracellular Ca2+, MEK/ERK, and cAMP/PKA signaling pathways; and (4) plasma CART levels are high in chickens at various developmental stages (1.2–3.5 ng/ml) and show an increasing trend towards sexual maturity, as detected by enzyme-linked immunosorbent assay (ELISA). Moreover, plasma CART levels could be significantly induced by intraperitoneal administration of GnRH in chicks. Taken together, our data provide the first collective evidence that CART peptide is a novel pituitary hormone and its expression and secretion are tightly controlled by hypothalamic GnRH, thus likely being an active player in the hypothalamic-pituitary-gonadal (HPG) axis.
Collapse
Affiliation(s)
- Chunheng Mo
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Can Lv
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Long Huang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhengyang Li
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Choi I, Rickert E, Fernandez M, Webster NJG. SIRT1 in Astrocytes Regulates Glucose Metabolism and Reproductive Function. Endocrinology 2019; 160:1547-1560. [PMID: 31127273 PMCID: PMC6542483 DOI: 10.1210/en.2019-00223] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
Abstract
Sirtuin 1 (Sirt1) is an NAD-dependent class III deacetylase that functions as a cellular energy sensor. In addition to its well-characterized effects in peripheral tissues, evidence suggests that SIRT1 in neurons plays a role in the central regulation of energy balance and reproduction, but no studies have addressed the contribution of astrocytes. We show here that overexpression of SIRT1 in astrocytes causes markedly increased food intake, body weight gain, and glucose intolerance, but expression of a deacetylase-deficient SIRT1 mutant decreases food intake and body weight and improves glucose tolerance, particularly in female mice. Paradoxically, the effect of these SIRT1 mutants on insulin tolerance was reversed, with overexpression showing greater insulin sensitivity. The mice overexpressing SIRT1 were more active, generated more heat, and had elevated oxygen consumption, possibly in compensation for the increased food intake. The female overexpressing mice were also more sensitive to diet-induced obesity. Reproductively, the mice expressing the deacetylase-deficient SIRT1 mutant had impaired estrous cycles, decreased LH surges, and fewer corpora lutea, indicating decreased ovulation. The GnRH neurons were responsive to kisspeptin stimulation, but hypothalamic expression of Kiss1 was reduced in the mutant mice. Our results showed that SIRT1 signaling in astrocytes can contribute to metabolic and reproductive regulation independent of SIRT1 effects in neurons.
Collapse
Affiliation(s)
- Irene Choi
- VA San Diego Healthcare System, San Diego, California
| | - Emily Rickert
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Marina Fernandez
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
| | - Nicholas J G Webster
- VA San Diego Healthcare System, San Diego, California
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
- Moores Cancer Center, University of California San Diego, La Jolla, California
- Correspondence: Nicholas J. G. Webster, PhD, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093. E-mail:
| |
Collapse
|
23
|
Wang B, Yang G, Xu Y, Li W, Liu X. Recent studies of LPXRFa receptor signaling in fish and other vertebrates. Gen Comp Endocrinol 2019; 277:3-8. [PMID: 30465768 DOI: 10.1016/j.ygcen.2018.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/17/2018] [Accepted: 11/17/2018] [Indexed: 12/21/2022]
Abstract
The hypothalamo-pituitary-gonadal (HPG) axis plays a major role in coordinating the reproduction of fish and other vertebrates. Gonadotropin-releasing hormone (GnRH) is the primary stimulatory factor responsible for the hypothalamic control of gonadotropin secretion. In 2000, a previously unidentified hypothalamic neuropeptide was isolated from the brain of Japanese quail and termed gonadotropin-inhibitory hormone (GnIH) based on its ability to directly inhibit gonadotropin release from the cultured quail anterior pituitary gland. One year later, the cDNA sequence that encodes the quail GnIH precursor polypeptide was cloned and was found to encompass two further peptides (GnIH-related peptide (RP)-1 and GnIH-RP-2) besides GnIH. To date, GnIH orthologous have been detected in a variety of vertebrates from fish to humans. These peptides possess a characteristic-LPXRFa (X = L or Q) motif at the C-terminus and are designated as LPXRFa peptides. It is generally accepted that LPXRFa peptides act on GnRH neurons in the hypothalamus to inhibit gonadotropin synthesis and release in addition to affecting the pituitary function in birds and mammals. However, the exact physiological role of LPXRFa is still uncertain in fish and dual actions of LPXRFa on the HPG axis have been observed. Research aiming to elucidate the detailed signaling pathways mediating the actions of LPXRFa on target cells may contribute to understanding the functional divergence of the LPXRFa system in teleosts. Accordingly, this review will discuss the recent advances in LPXRFa receptor signaling, as well as the potential interactions on cell signaling induced by other factors, such as GnRH and kisspeptin.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Guokun Yang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yongjiang Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, South China Sea Bio-Resource Exploitation and Collaborative Innovation Center, Research Institute of Sun Yat-Sen University in Shen Zhen, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xuezhou Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
24
|
Angelopoulou E, Quignon C, Kriegsfeld LJ, Simonneaux V. Functional Implications of RFRP-3 in the Central Control of Daily and Seasonal Rhythms in Reproduction. Front Endocrinol (Lausanne) 2019; 10:183. [PMID: 31024442 PMCID: PMC6467943 DOI: 10.3389/fendo.2019.00183] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/05/2019] [Indexed: 12/20/2022] Open
Abstract
Adaptation of reproductive activity to environmental changes is essential for breeding success and offspring survival. In mammals, the reproductive system displays regular cycles of activation and inactivation which are synchronized with seasonal and/or daily rhythms in environmental factors, notably light intensity and duration. Thus, most species adapt their breeding activity along the year to ensure that birth and weaning of the offspring occur at a time when resources are optimal. Additionally, female reproductive activity is highest at the beginning of the active phase during the period of full oocyte maturation, in order to improve breeding success. In reproductive physiology, it is therefore fundamental to delineate how geophysical signals are integrated in the hypothalamo-pituitary-gonadal axis, notably by the neurons expressing gonadotropin releasing hormone (GnRH). Several neurochemicals have been reported to regulate GnRH neuronal activity, but recently two hypothalamic neuropeptides belonging to the superfamily of (Arg)(Phe)-amide peptides, RFRP-3 and kisspeptin, have emerged as critical for the integration of environmental cues within the reproductive axis. The goal of this review is to survey the current understanding of the role played by RFRP-3 in the temporal regulation of reproduction, and consider how its effect might combine with that of kisspeptin to improve the synchronization of reproduction to environmental challenges.
Collapse
Affiliation(s)
- Eleni Angelopoulou
- Institut des Neurosciences Cellulaires et Intégratives (CNRS UPR 3212), Université de Strasbourg, Strasbourg, France
- Netherlands Institute for Neuroscience (NIN), Amsterdam, Netherlands
| | - Clarisse Quignon
- Institut des Neurosciences Cellulaires et Intégratives (CNRS UPR 3212), Université de Strasbourg, Strasbourg, France
| | - Lance J. Kriegsfeld
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives (CNRS UPR 3212), Université de Strasbourg, Strasbourg, France
- *Correspondence: Valérie Simonneaux
| |
Collapse
|
25
|
Evaluation of the Impact of Light Source on Reproductive Parameters in Laying Hens Housed in Individual Cages. J Poult Sci 2019; 56:148-158. [PMID: 32055209 PMCID: PMC7005406 DOI: 10.2141/jpsa.0180054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Higher light wavelengths have been shown to stimulate extra-retinal photoreceptors more efficiently than lower wavelengths to promote reproduction in poultry. We developed a light emitting diode (LED) bulb that emits 60% of its light in the red spectrum (LED-R), and evaluated the effects of different light sources on growth and reproduction in commercial layer hens. Three rooms equipped with either 100W incandescent, 15W compact fluorescent (CFL), or 10W LED-R bulbs were populated with 96 Lohmann LSL-Lite layers housed in individual cages from 14 to 69 weeks of age (woa). Pullets were initially maintained on a 10-h photoperiod, then photostimulated at 18 woa. Surprisingly, regardless of the light source, plasma levels of estradiol peaked at 16 woa, 2 weeks before photostimulation, and egg-laying was initiated at 19 woa. As a direct correlation between age at first egg and body weight was identified, metabolic cues most likely served as a primary trigger to initiate sexual maturation prior to photostimulation. Overall egg production and cumulative egg numbers were similar among treatments. Interestingly, a second increase in estradiol was observed at 52 woa under all treatments, suggesting an additional ovarian stimulation, possibly associated with an additional follicular recruitment at that age. Overall, changes in estradiol concentrations were more pronounced in hens maintained under LED-R light than in hens exposed to incandescent and CFL, especially for the second increase, suggesting that a higher amount of red light leads to stronger ovarian activity. Maintaining hens under LED-R bulbs also resulted in lower feed consumption, which combined with the lower energy consumption of LED-bulbs (LED-R: 306 kW; incandescent: 2,514 kW; CFL: 422 kW) could reduce the production cost.
Collapse
|
26
|
Ubuka T, Tsutsui K. Comparative and Evolutionary Aspects of Gonadotropin-Inhibitory Hormone and FMRFamide-Like Peptide Systems. Front Neurosci 2018; 12:747. [PMID: 30405335 PMCID: PMC6200920 DOI: 10.3389/fnins.2018.00747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/28/2018] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that was found in the brain of Japanese quail when investigating the existence of RFamide peptides in birds. GnIH was named because it decreased gonadotropin release from cultured anterior pituitary, which was located in the hypothalamo-hypophysial system. GnIH and GnIH precursor gene related peptides have a characteristic C-terminal LPXRFamide (X = L or Q) motif that is conserved in jawed vertebrates. Orthologous peptides to GnIH are also named RFamide related peptide or LPXRFamide peptide from their structure. A G-protein coupled receptor GPR147 is the primary receptor for GnIH. Similarity-based clustering of neuropeptide precursors in metazoan species indicates that GnIH precursor of vertebrates is evolutionarily related to FMRFamide precursor of mollusk and nematode. FMRFamide peptide is the first RFamide peptide that was identified from the ganglia of the venus clam. In order to infer the evolutionary history of the GnIH-GnIH receptor system we investigate the structural similarities between GnIH and its receptor and well-studied nematode Caenorhabditis elegans (C. elegans) FMRFamide-like peptides (FLPs) and their receptors. We also compare the functions of FLPs of nematode with GnIH of chordates. A multiple sequence alignment and phylogenetic analyses of GnIH, neuropeptide FF (NPFF), a paralogous peptide of GnIH, and FLP precursors have shown that GnIH and NPFF precursors belong to different clades and some FLP precursors have structural similarities to either precursor. The peptide coding regions of FLP precursors in the same clade align well with those of GnIH or NPFF precursors. Alignment of GnIH (LPXRFa) peptides of chordates and FLPs of C. elegans grouped the peptides into five groups according to the last C-terminal amino acid sequences, which were MRFa, LRFa, VRFa, IRFa, and PQRFa. Phylogenetic analysis of receptors suggested that GPR147 has evolutionary relationships with FLP receptors, which regulate reproduction, aggression, locomotion, and feeding. GnIH and some FLPs mediate the effect of stress on reproduction and behavior, which may also be a conserved property of these peptide systems. Future studies are needed to investigate the mechanism of how neuropeptide precursor genes are mutated to evolve new neuropeptides and their inheritance.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Japan
| |
Collapse
|
27
|
Wang B, Yang G, Liu Q, Qin J, Xu Y, Li W, Liu X, Shi B. Characterization of LPXRFa receptor in the half-smooth tongue sole ( Cynoglossus semilaevis ): Molecular cloning, expression profiles, and differential activation of signaling pathways by LPXRFa peptides. Comp Biochem Physiol A Mol Integr Physiol 2018; 223:23-32. [DOI: 10.1016/j.cbpa.2018.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 01/28/2023]
|
28
|
Wang B, Liu Q, Liu X, Xu Y, Shi B. Molecular characterization and expression profiles of LPXRFa at the brain-pituitary-gonad axis of half-smooth tongue sole (Cynoglossus semilaevis) during ovarian maturation. Comp Biochem Physiol B Biochem Mol Biol 2017; 216:59-68. [PMID: 29223873 DOI: 10.1016/j.cbpb.2017.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) has been characterized by its ability to inhibit either basal or gonadotropin-releasing hormone (GnRH)-induced gonadotropin synthesis and release in birds and mammals. However, the physiological role of GnIH on the reproductive axis in fish remains inconclusive, with most studies focusing on the orders Cypriniformes and Perciformes. To gain insight into the role of GnIH in the regulation of reproduction in the order Pleuronectiformes, we first cloned the LPXRFa gene, the piscine ortholog of GnIH, in the half-smooth tongue sole. The full-length cDNA of LPXRFa was 918bp in size with an open reading frame (ORF) of 585bp that encoded a 194 amino acids preprohormone with a calculated molecular mass and isoelectric point of 21.73kDa and 6.52, respectively. The LPXRFa precursor encoded two putative peptide sequences that included -MPMRF or -MPQRF motifs at the C-terminal. Tissue distribution analysis showed that LPXRFa transcripts could be detected at high levels in the brains of both sexes and to a lesser extent in the ovary, heart and stomach of females, while a noteworthy expression was observed in the kidney and muscle of males. Furthermore, the expression patterns of LPXRFa mRNA during ovarian maturation were also investigated. In the brain, the mRNA expression of LPXRFa increased significantly at stage III, declined at stage V and reached a maximum at stage VI. In the pituitary, the levels of LPXRFa mRNA remained stable during ovarian maturation and increased significantly to the top level at stage V and then declined back to basal levels. In contrast, the ovarian LPXRFa mRNA levels declined sharply at stage III and remained depressed over the course of ovarian maturation. Taken together, our results provide further evidence for the existence of LPXRFa in the order Pleuronectiformes and suggest its possible involvement in the regulation of reproduction in the female tongue sole.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Quan Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xuezhou Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Yongjiang Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Bao Shi
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
29
|
Fernandez MO, Hsueh K, Park HT, Sauceda C, Hwang V, Kumar D, Kim S, Rickert E, Mahata S, Webster NJG. Astrocyte-Specific Deletion of Peroxisome-Proliferator Activated Receptor- γ Impairs Glucose Metabolism and Estrous Cycling in Female Mice. J Endocr Soc 2017; 1:1332-1350. [PMID: 29264458 PMCID: PMC5686676 DOI: 10.1210/js.2017-00242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/15/2017] [Indexed: 01/21/2023] Open
Abstract
Mice lacking peroxisome-proliferator activated receptor-γ (PPARγ) in neurons do not become leptin resistant when placed on a high-fat diet (HFD). In male mice, this results in decreased food intake and increased energy expenditure, causing reduced body weight, but this difference in body weight is not observed in female mice. In addition, estrous cycles are disturbed and the ovaries present with hemorrhagic follicles. We observed that PPARγ was more highly expressed in astrocytes than neurons, so we created an inducible, conditional knockout of PPARγ in astrocytes (AKO). The AKO mice had impaired glucose tolerance and hepatic steatosis that did not worsen with HFD. Expression of gluconeogenic genes was elevated in the mouse livers, as was expression of several genes involved in lipogenesis, lipid transport, and storage. The AKO mice also had a reproductive phenotype with fewer estrous cycles, elevated plasma testosterone levels, reduced corpora lutea formation, and alterations in hypothalamic and ovarian gene expression. Thus, the phenotypes of the AKO mice were very different from those seen in the neuronal knockout mice, suggesting distinct roles for PPARγ in these two cell types.
Collapse
Affiliation(s)
- Marina O Fernandez
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093.,Laboratory of Neuroendocrinology, Instituto de Biología y Medicina Experimental, CONICET. Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Katherine Hsueh
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Hyun Tae Park
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093.,Department of Obstetrics and Gynecology, Korea University Anam Hospital, Seoul 136-705, Korea
| | - Consuelo Sauceda
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Vicky Hwang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Deepak Kumar
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Sun Kim
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Emily Rickert
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Sumana Mahata
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Nicholas J G Webster
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093.,Medical Research Service, VA San Diego Healthcare System, San Diego, California 92161.,Moores Cancer Center, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
30
|
Ubuka T, Parhar I. Dual Actions of Mammalian and Piscine Gonadotropin-Inhibitory Hormones, RFamide-Related Peptides and LPXRFamide Peptides, in the Hypothalamic-Pituitary-Gonadal Axis. Front Endocrinol (Lausanne) 2017; 8:377. [PMID: 29375482 PMCID: PMC5768612 DOI: 10.3389/fendo.2017.00377] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/22/2017] [Indexed: 01/04/2023] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that decreases gonadotropin synthesis and release by directly acting on the gonadotrope or by decreasing the activity of gonadotropin-releasing hormone (GnRH) neurons. GnIH is also called RFamide-related peptide in mammals or LPXRFamide peptide in fishes due to its characteristic C-terminal structure. The primary receptor for GnIH is GPR147 that inhibits cAMP production in target cells. Although most of the studies in mammals, birds, and fish have shown the inhibitory action of GnIH in the hypothalamic-pituitary-gonadal (HPG) axis, several in vivo studies in mammals and many in vivo and in vitro studies in fish have shown its stimulatory action. In mouse, although the firing rate of the majority of GnRH neurons is decreased, a small population of GnRH neurons is stimulated by GnIH. In hamsters, GnIH inhibits luteinizing hormone (LH) release in the breeding season when their endogenous LH level is high but stimulates LH release in non-breeding season when their LH level is basal. Besides different effects of GnIH on the HPG axis depending on the reproductive stages in fish, higher concentration or longer duration of GnIH administration can stimulate their HPG axis. These results suggest that GnIH action in the HPG axis is modulated by sex-steroid concentration, the action of neuroestrogen synthesized by the activity of aromatase stimulated by GnIH, estrogen membrane receptor, heteromerization and internalization of GnIH, GnRH, and estrogen membrane receptors. The inhibitory and stimulatory action of GnIH in the HPG axis may have a physiological role to maintain reproductive homeostasis according to developmental and reproductive stages.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Sunway, Malaysia
- *Correspondence: Takayoshi Ubuka,
| | - Ishwar Parhar
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Sunway, Malaysia
| |
Collapse
|
31
|
Peng W, Cao M, Chen J, Li Y, Wang Y, Zhu Z, Hu W. GnIH plays a negative role in regulating GtH expression in the common carp, Cyprinus carpio L. Gen Comp Endocrinol 2016; 235:18-28. [PMID: 27263051 DOI: 10.1016/j.ygcen.2016.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 12/16/2022]
Abstract
In birds and mammals, the gonadotrophin-inhibitory hormone (GnIH) effectively inhibits the expression of gonadotrophin (GtH). In teleosts, the effects of GnIH are still unclear and under much debate. The aim of this study is to evaluate the functions of GnIH/receptors of gonadotrophin-inhibitory hormone (GnIHRs) system during reproduction in the common carp, Cyprinus carpio L. We cloned the full cDNA sequences of GnIH /GnIHRs. Real-time PCR results showed that GnIH/GnIHRs were distributed extensively across the whole hypothalamus-pituitary-gonad (HPG) axis. We also examined the changes of GnIH/GnIHRs in the HPG axis during reproduction. GnIH mRNA expression was decreased to the minimum value in Apr, the spawning month, and increased immediately after the completion of reproduction. Expression pattern of GnIH during reproduction was the opposite to those of Gonadotrophin release hormone 3 (GnRH3) and luteinizing hormone (LH). Expression patterns of GnIHRs were similar to that of GnIH in the hypothalamus. In the pituitary, GnIHR2/3 peaked in March before spawning. In the ovaries, the GnIHR1 decreased to the minimum value in April, but GnIHR2/3 increased. By injection and incubation with synthesized GnIH-III peptide, we confirmed the negative influence of GnIH on mRNAs of the follicle-stimulating hormone-β and LH-β subunits in the common carp. These results show that the GnIH/GnIHRs system is involved in the negative regulation of reproduction in HPG axis of the common carp.
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 10049, China
| | - Mengxi Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 10049, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
32
|
Hezarjaribi A, Rezaeipour V, Abdollahpour R. Effects of intramuscular injections of vitamin E-selenium and a gonadotropin releasing hormone analogue (GnRHa) on reproductive performance and blood metabolites of post-molt male broiler breeders. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Bédécarrats GY, Baxter M, Sparling B. An updated model to describe the neuroendocrine control of reproduction in chickens. Gen Comp Endocrinol 2016; 227:58-63. [PMID: 26414126 DOI: 10.1016/j.ygcen.2015.09.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/22/2015] [Indexed: 01/03/2023]
Abstract
Since its first identification in quail 15 years ago, gonadotropin inhibitory hormone (GnIH) has become a central regulator of reproduction in avian species. In this review, we have revisited our original model published in 2009 to incorporate recent experimental evidence suggesting that GnIH acts as a molecular switch during the integration of multiple external and internal cues that allow sexual maturation to proceed in chickens. Furthermore, we discuss the regulation of a dual inhibitory/stimulatory control of the hypothalamo-pituitary-gonadal axis involving the interaction between GnIH and gonadotropin releasing hormone (GnRH). Finally, beyond seasonality, we also propose that GnIH along with this dual control may be responsible for the circadian control of ovulation in chickens, allowing eggs to be laid in a synchronized manner.
Collapse
Affiliation(s)
- Grégoy Y Bédécarrats
- Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, ON, Canada.
| | - Mikayla Baxter
- Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, ON, Canada.
| | - Brandi Sparling
- Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Guelph N1G 2W1, ON, Canada.
| |
Collapse
|
34
|
Ubuka T, Son YL, Tsutsui K. Molecular, cellular, morphological, physiological and behavioral aspects of gonadotropin-inhibitory hormone. Gen Comp Endocrinol 2016; 227:27-50. [PMID: 26409890 DOI: 10.1016/j.ygcen.2015.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/09/2015] [Accepted: 09/11/2015] [Indexed: 12/15/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that was isolated from the brains of Japanese quail in 2000, which inhibited luteinizing hormone release from the anterior pituitary gland. Here, we summarize the following fifteen years of researches that investigated on the mechanism of GnIH actions at molecular, cellular, morphological, physiological, and behavioral levels. The unique molecular structure of GnIH peptide is in its LPXRFamide (X=L or Q) motif at its C-terminal. The primary receptor for GnIH is GPR147. The cell signaling pathway triggered by GnIH is initiated by inhibiting adenylate cyclase and decreasing cAMP production in the target cell. GnIH neurons regulate not only gonadotropin synthesis and release in the pituitary, but also regulate various neurons in the brain, such as GnRH1, GnRH2, dopamine, POMC, NPY, orexin, MCH, CRH, oxytocin, and kisspeptin neurons. GnIH and GPR147 are also expressed in gonads and they may regulate steroidogenesis and germ cell maturation in an autocrine/paracrine manner. GnIH regulates reproductive development and activity. In female mammals, GnIH may regulate estrous or menstrual cycle. GnIH is also involved in the regulation of seasonal reproduction, but GnIH may finely tune reproductive activities in the breeding seasons. It is involved in stress responses not only in the brain but also in gonads. GnIH may inhibit male socio-sexual behavior by stimulating the activity of cytochrome P450 aromatase in the brain and stimulates feeding behavior by modulating the activities of hypothalamic and central amygdala neurons.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan; Brain Research Institute Monash Sunway (BRIMS) of the Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya 46150, Malaysia.
| | - You Lee Son
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan
| | - Kazuyoshi Tsutsui
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan.
| |
Collapse
|
35
|
Osugi T, Ubuka T, Tsutsui K. An evolutionary scenario for gonadotrophin-inhibitory hormone in chordates. J Neuroendocrinol 2015; 27:556-66. [PMID: 25494813 DOI: 10.1111/jne.12246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 12/12/2022]
Abstract
In 2000, we discovered a novel hypothalamic neuropeptide that actively inhibits gonadotrophin release in quail and termed it gonadotrophin-inhibitory hormone (GnIH). GnIH peptides have subsequently been identified in most representative species of gnathostomes. They all share a C-terminal LPXRFamide (X = L or Q) motif. GnIH can inhibit gonadotrophin synthesis and release by decreasing the activity of GnRH neuroes, as well as by directly inhibiting pituitary gonadotrophin secretion in birds and mammals. To investigate the evolutionary origin of GnIH and its ancestral function, we identified a GnIH precursor gene encoding GnIHs from the brain of sea lamprey, the most ancient lineage of vertebrates. Lamprey GnIHs possess a C-terminal PQRFamide motif. In vivo administration of one of lamprey GnIHs stimulated the expression of lamprey GnRH in the hypothalamus and gonadotophin β mRNA in the pituitary. Thus, GnIH may have emerged in agnathans as a stimulatory neuropeptide that subsequently diverged to an inhibitory neuropeptide during the course of evolution from basal vertebrates to later-evolved vertebrates, such as birds and mammals. From a structural point of view, pain modulatory neuropeptides, such as neuropeptide FF (NPFF) and neuropeptide AF, share a C-terminal PQRFamide motif. Because agnathans possess both GnIH and NPFF genes, the origin of GnIH and NPFF genes may date back before the emergence of agnathans. More recently, we identified a novel gene encoding RFamide peptides in the amphioxus. Molecular phylogenetic analysis and synteny analysis indicated that this gene is closely related to the genes of GnIH and NPFF of vertebrates. The results suggest that the identified protochordate gene is similar to the common ancestor of GnIH and NPFF genes, indicating that the origin of GnIH and NPFF may date back to the time of the emergence of early chordates. The GnIH and NPFF genes may have diverged by whole-genome duplication during the course of vertebrate evolution.
Collapse
Affiliation(s)
- T Osugi
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Tokyo, Japan
| | - T Ubuka
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Tokyo, Japan
| | - K Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku, Tokyo, Japan
| |
Collapse
|
36
|
Wang Q, Qi X, Guo Y, Li S, Zhang Y, Liu X, Lin H. Molecular identification of GnIH/GnIHR signal and its reproductive function in protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 2015; 216:9-23. [PMID: 25943851 DOI: 10.1016/j.ygcen.2015.04.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 11/21/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) and its receptor (GnIHR) play an important role in reproduction regulation in birds, mammals and some teleost species. In protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides), the GnIH/GnIHR signaling pathway and its reproductive function have not been addressed yet. In this study, GnIH and GnIHR in orange-spotted grouper were characterized. gGnIH possessed three putative peptides (gGnIH-I, -II, -III), while gGnIHR showed the characteristics of G protein-coupled receptor and was clustered with GPR147. Functional assays demonstrated that three synthetic gGnIH peptides significantly decreased the forskolin-induced CRE promoter activity, but only gGnIH-I could significantly decrease SRE promoter activity in COS-7 cells transfected with gGnIHR. During the process of ovarian differentiation and development, gGnIH mRNA level in hypothalamus was low at the gonadal primordium stage with gonia, then increased significantly at the early differentiated gonad with primary growth oocytes, while decreased significantly at the developing gonads with cortical-alveolus and vitellogenic stage oocytes. During MT-induced sex reversal, gGnIH mRNA level in hypothalamus increased significantly when the fish completely reversed from female to male. However, gGnIHR mRNA level in pituitary decreased significantly in intersex and completely reversed male fish. Intraperitoneal injection (i.p.) of three gGnIH peptides significantly decreased GnRH1 mRNA levels in hypothalamus, and gGnIH-II significantly inhibited synthesis of LHβ in pituitary. In summary, we firstly identified the GnIH/GnIHR signal in protogynous orange-spotted grouper, which might be involved in the regulation of the reproductive function of sex differentiation, gonadal development and sex reversal via regulating the synthesis of both GnRH and GtH.
Collapse
Affiliation(s)
- Qingqing Wang
- State Key Laboratory of Biocontrol, The Guangdong Province Key Laboratory for Aquatic Economic Animals, and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Qi
- State Key Laboratory of Biocontrol, The Guangdong Province Key Laboratory for Aquatic Economic Animals, and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yin Guo
- State Key Laboratory of Biocontrol, The Guangdong Province Key Laboratory for Aquatic Economic Animals, and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, The Guangdong Province Key Laboratory for Aquatic Economic Animals, and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, The Guangdong Province Key Laboratory for Aquatic Economic Animals, and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, The Guangdong Province Key Laboratory for Aquatic Economic Animals, and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, The Guangdong Province Key Laboratory for Aquatic Economic Animals, and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
37
|
Bédécarrats GY. Control of the reproductive axis: Balancing act between stimulatory and inhibitory input. Poult Sci 2015; 94:810-5. [DOI: 10.3382/ps/peu042] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
38
|
Osugi T, Ubuka T, Tsutsui K. Review: evolution of GnIH and related peptides structure and function in the chordates. Front Neurosci 2014; 8:255. [PMID: 25177268 PMCID: PMC4133751 DOI: 10.3389/fnins.2014.00255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/29/2014] [Indexed: 11/13/2022] Open
Abstract
Discovery of gonadotropin-inhibitory hormone (GnIH) in the Japanese quail in 2000 was the first to demonstrate the existence of a hypothalamic neuropeptide inhibiting gonadotropin release. We now know that GnIH regulates reproduction by inhibiting gonadotropin synthesis and release via action on the gonadotropin-releasing hormone (GnRH) system and the gonadotrope in various vertebrates. GnIH peptides identified in birds and mammals have a common LPXRF-amide (X = L or Q) motif at the C-terminus and inhibit pituitary gonadotropin secretion. However, the function and structure of GnIH peptides are diverse in fish. Goldfish GnIHs possessing a C-terminal LPXRF-amide motif have both stimulatory and inhibitory effects on gonadotropin synthesis or release. The C-terminal sequence of grass puffer and medaka GnIHs are MPQRF-amide. To investigate the evolutionary origin of GnIH and its ancestral structure and function, we searched for GnIH in agnathans, the most ancient lineage of vertebrates. We identified GnIH precursor gene and mature GnIH peptides with C-terminal QPQRF-amide or RPQRF-amide from the brain of sea lamprey. Lamprey GnIH fibers were in close proximity to GnRH-III neurons. Further, one of lamprey GnIHs stimulated the expression of lamprey GnRH-III peptide in the hypothalamus and gonadotropic hormone β mRNA expression in the pituitary. We further identified the ancestral form of GnIH, which had a C-terminal RPQRF-amide, and its receptors in amphioxus, the most basal chordate species. The amphioxus GnIH inhibited cAMP signaling in vitro. In sum, the original forms of GnIH may date back to the time of the emergence of early chordates. GnIH peptides may have had various C-terminal structures slightly different from LPXRF-amide in basal chordates, which had stimulatory and/or inhibitory functions on reproduction. The C-terminal LPXRF-amide structure and its inhibitory function on reproduction may be selected in later-evolved vertebrates, such as birds and mammals.
Collapse
Affiliation(s)
- Tomohiro Osugi
- Laboratory of Integrative Brain Sciences, Department of Biology, Center for Medical Life Science, Waseda University Tokyo, Japan
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology, Center for Medical Life Science, Waseda University Tokyo, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Center for Medical Life Science, Waseda University Tokyo, Japan
| |
Collapse
|
39
|
Baxter M, Joseph N, Osborne V, Bédécarrats G. Red light is necessary to activate the reproductive axis in chickens independently of the retina of the eye. Poult Sci 2014; 93:1289-97. [DOI: 10.3382/ps.2013-03799] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Ubuka T, Son YL, Tobari Y, Narihiro M, Bentley GE, Kriegsfeld LJ, Tsutsui K. Central and direct regulation of testicular activity by gonadotropin-inhibitory hormone and its receptor. Front Endocrinol (Lausanne) 2014; 5:8. [PMID: 24478760 PMCID: PMC3902780 DOI: 10.3389/fendo.2014.00008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/14/2014] [Indexed: 11/18/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) was first identified in Japanese quail to be an inhibitor of gonadotropin synthesis and release. GnIH peptides have since been identified in all vertebrates, and all share an LPXRFamide (X = L or Q) motif at their C-termini. The receptor for GnIH is the G protein-coupled receptor 147 (GPR147), which inhibits cAMP signaling. Cell bodies of GnIH neurons are located in the paraventricular nucleus (PVN) in birds and the dorsomedial hypothalamic area (DMH) in most mammals. GnIH neurons in the PVN or DMH project to the median eminence to control anterior pituitary function via GPR147 expressed in gonadotropes. Further, GnIH inhibits gonadotropin-releasing hormone (GnRH)-induced gonadotropin subunit gene transcription by inhibiting the adenylate cyclase/cAMP/PKA-dependent ERK pathway in an immortalized mouse gonadotrope cell line (LβT2 cells). GnIH neurons also project to GnRH neurons that express GPR147 in the preoptic area (POA) in birds and mammals. Accordingly, GnIH can inhibit gonadotropin synthesis and release by decreasing the activity of GnRH neurons as well as by directly inhibiting pituitary gonadotrope activity. GnIH and GPR147 can thus centrally suppress testosterone secretion and spermatogenesis by acting in the hypothalamic-pituitary-gonadal axis. GnIH and GPR147 are also expressed in the testis of birds and mammals, possibly acting in an autocrine/paracrine manner to suppress testosterone secretion and spermatogenesis. GnIH expression is also regulated by melatonin, stress, and social environment in birds and mammals. Accordingly, the GnIH-GPR147 system may play a role in transducing physical and social environmental information to regulate optimal testicular activity in birds and mammals. This review discusses central and direct inhibitory effects of GnIH and GPR147 on testosterone secretion and spermatogenesis in birds and mammals.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Department of Biology, Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - You Lee Son
- Department of Biology, Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Yasuko Tobari
- Department of Biology, Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Misato Narihiro
- Department of Biology, Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - George E. Bentley
- Department of Integrative Biology, Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Lance J. Kriegsfeld
- Department of Psychology, Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Kazuyoshi Tsutsui
- Department of Biology, Center for Medical Life Science, Waseda University, Tokyo, Japan
- *Correspondence: Kazuyoshi Tsutsui, Laboratory of Integrative Brain Sciences, Department of Biology, Center for Medical Life Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan e-mail:
| |
Collapse
|
41
|
Ogawa S, Parhar IS. Structural and functional divergence of gonadotropin-inhibitory hormone from jawless fish to mammals. Front Endocrinol (Lausanne) 2014; 5:177. [PMID: 25386165 PMCID: PMC4208418 DOI: 10.3389/fendo.2014.00177] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/06/2014] [Indexed: 01/17/2023] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) was discovered as a novel hypothalamic peptide that inhibits gonadotropin release in the quail. The presence of GnIH-homologous peptides and its receptors (GnIHRs) have been demonstrated in various vertebrate species including teleosts, suggesting that the GnIH-GnIHR family is evolutionarily conserved. In avian and mammalian brain, GnIH neurons are localized in the hypothalamic nuclei and their neural projections are widely distributed. GnIH acts on the pituitary and gonadotropin-releasing hormone neurons to inhibit reproductive functions by decreasing gonadotropin release and synthesis. In addition, GnIH-GnIHR signaling is regulated by various factors, such as environmental cues and stress. However, the function of fish GnIH orthologs remains inconclusive because the physiological properties of fish GnIH peptides are debatable. This review summarizes the current research progress in GnIH-GnIHR signaling and their physiological functions in vertebrates with special emphasis on non-mammalian vertebrate species.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Malaysia
- *Correspondence: Ishwar S. Parhar, Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Petaling Jaya, Selangor 47500, Malaysia e-mail:
| |
Collapse
|
42
|
Ubuka T, Son YL, Bentley GE, Millar RP, Tsutsui K. Gonadotropin-inhibitory hormone (GnIH), GnIH receptor and cell signaling. Gen Comp Endocrinol 2013; 190:10-7. [PMID: 23499786 DOI: 10.1016/j.ygcen.2013.02.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/22/2013] [Accepted: 02/23/2013] [Indexed: 01/17/2023]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is an inhibitor of gonadotropin synthesis and release, which was originally identified in the hypothalamus of the Japanese quail (Coturnix japonica). The GnIH precursor polypeptide encodes one GnIH and two GnIH related peptides (GnIH-RP-1 and GnIH-RP-2) in birds that share the same C-terminal LPXRFamide (X=L or Q) motif. The receptor for GnIH is thought to be the G protein-coupled receptor 147 (GPR147) which has been shown to couple predominantly through the Gαi protein to inhibit cAMP production. The crude membrane fraction of COS-7 cells transfected with GPR147 cDNA specifically bound GnIH and GnIH-RPs in a concentration-dependent manner. Scatchard plot analysis of the binding showed that GPR147 possessed a single class of high-affinity binding sites. GnIH neurons project to the median eminence to control anterior pituitary function and GPR147 is expressed in the gonadotropes. GnIH neurons also project to gonadotropin-releasing hormone (GnRH)-I and GnRH-II neurons, and GnRH-I and GnRH-II neurons express GPR147. Thus, GnIH may inhibit gonadotropin synthesis and release by decreasing the activity of GnRH-I neurons as well as directly inhibiting the effects of GnRH on gonadotropes. GnIH may also partially inhibit reproductive behaviors by inhibiting GnRH-II neurons. GnIH and GPR147 are also expressed in the gonads, possibly acting in an autocrine/paracrine manner. The cell signaling process of GPR147 was extensively studied using LβT2 cells, a mouse gonadotrope cell line. In this cell line, mouse GnIH inhibits GnRH-induced gonadotropin subunit, LHβ, FSHβ, and common α, gene transcriptions by inhibiting adenylate cyclase/cAMP/PKA dependent ERK pathway. This review summarizes the functions of GnIH, GnIH receptor and its cell signaling processes in birds and discusses related findings in mammals.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Department of Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-8480, Japan
| | | | | | | | | |
Collapse
|
43
|
Moussavi M, Wlasichuk M, Chang JP, Habibi HR. Seasonal effect of gonadotrophin inhibitory hormone on gonadotrophin-releasing hormone-induced gonadotroph functions in the goldfish pituitary. J Neuroendocrinol 2013; 25:506-16. [PMID: 23331955 DOI: 10.1111/jne.12024] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/28/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022]
Abstract
We have shown that native goldfish gonadotrophin inhibitory hormone (gGnIH) differentially regulates luteinsing hormone (LH)-β and follicle-stimulating hormone (FSH)-β expression. To further understand the functions of gGnIH, we examined its interactions with two native goldfish gonadotrophin-releasing hormones, salmon gonadotrophin-releasing hormone (sGnRH) and chicken (c)GnRH-II in vivo and in vitro. Intraperitoneal injections of gGnIH alone reduced serum LH levels in fish in early and mid gonadal recrudescence; this inhibition was also seen in fish co-injected with either sGnRH or cGnRH-II during early recrudescence. Injection of gGnIH alone elevated pituitary LH-β and FSH-β mRNA levels at early and mid recrudescence, and FSH-β mRNA at late recrudescence. Co-injection of gGnIH attenuated the stimulatory influences of sGnRH on LH-β in early recrudescence, and LH-β and FSH-β mRNA levels in mid and late recrudescence, as well as the cGnRH-II-elicited increase in LH-β, but not FSH-β, mRNA expression at mid and late recrudescence. sGnRH and cGnRH-II injection increased pituitary gGnIH-R mRNA expression in mid and late recrudescence but gGnIH reduced gGnIH-R mRNA levels in late recrudescence. gGnIH did not affect basal LH release from perifused pituitary cells and continual exposure to gGnIH did not alter the LH responses to acute applications of GnRH. However, a short 5-min GnIH treatment in the middle of a 60-min GnRH perifusion selectively reduced the cGnRH-II-induced release of LH. These novel results indicate that, in goldfish, gGnIH and GnRH modulate pituitary GnIH-R expression and gGnIH differentially affects sGnRH and cGnRH-II regulation of LH secretion and gonadotrophin subunit mRNA levels. Furthermore, these actions are manifested in a reproductive stage-dependent manner.
Collapse
Affiliation(s)
- M Moussavi
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | | | | | | |
Collapse
|
44
|
Tsutsui K, Ubuka T, Bentley GE, Kriegsfeld LJ. Review: regulatory mechanisms of gonadotropin-inhibitory hormone (GnIH) synthesis and release in photoperiodic animals. Front Neurosci 2013; 7:60. [PMID: 23596387 PMCID: PMC3627135 DOI: 10.3389/fnins.2013.00060] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/01/2013] [Indexed: 01/08/2023] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a novel hypothalamic neuropeptide that was discovered in quail as an inhibitory factor for gonadotropin release. GnIH inhibits gonadotropin synthesis and release in birds through actions on gonadotropin-releasing hormone (GnRH) neurons and gonadotropes, mediated via the GnIH receptor (GnIH-R), GPR147. Subsequently, GnIH was identified in mammals and other vertebrates. As in birds, mammalian GnIH inhibits gonadotropin secretion, indicating a conserved role for this neuropeptide in the control of the hypothalamic-pituitary-gonadal (HPG) axis across species. Identification of the regulatory mechanisms governing GnIH expression and release is important in understanding the physiological role of the GnIH system. A nocturnal hormone, melatonin, appears to act directly on GnIH neurons through its receptor to induce expression and release of GnIH in quail, a photoperiodic bird. Recently, a similar, but opposite, action of melatonin on the inhibition of expression of mammalian GnIH was shown in hamsters and sheep, photoperiodic mammals. These results in photoperiodic animals demonstrate that GnIH expression is photoperiodically modulated via a melatonin-dependent process. Recent findings indicate that GnIH may be a mediator of stress-induced reproductive disruption in birds and mammals, pointing to a broad role for this neuropeptide in assessing physiological state and modifying reproductive effort accordingly. This paper summarizes the advances made in our knowledge regarding the regulation of GnIH synthesis and release in photoperiodic birds and mammals. This paper also discusses the neuroendocrine integration of environmental signals, such as photoperiods and stress, and internal signals, such as GnIH, melatonin, and glucocorticoids, to control avian and mammalian reproduction.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University Tokyo, Japan
| | | | | | | |
Collapse
|
45
|
Ubuka T, Bentley GE, Tsutsui K. Neuroendocrine regulation of gonadotropin secretion in seasonally breeding birds. Front Neurosci 2013; 7:38. [PMID: 23531789 PMCID: PMC3607074 DOI: 10.3389/fnins.2013.00038] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/05/2013] [Indexed: 01/17/2023] Open
Abstract
Seasonally breeding birds detect environmental signals, such as light, temperature, food availability, and presence of mates to time reproduction. Hypothalamic neurons integrate external and internal signals, and regulate reproduction by releasing neurohormones to the pituitary gland. The pituitary gland synthesizes and releases gonadotropins which in turn act on the gonads to stimulate gametogenesis and sex steroid secretion. Accordingly, how gonadotropin secretion is controlled by the hypothalamus is key to our understanding of the mechanisms of seasonal reproduction. A hypothalamic neuropeptide, gonadotropin-releasing hormone (GnRH), activates reproduction by stimulating gonadotropin synthesis and release. Another hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH), inhibits gonadotropin synthesis and release directly by acting on the pituitary gland or indirectly by decreasing the activity of GnRH neurons. Therefore, the next step to understand seasonal reproduction is to investigate how the activities of GnRH and GnIH neurons in the hypothalamus and their receptors in the pituitary gland are regulated by external and internal signals. It is possible that locally-produced triiodothyronine resulting from the action of type 2 iodothyronine deiodinase on thyroxine stimulates the release of gonadotropins, perhaps by action on GnRH neurons. The function of GnRH neurons is also regulated by transcription of the GnRH gene. Melatonin, a nocturnal hormone, stimulates the synthesis and release of GnIH and GnIH may therefore regulate a daily rhythm of gonadotropin secretion. GnIH may also temporally suppress gonadotropin secretion when environmental conditions are unfavorable. Environmental and social milieus fluctuate seasonally in the wild. Accordingly, complex interactions of various neuronal and hormonal systems need to be considered if we are to understand the mechanisms underlying seasonal reproduction.
Collapse
Affiliation(s)
- Takayoshi Ubuka
- Department of Biology, Center for Medical Life Science, Waseda University Shinjuku, Tokyo, Japan ; Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University Ichikawa, Japan
| | | | | |
Collapse
|
46
|
Tsutsui K. Create new research directions in comparative endocrinology from Asia and Oceania. Gen Comp Endocrinol 2013; 181:192-6. [PMID: 22554924 DOI: 10.1016/j.ygcen.2012.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 04/11/2012] [Accepted: 04/15/2012] [Indexed: 11/23/2022]
Abstract
The Asia and Oceania Society for Comparative Endocrinology (AOSCE) was founded in 1987, when the first congress was held in Nagoya, Japan. The purpose of the AOSCE is to progress scientific activities in the field of comparative endocrinology in Asia and Oceania and to establish a deep relationship among the members. For this purpose, the AOSCE holds a congress or an intercongress symposium every 2 years, which organizes an attractive scientific program covering the latest progress in the broad aspect of comparative endocrinology. 2012 was the 25th anniversary of AOSCE. Our scientific activities have increased dramatically during the past 25 years. The 7th AOSCE congress was held in Kuala Lumpur, Malaysia in 2012. The theme of this congress was "Overcoming challenges in the 21st century". To overcome challenges in the 21st century, we further need to create new research directions in comparative endocrinology from Asia and Oceania. This paper describes a brief history of the AOSCE and also highlights the discovery of gonadotropin-inhibitory hormone (GnIH) and the progress of GnIH research as one of new research directions in comparative endocrinology. In 2000, GnIH was discovered in Japan and now more than 50 laboratories are working on GnIH in the world. The discovery of GnIH has changed our understanding about regulation of the reproductive axis drastically in the past decade.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
47
|
Oishi H, Klausen C, Bentley GE, Osugi T, Tsutsui K, Gilks CB, Yano T, Leung PCK. The human gonadotropin-inhibitory hormone ortholog RFamide-related peptide-3 suppresses gonadotropin-induced progesterone production in human granulosa cells. Endocrinology 2012; 153:3435-45. [PMID: 22691551 DOI: 10.1210/en.2012-1066] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RFamide-related peptide-3 (RFRP-3), a mammalian ortholog of avian gonadotropin-inhibitory hormone, has pronounced inhibitory effects on reproduction in a number of species. RFRP-3 suppresses gonadotropin release at the hypothalamic and/or pituitary levels; however, increasing evidence also suggests putative functions within the ovary. We have now demonstrated the expression of both RFRP and its receptor (GPR147) in primary cultures of human granulosa-lutein cells. Immunohistochemical analysis of normal human ovaries from premenopausal women showed that RFRPs and GPR147 were primarily localized in the granulosa cell layer of large preovulatory follicles as well as in the corpus luteum. Treatment of human granulosa-lutein cells with RFRP-3 reduced FSH-, LH- and forskolin-stimulated progesterone production and steroidogenic acute regulatory protein expression but did not affect basal or 8-bromoadenosine 3'5'-cyclic monophosphate stimulated levels. In addition, RFRP-3 inhibited gonadotropin- and forskolin-induced intracellular cAMP accumulation, and these effects were abolished by pretreatment with an inhibitor of inhibitory G(i/o) proteins (pertussis toxin). Importantly, the effects of RFRP-3 on FSH-, LH-, and forskolin-induced cAMP and progesterone accumulation were completely eliminated by cotreatment with the bifunctional GPR147/GPR74 antagonist RF9 or by pretreatment with GPR147 small interfering RNA. These results suggest that RFRP-3 is expressed in human granulosa cells in which it acts via its receptor, GPR147, to inhibit gonadotropin signaling at the level of adenylyl cyclase via activation of a pertussis toxin-sensitive Gα(i/o) protein. This leads to reduced gonadotropin-stimulated cAMP accumulation and progesterone synthesis, likely via reduced steroidogenic acute regulatory protein expression. Thus, ovarian RFRP-3/GPR147 signaling could contribute to normal ovarian function.
Collapse
Affiliation(s)
- Hajime Oishi
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, 4490 Oak Street, Vancouver, British Columbia, Canada V6H 3V5
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Son YL, Ubuka T, Millar RP, Kanasaki H, Tsutsui K. Gonadotropin-inhibitory hormone inhibits GnRH-induced gonadotropin subunit gene transcriptions by inhibiting AC/cAMP/PKA-dependent ERK pathway in LβT2 cells. Endocrinology 2012; 153:2332-43. [PMID: 22374973 DOI: 10.1210/en.2011-1904] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A neuropeptide that directly inhibits gonadotropin secretion from the pituitary was discovered in quail and named gonadotropin-inhibitory hormone (GnIH). The presence and functional roles of GnIH orthologs, RF-amide-related peptides (RFRP), that possess a common C-terminal LPXRF-amide (X = L or Q) motif have also been demonstrated in mammals. GnIH orthologs inhibit gonadotropin synthesis and release by acting on pituitary gonadotropes and GnRH neurons in the hypothalamus via its receptor (GnIH receptor). It is becoming increasingly clear that GnIH is an important hypothalamic neuropeptide controlling reproduction, but the detailed signaling pathway mediating the inhibitory effect of GnIH on target cells is still unknown. In the present study, we investigated the pathway of GnIH cell signaling and its possible interaction with GnRH signaling using a mouse gonadotrope cell line, LβT2. First, we demonstrated the expression of GnIH receptor mRNA in LβT2 cells by RT-PCR. We then examined the inhibitory effects of mouse GnIH orthologs [mouse RFRP (mRFRP)] on GnRH-induced cell signaling events. We showed that mRFRP effectively inhibited GnRH-induced cAMP signaling by using a cAMP-sensitive reporter system and measuring cAMP levels, indicating that mRFRP function as an inhibitor of adenylate cyclase. We further showed that mRFRP inhibited GnRH-stimulated ERK phosphorylation, and this effect was mediated by the inhibition of the protein kinase A pathway. Finally, we demonstrated that mRFRP inhibited GnRH-stimulated gonadotropin subunit gene transcriptions and also LH release. Taken together, the results indicate that mRFRP function as GnIH to inhibit GnRH-induced gonadotropin subunit gene transcriptions by inhibiting adenylate cyclase/cAMP/protein kinase A-dependent ERK activation in LβT2 cells.
Collapse
Affiliation(s)
- You Lee Son
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | |
Collapse
|
49
|
Moussavi M, Wlasichuk M, Chang JP, Habibi HR. Seasonal effect of GnIH on gonadotrope functions in the pituitary of goldfish. Mol Cell Endocrinol 2012; 350:53-60. [PMID: 22155567 DOI: 10.1016/j.mce.2011.11.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/09/2011] [Accepted: 11/16/2011] [Indexed: 11/18/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) inhibits gonadotropin release in birds and mammals. To investigate its role in teleosts, we examined the effects of synthetic goldfish (g)GnIH on pituitary LH-β and FSH-β subunit, and gGnIH receptor (gGnIH-R) mRNA levels and LH secretion in goldfish. Intraperitoneal injections of gGnIH increased pituitary LH-β and FSH-β mRNA levels at early to late gonadal recrudescence, but reduced serum LH and pituitary gGnIH-R mRNA levels, respectively, at early to mid-recrudescence and later stages of recrudescence. Static incubation with gGnIH elevated LH secretion from dispersed pituitary cell cultures from prespawning fish, but not at other recrudescent stages; suppressed LH-β mRNA levels at early recrudescence and prespawning but elevated LH-β at mid-recrudescence; and consistently attenuated FSH-β mRNA in a dose-specific manner. Results indicate that in goldfish, regulation of LH secretion and gonadotropin subunit mRNA levels are dissociated in the presence of gGnIH and dependent on maturational status and administration route.
Collapse
Affiliation(s)
- M Moussavi
- Department of Biological Sciences, University of Calgary, Canada
| | | | | | | |
Collapse
|
50
|
Ubuka T, Son YL, Tobari Y, Tsutsui K. Gonadotropin-inhibitory hormone action in the brain and pituitary. Front Endocrinol (Lausanne) 2012; 3:148. [PMID: 23233850 PMCID: PMC3515997 DOI: 10.3389/fendo.2012.00148] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/11/2012] [Indexed: 11/30/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GnIH) was first identified in the Japanese quail as a hypothalamic neuropeptide inhibitor of gonadotropin secretion. Subsequent studies have shown that GnIH is present in the brains of birds including songbirds, and mammals including humans. The identified avian and mammalian GnIH peptides universally possess an LPXRFamide (X = L or Q) motif at their C-termini. Mammalian GnIH peptides are also designated as RFamide-related peptides from their structures. The receptor for GnIH is the G protein-coupled receptor 147 (GPR147), which is thought to be coupled to G(αi) protein. Cell bodies of GnIH neurons are located in the paraventricular nucleus (PVN) in birds and the dorsomedial hypothalamic area (DMH) in mammals. GnIH neurons in the PVN or DMH project to the median eminence to control anterior pituitary function. GPR147 is expressed in the gonadotropes and GnIH suppresses synthesis and release of gonadotropins. It was further shown in immortalized mouse gonadotrope cell line (LβT2 cells) that GnIH inhibits gonadotropin-releasing hormone (GnRH) induced gonadotropin subunit gene transcriptions by inhibiting adenylate cyclase/cAMP/PKA-dependent ERK pathway. GnIH neurons also project to GnRH neurons in the preoptic area, and GnRH neurons express GPR147 in birds and mammals. Accordingly, GnIH may inhibit gonadotropin synthesis and release by decreasing the activity of GnRH neurons as well as directly acting on the gonadotropes. GnIH also inhibits reproductive behavior possibly by acting within the brain. GnIH expression is regulated by a nocturnal hormone melatonin and stress in birds and mammals. Accordingly, GnIH may play a role in translating environmental information to inhibit reproductive physiology and behavior of birds and mammals. Finally, GnIH has therapeutic potential in the treatment of reproductive cycle and hormone-dependent diseases, such as precocious puberty, endometriosis, uterine fibroids, and prostatic and breast cancers.
Collapse
Affiliation(s)
| | | | | | - Kazuyoshi Tsutsui
- *Correspondence: Kazuyoshi Tsutsui, Laboratory of Integrative Brain Sciences, Department of Biology, Center for Medical Life Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan. e-mail:
| |
Collapse
|