1
|
Peloggia J, Lush ME, Tsai YY, Wood C, Piotrowski T. Environmental and molecular control of tissue-specific ionocyte differentiation in zebrafish. Development 2024; 151:dev202809. [PMID: 39324331 PMCID: PMC11528218 DOI: 10.1242/dev.202809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Organisms cope with environmental fluctuations and maintain fitness in part via reversible phenotypic changes (acclimation). Aquatic animals are subject to dramatic seasonal fluctuations in water salinity, which affect osmolarity of their cells and consequently cellular function. Mechanosensory lateral line hair cells detect water motion for swimming behavior and are especially susceptible to salinity changes due to their direct contact with the environment. To maintain hair cell function when salinity decreases, neuromast (Nm)-associated ionocytes differentiate and invade lateral line neuromasts. The signals that trigger the adaptive differentiation of Nm ionocytes are unknown. We demonstrate that new Nm ionocytes are rapidly specified and selectively triggered to proliferate by low Ca2+ and Na+/Cl- levels. We further show that Nm ionocyte recruitment and induction is affected by hair cell activity. Once specified, Nm ionocyte differentiation and survival are associated with sequential activation of different Notch pathway components, a process different from other tissue-specific ionocytes. In summary, we show how environmental changes activate a signaling cascade that leads to physiological adaptation. This may prove essential for survival not only in seasonal changing environments but also in changing climates.
Collapse
Affiliation(s)
- Julia Peloggia
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Mark E. Lush
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ya-Yin Tsai
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christopher Wood
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | |
Collapse
|
2
|
Zimmer AM. Ammonia excretion by the fish gill: discoveries and ideas that shaped our current understanding. J Comp Physiol B 2024; 194:697-715. [PMID: 38849577 DOI: 10.1007/s00360-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
The fish gill serves many physiological functions, among which is the excretion of ammonia, the primary nitrogenous waste in most fishes. Although it is the end-product of nitrogen metabolism, ammonia serves many physiological functions including acting as an acid equivalent and as a counter-ion in mechanisms of ion regulation. Our current understanding of the mechanisms of ammonia excretion have been influenced by classic experimental work, clever mechanistic approaches, and modern molecular and genetic techniques. In this review, I will overview the history of the study of ammonia excretion by the gills of fishes, highlighting the important advancements that have shaped this field with a nearly 100-year history. The developmental and evolutionary implications of an ammonia and gill-dominated nitrogen regulation strategy in most fishes will also be discussed. Throughout the review, I point to areas in which more work is needed to push forward this field of research that continues to produce novel insights and discoveries that will undoubtedly shape our overall understanding of fish physiology.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, Saint John, New Brunswick, E2L 4L5, Canada.
| |
Collapse
|
3
|
Yu D, Zhou M, Chen W, Ding Z, Wang C, Qian Y, Liu Y, He S, Yang L. Characterization of transcriptome changes in saline stress adaptation on Leuciscus merzbacheri using PacBio Iso-Seq and RNA-Seq. DNA Res 2024; 31:dsae019. [PMID: 38807352 PMCID: PMC11161863 DOI: 10.1093/dnares/dsae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024] Open
Abstract
Leuciscus merzbacheri is a native fish species found exclusively in the Junggar Basin in Xinjiang. It exhibits remarkable adaptability, thriving in varying water conditions such as the saline waters, the semi-saline water, and the freshwater. Despite its significant economic and ecological value, the underlying mechanisms of its remarkable salinity tolerance remain elusive. Our study marks the first time the full-length transcriptome of L. merzbacheri has been reported, utilizing RNA-Seq and PacBio Iso-Seq technologies. We found that the average length of the full-length transcriptome is 1,780 bp, with an N50 length of 2,358 bp. We collected RNA-Seq data from gill, liver, and kidney tissues of L. merzbacheri from both saline water and freshwater environments and conducted comparative analyses across these tissues. Further analysis revealed significant enrichment in several key functional gene categories and signalling pathways related to stress response and environmental adaptation. The findings provide a valuable genetic resource for further investigation into saline-responsive candidate genes, which will deepen our understanding of teleost adaptation to extreme environmental stress. This knowledge is crucial for the future breeding and conservation of native fish species.
Collapse
Affiliation(s)
- Dan Yu
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Min Zhou
- School of Life Sciences, Jianghan Universily, Wuhan 430056, China
| | - Wenjun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zufa Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Qian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
4
|
Peloggia J, Lush ME, Tsai YY, Wood C, Piotrowski T. Environmental and molecular control of tissue-specific ionocyte differentiation in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575421. [PMID: 38260427 PMCID: PMC10802608 DOI: 10.1101/2024.01.12.575421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Organisms adjust their physiology to cope with environmental fluctuations and maintain fitness. These adaptations occur via genetic changes over multiple generations or through acclimation, a set of reversible phenotypic changes that confer resilience to the individual. Aquatic organisms are subject to dramatic seasonal fluctuations in water salinity, which can affect the function of lateral line mechanosensory hair cells. To maintain hair cell function when salinity decreases, ion-regulating cells, Neuromast-associated ionocytes (Nm ionocytes), increase in number and invade lateral line neuromasts. How environmental changes trigger this adaptive differentiation of Nm ionocytes and how these cells are specified is still unknown. Here, we identify Nm ionocyte progenitors as foxi3a/foxi3b-expressing skin cells and show that their differentiation is associated with sequential activation of different Notch pathway components, which control ionocyte survival. We demonstrate that new Nm ionocytes are rapidly specified by absolute salinity levels, independently of stress response pathways. We further show that Nm ionocyte differentiation is selectively triggered by depletion of specific ions, such as Ca2+ and Na+/Cl-, but not by low K+ levels, and is independent of media osmolarity. Finally, we demonstrate that hair cell activity plays a role in Nm ionocyte recruitment and that systemic factors are not necessary for Nm ionocyte induction. In summary, we have identified how environmental changes activate a signaling cascade that triggers basal skin cell progenitors to differentiate into Nm ionocytes and invade lateral line organs. This adaptive behavior is an example of physiological plasticity that may prove essential for survival in changing climates.
Collapse
Affiliation(s)
- Julia Peloggia
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Mark E. Lush
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ya-Yin Tsai
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christopher Wood
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Tatjana Piotrowski
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Lead Contact
| |
Collapse
|
5
|
Shih SW, Yan JJ, Lu SW, Chuang YT, Lin HW, Chou MY, Hwang PP. Molecular Physiological Evidence for the Role of Na+-Cl− Co-Transporter in Branchial Na+ Uptake in Freshwater Teleosts. Int J Mol Sci 2023; 24:ijms24076597. [PMID: 37047570 PMCID: PMC10094795 DOI: 10.3390/ijms24076597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The gills are the major organ for Na+ uptake in teleosts. It was proposed that freshwater (FW) teleosts adopt Na+/H+ exchanger 3 (Nhe3) as the primary transporter for Na+ uptake and Na+-Cl− co-transporter (Ncc) as the backup transporter. However, convincing molecular physiological evidence to support the role of Ncc in branchial Na+ uptake is still lacking due to the limitations of functional assays in the gills. Thus, this study aimed to reveal the role of branchial Ncc in Na+ uptake with an in vivo detection platform (scanning ion-selective electrode technique, SIET) that has been recently established in fish gills. First, we identified that Ncc2-expressing cells in zebrafish gills are a specific subtype of ionocyte (NCC ionocytes) by using single-cell transcriptome analysis and immunofluorescence. After a long-term low-Na+ FW exposure, zebrafish increased branchial Ncc2 expression and the number of NCC ionocytes and enhanced gill Na+ uptake capacity. Pharmacological treatments further suggested that Na+ is indeed taken up by Ncc, in addition to Nhe, in the gills. These findings reveal the uptake roles of both branchial Ncc and Nhe under FW and shed light on osmoregulatory physiology in adult fish.
Collapse
Affiliation(s)
- Shang-Wu Shih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
- Department of Life Science, National Taiwan University, Taipei 106319, Taiwan
| | - Jia-Jiun Yan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Shao-Wei Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Ya-Ting Chuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
| | - How-Wei Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 106319, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115201, Taiwan
- Department of Life Science, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
6
|
Peter MCS, Gayathry R, Simi S, Peter VS. Melatonin integrates multidimensional regulation of Na +/K +-ATPase in ionocytes and promotes stress and ease response in hypoxia-induced air-breathing fish: lessons from integrative approach. Front Physiol 2023; 13:1012729. [PMID: 36714310 PMCID: PMC9879292 DOI: 10.3389/fphys.2022.1012729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
As circadian regulator, melatonin is involved in many physiological processes including ionosmotic regulation in fishes. Na+/K+-ATPase (NKA), an ubiquitous Na+/K+ transporter in ionocyte epithelia that drives electrochemical Na+ gradients and systemic osmotic integration, is a target of stress in fish. However, it is not certain how melatonin regulates NKA functions in ionocyte epithelia and how it modulates the adaptive response such as stress and ease response in fish particularly in hypoxia condition. We, thus, examined the short-term in vivo action of melatonin on the dynamics of NKA regulation in branchial, renal and intestinal ionocytes of hypoxia-induced air-breathing fish (Anabas testudineus Bloch). Interestingly, we found a rise in plasma melatonin in fish when kept for 30 min of forced submergence in water and that indicates a role for melatonin in hypoxia tolerance. A fall in blood [Na+ , K+] occurred in these hypoxic fish which later showed a recovery after melatonin treatment. Similarly, melatonin favored the fall in NKA activity in branchial and renal epithelia of hypoxic fish, though it remarkably stimulated its activities in non-stressed fish. Likewise, melatonin that produced differential pattern of mRNA expression in nkaα1-subunit isoforms (nkaα1a, nkaα1b and nkaα1c) and melatonin receptor isoforms (mtnr1a, mtnr1bb, mtnr1bb x1x2 ) in the tested ionocyte epithelia, showed reversed expression in hypoxic fish. In addition, the rise in NKAα-protein abundance in branchial and renal epithelia of melatonin-treated hypoxic fish indicated a recovery action of melatonin. A higher NKAα-immunoreactivity was found in the immunohistochemical and immunofluorescent images of branchial ionocytes and renal proximal and distal ionocytes of hypoxic fish treated with melatonin. Furthermore, an activation of PKA and PKG-dependent phosphorylation was found in branchial epithelia of hypoxic fish. The generated integrative parabola model showed that melatonin has a maximum targeted action on NKA function in the renal epithelia, suggesting its lead role in the integration of ionosmotic balance during the recovery or ease response. Over all, the data indicate a multidimensional and preferential action of melatonin on NKA regulation in fish ionocytes that integrate the recovery action against hypoxia, thus pointing to a major role for melatonin in stress and ease response in this fish.
Collapse
Affiliation(s)
- M. C. Subhash Peter
- Inter-University Centre for Evolutionary and Integrative Biology-ICEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, India,Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram, India,*Correspondence: M. C. Subhash Peter,
| | - R. Gayathry
- Inter-University Centre for Evolutionary and Integrative Biology-ICEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, India
| | - S. Simi
- Inter-University Centre for Evolutionary and Integrative Biology-ICEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, India
| | - Valsa S. Peter
- Inter-University Centre for Evolutionary and Integrative Biology-ICEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, India
| |
Collapse
|
7
|
Lee CE, Charmantier G, Lorin-Nebel C. Mechanisms of Na + uptake from freshwater habitats in animals. Front Physiol 2022; 13:1006113. [PMID: 36388090 PMCID: PMC9644288 DOI: 10.3389/fphys.2022.1006113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 07/20/2023] Open
Abstract
Life in fresh water is osmotically and energetically challenging for living organisms, requiring increases in ion uptake from dilute environments. However, mechanisms of ion uptake from freshwater environments are still poorly understood and controversial, especially in arthropods, for which several hypothetical models have been proposed based on incomplete data. One compelling model involves the proton pump V-type H+ ATPase (VHA), which energizes the apical membrane, enabling the uptake of Na+ (and other cations) via an unknown Na+ transporter (referred to as the "Wieczorek Exchanger" in insects). What evidence exists for this model of ion uptake and what is this mystery exchanger or channel that cooperates with VHA? We present results from studies that explore this question in crustaceans, insects, and teleost fish. We argue that the Na+/H+ antiporter (NHA) is a likely candidate for the Wieczorek Exchanger in many crustaceans and insects; although, there is no evidence that this is the case for fish. NHA was discovered relatively recently in animals and its functions have not been well characterized. Teleost fish exhibit redundancy of Na+ uptake pathways at the gill level, performed by different ion transporter paralogs in diverse cell types, apparently enabling tolerance of low environmental salinity and various pH levels. We argue that much more research is needed on overall mechanisms of ion uptake from freshwater habitats, especially on NHA and other potential Wieczorek Exchangers. Such insights gained would contribute greatly to our general understanding of ionic regulation in diverse species across habitats.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI, United States
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guy Charmantier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | |
Collapse
|
8
|
Park K, Kwak IS. Environmental co-exposure of high temperature and Cu induce hormonal disturbance of cortisol signaling and altered responses of cellular defense genes in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156555. [PMID: 35750185 DOI: 10.1016/j.scitotenv.2022.156555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/29/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Global warming is causing a continuous increase in environmental temperatures, which simultaneously activates toxic environmental stresses, such as heavy metal exposure, in aquatic ecosystems. The present study aimed at evaluating the effects of Cu toxicity along with increased temperature during zebrafish embryogenesis. Decreased survival rates were observed following combined exposure to high temperature and Cu. Heart rates of zebrafish embryos were significantly increased only during heat stress. An abnormal morphology with curved body shape was induced by exposure to a combination of Cu and heat stress. Furthermore, heat stress also triggered Cu-induced intracellular reactive oxygen species (ROS) production, with upregulation of superoxide dismutase (SOD) and glutathione s-transferase (GST) expression, and cell death with modified expression of p53 and B-cell lymphoma-2 (Bcl-2) in zebrafish embryos. Finally, increased cortisol levels and altered expression of cortisol-signaling genes were observed following exposure to Cu and high temperatures. These results highlight that realistic exposure to combined stressors induces developmental disturbances via stress-induced responses involving oxidative stress and cell death as well as transcriptional alterations leading to cortisol signaling in fish.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
9
|
Liu B, Li P, He S, Xing S, Chen C, Liu L, Li ZH. Chronic exposure to tralopyril induced abnormal growth and calcium regulation of turbot (Scophthalmus maximus). CHEMOSPHERE 2022; 299:134405. [PMID: 35364078 DOI: 10.1016/j.chemosphere.2022.134405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Tralopyril is an emerging marine antifouling agent with limited data on its effects on fish growth and calcium regulation. To determine the changes induced by long-term exposure to tralopyril, multi-levels (such as molecular, biochemical, and individual levels) responses were measured in turbot at different concentrations (1 μg/L, 20 μg/L). The results showed that 1 μg/L mainly affected the immune response, while 20 μg/L affected the synthesis and metabolism of steroids and fat. However, different concentrations of tralopyril affected the synthesis, secretion and action of parathyroid hormone and growth hormone. The expression of GH/IGF axis gene and the level of growth hormone increased significantly, leading to abnormal growth. The energy tradeoff between immunity and growth at 1 μg/L tralopyril pressure may inhibit growth. The change of Ca2+ level was accompanied by the disturbance of PTH-related gene expression. The results of molecular docking showed that the disturbance of Ca2+ regulation might be attributed to the inhibition of vitamin D receptor by tralopyril, which affected the vitamin D signaling pathway. This study provides scientific data for the in-depth understanding and risk assessment of the toxicological effects of tralopyril and reveals the potential threat of tralopyril to environmental health.
Collapse
Affiliation(s)
- Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Chengzhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
10
|
Zeng J, Li J, Yang K, Yan J, Xu T, Lu W. Differential Branchial Response of Low Salinity Challenge Induced Prolactin in Active and Passive Coping Style Olive Flounder. Front Physiol 2022; 13:913233. [PMID: 35846010 PMCID: PMC9277578 DOI: 10.3389/fphys.2022.913233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Stress coping styles are very common in fish, and investigations into this area can greatly improve fish welfare and promote the sustainable development of aquaculture. Although most studies have focused on the behavioral and physiological differences of these fishes, the endocrine response of different coping styles fish when undergoing salinity challenge is still unclear. We examined the physiological response in olive flounder with active coping (AC) style and passive coping (PC) style after transferred from seawater (SW) to freshwater for 0, 2, 5, 8, and 14 days. The results showed that: 1) the plasma prolactin level of FW-acclimated AC flounder was substantially higher than that of FW-acclimated PC flounder at 5, 8, and 14 days, and the branchial gene expression of prolactin receptor (PRLR) in AC flounder was slightly higher than PC flounder after transfer. While there was no remarkable difference observed in cortisol (COR) levels between AC and PC flounder. After transfer, glucocorticoid receptor (GR) expression in AC flounder was significantly higher compared with PC flounder at 8 days. 2) Branchial NKA-IR ionocytes numbers were reduced in PC flounder after transfer, while ionocytes number remain stable in AC flounder. 3) The branchial stem cell transcription factor foxi1 gene expression of AC flounder was significantly higher than PC flounder at 2, 5, and 14 days after transfer, while branchial stem cell transcription factor p63 gene expression of FW-acclimated AC flounder was only substantially higher than that of PC flounder at 5 days. 4) As an apoptosis upstream initiator, the branchial gene expression of caspase-9 in PC flounder was considerably higher than in AC flounder after transfer at 8 days. This study revealed that olive flounder with active and passive coping styles have different endocrine coping strategies after facing the low-salinity challenge. AC flounder adopt an active endocrine strategy by increasing ionocyte differentiation and prolactin secretion significantly. In contrast, PC flounder employ a passive strategy of reducing ionocytes differentiation and retaining prolactin content at a low level to reduce branchial ionocytes number.
Collapse
Affiliation(s)
- Junjia Zeng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China
| | - Jie Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China
| | - Kun Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China
| | - Jiayu Yan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China
| | - Tianchun Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- *Correspondence: Weiqun Lu,
| |
Collapse
|
11
|
Zhang P, Song X, Zhang Y, Zhu J, Shen H, Yu Z. Assessing the Effect of Modified Clay on the Toxicity of Karenia mikimotoi Using Marine Medaka ( Oryzias melastigma) as a Model Organism. TOXICS 2022; 10:105. [PMID: 35324730 PMCID: PMC8949556 DOI: 10.3390/toxics10030105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Blooms of the toxic dinoflagellate Karenia mikimotoi could threaten the survival of marine life, and modified clay (MC) is considered a promising method for the control of harmful algal blooms. Here, using marine medaka as the model organism, the toxicity of K. mikimotoi before and after MC disposal was investigated. The results showed that only a certain density of intact K. mikimotoi cells could cause obvious damage to fish gills and lead to rapid death. A systematic analysis of morphology, physiology, and molecular biology parameters revealed that the fish gills exhibited structural damage, oxidative damage, osmotic regulation impairment, immune response activation, and signal transduction enhancement. MC can flocculate K. mikimotoi rapidly in water and reduce its toxicity by reducing the density of intact algae cells and hemolytic toxicity. The results indicate that MC is an effective and safe method for controlling K. mikimotoi blooms.
Collapse
Affiliation(s)
- Peipei Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (P.Z.); (Y.Z.); (J.Z.); (H.S.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266000, China
| | - Xiuxian Song
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (P.Z.); (Y.Z.); (J.Z.); (H.S.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266000, China
| | - Yue Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (P.Z.); (Y.Z.); (J.Z.); (H.S.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Jianan Zhu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (P.Z.); (Y.Z.); (J.Z.); (H.S.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266000, China
| | - Huihui Shen
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (P.Z.); (Y.Z.); (J.Z.); (H.S.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266000, China
| | - Zhiming Yu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (P.Z.); (Y.Z.); (J.Z.); (H.S.); (Z.Y.)
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266000, China
| |
Collapse
|
12
|
Hoffmann S, Mullins L, Rider S, Brown C, Buckley CB, Assmus A, Li Z, Sierra Beltran M, Henderson N, Del Pozo J, De Goes Martini A, Sequeira-Lopez MLS, Gomez RA, Mullins J. Comparative Studies of Renin-Null Zebrafish and Mice Provide New Functional Insights. Hypertension 2022; 79:e56-e66. [PMID: 35000430 DOI: 10.1161/hypertensionaha.121.18600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The renin-angiotensin system is highly conserved across vertebrates, including zebrafish, which possess orthologous genes coding for renin-angiotensin system proteins, and specialized mural cells of the kidney arterioles, capable of synthesising and secreting renin. METHODS We generated zebrafish with CRISPR-Cas9-targeted knockout of renin (ren-/-) to investigate renin function in a low blood pressure environment. We used single-cell (10×) RNA sequencing analysis to compare the transcriptome profiles of renin lineage cells from mesonephric kidneys of ren-/- with ren+/+ zebrafish and with the metanephric kidneys of Ren1c-/- and Ren1c+/+ mice. RESULTS The ren-/- larvae exhibited delays in larval growth, glomerular fusion and appearance of a swim bladder, but were viable and withstood low salinity during early larval stages. Optogenetic ablation of renin-expressing cells, located at the anterior mesenteric artery of 3-day-old larvae, caused a loss of tone, due to diminished contractility. The ren-/- mesonephric kidney exhibited vacuolated cells in the proximal tubule, which were also observed in Ren1c-/- mouse kidney. Fluorescent reporters for renin and smooth muscle actin (tg(ren:LifeAct-RFP; acta2:EGFP)), revealed a dramatic recruitment of renin lineage cells along the renal vasculature of adult ren-/- fish, suggesting a continued requirement for renin, in the absence of detectable angiotensin metabolites, as seen in the Ren1YFP Ren1c-/- mouse. Both phenotypes were rescued by alleles lacking the potential for glycosylation at exon 2, suggesting that glycosylation is not essential for normal physiological function. CONCLUSIONS Phenotypic similarities and transcriptional variations between mouse and zebrafish renin knockouts suggests evolution of renin cell function with terrestrial survival.
Collapse
Affiliation(s)
- Scott Hoffmann
- Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Linda Mullins
- Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Sebastien Rider
- Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
- Now with DSM Nutritional Products Ltd, Switzerland (S.R.)
| | - Cara Brown
- Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Charlotte B Buckley
- Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
- Now with Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom (C.B.B.)
| | - Adrienne Assmus
- Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Ziwen Li
- Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Mariana Sierra Beltran
- Centre for Inflammation Research (M.S.B., N.H.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Neil Henderson
- Centre for Inflammation Research (M.S.B., N.H.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, United Kingdom (N.H.)
| | - Jorge Del Pozo
- Veterinary Pathology, Royal (Dick)School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Easter Bush Campus, United Kingdom (J.d.P.)
| | - Alexandre De Goes Martini
- Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville (A.D.G.M., M.L.S.S.-L., R.A.G.)
| | - Maria Luisa S Sequeira-Lopez
- Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville (A.D.G.M., M.L.S.S.-L., R.A.G.)
| | - R Ariel Gomez
- Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville (A.D.G.M., M.L.S.S.-L., R.A.G.)
| | - John Mullins
- Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| |
Collapse
|
13
|
Zimmer AM, Goss GG, Glover CN. Reductionist approaches to the study of ionoregulation in fishes. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110597. [PMID: 33781928 DOI: 10.1016/j.cbpb.2021.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms underlying ionoregulation in fishes have been studied for nearly a century, and reductionist methods have been applied at all levels of biological organization in this field of research. The complex nature of ionoregulatory systems in fishes makes them ideally suited to reductionist methods and our collective understanding has been dramatically shaped by their use. This review provides an overview of the broad suite of techniques used to elucidate ionoregulatory mechanisms in fishes, from the whole-animal level down to the gene, discussing some of the advantages and disadvantages of these methods. We provide a roadmap for understanding and appreciating the work that has formed the current models of organismal, endocrine, cellular, molecular, and genetic regulation of ion balance in fishes and highlight the contribution that reductionist techniques have made to some of the fundamental leaps forward in the field throughout its history.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Chris N Glover
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, AB T9S 3A3, Canada
| |
Collapse
|
14
|
Lee CY, Horng JL, Liu ST, Lin LY. Exposure to copper nanoparticles impairs ion uptake, and acid and ammonia excretion by ionocytes in zebrafish embryos. CHEMOSPHERE 2020; 261:128051. [PMID: 33113650 DOI: 10.1016/j.chemosphere.2020.128051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The potential toxicity of copper nanoparticles (CuNPs) to early stages of fishes is not fully understood, and little is known about their effects on ionocytes and associated functions. This study used zebrafish embryos as a model to investigate the toxic effects of CuNPs on two subtypes of ionocytes. Zebrafish embryos were exposed to 0.1, 1, and 3 mg L-1 CuNPs for 96 h. After exposure, whole-body Na+ and Ca2+ contents were significantly reduced at ≥0.1 mg L-1, while the K+ content had decreased at ≥1 mg L-1. H+ and NH4+ excretion by the skin significantly decreased at ≥1 mg L-1. The number of living ionocytes labeled with rhodamine-123 had significantly decreased with ≥0.1 mg L-1 CuNPs. The ionocyte subtypes of H+-ATPase-rich (HR) and Na+/K+-ATPase-rich (NaR) cells were labeled by immunostaining and had decreased with ≥1 mg L-1. Shrinkage of the apical opening of ionocytes was revealed by scanning electronic microscopy. Functional impairment was also reflected by changes in gene expressions, including ion transporters/channels and Ca2+-regulatory hormones. This study shows that CuNP exposure can impair two subtypes of ionocytes and their associated functions, including Na+/Ca2+ uptake and H+/NH4+ excretion in zebrafish embryos.
Collapse
Affiliation(s)
- Chih-Ying Lee
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sian-Tai Liu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
15
|
Hare AJ, Zimmer AM, LePabic R, Morgan AL, Gilmour KM. Early-life stress influences ion balance in developing zebrafish (Danio rerio). J Comp Physiol B 2020; 191:69-84. [PMID: 33064210 DOI: 10.1007/s00360-020-01319-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/16/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
As a key endocrine axis involved in responding to stress, the hypothalamic-pituitary-interrenal axis plays dual roles in mobilizing energy and maintaining ionic/osmotic balance in fishes. Although these roles have been examined independently in detail in adult fishes, less attention has been paid to the effects of an endogenous stress response during early life, particularly with respect to its potential effects on ionic/osmotic balance. The present study tested the hypothesis that exposure of zebrafish to stress during early development would alter ion balance later in life. Zebrafish at three developmental stages (4, 7, or 15 days post-fertilization, dpf) were subjected to an air-exposure stressor twice a day for 2 days, causing elevation of whole-body cortisol levels. Individuals stressed early in life exhibited decreased survival and growth, altered cortisol responses to a subsequent air-exposure stressor, and increased whole-body Na+ and Ca2+ concentrations. Changes in whole-body Ca2+ concentrations were accompanied by increased ionocyte abundance at 7 dpf and increased rates of Ca2+ uptake from the environment. Differences in whole-body ion concentrations at 15 and 35 dpf were not accompanied by altered ion uptake rates. Across all ages examined, air-exposure stress experienced at 7 dpf was particularly effective at eliciting phenotypic changes, suggesting a critical window at this age for a stress response to influence development. These findings demonstrate that early-life stress in zebrafish triggers developmental plasticity, with age-dependent effects on both the cortisol stress axis and ion balance.
Collapse
Affiliation(s)
- A J Hare
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
- Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| | - A M Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - R LePabic
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - A L Morgan
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - K M Gilmour
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
16
|
Macêdo AKS, Santos KPED, Brighenti LS, Windmöller CC, Barbosa FAR, Ribeiro RIMDA, Santos HBD, Thomé RG. Histological and molecular changes in gill and liver of fish (Astyanax lacustris Lütken, 1875) exposed to water from the Doce basin after the rupture of a mining tailings dam in Mariana, MG, Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139505. [PMID: 32480153 DOI: 10.1016/j.scitotenv.2020.139505] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
The effects of the rupture of a mining tailings dam were investigated using the gills and liver of Astyanax lacustris as a proxy for environmental quality. The fish were exposed for seven days to water sampled forming four groups: upstream of the dam rupture (P1), and 22 km (P2); 48 km (P3); and 70 km (P4) downstream from the dam rupture in the Doce River basin. The control group received dechlorinated tap water. The dissolved concentrations of metals were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). We evaluated the histology of the gills and liver, as well as, immunohistochemistry for HSP70 and Na+/K+ ATPase (NKA) in the gills, and for P-gp in liver. In all sites we observed a mix of metals, with higher concentrations of Mn, Cd, As, and Cu/Cr in P1, P2, P3, and P4, respectively. All treatments groups showed histological changes in gills and liver, with the highest amount of these alterations found in the P2 group. Disorganization of the secondary lamellae, epithelial lifting, and mitochondria-rich cells (MRC) were observed in the gills. The parenchyma of the liver was rather disorganized, and hepatocytes and nuclei showed hypertrophy, vacuolization and cytoplasmic degeneration. A higher immunoreaction of HSP70 in P2 when compared with the other groups and lower labeling of HSP70 in the P4 was registered. In P2 and P3, NKA-positive cells were observed with hypertrophy and disorganization. Morphometric analyses of the liver revealed that all treatment groups presented a lower immunolabeling of P-gp when compared with the control group. Thus, the experimental approach revealed that the water from Doce basin can promote histological alterations in fish's liver and gills, as well as modulation of disruption of ionic balance, cellular responses to stress, and cell detoxification pathways.
Collapse
Affiliation(s)
- Anderson Kelvin Saraiva Macêdo
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Keiza Priscila Enes Dos Santos
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Ludmila Silva Brighenti
- Universidade do Estado de Minas Gerais, Unidade Divinópolis, Av. Paraná, 3001, 35501-170 Divinópolis, Minas Gerais, Brazil; Universidade Federal de Minas Gerais Instituto de Ciências Biológicas ICB, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Cláudia Carvalhinho Windmöller
- Universidade Federal de Minas Gerais Departamento de Química, ICEX, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Francisco Antônio Rodrigues Barbosa
- Universidade Federal de Minas Gerais Instituto de Ciências Biológicas ICB, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | | | - Hélio Batista Dos Santos
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Ralph Gruppi Thomé
- Universidade Federal de São João Del Rei, Campus Centro Oeste, Rua Sebastião Gonçalves Coelho, 400, 35501-296 Divinópolis, Minas Gerais, Brazil.
| |
Collapse
|
17
|
Arginine Vasopressin Modulates Ion and Acid/Base Balance by Regulating Cell Numbers of Sodium Chloride Cotransporter and H +-ATPase Rich Ionocytes. Int J Mol Sci 2020; 21:ijms21113957. [PMID: 32486459 PMCID: PMC7312464 DOI: 10.3390/ijms21113957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 01/14/2023] Open
Abstract
Arginine vasopressin (Avp) is a conserved pleiotropic hormone that is known to regulate both water reabsorption and ion balance; however, many of the mechanisms underlying its effects remain unclear. Here, we used zebrafish embryos to investigate how Avp modulates ion and acid–base homeostasis. After incubating embryos in double-deionized water for 24 h, avp mRNA expression levels were significantly upregulated. Knockdown of Avp protein expression by an antisense morpholino oligonucleotide (MO) reduced the expression of ionocyte-related genes and downregulated whole-body Cl− content and H+ secretion, while Na+ and Ca2+ levels were not affected. Incubation of Avp antagonist SR49059 also downregulated the mRNA expression of sodium chloride cotransporter 2b (ncc2b), which is a transporter responsible for Cl− uptake. Correspondingly, avp morphants showed lower NCC and H+-ATPase rich (HR) cell numbers, but Na+/K+-ATPase rich (NaR) cell numbers remained unchanged. avp MO also downregulated the numbers of foxi3a- and p63-expressing cells. Finally, the mRNA expression levels of calcitonin gene-related peptide (cgrp) and its receptor, calcitonin receptor-like 1 (crlr1), were downregulated in avp morphants, suggesting that Avp might affect Cgrp and Crlr1 for modulating Cl− balance. Together, our results reveal a molecular/cellular pathway through which Avp regulates ion and acid–base balance, providing new insights into its function.
Collapse
|
18
|
Use of gene knockout to examine serotonergic control of ion uptake in zebrafish reveals the importance of controlling for genetic background: A cautionary tale. Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110558. [PMID: 31446068 DOI: 10.1016/j.cbpa.2019.110558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Freshwater (FW) fishes inhabit dilute environments and must actively absorb ions in order to counteract diffusive salt loss. Neuroendocrine control of ion uptake in FW fishes is an important feature of ion homeostasis and several important neuroendocrine factors have been identified. The role of serotonin (5-HT), however, has received less attention despite several studies pointing to a role for 5-HT in the control of ion balance. Here, we used a gene knockout approach to elucidate the role of 5-HT in regulating Na+ and Ca2+ uptake rates in larval zebrafish. Tryptophan hydroxylase (TPH) is the rate-limiting step in 5-HT synthesis and we therefore hypothesized that ion uptake rates would be altered in zebrafish larvae carrying knockout mutations in tph genes. We first examined the effect of tph1b knockout (KO) and found that tph1bKO larvae, obtained from Harvard University, had reduced rates of Na+ and Ca2+ uptake compared to wild-type (WT) larvae from our institution (uOttawa WT), lending support to our hypothesis. However, further experiments controlling for differences in genetic background demonstrated that WT larvae from Harvard University (Harvard WT) had lower ion uptake rates than those of uOttawa WT, and that ion uptake rate between Harvard WT and tph1bKO larvae were not significantly different. Therefore, our initial observation that tph1bKO larvae (Harvard source) had reduced ion uptake rates relative to uOttawa WT was a function of genetic background and not of knockout itself. These data provide a cautionary tale of the importance of controlling for genetic background in gene knockout experiments.
Collapse
|
19
|
Chen YC, Liao BK, Lu YF, Liu YH, Hsieh FC, Hwang PP, Hwang SPL. Zebrafish Klf4 maintains the ionocyte progenitor population by regulating epidermal stem cell proliferation and lateral inhibition. PLoS Genet 2019; 15:e1008058. [PMID: 30933982 PMCID: PMC6459544 DOI: 10.1371/journal.pgen.1008058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/11/2019] [Accepted: 02/28/2019] [Indexed: 01/06/2023] Open
Abstract
In the skin and gill epidermis of fish, ionocytes develop alongside keratinocytes and maintain body fluid ionic homeostasis that is essential for adaptation to environmental fluctuations. It is known that ionocyte progenitors in zebrafish embryos are specified from p63+ epidermal stem cells through a patterning process involving DeltaC (Dlc)-Notch-mediated lateral inhibition, which selects scattered dlc+ cells into the ionocyte progenitor fate. However, mechanisms by which the ionocyte progenitor population is modulated remain unclear. Krüppel-like factor 4 (Klf4) transcription factor was previously implicated in the terminal differentiation of mammalian skin epidermis and is known for its bifunctional regulation of cell proliferation in a tissue context-dependent manner. Here, we report novel roles for zebrafish Klf4 in the ventral ectoderm during embryonic skin development. We found that Klf4 was expressed in p63+ epidermal stem cells of the ventral ectoderm from 90% epiboly onward. Knockdown or knockout of klf4 expression reduced the proliferation rate of p63+ stem cells, resulting in decreased numbers of p63+ stem cells, dlc-p63+ keratinocyte progenitors and dlc+ p63+ ionocyte progenitor cells. These reductions subsequently led to diminished keratinocyte and ionocyte densities and resulted from upregulation of the well-known cell cycle regulators, p53 and cdkn1a/p21. Moreover, mutation analyses of the KLF motif in the dlc promoter, combined with VP16-klf4 or engrailed-klf4 mRNA overexpression analyses, showed that Klf4 can bind the dlc promoter and modulate lateral inhibition by directly repressing dlc expression. This idea was further supported by observing the lateral inhibition outcomes in klf4-overexpressing or knockdown embryos. Overall, our experiments delineate novel roles for zebrafish Klf4 in regulating the ionocyte progenitor population throughout early stem cell stage to initiation of terminal differentiation, which is dependent on Dlc-Notch-mediated lateral inhibition.
Collapse
Affiliation(s)
- Yi-Chung Chen
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
| | - Bo-Kai Liao
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Yu-Fen Lu
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Hsiu Liu
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Fang-Chi Hsieh
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
| | - Sheng-Ping L. Hwang
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
20
|
Ion uptake pathways in European sea bass Dicentrarchus labrax. Gene 2019; 692:126-137. [DOI: 10.1016/j.gene.2019.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 01/20/2023]
|
21
|
Bollinger RJ, Ellis LV, Bossus MC, Tipsmark CK. Prolactin controls Na +,Cl - cotransporter via Stat5 pathway in the teleost gill. Mol Cell Endocrinol 2018; 477:163-171. [PMID: 29959978 DOI: 10.1016/j.mce.2018.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 01/06/2023]
Abstract
In some freshwater fish species, the control of gill Na, Cl cotransporter (Ncc2b) by prolactin appears to be instrumental to ionic homeostasis. This study was carried out to examine the signaling pathways involved in prolactin-mediated salt retention using gill explants from Japanese medaka (Oryzias latipes). Ovine prolactin induced a concentration-dependent stimulation of ncc2b with significant effects of 10, 100 and 1000 ng of hormone per mL media (2-6 fold). To understand the molecular mechanisms mediating prolactin control of gill function, we analyzed effects on signaling pathways known to be involved in the hormones action in other systems, namely Stat5, Akt and Erk1/2. Their activation was examined in a time course and concentration response experiment. Prolactin (1 μg mL-1) induced a rapid phosphorylation (stimulation) of Stat5 (10 min) that reached a plateau after 30 min and was maintained for at least 120 min. The effect of prolactin on Stat5 phosphorylation was concentration-dependent (4-12 fold). No activation of Akt or Erk1/2 was observed in either experiment. The Stat5 activation was further investigated in localization studies that demonstrated strong nuclear expression of phosphorylated Stat5 in prolactin-treated gill ionocytes. Using specific inhibitors, we analyzed the signalling pathways mediating prolactin induction of gill ncc2b. Co-incubation experiments showed that Stat5 inhibition blocked prolactin's stimulation of ncc2b expression, while PI3K-Akt and Mek1/2-Erk1/2 pathway inhibitors had no effect. These findings show that ncc2b expression is dependent on prolactin's downstream activation of Stat5 and its subsequent nuclear translocation within branchial ionocytes.
Collapse
Affiliation(s)
- Rebecca J Bollinger
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA
| | - Laura V Ellis
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA
| | - Maryline C Bossus
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA; Lyon College, Math and Science Department, 2300 Highland Rd, Batesville, AR, 72501, USA
| | - Christian K Tipsmark
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA.
| |
Collapse
|
22
|
Analyses of the molecular mechanisms associated with salinity adaption of Trachidermus fasciatus through combined iTRAQ-based proteomics and RNA sequencing-based transcriptomics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 136:40-53. [DOI: 10.1016/j.pbiomolbio.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/30/2018] [Accepted: 02/06/2018] [Indexed: 01/16/2023]
|
23
|
Lewis L, Kwong RWM. Zebrafish as a Model System for Investigating the Compensatory Regulation of Ionic Balance during Metabolic Acidosis. Int J Mol Sci 2018; 19:E1087. [PMID: 29621145 PMCID: PMC5979485 DOI: 10.3390/ijms19041087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022] Open
Abstract
Zebrafish (Danio rerio) have become an important model for integrative physiological research. Zebrafish inhabit a hypo-osmotic environment; to maintain ionic and acid-base homeostasis, they must actively take up ions and secrete acid to the water. The gills in the adult and the skin at larval stage are the primary sites of ionic regulation in zebrafish. The uptake of ions in zebrafish is mediated by specific ion transporting cells termed ionocytes. Similarly, in mammals, ion reabsorption and acid excretion occur in specific cell types in the terminal region of the renal tubules (distal convoluted tubule and collecting duct). Previous studies have suggested that functional regulation of several ion transporters/channels in the zebrafish ionocytes resembles that in the mammalian renal cells. Additionally, several mechanisms involved in regulating the epithelial ion transport during metabolic acidosis are found to be similar between zebrafish and mammals. In this article, we systemically review the similarities and differences in ionic regulation between zebrafish and mammals during metabolic acidosis. We summarize the available information on the regulation of epithelial ion transporters during acidosis, with a focus on epithelial Na⁺, Cl- and Ca2+ transporters in zebrafish ionocytes and mammalian renal cells. We also discuss the neuroendocrine responses to acid exposure, and their potential role in ionic compensation. Finally, we identify several knowledge gaps that would benefit from further study.
Collapse
Affiliation(s)
- Lletta Lewis
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
24
|
Shu T, Shu Y, Gao Y, Jin X, He J, Zhai G, Yin Z. Depletion of Tissue-Specific Ion Transporters Causes Differential Expression of PRL Targets in Response to Increased Levels of Endogenous PRL. Front Endocrinol (Lausanne) 2018; 9:683. [PMID: 30515132 PMCID: PMC6255821 DOI: 10.3389/fendo.2018.00683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/01/2018] [Indexed: 01/10/2023] Open
Abstract
Prolactin (PRL) has been considered a key regulator of ion uptake in zebrafish. The genes slc12a10.2 and slc12a3, which are Na+ and chloride Cl- co-transporters, have been reported to be regulated by PRL in freshwater fish. The integrative network of PRL signaling dissected from the knockout of tissue-specific downstream PRL ion transporters remains poor. In the present study, zebrafish models with increased endogenous levels of PRL were generated through the knockout of slc12a10.2 or slc12a3, and the developmental consequences were analyzed. The increased levels of pituitary PRL were observed in both slc12a10.2- and slc12a3-deficient fish. Unlike the slc12a3-deficient fish, which could survive to adulthood, the slc12a10.2-deficient fish began to die at 9 days post-fertilization (dpf) and did not survive beyond 17 dpf. This survival defect is a result of defective Cl- uptake in this mutant, indicating that Slc12a10.2 plays an essential role in Cl- uptake. Intriguingly, compared to the levels in control fish, no significant differences in the levels of Na+ in the body were observed in slc12a10.2- or slc12a3-deficient zebrafish. The upregulations of the PRL downstream transporters, slc9a3.2, slc12a10.2, and atp1a1a.5 were observed in slc12a3-deficient fish in both the gills/skin and the pronephric duct. However, this type of response was not observed in the pronephric duct of slc12a10.2-deficient fish, except under Na+-deprived conditions. Our results show that PRL is susceptible to deficiencies in downstream ion transporters. Moreover, both the gills/skin and pronephric duct show differential expression of downstream PRL targets in response to increased levels of pituitary PRL caused by the depletion of tissue-specific ion transporters.
Collapse
Affiliation(s)
- Tingting Shu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqin Shu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Gang Zhai
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Zhan Yin
| |
Collapse
|
25
|
Gerber L, Jensen FB, Madsen SS. Dynamic changes in nitric oxide synthase expression are involved in seawater acclimation of rainbow trout Oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol 2017; 314:R552-R562. [PMID: 29351430 DOI: 10.1152/ajpregu.00519.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent research has shown that nitric oxide (NO) produced by nitric oxide synthases (NOS) is an inhibitor of ion transporter activity and a modulator of epithelial ion transport in fish, but little is known on changes in the NOS/NO system during osmotic stress. We hypothesized that the NOS/NO system responds to salinity changes as an integrated part of the acclimation process. Expression and localization of nos1/Nos1 and nos2/Nos2 were investigated in gill, kidney, and intestine of freshwater (FW)- and seawater (SW)-transferred trout using quantitative PCR, Western blotting, and immunohistochemistry, along with expressional changes of major ion transporters in the gill. The classical branchial ion transporters showed expected expressional changes upon SW transfer, there among a rapid decrease in Slc26a6 mRNA, coding a branchial Cl-/[Formula: see text] exchanger. There was a major downregulation of nos1/ nos2/Nos2 expression in the gill during SW acclimation. A significant decrease in plasma nitrite supported an overall decreased Nos activity and NO production. In the middle intestine, Nos1 was upregulated during SW acclimation, whereas no changes in nos/Nos expression were observed in the posterior intestine and the kidney. Nos1 was localized along the longitudinal axis of the gill filament, beneath smooth muscle fibers of the intestine wall and in blood vessel walls of the kidney. Nos2 was localized within the epithelium adjacent to the gill filament axis and in hematopoietic tissues of the kidney. We conclude that downregulation of branchial NOS is integrated to the SW acclimation process likely to avoid the inhibitory effects of NO on active ion extrusion.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Steffen S Madsen
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|