1
|
Romeo D, Ramirez-Calero S, Ravasi T, Rodolfo-Metalpa R, Schunter C. Neural mechanisms of mutualistic fish cleaning behaviour: a study in the wild. Biol Lett 2024; 20:20240339. [PMID: 39406338 PMCID: PMC11479757 DOI: 10.1098/rsbl.2024.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 10/20/2024] Open
Abstract
One crucial interaction for the health of fish communities in coral reefs is performed by cleaner fish by removing ectoparasites from the body of other fish, so-called clients. Studying the underlying mechanisms of this behaviour is essential to understanding how species react to social stimuli and defining the drivers of mutualistic social behaviour. Here, we pinpoint the neural molecular mechanisms in the cleaning behaviour of Labroides dimidiatus in the wild through an in situ interaction experiment at a coral reef in New Caledonia. Five cleaners and clients (Abudefduf saxatilis) were placed into underwater aquaria to interact, while five were not presented with a client. The brain transcriptomes revealed 233 differentially expressed genes in cleaners that were interacting with a client. Among these genes, grin2d, npy, slc6a3 and immediate early genes (IEGs; fosb and fosl1) were related to learning and memory, glutamate and dopamine pathways, which confirm molecular pathways observed in laboratory studies. However, a new potential mechanism was found with npy (neuropeptide Y) as a driver of feeding behaviour. These results show the role of neurotransmitters and IEGs in mutualistic social behaviour, unveiling the mechanism behind the feeding stimulus that leads the cleaner fish to establish mutualistic interactions in coral reefs.
Collapse
Affiliation(s)
- Daniele Romeo
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
| | - Sandra Ramirez-Calero
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
- Departament de Biologia Marina, Institut de Ciències del Mar (CSIC), Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal 645, Barcelona08028, Spain
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | | | - Celia Schunter
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People’s Republic of China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
2
|
Kuhn J, Lindstrom A, Volkoff H. Effects of fasting and environmental factors on appetite regulators in pond loach Misgurnus anguillicaudatus. Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111651. [PMID: 38703991 DOI: 10.1016/j.cbpa.2024.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
The pond loach (Misgurnus anguillicaudatus) is an important aquaculture freshwater species, used as an ornamental fish, food source for humans and angling bait. Pond loaches are resistant to fasting and extreme environmental conditions, including temperature and low oxygen levels. Little is known about how these factors affect the feeding physiology and the endocrine regulation of feeding of loaches. In this study, we examined the effects of fasting, as well as increased temperature and decreased oxygen levels on food intake and transcript levels of appetite regulators. Fasted fish had lower blood glucose levels, and lower expression levels of intestine CCK and PYY, and brain CART1, but had higher levels of brain orexin and ghrelin than fed fish. Fish held at 30 °C had higher food intake, glucose levels, and mRNA levels of intestine CCK and PYY, and brain CART2, but lower brain orexin levels than fish at 20 °C. Fish held at low oxygen levels had a lower food intake, higher intestine CCKa and ghrelin, and brain orexin, CART2 and ghrelin mRNA expression levels than fish held at high O2 levels. Our results suggest that fasting and high temperatures increase the expression of orexigenic and anorexigenic factors respectively, whereas the increase in expression of both orexigenic and anorexigenic factors in low O2 environments might not be related to their role in feeding, but possibly to protection from tissue damage. The results of our study might shed new light on how pond loaches are able to cope with extreme environmental conditions such as low food availability, extreme temperatures and hypoxia.
Collapse
Affiliation(s)
- Jannik Kuhn
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Hochschule Mannheim University, Mannheim 68163, Germany
| | - Annika Lindstrom
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
3
|
Liu Y, Zhai G, Su J, Gong Y, Yang B, Lu Q, Xi L, Zheng Y, Cao J, Liu H, Jin J, Zhang Z, Yang Y, Zhu X, Wang Z, Gong G, Mei J, Yin Z, Gozlan RE, Xie S, Han D. The Chinese longsnout catfish genome provides novel insights into the feeding preference and corresponding metabolic strategy of carnivores. Genome Res 2024; 34:981-996. [PMID: 39122473 PMCID: PMC11368182 DOI: 10.1101/gr.278476.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 07/15/2024] [Indexed: 08/12/2024]
Abstract
Fish show variation in feeding habits to adapt to complex environments. However, the genetic basis of feeding preference and the corresponding metabolic strategies that differentiate feeding habits remain elusive. Here, by comparing the whole genome of a typical carnivorous fish (Leiocassis longirostris Günther) with that of herbivorous fish, we identify 250 genes through both positive selection and rapid evolution, including taste receptor taste receptor type 1 member 3 (tas1r3) and trypsin We demonstrate that tas1r3 is required for carnivore preference in tas1r3-deficient zebrafish and in a diet-shifted grass carp model. We confirm that trypsin correlates with the metabolic strategies of fish with distinct feeding habits. Furthermore, marked alterations in trypsin activity and metabolic profiles are accompanied by a transition of feeding preference in tas1r3-deficient zebrafish and diet-shifted grass carp. Our results reveal a conserved adaptation between feeding preference and corresponding metabolic strategies in fish, and provide novel insights into the adaptation of feeding habits over the evolution course.
Collapse
Affiliation(s)
- Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Jingzhi Su
- Wuhan DaBeiNong (DBN) Aquaculture Technology Company Limited, Wuhan, Hubei 430090, China
| | - Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Bingyuan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yutong Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyue Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Zhongwei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Gaorui Gong
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jie Mei
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Rodolphe E Gozlan
- ISEM, Université de Montpellier, CNRS, IRD, 34090 Montpellier, France
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China;
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China;
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
4
|
Liang H, Mi H, Yu H, Huang D, Ren M, Zhang L, Teng T. Role of Cholecystokinin ( cck) in Feeding Regulation of Largemouth Bass ( Micropterus salmoides): Peptide Activation and Antagonist Inhibition. BIOLOGY 2024; 13:635. [PMID: 39194573 DOI: 10.3390/biology13080635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
This study investigated the role of cholecystokinin (cck) in the feeding regulation of largemouth bass (Micropterus salmoides) via peptide activation and antagonist inhibition. The results show that the cck gene was expressed in various tissues, with the highest expression level occurring in the brain. Feeding, continuous feeding, and refeeding after fasting could significantly improve the mRNA levels of cck in the brain. Moreover, the activation of cck via injecting an exogenous CCK peptide could inhibit feed intake by regulating the mRNA levels of anorexigenic and feed-promoting factors in the brain and intestine. Furthermore, the CCK peptide reduced feed intake; however, the presence of an antagonist (Ly225910-CCK1R and devazepide-CCK2R) could reverse this effect through regulating the mRNA levels of anorexigenic and feed-promoting factors in the brain and intestine. Treatment with devazepide + CCK (CCK2R) reversed feed intake more effectively than Ly225910 + CCK (CCK1R) treatment. In summary, cck could regulate the feed intake of largemouth bass through regulating feeding-related genes in the brain and intestine. In addition, cck required binding with the receptor to inhibit feed intake more effectively in largemouth bass, and the binding effect of CCK1R was better than that of CCK2R.
Collapse
Affiliation(s)
- Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Heng Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mingchun Ren
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Tao Teng
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| |
Collapse
|
5
|
Clavenzani P, Lattanzio G, Bonaldo A, Parma L, Busti S, Oterhals Å, Romarheim OH, Aspevik T, Gatta PP, Mazzoni M. Effects of Bioactive Peptides from Atlantic Salmon Processing By-Products on Oxyntopeptic and Enteroendocrine Cells of the Gastric Mucosa of European Seabass and Gilthead Seabream. Animals (Basel) 2023; 13:3020. [PMID: 37835626 PMCID: PMC10571541 DOI: 10.3390/ani13193020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The present study was designed to evaluate the effects of dietary levels of bioactive peptides (BPs) derived from salmon processing by-products on the presence and distribution of peptic cells (oxyntopeptic cells, OPs) and enteric endocrine cells (EECs) that contain GHR, NPY and SOM in the gastric mucosa of European seabass and gilthead seabream. In this study, 27 seabass and 27 seabreams were divided into three experimental groups: a control group (CTR) fed a control diet and two groups fed different levels of BP to replace fishmeal: 5% BP (BP5%) and 10% BP (BP10%). The stomach of each fish was sampled and processed for immunohistochemistry. Some SOM, NPY and GHR-IR cells exhibited alternating "open type" and "closed type" EECs morphologies. The BP10% group (16.8 ± 7.5) showed an increase in the number of NPY-IR cells compared to CTR (CTR 8.5 ± 4.8) and BP5% (BP10% vs. CTR p ≤ 0.01; BP10% vs. BP5% p ≤ 0.05) in the seabream gastric mucosa. In addition, in seabream gastric tissue, SOM-IR cells in the BP 10% diet (16.8 ± 3.5) were different from those in CTR (12.5 ± 5) (CTR vs. BP 10% p ≤ 0.05) and BP 5% (12.9 ± 2.5) (BP 5% vs. BP 10% p ≤ 0.01). EEC SOM-IR cells increased at 10% BP (5.3 ± 0.7) compared to 5% BP (4.4 ± 0.8) (5% BP vs. 10% BP p ≤ 0.05) in seabass. The results obtained may provide a good basis for a better understanding of the potential of salmon BPs as feed ingredients for seabass and seabream.
Collapse
Affiliation(s)
- Paolo Clavenzani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Giulia Lattanzio
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Luca Parma
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Serena Busti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Åge Oterhals
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Odd Helge Romarheim
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Tone Aspevik
- Nofima, the Norwegian Institute of Food Fisheries and Aquaculture Research, 5141 Fyllingsdalen, Norway; (Å.O.); (O.H.R.); (T.A.)
| | - Pier Paolo Gatta
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| | - Maurizio Mazzoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Italy; (P.C.); (G.L.); (A.B.); (L.P.); (S.B.); (P.P.G.)
| |
Collapse
|
6
|
Zhu Y, Negishi R, Fukunaga K, Udagawa S, Shimabukuro A, Takemura A. Activation of the growth-IGF-1 axis, but not appetite, is related to high growth performance in juveniles of the Malabar grouper, Epinephelus malabaricus, under isosmotic condition. Comp Biochem Physiol A Mol Integr Physiol 2023; 283:111456. [PMID: 37269939 DOI: 10.1016/j.cbpa.2023.111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Salinity, a determining factor in aquatic environments, influences fish growth. Here, we evaluated the effect of salinity on osmoregulation and growth performance in juveniles of the Malabar grouper, Epinephelus malabaricus, a species of high commercial value in Asian markets; we also identified the salinity that maximized this species' growth rate. Fish were reared at 26 °C and under a 14:10 h photoperiod with a salinity of 5 psu, 11 psu, 22 psu, or 34 psu for 8 weeks. Change in salinity had minimal impact on the plasma Na+ and glucose concentrations, although the Na+/K+-ATPase (nkaα and nkaβ) transcript levels in the gills were significantly lower among fish reared at 11 psu salinity. Concomitantly, oxygen consumption was low in fish reared at 11 psu salinity. The feed conversion ratio (FCR) was lower in fish reared at 5 psu and 11 psu salinities than at 22 psu and 34 psu salinities. However, the specific growth rate (SGR) was higher in fish reared at 11 psu salinity. These results suggest that rearing fish at 11 psu salinity would decrease energy consumption for respiration and improve food-conversion efficiency. Among fish reared at 11 psu salinity, the transcript levels of growth hormone (gh) in the pituitary, as well as its receptor (ghr) and insulin-like growth factor I (igf-1) in the liver, were upregulated; these findings suggested stimulation of the growth axis at low salinity. In contrast, there were minimal differences in the transcript levels of neuropeptide Y (npy) and pro-opiomelanocortin (pomc) in the brains of fish reared at any salinity, suggesting that salinity does not affect appetite. Therefore, growth performance is higher in fish reared at 11 psu salinity because of activation of the GH-IGF system, but not appetite, in Malabar grouper juveniles.
Collapse
Affiliation(s)
- Yafan Zhu
- Graduate School of Engineering and Science, University of the Ryukyus, Japan
| | - Ryugo Negishi
- Graduate School of Engineering and Science, University of the Ryukyus, Japan
| | - Kodai Fukunaga
- Organization for Research Promotion, University of the Ryukyus, Japan
| | - Shingo Udagawa
- Organization for Research Promotion, University of the Ryukyus, Japan
| | | | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Japan.
| |
Collapse
|
7
|
Sun Y, Du X, Yang Y, Wang A, Gu Z, Liu C. Dietary Taurine Intake Affects the Growth Performance, Lipid Composition, and Antioxidant Defense of Juvenile Ivory Shell ( Babylonia areolata). Animals (Basel) 2023; 13:2592. [PMID: 37627383 PMCID: PMC10451277 DOI: 10.3390/ani13162592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, an eight-week feeding trial was performed to investigate the effects of different taurine supplementation levels (0.0% as control, 1.0%, 1.5%, 2.0%, 2.5%, and 3.0%) on the growth performance, lipid composition, and antioxidant ability in juvenile ivory shells Babylonia areolata. The results showed that taurine supplementation significantly improved the specific growth rates (SGRs) and survival rates of ivory shell (except the survival rate in the 3.0% taurine diet group) (p < 0.05). The SGRs showed an increasing and then decreasing tendency with increasing dietary taurine supplementation, and the highest value was observed in the 2.0% taurine diet (2.60%/d). The taurine content in the muscle of ivory shells fed taurine-supplemented diets significantly increased when compared to the control group (p < 0.05). The profiles of C22:2n6 in the muscle of ivory shells fed taurine-supplemented diets were significantly higher than in the control group (p < 0.05), and the highest values were observed in the 2.0% taurine supplementation group. The high-density lipoprotein cholesterol (HDL-C) content in the hepatopancreas showed an increasing and then decreasing tendency with increasing dietary taurine supplementation, while the low-density lipoprotein cholesterol (LDL-C) concentration showed a decreasing tendency. Furthermore, the activities of pepsin and lipase in both the intestine and hepatopancreas significantly increased at moderate taurine supplementation levels compared to the control group (p < 0.05). Accordingly, obvious increases in the histological parameters in the intestine of ivory shells fed taurine-supplemented diets were also found. As for the antioxidant ability, the activities of the total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) showed an increasing and then decreasing tendency with increasing dietary taurine supplementation, and the highest values were observed in the 1.0% and 1.0-2.0% taurine supplementation groups, respectively; the malondialdehyde (MDA) contents significantly decreased with increasing dietary taurine supplementation (p < 0.05). The taurine intake affected the expression of four appetite-related genes in the hepatopancreas, in which orexin and NPY showed an increasing and then decreasing tendency, while leptin and cholecyatoklnin decreased with increasing dietary taurine supplementation. In conclusion, moderate taurine supplementation in an artificial diet (about 1.5-2.0%) could improve the growth performance and antioxidant ability and change the lipid composition of juvenile ivory shells.
Collapse
Affiliation(s)
- Yunchao Sun
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (Y.S.); (X.D.); (Y.Y.); (Z.G.)
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Xiangyu Du
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (Y.S.); (X.D.); (Y.Y.); (Z.G.)
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Yi Yang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (Y.S.); (X.D.); (Y.Y.); (Z.G.)
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Aimin Wang
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Zhifeng Gu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (Y.S.); (X.D.); (Y.Y.); (Z.G.)
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Chunsheng Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (Y.S.); (X.D.); (Y.Y.); (Z.G.)
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| |
Collapse
|
8
|
Martins N, Castro C, Oliva-Teles A, Peres H. The Interplay between Central and Peripheral Systems in Feed Intake Regulation in European Seabass ( Dicentrarchus labrax) Juveniles. Animals (Basel) 2022; 12:ani12233287. [PMID: 36496811 PMCID: PMC9739057 DOI: 10.3390/ani12233287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The present study aimed to evaluate the effects of feeding or feed deprivation on the orexigenic and anorexigenic responses at the central (whole brain) and peripheral (anterior and posterior intestine, stomach, and liver) system levels in European seabass. For this purpose, a group of fish (208 g) was fed a single meal daily for 8 days (fed group) and another group was feed-deprived for 8 days (unfed group). Compared to the fed group, in the whole brain, feed deprivation did not induce changes in npy, agrp1, and cart2 expression, but increased agrp2 and pomc1 expression. In the anterior intestine, feed deprivation increased cck expression, while in the posterior intestine, the npy expression increased and pyyb decreased. In the stomach, the ghr expression decreased regardless of the feeding status. The hepatic lep expression increased in the unfed fish. The present results suggest a feed intake regulation mechanism in European seabass similar to that observed in other teleosts.
Collapse
Affiliation(s)
- Nicole Martins
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 289, 4450-208 Matosinhos, Portugal
- Correspondence:
| | - Carolina Castro
- FLATLANTIC—Atividades Piscícolas, S.A., Rua do Aceiros s/n, 3070-732 Praia de Mira, Portugal
| | - Aires Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 289, 4450-208 Matosinhos, Portugal
| | - Helena Peres
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 289, 4450-208 Matosinhos, Portugal
| |
Collapse
|
9
|
Elbialy ZI, Gamal S, Al-Hawary II, Shukry M, Salah AS, Aboshosha AA, Assar DH. Exploring the impacts of different fasting and refeeding regimes on Nile tilapia (Oreochromis niloticus L.): growth performance, histopathological study, and expression levels of some muscle growth-related genes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:973-989. [PMID: 35781858 PMCID: PMC9385825 DOI: 10.1007/s10695-022-01094-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The current study investigated how different fasting and refeeding regimes would impact Nile tilapia growth performance, histopathological examination, and gene expression of myostatin, myogenin, GH, IGF-1, and NPYa. Nile tilapia fish (n = 120) were randomly allocated into four groups, including the control group fed on a basal diet for 6 weeks (F6), group A starved for 1 week and then refed for 5 weeks (S1F5), group B starved for 2 weeks and then refed for 4 weeks (S2F4), while group C starved for 4 weeks and then refed for 2 weeks (S4F2). Fasting provoked a decrease in body weight coincided with more extended starvation periods. Also, it induced muscle and liver histological alterations; the severity was correlated with the length of fasting periods. Gene expression levels of GH, MSTN, MYOG, and NPYa were significantly increased, while IGF1 was markedly depressed in fasted fish compared to the control group. Interestingly, refeeding after well-planned short fasting period (S1F5) modulated the histopathological alterations. To some extent, these changes were restored after refeeding. Restored IGF-I and opposing fasting expression profiles of the genes mentioned above thus recovered weights almost like the control group and achieved satisfactory growth compensation. Conversely, refeeding following more extended fasting periods failed to restore body weight. In conclusion, refeeding after fasting can induce a compensatory response. Still, the restoration capacity is dependent on the length of fasting and refeeding periods through exhibiting differential morphological structure and expressions pattern for muscle and growth-related genes.
Collapse
Affiliation(s)
- Zizy I. Elbialy
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Shrouk Gamal
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Ibrahim I. Al-Hawary
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Abdallah S. Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA UK
| | - Ali A. Aboshosha
- Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Doaa H. Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| |
Collapse
|
10
|
Neuropeptide Y in Spotted Scat (Scatophagus Argus), Characterization and Functional Analysis towards Feed Intake Regulation. FISHES 2022. [DOI: 10.3390/fishes7030111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuropeptide Y (Npy) is an intricate neuropeptide regulating numerous physiological processes. It is a highly conserved peptide known to improve feed intake in many vertebrates, including fishes. To enlighten the mechanism of Npy in spotted scat feed intake control, we cloned and identified the Npy cDNA sequence. We further examined its expression in some tissues and explored its expression effects at different time frames (hours and days). Here, we discovered that spotted scat Npy comprised a 300 bp open reading frame (ORF) and a 99 amino acid sequence. Npy was identified to be expressed in all tissues examined. Using in situ hybridization examination, we proved that npy has a wide expression in the brain of the spotted scat. Furthermore, the expression of npy in the hypothalamus significantly increased one hour after feeding (p < 0.05). Further, it was revealed that npy expression significantly increased in fish that were fasted for up to 5 days and significantly increased after refeeding from the 8th to the 10th day. This suggests that Npy is an orexigenic peptide, and hence, it increases food intake and growth in the spotted scat. Additionally, results from in vitro and in vivo experiments revealed that Npy locally interacts with other appetite-regulating peptides in the spotted scat hypothalamus. This research aimed to set a fundamental study in developing the feed intake regulation, improving growth and reproduction, which is significant to the aquaculture industry of the spotted scat.
Collapse
|
11
|
Basto-Silva C, Couto A, Rodrigues J, Oliva-Teles A, Navarro I, Kaiya H, Capilla E, Guerreiro I. Feeding frequency and dietary protein/carbohydrate ratio affect feed intake and appetite regulation-related genes expression in gilthead seabream (Sparus aurata). Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111168. [PMID: 35182764 DOI: 10.1016/j.cbpa.2022.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
Abstract
To evaluate the effects of feeding frequency (FF) and dietary protein/carbohydrate (P/CH) ratios on appetite regulation of gilthead seabream, two practical diets were formulated to include high protein and low carbohydrate (P50/CH10 diet) or low protein and high carbohydrate (P40/CH20 diet) content and each diet was fed to triplicate groups of fish until visual satiation each meal at a FF of 1, 2, or 3 meals per day. Feed intake and feed conversion ratio were higher in fish fed 2 or 3 meals than 1 meal per day and in fish fed the P40/CH20 than the P50/CH10 diet. The specific growth rate was only affected by FF, being higher in fish fed 2 or 3 meals per day than 1 meal per day. Expression of the cocaine-amphetamine-related transcript, corticotropin-releasing hormone, ghrelin receptor-a (ghsr-a), leptin, and neuropeptide y in the brain, cholecystokinin (cck) in the intestine, and leptin and ghrelin in the stomach was not affected by FF or dietary P/CH ratio. This is the first time that ghrelin cells were immune-located in the stomach of gilthead seabream. Fish fed 3 meals per day presented lower cck expression in the brain than those fed twice per day and higher hepatic ghsr-b expression than those fed once per day. Fish fed P40/CH20 diet presented higher hepatic leptin expression than those fed P50/CH10 diet. In conclusion, present results indicate that feeding a P40/CH20 diet at 3 meals a day seems to decrease the satiation feeling of gilthead seabream compared to fish fed higher P/CH ratio diets or fed 1 or 2 meals a day.
Collapse
Affiliation(s)
- Catarina Basto-Silva
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.
| | - Ana Couto
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Juliana Rodrigues
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Aires Oliva-Teles
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Sinmachi, Suita, 564-8565 Osaka, Japan
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Inês Guerreiro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
12
|
Chen Y, Wu X, Lai J, Liu Y, Song M, Li F, Gong Q. Molecular characterization and tissue distribution of cholecystokinin and its receptor in Yangtze sturgeon (Acipenser dabryanus) and their response to different feeding conditions. Comp Biochem Physiol A Mol Integr Physiol 2021; 265:111129. [PMID: 34942371 DOI: 10.1016/j.cbpa.2021.111129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022]
Abstract
Yangtze sturgeon (Acipenser dabryanus) is a species endemic to Yangtze River drainage in China and is listed as a critically endangered species on the IUCN Red List. In the present study, cholecystokinin (CCK), one of the most important neuroregulatory digestive genes, and its receptor (CCKr) were identified from the full-length transcriptome analysis of A. dabryanus. The deduced amino acid sequences of CCK and CCKr from A. dabryanus showed structural features common to those in other vertebrates. Gene expression profile analysis showed that CCK and CCKr were universally expressed in different tissues, and both had the highest expression in the brain. Starvation and refeeding significantly regulated the expression levels of CCK and CCKr in the brain, suggesting that CCK and CCKr were involved in feed intake regulation in A. dabryanus as in mammals. In addition, the expression levels of CCK and CCKr under different feeding frequencies were studied. Compared with the control group (fed two times a day), the expression levels of CCK and CCKr in the intestine and brain did not change significantly in the other groups after 8 weeks of rearing, indicating that the feeding frequency might not influence the appetite of A. dabryanus. The present work provides a basis for further investigation into the regulation of feeding in A. dabryanus.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Ya Liu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Mingjiang Song
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Feiyang Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China.
| |
Collapse
|
13
|
The Roles of Neuropeptide Y ( Npy) and Peptide YY ( Pyy) in Teleost Food Intake: A Mini Review. Life (Basel) 2021; 11:life11060547. [PMID: 34200824 PMCID: PMC8230510 DOI: 10.3390/life11060547] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropeptide Y family (NPY) is a potent orexigenic peptide and pancreatic polypeptide family comprising neuropeptide Y (Npy), peptide YYa (Pyya), and peptide YYb (Pyyb), which was previously known as peptide Y (PY), and tetrapod pancreatic polypeptide (PP), but has not been exhaustively documented in fish. Nonetheless, Npy and Pyy to date have been the key focus of countless research studies categorizing their copious characteristics in the body, which, among other things, include the mechanism of feeding behavior, cortical neural activity, heart activity, and the regulation of emotions in teleost. In this review, we focused on the role of neuropeptide Y gene (Npy) and peptide YY gene (Pyy) in teleost food intake. Feeding is essential in fish to ensure growth and perpetuation, being indispensable in the aquaculture settings where growth is prioritized. Therefore, a better understanding of the roles of these genes in food intake in teleost could help determine their feeding regime, regulation, growth, and development, which will possibly be fundamental in fish culture.
Collapse
|
14
|
|
15
|
Huong TTM, Murashita K, Senzui A, Matsumoto T, Fukada H. Cholecystokinin 1 and 2 in red seabream Pagrus major: molecular cloning, response to feeding, and a potential indicator of dietary protein source quality. FISHERIES SCIENCE 2020; 86:835-849. [DOI: 10.1007/s12562-020-01443-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 01/02/2025]
|
16
|
Kwasek K, Wojno M, Iannini F, McCracken VJ, Molinari GS, Terova G. Nutritional programming improves dietary plant protein utilization in zebrafish Danio rerio. PLoS One 2020; 15:e0225917. [PMID: 32142555 PMCID: PMC7059923 DOI: 10.1371/journal.pone.0225917] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Nutritional Programming (NP) has been shown to counteract the negative effects of dietary plant protein (PP) by introducing PP at an early age towards enhancement of PP utilization during later life stages. This study explored the effect of NP and its induction time on growth, expression of appetite-stimulating hormones, and any morphological changes in the gut possibly responsible for improved dietary PP utilization. At 3 days post-hatch (dph) zebrafish were distributed into 12 (3 L) tanks, 100 larvae per tank. This study included four groups: 1) The control (NP-FM) group received fishmeal (FM)-based diet from 13–36 dph and was challenged with PP-based diet during 36–66 dph; 2) The NP-PP group received NP with dietary PP in larval stage via live food enrichment during 3–13 dph followed by FM diet during 13–36 dph and PP diet during 36–66 dph; 3) The T-NP group received NP between 13–23 dph through PP diet followed by FM diet during 23–36 dph and PP diet during 36–66 dph; and 4) The PP group received PP diet from 13–66 dph. During the PP challenge the T-NP group achieved the highest weight gain compared to control and PP. Ghrelin expression in the brain was higher in T-NP compared to NP-FM and NP-PP, while in the gut it was reduced in both NP-PP and T-NP groups. Cholecystokinin expression showed an opposite trend to ghrelin. The brain neuropeptide Y expression was lower in NP-PP compared to PP but not different with NP-FM and T-NP groups. The highest villus length to width ratio in the middle intestine was found in T-NP compared to all other groups. The study suggests that NP induced during juvenile stages improves zebrafish growth and affects digestive hormone regulation and morphology of the intestinal lining–possible mechanisms behind the improved PP utilization in pre-adult zebrafish stages.
Collapse
Affiliation(s)
- Karolina Kwasek
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States of America
- * E-mail:
| | - Michal Wojno
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States of America
| | - Federica Iannini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Vance J. McCracken
- Department of Biological Sciences, Southern Illinois University-Edwardsville, Edwardsville, Illinois, United States of America
| | - Giovanni S. Molinari
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States of America
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
17
|
Zhou Z, Li Y, Zhang G, Ye H, Luo J. Effects of temperature on the transcriptomes of pituitary and liver in Golden Pompano Trachinotus blochii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:63-73. [PMID: 31428893 DOI: 10.1007/s10695-019-00695-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Fish growth can be modulated dynamically through the brain-pituitary-liver regulation axis. In the present study, whole transcriptomes of the pituitary and liver from Golden Pompano Trachinotus blochii were sequenced in seawater at 20 °C (T_low) and 25 °C (T_high). A total of 187,277,583 paired-end reads were assembled to obtain 100,495 transcripts, corresponding to 83,974 genes. These reads were mapped to T. blochii transcripts, and the mapping accuracy ranged from 80.4 to 94.9%. Two lists of differentially expressed genes were obtained by comparisons of pituitary and liver T_low versus T_high groups, comprising 458 and 205 genes, respectively. Of these, 33 differentially expressed genes were common between the two lists. Twelve GO terms were overrepresented for the 458 differentially expressed genes in the pituitary, and it is noteworthy that the GO term galanin receptor activity (GO: 0004966) related to the modulation of appetite and metabolism, whose genes made up half of all assembled genes in the term. For the 205 differentially expressed genes in the liver, 19 overrepresented GO terms were mainly related to immune regulation, digestion, and protein metabolism. Among the common differentially expressed genes, there were 32 genes that had identical changing trends in both pituitary and liver comparisons. Furthermore, two GO terms inorganic diphosphatase activity and MHC protein complex were overrepresented. These results indicate that the brain could regulate pituitary function through galanin signal mechanism and that the metabolism of liver was further optimized to modulate immunity and growth under different temperatures.
Collapse
Affiliation(s)
- Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Road, Haikou, 570228, People's Republic of China
| | - Yanqiang Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Road, Haikou, 570228, People's Republic of China
| | - Guoqing Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Road, Haikou, 570228, People's Republic of China
| | - Hengzhen Ye
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Road, Haikou, 570228, People's Republic of China
| | - Jian Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, 58 Renmin Road, Haikou, 570228, People's Republic of China.
| |
Collapse
|
18
|
BARRIOS CARLOSE, SANTINÓN JUANJOSÉ, DOMITROVIC HUGOA, SÁNCHEZ SEBASTIÁN, HERNÁNDEZ DAVIDR. Localization and distribution of CCK-8, NPY, Leu-ENK-, and Ghrelin- in the digestive tract of Prochilodus lineatus (Valenciennes, 1836). ACTA ACUST UNITED AC 2020; 92:e20181165. [DOI: 10.1590/0001-3765202020181165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/30/2019] [Indexed: 11/22/2022]
|
19
|
London S, Volkoff H. Effects of fasting on the central expression of appetite-regulating and reproductive hormones in wild-type and Casper zebrafish (Danio rerio). Gen Comp Endocrinol 2019; 282:113207. [PMID: 31202720 DOI: 10.1016/j.ygcen.2019.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Appetite and reproduction are closely related functions that are both regulated by brain hormones. Appetite stimulators include orexin and neuropeptide Y (NPY), and reproductive hormones include gonadotropin-releasing hormone (GnRH), gonadotropin-inhibitory hormone (GnIH), kisspeptin, and neurokinin B (NKB). GnRH stimulates the secretion of pituitary gonadotropes, and kisspeptin and GnIH modulate this action. Kisspeptin secretion is further controlled by neurokinin B (NKB) and dynorphin A (Dyn). To better understand the mechanisms regulating appetite and reproduction in fish, we examined the effects of fasting, reproductive stage, gender, and strain on the brain mRNA expression of appetite (orexin and NPY) and reproductive (GnRH, kisspeptin, GnIH, and NKB) hormones in zebrafish. In order to compare strains, we used both wild-type and transparent Casper zebrafish. In female wild-type zebrafish, fasting increased the expression of all hormones investigated, with the exception of Kiss2. Only NPY and Kiss2 were increased in male wild-type zebrafish during fasting. In Casper zebrafish, only GnIH and NKB in males were affected by fasting, suggesting that Casper fish may be more resistant to fasting than wild fish. Fasting increased expressions of orexin, GnRH2, Kiss1, GnIH and NKB in wild-type females with more eggs or larger eggs relative to body weight, compared to those with fewer or smaller eggs, suggesting that more mature females are more affected by fasting. No significant interactions of fasting and reproductive stage were noted in female Casper fish. To investigate whether differences between Casper and wild-type fish were due to genes involved in pigmentation, we compared the brain mRNA expressions of enzymes involved in melanin synthesis (tyrosinase and tyrosine hydroxylase - TH), melanocortin receptors (MC3R and MC4R), and the melanocortin precursor (proopiomelanocortin - POMC) between the two strains. Casper zebrafish had lower levels of MC3R, tyrosinase, TH1, TH2, and POMC than wild-type fish. Overall, our results suggest the existence of gender- and reproductive stage-specific, as well as strain-specific variations in the mechanisms regulating feeding and reproduction in zebrafish, and that the melanocortin system and melanin pathways may be in part responsible for these differences between strains.
Collapse
Affiliation(s)
- Sydney London
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
20
|
Deng X, Lei L, Yuan D, Zheng Z, Zhu C, Luo H, Ye H, Li D, Wang J, Li B, Lv G, Zhou C. Cloning, expression profiling, and effects of fasting status on neuropeptide Y in Schizothorax davidi. J Food Biochem 2019; 43:e12892. [PMID: 31353745 DOI: 10.1111/jfbc.12892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/25/2019] [Accepted: 04/23/2019] [Indexed: 11/28/2022]
Abstract
To better comprehend the mechanism that neuropeptide Y (npy) regulates feeding in Schizothorax davidi, we cloned and identified the full-length cDNA sequence of the npy gene in this species using RACE technology. Subsequently, we explored the npy mRNA distribution in 18 tissues and investigated the expression of npy mRNA at postprandial and fasting stages. We found that the npy full-length cDNA sequence is 803 bp. Moreover, npy mRNAs extensively expressed in all detected tissues, with the highest expression in hypothalamus. In postprandial study, the expression of npy mRNA in the hypothalamus was significantly decreased after eating (p < 0.01). In addition, the expression of the npy gene was significantly increased on the fifth day after fasting (p < 0.05). However, after refeeding, the expression of the npy gene was decreased significantly on days 9, 11, and 14 (p < 0.01). Our research suggest that npy may have an orexigenic role in S. davidi. PRACTICAL APPLICATIONS: S. davidi, a coldwater fish native to China, has high economic value, and it has gained great popularity. To date, there is still no large-scale breeding of S. davidi in China. How to strengthen the production performance of S. davidi is a hot research area. Neuropeptide Y (NPY), a 36-amino-acid single-chain polypeptide, is one of the main appetite regulation factors. However, to date, no studies have reported on the biological function of npy in the feeding of S. davidi. In our study, we revealed that the trend of hypothalamic npy expression during the postprandial and fasting stages. The results suggested that npy might be an appetite-promoting factor in this species. Overall, we provide the theoretical basis for how to strengthen the production performance of S. davidi through appetite regulation.
Collapse
Affiliation(s)
- Xingxing Deng
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Luo Lei
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Dengyue Yuan
- Department of Aquaculture, College of Life Sciences, Neijiang Normal University, Neijiang, People's Republic of China
| | - Zonglin Zheng
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Chengke Zhu
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Hui Luo
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Hua Ye
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Dongmei Li
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Jian Wang
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Baohai Li
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Guangjun Lv
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Chaowei Zhou
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China.,Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| |
Collapse
|
21
|
Tang N, Zhang X, Wang S, Qi J, Tian Z, Wang B, Chen H, Wu Y, Wang M, Xu S, Chen D, Li Z. UCN3 suppresses food intake in coordination with CCK and the CCK2R in Siberian sturgeon (Acipenser baerii). Comp Biochem Physiol A Mol Integr Physiol 2019; 234:106-113. [PMID: 31051262 DOI: 10.1016/j.cbpa.2019.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Abstract
Urocortin-3 (UCN3) as a brain-gut peptide inhibits food intake of animal, but the underlying mechanism is not clear. To explore the appetite mechanism about the action of UCN3 in fish, intraperitoneal injection of UCN3 with CCK8, Lorglumide (CCK1R antagonist) or LY225910 (CCK2R antagonist) were conducted. Siberian sturgeon administrated with UCN3 and CCK8 showed a drastic reduction in food intake. The anorectic effect of UCN3 was significantly blocked by LY225910, but not affected by Lorglumide. Furthermore, LY225910 could effectively reverse appetite factor mRNA expressions, including cck, pyy, cart, npy, ucn3, apelin and nucb2 in the whole brain, stomach and intestinum valvula, but Lorglumide could only partially reverse these effects, suggesting the anorectic effect of UCN3 may be primarily mediated CCK2R in Siberian sturgeon. This study indicates for the first time in fish that UCN3 may inhibit food intake in coordination with CCK and CCK2R.
Collapse
Affiliation(s)
- Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Shuyao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhengzhi Tian
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Mei Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shaoqi Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
22
|
Kuz’mina VV. Effect of Cholecystokinin on the Activity of Peptidases and Glycosidases of the Intestinal Mucosa in Carp Cyprinus carpio. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Fadda M, Hasakiogullari I, Temmerman L, Beets I, Zels S, Schoofs L. Regulation of Feeding and Metabolism by Neuropeptide F and Short Neuropeptide F in Invertebrates. Front Endocrinol (Lausanne) 2019; 10:64. [PMID: 30837946 PMCID: PMC6389622 DOI: 10.3389/fendo.2019.00064] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Numerous neuropeptide systems have been implicated to coordinately control energy homeostasis, both centrally and peripherally. However, the vertebrate neuropeptide Y (NPY) system has emerged as the best described one regarding this biological process. The protostomian ortholog of NPY is neuropeptide F, characterized by an RXRF(Y)amide carboxyterminal motif. A second neuropeptide system is short NPF, characterized by an M/T/L/FRF(W)amide carboxyterminal motif. Although both short and long NPF neuropeptide systems display carboxyterminal sequence similarities, they are evolutionary distant and likely already arose as separate signaling systems in the common ancestor of deuterostomes and protostomes, indicating the functional importance of both. Both NPF and short-NPF systems seem to have roles in the coordination of feeding across bilaterian species, but during chordate evolution, the short NPF system appears to have been lost or evolved into the prolactin releasing peptide signaling system, which regulates feeding and has been suggested to be orthologous to sNPF. Here we review the roles of both NPF and sNPF systems in the regulation of feeding and metabolism in invertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | - Liliane Schoofs
- Department of Biology, Functional Genomics and Proteomics, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Butt ZD, O'Brien E, Volkoff H. Effects of fasting on the gene expression of appetite regulators in three Characiformes with different feeding habits (Gymnocorymbus ternetzi, Metynnis argenteus and Exodon paradoxus). Comp Biochem Physiol A Mol Integr Physiol 2019; 227:105-115. [DOI: 10.1016/j.cbpa.2018.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
|
25
|
Bertucci JI, Blanco AM, Sundarrajan L, Rajeswari JJ, Velasco C, Unniappan S. Nutrient Regulation of Endocrine Factors Influencing Feeding and Growth in Fish. Front Endocrinol (Lausanne) 2019; 10:83. [PMID: 30873115 PMCID: PMC6403160 DOI: 10.3389/fendo.2019.00083] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
Endocrine factors regulate food intake and growth, two interlinked physiological processes critical for the proper development of organisms. Somatic growth is mainly regulated by growth hormone (GH) and insulin-like growth factors I and II (IGF-I and IGF-II) that act on target tissues, including muscle, and bones. Peptidyl hormones produced from the brain and peripheral tissues regulate feeding to meet metabolic demands. The GH-IGF system and hormones regulating appetite are regulated by both internal (indicating the metabolic status of the organism) and external (environmental) signals. Among the external signals, the most notable are diet availability and diet composition. Macronutrients and micronutrients act on several hormone-producing tissues to regulate the synthesis and secretion of appetite-regulating hormones and hormones of the GH-IGF system, eventually modulating growth and food intake. A comprehensive understanding of how nutrients regulate hormones is essential to design diet formulations that better modulate endogenous factors for the benefit of aquaculture to increase yield. This review will discuss the current knowledge on nutritional regulation of hormones modulating growth and food intake in fish.
Collapse
Affiliation(s)
- Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxìa Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jithine Jayakumar Rajeswari
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cristina Velasco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxìa Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Suraj Unniappan
| |
Collapse
|
26
|
London S, Volkoff H. Cloning and effects of fasting on the brain expression levels of appetite-regulators and reproductive hormones in glass catfish (Kryptopterus vitreolus). Comp Biochem Physiol A Mol Integr Physiol 2018; 228:94-102. [PMID: 30453036 DOI: 10.1016/j.cbpa.2018.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
The regulation of feeding is a complex process that involves coordination between various signals. Feeding hormones can be described as orexigenic (stimulate food intake, e.g. orexin and neuropeptide Y - NPY) or anorexigenic (inhibit food intake, e.g. cocaine and amphetamine regulated transcript - CART). Reproduction and energy homeostasis are closely linked, as factors that affect appetite have also been shown to influence reproductive hormones and behaviors. Gonadotropin-releasing hormone (GnRH) is one of the most influential factors controlling reproduction. Although our understanding of the endocrine regulation of feeding and reproduction in fish is progressing, many gaps still remain, particularly in catfish. Glass catfish (Kryptopterus vitreolus) are freshwater fish known for their natural transparency. In this study, we isolated cDNA encoding reproductive hormones (GnRH1, GnRH2) and appetite regulators (orexin, NPY, and CART) from glass catfish and examined their distribution in various tissues. All peptides had wide distributions across various brain and peripheral tissues, except CART, which was only present in brain. In order to assess whether limited energy supply affects these peptides, we examined the effects of fasting on their brain mRNA expression levels. Fasting increased the expression of both the orexigenic (i.e. orexin and NPY) and anorexigenic (i.e. CART) hormones, and decreased expression levels of GnRH1, but did not affect GnRH2. Overall, our results suggest that fasting affects the expression of peptides involved in both feeding and reproduction, and provides new insights on the endocrine mechanisms that regulate feeding and reproduction in catfish.
Collapse
Affiliation(s)
- Sydney London
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John, NL A1B 3X9, Canada
| | - Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John, NL A1B 3X9, Canada.
| |
Collapse
|
27
|
Soengas JL, Cerdá-Reverter JM, Delgado MJ. Central regulation of food intake in fish: an evolutionary perspective. J Mol Endocrinol 2018; 60:R171-R199. [PMID: 29467140 DOI: 10.1530/jme-17-0320] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022]
Abstract
Evidence indicates that central regulation of food intake is well conserved along the vertebrate lineage, at least between teleost fish and mammals. However, several differences arise in the comparison between both groups. In this review, we describe similarities and differences between teleost fish and mammals on an evolutionary perspective. We focussed on the existing knowledge of specific fish features conditioning food intake, anatomical homologies and analogies between both groups as well as the main signalling pathways of neuroendocrine and metabolic nature involved in the homeostatic and hedonic central regulation of food intake.
Collapse
Affiliation(s)
- José Luis Soengas
- Departamento de Bioloxía Funcional e Ciencias da SaúdeLaboratorio de Fisioloxía Animal, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - José Miguel Cerdá-Reverter
- Departamento de Fisiología de Peces y BiotecnologíaInstituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - María Jesús Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
28
|
Yang S, Wen ZY, Zou YC, Qin CJ, Wang J, Yuan DY, Li R. Molecular cloning, tissue distribution, and effect of fasting and refeeding on the expression of neuropeptide Y in Channa argus. Gen Comp Endocrinol 2018; 259:147-153. [PMID: 29174870 DOI: 10.1016/j.ygcen.2017.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y (NPY) is a 36 amino-acid amidated peptide of the pancreatic polypeptide (PP) family, which plays an important role in appetite regulation and energy expenditure in mammals. Although several teleost NPY have been identified, its roles remain unclear in fish. We herein reported on the molecular cloning, tissue distribution and the effect of fasting on the expression of NPY in Channa argus, and designated as CaNPY. It consisted of a 300 bp open reading frame predicted to encode a prepro-NPY of 99 amino acids. Sequence analysis revealed that CaNPY was highly conserved (>60%) with other vertebrate NPY. Phylogenetic analysis highly supported CaNPY was closely related to piscine NPY. In addition, except for muscle and spleen tissues, CaNPY was found to extensively expressed in all other detected tissues, with the highest level in brain. Futhermore, the CaNPY transcript was found to significantly increase after short-term and long-term food deprivation, and dramatically decrease following refeeding. These findings suggested that CaNPY might be involved in food intake regulation and it could be as a potential target locus to improve commercial production of this kind of fish.
Collapse
Affiliation(s)
- Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zheng-Yong Wen
- College of Life Sciences, Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, Sichuan 641100, China.
| | - Yuan-Chao Zou
- College of Life Sciences, Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | - Chuan-Jie Qin
- College of Life Sciences, Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | - Jun Wang
- College of Life Sciences, Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | - Deng-Yue Yuan
- College of Life Sciences, Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | - Rui Li
- College of Life Sciences, Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, Sichuan 641100, China
| |
Collapse
|
29
|
Zhang H, Qin G, Sun J, Zhang B, Lin Q. The evolution and functional characterization of lined seahorse (Hippocampus erectus) CCKs involved in fasting and thermal stress response. Gen Comp Endocrinol 2018; 255:56-63. [PMID: 29051075 DOI: 10.1016/j.ygcen.2017.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/27/2017] [Accepted: 10/14/2017] [Indexed: 12/19/2022]
Abstract
The peptide cholecystokinin (CCK) plays an important role in the regulation of vertebrate appetite and feeding behaviour. In the present study, the full-length cDNA and genomic DNA sequences of two CCK precursors were cloned and analysed in the Syngnathidae fish, the lined seahorse (Hippocampus erectus). Both CCK1 and CCK2 in the seahorse consist of four exons. The sequence of the octapeptide of seahorse CCK1 (DYMGWMDF) was the same as that of the chicken and human, while the octapeptide of seahorse CCK2 (DYEGWMDF) was unique among vertebrates. According to the phylogenetic analysis, two types of CCKs were produced by teleost-specific genome duplication (TGD). Both CCK1 and CCK2 were highly expressed in the brain, while detectable amounts of CCK1 mRNA in the brood pouch and CCK2 mRNA in the intestine were also found. Both CCK1 and CCK2 mRNA levels significantly increased during the transition from endogenous to exogenous nutrition. Additionally, fasting induced a significant increase in the CCK1 mRNA expression in the brain of juvenile seahorses but had no effect on CCK2 transcript levels. In addition, the CCK1 and CCK2 mRNA levels in the seahorse brain significantly increased after a high-temperature treatment. Thus, the mRNA expression of CCK had obvious tissue specificities and this preliminary study opens new avenues for further functional studies on the endocrine regulations of CCK in the transition from endogenous to exogenous nutrition, food intake regulation and metabolism in the seahorse.
Collapse
Affiliation(s)
- Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China
| | - Jinhui Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, PR China
| | - Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
30
|
Pereira RT, de Freitas TR, de Oliveira IRC, Costa LS, Vigliano FA, Rosa PV. Endocrine cells producing peptide hormones in the intestine of Nile tilapia: distribution and effects of feeding and fasting on the cell density. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1399-1412. [PMID: 28501979 DOI: 10.1007/s10695-017-0380-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Endocrine cells (ECs) act as a luminal surveillance system responding to either the presence or absence of food in the gut through the secretion of peptide hormones. The aim of this study was to analyze the effects of feeding and fasting on the EC peptide-specific distribution along the intestine of Nile tilapia. We assessed the density of ECs producing gastrin (GAS), cholecystokinin-8 (CCK-8), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) in nine segments of the intestine using immunohistochemistry. Our results show that ECs immunoreactive to CCK-8, GAS, NPY, and CGRP can be found along all the intestinal segments sampled, from the midgut to hindgut, although differences in their distribution along the gut were observed. Regarding nutrient status, we found that the anterior segments of the midgut seem to be the main site responding to luminal changes in Nile tilapia. The NPY+ and CGRP+ EC densities increased in the fasted group, while the amount of CCK-8+ ECs were higher in the fed group. No effects of fasting or feeding were found in the GAS+ EC densities. Changes in ECs density were found only at the anterior segments of the intestine which may be due to the correlation between vagus nerve anatomy, EC location, and peptide turnover. Lastly, ECs may need to be considered an active cell subpopulation that may adapt and respond to different nutrient status as stimuli. Due to the complexity of the enteroendocrine system and its importance in fish nutrition, much remains to be elucidated and it deserves closer attention.
Collapse
Affiliation(s)
- Raquel Tatiane Pereira
- Department of Animal Science, Federal University of Lavras UFLA, Lavras, Minas Gerais, 37200-000, Brazil.
- Cátedra de Histología y Embriología/Centro de Investigaciones en Piscicultura Experimental, Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
| | | | | | - Leandro Santos Costa
- Aquaculture Department, Federal University of Minas Gerais UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Fabricio Andrés Vigliano
- Cátedra de Histología y Embriología/Centro de Investigaciones en Piscicultura Experimental, Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Priscila Vieira Rosa
- Department of Animal Science, Federal University of Lavras UFLA, Lavras, Minas Gerais, 37200-000, Brazil
| |
Collapse
|
31
|
CCK reduces the food intake mainly through CCK1R in Siberian sturgeon (Acipenser baerii Brandt). Sci Rep 2017; 7:12413. [PMID: 28963554 PMCID: PMC5622057 DOI: 10.1038/s41598-017-12646-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/13/2017] [Indexed: 11/14/2022] Open
Abstract
To explore the effect of CCK on food intake in Siberian sturgeon, cck cDNA sequence of 1005 bp was obtained, and cck mRNA possessed the highest expression in brain. The expressions of cck were significantly increased after feeding 1 and 3 h, while displaying significant decrease after fasting within 15 days in brain and duodenum. Re-feeding for 3 days induced cck level returned to basic level. Acute i.p. injection experiment showed 100 and 200 ng/g BW CCK8 inhibited the food intake in 0–1 h together with the cumulative food intake within 3 h. 7 days chronic i.p. injection of 100 and 200 ng/g BW CCK8, both daily food intake and cumulative food intake were significantly decreased. In addition, chronic i.p injection of CCK8 induced the expression of feeding related factors changes including cck, ucn3, cart, apelin, pyy and npy in respective organization. Moreover, as revealed by the results, Lorglumide, the CCK1R selective antagonist, effectively reversed the inhibitory effects of CCK8 on food intake and the levels of feeding related factors. On the other hand, LY 225910, the CCK2R selective antagonist, partially reversed these effects. These results indicate CCK is a satiety factor inhibits the feeding of Siberian sturgeon primarily through CCK1R.
Collapse
|
32
|
Sudhakumari CC, Anitha A, Murugananthkumar R, Tiwari DK, Bhasker D, Senthilkumaran B, Dutta-Gupta A. Cloning, localization and differential expression of Neuropeptide-Y during early brain development and gonadal recrudescence in the catfish, Clarias gariepinus. Gen Comp Endocrinol 2017; 251:54-65. [PMID: 28322767 DOI: 10.1016/j.ygcen.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 11/22/2022]
Abstract
Neuropeptide-Y (NPY) has diverse physiological functions which are extensively studied in vertebrates. However, regulatory role of NPY in relation to brain ontogeny and recrudescence with reference to reproduction is less understood in fish. Present report for the first time evaluated the significance of NPY by transient esiRNA silencing and also analyzed its expression during brain development and gonadal recrudescence in the catfish, Clarias gariepinus. As a first step, full-length cDNA of NPY was cloned from adult catfish brain, which shared high homology with its counterparts from other teleosts upon phylogenetic analysis. Tissue distribution revealed dominant expression of NPY in brain and testis. NPY expression increased during brain development wherein the levels were higher in 100 and 150days post hatch females than the respective age-matched males. Seasonal cycle analysis showed high expression of NPY in brain during pre-spawning phase in comparison with other reproductive phases. Localization studies exhibited the presence of NPY, abundantly, in the regions of preoptic area, hypothalamus and pituitary. Transient silencing of NPY-esiRNA directly into the brain significantly decreased NPY expression in both the male and female brain of catfish which further resulted in significant decrease of transcripts of tryptophan hydroxylase 2, catfish gonadotropin-releasing hormone (cfGnRH), tyrosine hydroxylase and 3β-hydroxysteroid dehydrogenase in brain and luteinizing hormone-β/gonadotropin-II (lh-β/GTH-II) in pituitary exhibiting its influence on gonadal axis. In addition, significant decrease of several ovary-related transcripts was observed in NPY-esiRNA silenced female catfish, indicating the plausible role of NPY in ovary through cfGnRH-GTH axis.
Collapse
Affiliation(s)
- Cheni-Chery Sudhakumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| | - Arumugam Anitha
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Raju Murugananthkumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Dinesh Kumar Tiwari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Dharavath Bhasker
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| | - Aparna Dutta-Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| |
Collapse
|
33
|
Delgado MJ, Cerdá-Reverter JM, Soengas JL. Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake. Front Neurosci 2017; 11:354. [PMID: 28694769 PMCID: PMC5483453 DOI: 10.3389/fnins.2017.00354] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
The regulation of food intake in fish is a complex process carried out through several different mechanisms in the central nervous system (CNS) with hypothalamus being the main regulatory center. As in mammals, a complex hypothalamic circuit including two populations of neurons: one co-expressing neuropeptide Y (NPY) and Agouti-related peptide (AgRP) and the second one population co-expressing pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) is involved in the integration of information relating to food intake control. The production and release of these peptides control food intake, and the production results from the integration of information of different nature such as levels of nutrients and hormones as well as circadian signals. The present review summarizes the knowledge and recent findings about the presence and functioning of these mechanisms in fish and their differences vs. the known mammalian model.
Collapse
Affiliation(s)
- María J. Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de MadridMadrid, Spain
| | - José M. Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones CientíficasCastellón, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de VigoVigo, Spain
| |
Collapse
|
34
|
Pitts PM, Volkoff H. Characterization of appetite-regulating factors in platyfish, Xiphophorus maculatus (Cyprinodontiformes Poeciliidae). Comp Biochem Physiol A Mol Integr Physiol 2017; 208:80-88. [PMID: 28377124 DOI: 10.1016/j.cbpa.2017.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
The regulation of energy in fish, like most vertebrates, is a complex process that involves a number of brain and peripheral hormones. These signals include anorexigenic (e.g. cholecystokinin (CCK) and cocaine- and amphetamine-regulated transcript (CART)) as well as orexigenic (e.g. orexin and neuropeptide Y (NPY)) peptides. Platyfish, Xiphophorus maculatus, are freshwater viviparous fish for which little is known about the endocrine mechanisms regulating feeding. In order to elucidate the role of these peptides in the regulation of feeding of platyfish, we examined the effects of peripheral injections of CCK and orexin on feeding behavior and food intake. Injections of CCK decreased both food intake and searching behavior, while injections of orexin increased searching behavior but did not affect food consumption. In order to better characterize these peptides, we examined their mRNA tissue distribution and assessed the effects of a 10-day fast on their brain and intestine expressions in both males and females. CCK, CART, NPY and orexin all show widespread distributions in brain and several peripheral tissues, including intestine and gonads. Fasting induced decreases in both CCK and CART and an increase in orexin mRNA expressions in the brain and a decrease in CCK expression in the intestine, but did not affect either expressions of NPY. There were no significant sex-specific differences in either the behavioral responses to injections or the expression responses to fasting. The widespread distribution and the fasting-induced changes in expression of these peptides suggest that they might have several physiological roles in platyfish, including the regulation of feeding.
Collapse
Affiliation(s)
- Paul M Pitts
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
35
|
Isorna E, de Pedro N, Valenciano AI, Alonso-Gómez ÁL, Delgado MJ. Interplay between the endocrine and circadian systems in fishes. J Endocrinol 2017; 232:R141-R159. [PMID: 27999088 DOI: 10.1530/joe-16-0330] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Abstract
The circadian system is responsible for the temporal organisation of physiological functions which, in part, involves daily cycles of hormonal activity. In this review, we analyse the interplay between the circadian and endocrine systems in fishes. We first describe the current model of fish circadian system organisation and the basis of the molecular clockwork that enables different tissues to act as internal pacemakers. This system consists of a net of central and peripherally located oscillators and can be synchronised by the light-darkness and feeding-fasting cycles. We then focus on two central neuroendocrine transducers (melatonin and orexin) and three peripheral hormones (leptin, ghrelin and cortisol), which are involved in the synchronisation of the circadian system in mammals and/or energy status signalling. We review the role of each of these as overt rhythms (i.e. outputs of the circadian system) and, for the first time, as key internal temporal messengers that act as inputs for other endogenous oscillators. Based on acute changes in clock gene expression, we describe the currently accepted model of endogenous oscillator entrainment by the light-darkness cycle and propose a new model for non-photic (endocrine) entrainment, highlighting the importance of the bidirectional cross-talking between the endocrine and circadian systems in fishes. The flexibility of the fish circadian system combined with the absence of a master clock makes these vertebrates a very attractive model for studying communication among oscillators to drive functionally coordinated outputs.
Collapse
Affiliation(s)
- Esther Isorna
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria de Pedro
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana I Valenciano
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ángel L Alonso-Gómez
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
36
|
Babaei S, Sáez A, Caballero-Solares A, Fernández F, Baanante IV, Metón I. Effect of dietary macronutrients on the expression of cholecystokinin, leptin, ghrelin and neuropeptide Y in gilthead sea bream (Sparus aurata). Gen Comp Endocrinol 2017; 240:121-128. [PMID: 27725144 DOI: 10.1016/j.ygcen.2016.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/27/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
Abstract
Endocrine factors released from the central nervous system, gastrointestinal tract, adipose tissue and other peripheral organs mediate the regulation of food intake. Although many studies have evaluated the effect of fed-to-starved transition on the expression of appetite-related genes, little is known about how the expression of appetite-regulating peptides is regulated by the macronutrient composition of the diet. The aim of the present study was to examine the effect of diet composition and nutritional status on the expression of four peptides involved in food intake control in gilthead sea bream (Sparus aurata): neuropeptide Y (NPY), ghrelin, cholecystokinin (CCK) and leptin. Quantitative real-time RT-PCR showed that high protein/low carbohydrate diets stimulated the expression of CCK and ghrelin in the intestine and leptin in the adipose tissue, while downregulation of ghrelin and NPY mRNA levels was observed in the brain. Opposite effects were found for the expression of the four genes in fish fed low protein/high carbohydrate diets or after long-term starvation. Our findings indicate that the expression pattern of appetite-regulating peptides, particularly CCK and ghrelin, is modulated by the nutritional status and diet composition in S. aurata.
Collapse
Affiliation(s)
- Sedigheh Babaei
- Fisheries Departament, Faculty of Marine Sciences, Tarbiat Modares University (TMU), Noor 46417-76488, Iran
| | - Alberto Sáez
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Albert Caballero-Solares
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Felipe Fernández
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Isabel V Baanante
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Isidoro Metón
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
37
|
Wang X, Miao J, Liu P, Pan L. Role of neuropeptide F in regulating filter feeding of Manila clam, Ruditapes philippinarum. Comp Biochem Physiol B Biochem Mol Biol 2016; 205:30-38. [PMID: 28007616 DOI: 10.1016/j.cbpb.2016.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Endogenous signals which may be involved in the regulation of filter feeding in bivalves have never been examined. NPY/NPF homologue has been proved to play an important role in the regulation of food intake in vertebrate and several invertebrates. In this study, a NPF homologue was cloned from visceral ganglia of clam Ruditapes philippinarum. The full-length cDNA sequence was 892bp in length and encoded a precursor of 82 amino acid residues. We then examined the effects of fasting and refeeding on the filtration rates (FR), plasma glucose concentration (PGC), 5-HT, DA and the expression level of the rp-NPF and insulin transcript. The mRNA expression level of rp-NPF in visceral ganglion was increased during fasting, and rose to highest level on 72h after starvation and declined immediately after food had been supplied. Hemocoel injection of rp-NPF(5μg/g)significantly increased FR of clams within 2h. Compared to the controls, a significant increase in insulin mRNA levels was observed at 8h after injection. Contents of 5-HT and DA also increased in the 5μg/grp-NPF administrated clams at 8 and 24h after injection. These results suggest that, similar to vertebrates, NPF, insulin, 5-HT and DA may play a role in the regulation of feeding in R. philippinarum.
Collapse
Affiliation(s)
- Xin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Peipei Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
38
|
Volkoff H. The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge. Front Neurosci 2016; 10:540. [PMID: 27965528 PMCID: PMC5126056 DOI: 10.3389/fnins.2016.00540] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Fish are the most diversified group of vertebrates and, although progress has been made in the past years, only relatively few fish species have been examined to date, with regards to the endocrine regulation of feeding in fish. In fish, as in mammals, feeding behavior is ultimately regulated by central effectors within feeding centers of the brain, which receive and process information from endocrine signals from both brain and peripheral tissues. Although basic endocrine mechanisms regulating feeding appear to be conserved among vertebrates, major physiological differences between fish and mammals and the diversity of fish, in particular in regard to feeding habits, digestive tract anatomy and physiology, suggest the existence of fish- and species-specific regulating mechanisms. This review provides an overview of hormones known to regulate food intake in fish, emphasizing on major hormones and the main fish groups studied to date.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of NewfoundlandSt. John's, NL, Canada
| |
Collapse
|
39
|
Volkoff H, Estevan Sabioni R, Coutinho LL, Cyrino JEP. Appetite regulating factors in pacu (Piaractus mesopotamicus): Tissue distribution and effects of food quantity and quality on gene expression. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:241-254. [PMID: 27717774 DOI: 10.1016/j.cbpa.2016.09.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
The pacu Piaractus mesopotamicus is an omnivorous fish considered a promising species for aquaculture. Little is known about the endocrine regulation of feeding in this species. In this study, transcripts for orexin, cocaine and amphetamine regulated transcript (CART), cholecystokinin (CCK) and leptin were isolated in pacu. Orexin, CCK and leptin have widespread mRNA distributions in brain and periphery, CART is limited to the brain. To examine the role of these peptides in the regulation of feeding and energy status, mRNA expression levels were compared between fed and fasted fish and around feeding time. Both orexin and CART brain expressions were affected by fasting and displayed periprandial changes, suggesting a role in both short- and long-term regulation of feeding. CCK intestinal expression decreased in fasted fish and displayed periprandial changes, suggesting CCK acts as a peripheral satiety factor. Leptin was not affected by fasting but displayed periprandial changes, suggesting a role as a short-term regulator. To examine if these peptides are affected by diet, brain and gut expressions were assessed in fish fed with different diets containing soy protein concentrate. Food intake, weight gain and expressions of orexin, CART, CCK and leptin were little affected by replacement of fish protein with soy protein, suggesting that pacu is able to tolerate and grow well with a diet rich in plant material. Overall, our results suggest that orexin, CART, CCK and leptin are involved in the physiology of feeding of pacu and that their expressions are little affected by plant-based diets.
Collapse
Affiliation(s)
- Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B3X9, Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B3X9, Canada.
| | - Rafael Estevan Sabioni
- Departamento de Zootecnia, Setor de Piscicultura, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - Luiz Lehmann Coutinho
- Departamento de Zootecnia, Laboratório de Biotecnologia Animal, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - José Eurico Possebon Cyrino
- Departamento de Zootecnia, Setor de Piscicultura, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
40
|
Volkoff H, Sabioni RE, Cyrino JEP. Appetite regulating factors in dourado, Salminus brasiliensis: cDNA cloning and effects of fasting and feeding on gene expression. Gen Comp Endocrinol 2016; 237:34-42. [PMID: 27468955 DOI: 10.1016/j.ygcen.2016.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/17/2016] [Accepted: 07/24/2016] [Indexed: 12/25/2022]
Abstract
The dourado, Salminus brasiliensis (Cuvier, 1816) is a freshwater piscivorous Characin native to South American rivers. Owing to the high quality of its flesh and its fast growth, it is the object of both capture fisheries and fish farming. However, very little is known about the endocrine regulation of feeding and metabolism of dourado. In this study, cDNAs for orexin, CART and CCK were isolated in dourado, and their mRNA tissue distributions examined. In order to assess the role of these peptides in the regulation of feeding of dourado, the effects of fasting and feeding on mRNA expression levels of orexin, CART and CCK in the brain as well as CCK in the intestine were assessed. Whereas orexin and CCK have widespread mRNA distributions in the brain and peripheral organs, CART seems to be mostly limited to the brain. Orexin brain expression increased with fasting and displayed periprandial changes, suggesting it is involved in both long- and short-term regulation of feeding and appetite. CART and CCK hypothalamic expressions were not affected by fasting, but displayed periprandial changes with post-feeding decreases, suggesting roles in short-term satiation. CCK expression in the anterior intestine was not affected by fasting and did not display periprandial changes. Overall, our results suggest that orexin, CART and CCK are involved in the physiology of feeding of dourado.
Collapse
Affiliation(s)
- Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B3X9, Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B3X9, Canada.
| | - Rafael Estevan Sabioni
- Departamento de Zootecnia, Setor de Piscicultura, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13418-900 Piracicaba, SP, Brazil
| | - José Eurico Possebon Cyrino
- Departamento de Zootecnia, Setor de Piscicultura, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13418-900 Piracicaba, SP, Brazil
| |
Collapse
|
41
|
Ngernsoungnern A, Ngernsoungnern P. Localization of ghrelin-like peptide in the gastrointestinal tract of the golden apple snail (Pomacea canaliculata) and changing of its concentration during fasting. Acta Histochem 2016; 118:244-51. [PMID: 26850996 DOI: 10.1016/j.acthis.2016.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 12/13/2022]
Abstract
Ghrelin is an endogenous hormone detected in the gastrointestinal tracts (GI) of various species. In the present study, ghrelin-like peptide (ghrelin-LP) was identified in the GI tract of the golden apple snail, Pomacea canaliculata. Using immunohistochemistry, the result revealed an immunoreactivity (-ir) of ghrelin-LP in regions of the GI tract. The ghrelin-LP-ir was observed in both opened-type and closed-type cells of the esophagus, stomach, and small and large intestines. The highest density of ghrelin-LP immunoreactive cells was found in the esophagus and the least density was detected in the stomach. The highest percentages of the opened-type and closed-type cells were present in the esophagus and small intestine, respectively. In immunoblotting, the molecular weight of ghrelin-LP was related to the human ghrelin peptide (∼13kDa). Moreover, the concentration of ghrelin-LP was significantly higher in snails that were fasted for 24h compared with fed snails. The concentration decreased after refeeding. The present study could be useful for understanding the physiological role of ghrelin-LP in mollusk species.
Collapse
Affiliation(s)
- Apichart Ngernsoungnern
- School of Anatomy, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Piyada Ngernsoungnern
- School of Anatomy, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|