1
|
Lara OD, Van Oudenhove E, Pereira L, Misirlioglu S, Levine DA, Hacker KE. SPL-108 mitigates metastasis and chemoresistance in tubo-ovarian carcinoma. Transl Oncol 2024; 51:102168. [PMID: 39504709 DOI: 10.1016/j.tranon.2024.102168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Overcoming the heterogeneous mechanisms of metastasis and chemoresistance will improve outcomes for women with tubo-ovarian carcinomas (TOCs). CD44 expression has been shown to be associated with poor prognosis and advanced disease in TOCs. In addition, studies have shown a link between chemoresistance and CD44 pathways. Given the therapeutic implications of targeting CD44, this manuscript examines the biologic effects of a novel CD44 modulator, SPL-108, in TOCs. MATERIALS AND METHODS We assessed the effects of SPL-108 on chemosensitivity and migration in a panel of ovarian cancer cell lines with varied CD44 and MDR1 expression. In vitro experiments (cell viability assay, Western blot analysis, Calcein AM fluorescence assay, and migration assay) were carried out to determine the functional effects of SPL-108 in TOCs. FINDINGS Ovarian cancer cell lines OVCAR5 and OVCAR8 expressed higher protein levels of CD44 as demonstrated through Western Blot analysis. SPL-108 treatment significantly decreased the number of migrating cells in OVCAR8, OVCAR5 and OVCAR3 cell lines and migratory response was independent of CD44 expression. Treatment with SPL-108 led to significant accumulation of the MDR1 substrate Calcein in OVCAR5, OVCAR8 and OVCAR3 cells lines compared to verapamil treated positive control cells. Retention of Calcein after SPL-108 treatment was seen in cell lines with high MDR1 protein expression and no Calcein retention was seen in cells lacking MDR1 expression, suggesting SPL-108 inhibits MDR1. CONCLUSIONS SPL-108 treatment has anti-metastatic properties and may play a role in chemoresistance in preclinical models of TOCs independent of CD44 expression. Ongoing in vitro and in vivo studies will help guide further clinical development of SPL-108.
Collapse
Affiliation(s)
- Olivia D Lara
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Elke Van Oudenhove
- Division of Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Luiza Pereira
- Division of Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Selim Misirlioglu
- Division of Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | | | - Kari E Hacker
- Division of Gynecologic Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
2
|
Gomari MM, Arab SS, Balalaie S, Ramezanpour S, Hosseini A, Dokholyan NV, Tarighi P. Rational peptide design for targeting cancer cell invasion. Proteins 2024; 92:76-95. [PMID: 37646459 DOI: 10.1002/prot.26580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Cell invasion is an important process in cancer progression and recurrence. Invasion and implantation of cancer cells from their original place to other tissues, by disabling vital organs, challenges the treatment of cancer patients. Given the importance of the matter, many molecular treatments have been developed to inhibit cancer cell invasion. Because of their low production cost and ease of production, peptides are valuable therapeutic molecules for inhibiting cancer cell invasion. In recent years, advances in the field of computational biology have facilitated the design of anti-cancer peptides. In our investigation, using computational biology approaches such as evolutionary analysis, residue scanning, protein-peptide interaction analysis, molecular dynamics, and free energy analysis, our team designed a peptide library with about 100 000 candidates based on A6 (acetyl-KPSSPPEE-amino) sequence which is an anti-invasion peptide. During computational studies, two of the designed peptides that give the highest scores and showed the greatest sequence similarity to A6 were entered into the experimental analysis workflow for further analysis. In experimental analysis steps, the anti-metastatic potency and other therapeutic effects of designed peptides were evaluated using MTT assay, RT-qPCR, zymography analysis, and invasion assay. Our study disclosed that the IK1 (acetyl-RPSFPPEE-amino) peptide, like A6, has great potency to inhibit the invasion of cancer cells.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
| | - Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Arshad Hosseini
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Girda E, Hou J, Nelson D, Finlayson M, de Meritens AB, Chekmareiva M, Leiser A, Song M, Stephenson R, Chan N, Tergas AI, Vattakalam R, Wright JD, Yu H, Martincuks A, Kohut A, Palmer J, Rodriguez-Rodriguez L. Phase I trial of daily subcutaneous SPL-108 injections in combination with paclitaxel in patients with platinum resistant CD44+ advanced ovarian epithelial cancer. Int J Gynecol Cancer 2022; 32:ijgc-2021-003316. [PMID: 35750354 PMCID: PMC9380511 DOI: 10.1136/ijgc-2021-003316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/31/2022] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE Preclinical evidence and early clinical trials have demonstrated the activity of SPL-108, a targeted agent that inhibits CD44 mediated induction of multidrug resistance specifically to paclitaxel and platinum agents. We conducted a phase I, open label, dose escalation study of the safety and tolerability of the combination of SPL-108 with weekly paclitaxel in patients with platinum resistant CD44+ ovarian, primary peritoneal, or fallopian tube cancer. METHODS Patients with platinum resistant histologically proven epithelial ovarian, primary peritoneal, or fallopian tube cancers and measurable disease according to RECIST (Response Evaluation Criteria in Solid Tumours) version 1.1 were selected. Tumors were tested for CD44 expression for eligibility, defined as strong (+++) or moderate (++) staining in ≥20% of the tumor tissue or diffuse + staining. Patients were treated with daily and then twice daily SPL-108 subcutaneous injections and weekly intravenous paclitaxel on days 1, 8, and 15 of a 28 day cycle. Endpoints included safety, determination of maximum tolerated dose, and efficacy. Tumors underwent comprehensive genomic profiling, and cell lines and western blotting were used to study markers of response. RESULTS We screened 16 patients, and 14 were enrolled based on CD44+ expression. A total of 86% of patients had high grade serous tumors and all had received multiple prior therapies. There were no grade 4-5 toxicities. One patient had grade 3 peripheral sensory neuropathy attributed to paclitaxel and one patient developed presumed colonic perforation attributed to the study drug. No dose reductions or treatment discontinuations were required. All patients tolerated the maximum planned dose; no maximum tolerated dose was reached. Overall response rate was 36%; 5 (36%) patients had partial response and 5 (36%) patients had stable disease. CONCLUSIONS The combination of SPL-108 with weekly paclitaxel was safe and well tolerated. Encouraging antitumor activity was observed, with 72% of patients deriving a clinical benefit. TRIAL REGISTRATION NCT03078400.
Collapse
Affiliation(s)
- Eugenia Girda
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - June Hou
- Gynecologic Oncology, Columbia University, New York City, New York, USA
| | - David Nelson
- Splash Pharmaceuticals, San Diego, California, USA
| | | | | | | | - Aliza Leiser
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Mihae Song
- City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Ruth Stephenson
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Nancy Chan
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Ana I Tergas
- City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | | | - Jason D Wright
- Obstetrics and Gynecology, Columbia University, New York City, New York, USA
| | - Hua Yu
- City of Hope National Medical Center, Duarte, California, USA
| | | | - Adrian Kohut
- City of Hope National Medical Center, Duarte, California, USA
| | | | | |
Collapse
|
4
|
Weng X, Maxwell-Warburton S, Hasib A, Ma L, Kang L. The membrane receptor CD44: novel insights into metabolism. Trends Endocrinol Metab 2022; 33:318-332. [PMID: 35249813 DOI: 10.1016/j.tem.2022.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
CD44, a cell-surface glycoprotein, has long been studied as a cancer molecule due to its essential role in physiological activities in normal cells and pathological activities in cancer cells, such as cell proliferation, adhesion, and migration; angiogenesis; inflammation; and cytoskeleton rearrangement. Yet, recent evidence suggests a role of CD44 in metabolism, especially insulin resistance in obesity and diabetes. In line with the current concept of fibroinflammation in obesity and insulin resistance, CD44 as the main receptor of the extracellular matrix component, hyaluronan (HA), has been shown to regulate diet-induced insulin resistance in muscle and other insulin-sensitive tissues. In this review, we integrate current evidence for a role of CD44 in regulating glucose and lipid homeostasis and speculate about its involvement in the pathogenesis of chronic metabolic diseases, including obesity and diabetes. We summarize the current development of CD44-targeted therapies and discuss its potential for the use in treating metabolic diseases.
Collapse
Affiliation(s)
- Xiong Weng
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | | | - Annie Hasib
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Lifeng Ma
- School of Medicine, Xizang Minzhu University, Xianyang, Shaanxi, China
| | - Li Kang
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
5
|
Alfano D, Franco P, Stoppelli MP. Modulation of Cellular Function by the Urokinase Receptor Signalling: A Mechanistic View. Front Cell Dev Biol 2022; 10:818616. [PMID: 35493073 PMCID: PMC9045800 DOI: 10.3389/fcell.2022.818616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycosyl-phosphatidyl-inositol anchored (GPI) membrane protein. The uPAR primary ligand is the serine protease urokinase (uPA), converting plasminogen into plasmin, a broad spectrum protease, active on most extracellular matrix components. Besides uPA, the uPAR binds specifically also to the matrix protein vitronectin and, therefore, is regarded also as an adhesion receptor. Complex formation of the uPAR with diverse transmembrane proteins, including integrins, formyl peptide receptors, G protein-coupled receptors and epidermal growth factor receptor results in intracellular signalling. Thus, the uPAR is a multifunctional receptor coordinating surface-associated pericellular proteolysis and signal transduction, thereby affecting physiological and pathological mechanisms. The uPAR-initiated signalling leads to remarkable cellular effects, that include increased cell migration, adhesion, survival, proliferation and invasion. Although this is beyond the scope of this review, the uPA/uPAR system is of great interest to cancer research, as it is associated to aggressive cancers and poor patient survival. Increasing evidence links the uPA/uPAR axis to epithelial to mesenchymal transition, a highly dynamic process, by which epithelial cells can convert into a mesenchymal phenotype. Furthermore, many reports indicate that the uPAR is involved in the maintenance of the stem-like phenotype and in the differentiation process of different cell types. Moreover, the levels of anchor-less, soluble form of uPAR, respond to a variety of inflammatory stimuli, including tumorigenesis and viral infections. Finally, the role of uPAR in virus infection has received increasing attention, in view of the Covid-19 pandemics and new information is becoming available. In this review, we provide a mechanistic perspective, via the detailed examination of consolidated and recent studies on the cellular responses to the multiple uPAR activities.
Collapse
|
6
|
Therapeutic Strategies Targeting Urokinase and Its Receptor in Cancer. Cancers (Basel) 2022; 14:cancers14030498. [PMID: 35158766 PMCID: PMC8833673 DOI: 10.3390/cancers14030498] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies have ascertained that uPA and uPAR do participate in tumor progression and metastasis and are involved in cell adhesion, migration, invasion and survival, as well as angiogenesis. Increased levels of uPA and uPAR in tumor tissues, stroma and biological fluids correlate with adverse clinic-pathologic features and poor patient outcomes. After binding to uPAR, uPA activates plasminogen to plasmin, a broad-spectrum matrix- and fibrin-degrading enzyme able to facilitate tumor cell invasion and dissemination to distant sites. Moreover, uPAR activated by uPA regulates most cancer cell activities by interacting with a broad range of cell membrane receptors. These findings make uPA and uPAR not only promising diagnostic and prognostic markers but also attractive targets for developing anticancer therapies. In this review, we debate the uPA/uPAR structure-function relationship as well as give an update on the molecules that interfere with or inhibit uPA/uPAR functions. Additionally, the possible clinical development of these compounds is discussed.
Collapse
|
7
|
Shoari A, Khodabakhsh F, Ahangari Cohan R, Salimian M, Karami E. Anti-angiogenic peptides application in cancer therapy; a review. Res Pharm Sci 2021; 16:559-574. [PMID: 34760005 PMCID: PMC8562409 DOI: 10.4103/1735-5362.327503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/16/2021] [Accepted: 09/19/2021] [Indexed: 12/28/2022] Open
Abstract
Cancer is a disease advanced via surplus angiogenesis. The development of new anti-angiogenic therapeutic agents with more efficacy and fewer side effects is still quite necessary. Conventional therapies saving the life of many cancer patients but due to drug resistance and lack of specificity utilizing these methods is faced with limits. Recently, new therapeutic agents have been developed and used to treat cancers such as scaffold proteins, monoclonal antibodies, tyrosine kinase inhibitors, and peptides. In antiangiogenic drug development, anti-angiogenic peptides design is a significant aim. Peptides have developed as substantial therapeutics that are being carefully investigated in angiogenesis-dependent diseases because of their high penetrating rate into the cancer cells, high specificity, and low toxicity. In this review, we focus on anti-angiogenic peptides in the field of cancer therapy that are designed, screened, or derived from nanobodies, mimotopes, phage displays, and natural resources.
Collapse
Affiliation(s)
- Alireza Shoari
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R. Iran
| | - Farnaz Khodabakhsh
- Department of Genetics and Advanced Medical Technology, Medical Biotechnology Research Center, Faculty of Medicine, AJA University of Medical Sciences, Tehran, I.R. Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, I.R. Iran
| | - Morteza Salimian
- Department of Medical Laboratory, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Elmira Karami
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran
| |
Collapse
|
8
|
Piperigkou Z, Kyriakopoulou K, Koutsakis C, Mastronikolis S, Karamanos NK. Key Matrix Remodeling Enzymes: Functions and Targeting in Cancer. Cancers (Basel) 2021; 13:1441. [PMID: 33809973 PMCID: PMC8005147 DOI: 10.3390/cancers13061441] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue functionality and integrity demand continuous changes in distribution of major components in the extracellular matrices (ECMs) under normal conditions aiming tissue homeostasis. Major matrix degrading proteolytic enzymes are matrix metalloproteinases (MMPs), plasminogen activators, atypical proteases such as intracellular cathepsins and glycolytic enzymes including heparanase and hyaluronidases. Matrix proteases evoke epithelial-to-mesenchymal transition (EMT) and regulate ECM turnover under normal procedures as well as cancer cell phenotype, motility, invasion, autophagy, angiogenesis and exosome formation through vital signaling cascades. ECM remodeling is also achieved by glycolytic enzymes that are essential for cancer cell survival, proliferation and tumor progression. In this article, the types of major matrix remodeling enzymes, their effects in cancer initiation, propagation and progression as well as their pharmacological targeting and ongoing clinical trials are presented and critically discussed.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | | | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| |
Collapse
|
9
|
Bum-Erdene K, Liu D, Xu D, Ghozayel MK, Meroueh SO. Design and Synthesis of Fragment Derivatives with a Unique Inhibition Mechanism of the uPAR·uPA Interaction. ACS Med Chem Lett 2021; 12:60-66. [PMID: 33488965 DOI: 10.1021/acsmedchemlett.0c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
There is substantial interest in the development of small molecules that inhibit the tight and highly challenging protein-protein interaction between the glycophosphatidylinositol (GPI)-anchored cell surface receptor uPAR and the serine protease uPA. While preparing derivatives of a fragment-like compound that previously emerged from a computational screen, we identified compound 5 (IPR-3242), which inhibited binding of uPA to uPAR with submicromolar IC50s. The high inhibition potency prompted us to carry out studies to rule out potential aggregation, lack of stability, reactivity, and nonspecific inhibition. We designed and prepared 16 derivatives to further explore the role of each substituent. Interestingly, the compounds only partially inhibited binding of a fluorescently labeled α-helical peptide that binds to uPAR at the uPAR·uPA interface. Collectively, the results suggest that the compounds bind to uPAR outside of the uPAR·uPA interface, trapping the receptor into a conformation that is not able to bind to uPA. Additional studies will have to be carried out to determine whether this unique inhibition mechanism can occur at the cell surface.
Collapse
Affiliation(s)
- Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Degang Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - David Xu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Mona K. Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Samy O. Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
10
|
Martincuks A, Li PC, Zhao Q, Zhang C, Li YJ, Yu H, Rodriguez-Rodriguez L. CD44 in Ovarian Cancer Progression and Therapy Resistance-A Critical Role for STAT3. Front Oncol 2020; 10:589601. [PMID: 33335857 PMCID: PMC7736609 DOI: 10.3389/fonc.2020.589601] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Despite significant progress in cancer therapy over the last decades, ovarian cancer remains the most lethal gynecologic malignancy worldwide with the five-year overall survival rate less than 30% due to frequent disease recurrence and chemoresistance. CD44 is a non-kinase transmembrane receptor that has been linked to cancer metastatic progression, cancer stem cell maintenance, and chemoresistance development via multiple mechanisms across many cancers, including ovarian, and represents a promising therapeutic target for ovarian cancer treatment. Moreover, CD44-mediated signaling interacts with other well-known pro-tumorigenic pathways and oncogenes during cancer development, such as signal transducer and activator of transcription 3 (STAT3). Given that both CD44 and STAT3 are strongly implicated in the metastatic progression and chemoresistance of ovarian tumors, this review summarizes currently available evidence about functional crosstalk between CD44 and STAT3 in human malignancies with an emphasis on ovarian cancer. In addition to the role of tumor cell-intrinsic CD44 and STAT3 interaction in driving cancer progression and metastasis, we discuss how CD44 and STAT3 support the pro-tumorigenic tumor microenvironment and promote tumor angiogenesis, immunosuppression, and cancer metabolic reprogramming in favor of cancer progression. Finally, we review the current state of therapeutic CD44 targeting and propose superior treatment possibilities for ovarian cancer.
Collapse
Affiliation(s)
- Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Pei-Chuan Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Qianqian Zhao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | | |
Collapse
|
11
|
Fabijańska M, Orzechowska M, Rybarczyk-Pirek AJ, Dominikowska J, Bieńkowska A, Małecki M, Ochocki J. Simple Trans-Platinum Complex Bearing 3-Aminoflavone Ligand Could Be a Useful Drug: Structure-Activity Relationship of Platinum Complex in Comparison with Cisplatin. Int J Mol Sci 2020; 21:ijms21062116. [PMID: 32204470 PMCID: PMC7139614 DOI: 10.3390/ijms21062116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 01/05/2023] Open
Abstract
Following previous studies devoted to trans–Pt(3-af)2Cl2, in this paper, the molecular structure and intermolecular interactions of the title complex are compared with other cisplatin analogues of which the crystal structures are presented in the Cambridge Structural Database (CSD). Molecular Hirshfeld surface analysis and computational methods were used to examine a possible relationship between the structure and anticancer activity of trans–Pt(3-af)2Cl2. The purpose of the article was also to investigate the effect of hyperthermia on the anticancer activity of cisplatin, cytostatics used in the treatment of patients with ovarian cancer and a new analogue of cisplatin-trans–Pt(3-af)2Cl2. The study was conducted on two cell lines of ovarian cancer sensitive to Caov-3 cytostatics and the OVCAR-3 resistant cisplatin line. The study used the MTT (3-(4,5-dimethylthiazol-2,5-diphenyltetrazolium bromide) cell viability assay, LDH (lactate dehydrogenase), and the quantitative evaluation method for measuring gene expression, i.e., qPCR with TagMan probes. Reduced survivability of OVCAR-3 and Caov-3 cells exposed to cytostatics at elevated temperatures (37 °C, 40 °C, 43 °C) was observed. Hyperthermia may increase the sensitivity of cells to platinum-based antineoplastic drugs and paclitaxel, which may be associated with the reduction of gene expression related to apoptotic processes.
Collapse
Affiliation(s)
- Małgorzata Fabijańska
- Department of Bioinorganic Chemistry, Medical University of Lodz, 1 Muszynskiego St., 90-151 Łódź, Poland
- Correspondence: (M.F.); (J.O.); Tel.: +48-(42)-6779220 (J.O.)
| | - Magdalena Orzechowska
- Department of Applied Pharmacy, Medical University of Warsaw, 1 Banacha St., 02–097 Warsaw, Poland; (M.O.); (A.B.); (M.M.)
| | - Agnieszka J. Rybarczyk-Pirek
- Theoretical and Structural Chemistry Group, Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236 Łódź, Poland; (A.J.R.-P.); (J.D.)
| | - Justyna Dominikowska
- Theoretical and Structural Chemistry Group, Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236 Łódź, Poland; (A.J.R.-P.); (J.D.)
| | - Alicja Bieńkowska
- Department of Applied Pharmacy, Medical University of Warsaw, 1 Banacha St., 02–097 Warsaw, Poland; (M.O.); (A.B.); (M.M.)
| | - Maciej Małecki
- Department of Applied Pharmacy, Medical University of Warsaw, 1 Banacha St., 02–097 Warsaw, Poland; (M.O.); (A.B.); (M.M.)
| | - Justyn Ochocki
- Department of Bioinorganic Chemistry, Medical University of Lodz, 1 Muszynskiego St., 90-151 Łódź, Poland
- Correspondence: (M.F.); (J.O.); Tel.: +48-(42)-6779220 (J.O.)
| |
Collapse
|
12
|
Lin H, Xu L, Yu S, Hong W, Huang M, Xu P. Therapeutics targeting the fibrinolytic system. Exp Mol Med 2020; 52:367-379. [PMID: 32152451 PMCID: PMC7156416 DOI: 10.1038/s12276-020-0397-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/08/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023] Open
Abstract
The function of the fibrinolytic system was first identified to dissolve fibrin to maintain vascular patency. Connections between the fibrinolytic system and many other physiological and pathological processes have been well established. Dysregulation of the fibrinolytic system is closely associated with multiple pathological conditions, including thrombosis, inflammation, cancer progression, and neuropathies. Thus, molecules in the fibrinolytic system are potent therapeutic and diagnostic targets. This review summarizes the currently used agents targeting this system and the development of novel therapeutic strategies in experimental studies. Future directions for the development of modulators of the fibrinolytic system are also discussed. The fibrinolytic system was originally identified to dissolve blood clots, and is shown to have important roles in other pathological processes, including cancer progression, inflammation, and thrombosis. Molecules or therapeutics targeting fibrinolytic system have been successfully used in the clinical treatments of cancer and thrombotic diseases. The clinical studies and experimental models targeting fibrinolytic system are reviewed by Haili Lin at Sanming First Hosipital, Mingdong Huang at Fuzhou University in China, and Peng Xu at A*STAR in Singapore to demonstrate fibrinolytic system as novel therapeutic targets. As an example, the inhibition of fibrinolytic system protein can be used to suppress cancer prolifieration and metastasis. This review also discusses the potential therapeutic effects of inhibitiors of fibrinolytic system on inflammatory disorders.
Collapse
Affiliation(s)
- Haili Lin
- Department of Pharmacy, Sanming First Hospital, 365000, Sanming, Fujian, People's Republic of China
| | - Luning Xu
- Department of Pharmacy, Sanming First Hospital, 365000, Sanming, Fujian, People's Republic of China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, 350116, Fuzhou, Fujian, People's Republic of China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, 350116, Fuzhou, Fujian, People's Republic of China.
| | - Peng Xu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore.
| |
Collapse
|
13
|
Huang YQ, Yuan JD, Ding HF, Song YS, Qian G, Wang JL, Ji M, Zhang Y. Design, synthesis and antitumor activity of a novel PEG-A6-conjugated irinotecan derivative. Bioorg Med Chem Lett 2020; 30:126847. [DOI: 10.1016/j.bmcl.2019.126847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
|
14
|
Wang L, Yang R, Zhao L, Zhang X, Xu T, Cui M. Basing on uPAR-binding fragment to design chimeric antigen receptors triggers antitumor efficacy against uPAR expressing ovarian cancer cells. Biomed Pharmacother 2019; 117:109173. [PMID: 31387176 DOI: 10.1016/j.biopha.2019.109173] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Due to the success of chimeric antigen receptors (CARs) in hematological tumors, CARs are also being studied to treat solid tumors. Improving the ability of CARs to penetrate solid tumor tissues is one of the biggest challenges. As the most malignant cancer of the female reproductive system, the survival rate of ovarian cancer has not been significantly improved by traditional therapy methods; therefore, it is necessary to develop new therapeutic targets and new immunotherapy methods for ovarian cancer. UPAR is a glysocylphosphatidylinositol (GPI) anchoring membrane protein that is differentially expressed in normal tissues and ovarian cancer tissues. It has been shown that uPAR up-regulation promotes tumor development, proliferation, invasion, and metastasis, and uPAR is also up-regulated in tumor matrix components. In our study, CARs were designed using the natural ligand binding fragment of uPAR for ovarian cancer.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, 130041, Jilin, China.
| | - Rulin Yang
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, 130041, Jilin, China.
| | - Liping Zhao
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, 130041, Jilin, China.
| | - Xiwen Zhang
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, 130041, Jilin, China.
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, 130041, Jilin, China.
| | - Manhua Cui
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, 130041, Jilin, China.
| |
Collapse
|
15
|
Vilariño-Güell C, Zimprich A, Martinelli-Boneschi F, Herculano B, Wang Z, Matesanz F, Urcelay E, Vandenbroeck K, Leyva L, Gris D, Massaad C, Quandt JA, Traboulsee AL, Encarnacion M, Bernales CQ, Follett J, Yee IM, Criscuoli MG, Deutschländer A, Reinthaler EM, Zrzavy T, Mascia E, Zauli A, Esposito F, Alcina A, Izquierdo G, Espino-Paisán L, Mena J, Antigüedad A, Urbaneja-Romero P, Ortega-Pinazo J, Song W, Sadovnick AD. Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease. PLoS Genet 2019; 15:e1008180. [PMID: 31170158 PMCID: PMC6553700 DOI: 10.1371/journal.pgen.1008180] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system characterized by myelin loss and neuronal dysfunction. Although the majority of patients do not present familial aggregation, Mendelian forms have been described. We performed whole-exome sequencing analysis in 132 patients from 34 multi-incident families, which nominated likely pathogenic variants for MS in 12 genes of the innate immune system that regulate the transcription and activation of inflammatory mediators. Rare missense or nonsense variants were identified in genes of the fibrinolysis and complement pathways (PLAU, MASP1, C2), inflammasome assembly (NLRP12), Wnt signaling (UBR2, CTNNA3, NFATC2, RNF213), nuclear receptor complexes (NCOA3), and cation channels and exchangers (KCNG4, SLC24A6, SLC8B1). These genes suggest a disruption of interconnected immunological and pro-inflammatory pathways as the initial event in the pathophysiology of familial MS, and provide the molecular and biological rationale for the chronic inflammation, demyelination and neurodegeneration observed in MS patients.
Collapse
Affiliation(s)
| | | | - Filippo Martinelli-Boneschi
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- MS Unit and Department of Neurology, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Bruno Herculano
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Zhe Wang
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of the Capital Medical University, Beijing, China
| | - Fuencisla Matesanz
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | - Elena Urcelay
- Immunology Dept, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
| | - Koen Vandenbroeck
- Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU), Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Laura Leyva
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Denis Gris
- Division of Immunology, Department of Pediatrics, CR-CHUS, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Canada
| | - Charbel Massaad
- Toxicology, Pharmacology and Cell Signalisation—UMR-S 1124 Université Paris Descartes, Paris, France
| | - Jacqueline A. Quandt
- Department of Pathology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Anthony L. Traboulsee
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Mary Encarnacion
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Cecily Q. Bernales
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Jordan Follett
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Irene M. Yee
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Maria G. Criscuoli
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Angela Deutschländer
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, United States of America
- Department of Clinical Genomics, Mayo Clinic Florida, Jacksonville, FL, United States of America
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, United States of America
| | - Eva M. Reinthaler
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Zauli
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, CNS Inflammatory Unit, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Alcina
- Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain
| | | | - Laura Espino-Paisán
- Immunology Dept, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
| | - Jorge Mena
- Achucarro Basque Center for Neuroscience, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Alfredo Antigüedad
- Neurology Department, Hospital Universitario de Cruces, S/N, Baracaldo, Spain
| | - Patricia Urbaneja-Romero
- Red Española de Esclerosis Múltiple REEM, Madrid, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Jesús Ortega-Pinazo
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestion Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - A. Dessa Sadovnick
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Division of Neurology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Wyganowska-Świątkowska M, Tarnowski M, Murtagh D, Skrzypczak-Jankun E, Jankun J. Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review). Int J Mol Med 2018; 43:15-25. [PMID: 30431071 PMCID: PMC6257838 DOI: 10.3892/ijmm.2018.3983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022] Open
Abstract
The mortality rates of cancer patients decreased by ~1.5% per year between 2001 and 2015, although the decrease depends on patient sex, ethnic group and type of malignancy. Cancer remains a significant global health problem, requiring a search for novel treatments. The most common property of malignant tumors is their capacity to invade adjacent tissue and to metastasize, and this cancer aggressiveness is contingent on overexpression of proteolytic enzymes. The components of the plasminogen activation system (PAS) and the metal-loproteinase family [mainly matrix metalloproteinases (MMPs)] are overexpressed in malignant tumors, driving the local invasion, metastasis and angiogenesis. This is the case for numerous types of cancer, such as breast, colon, prostate and oral carcinoma, among others. Present chemotherapeutics agents typically attack all dividing cells; however, for future therapeutic agents to be clinically successful, they need to be highly selective for a specific protein(s) and act on the cancerous tissues without adverse systemic effects. Inhibition of proteolysis in cancerous tissue has the ability to attenuate tumor invasion, angiogenesis and migration. For that purpose, inhibiting both PAS and MMPs may be another approach, since the two groups of enzymes are overexpressed in cancer. In the present review, the roles and new findings on PAS and MMP families in cancer formation, growth and possible treatments are discussed.
Collapse
Affiliation(s)
| | | | - Daniel Murtagh
- Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA
| | - Ewa Skrzypczak-Jankun
- Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA
| | - Jerzy Jankun
- Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA
| |
Collapse
|
17
|
SERPA MS, MAFRA RP, QUEIROZ SIML, SILVA LPD, SOUZA LBD, PINTO LP. Expression of urokinase-type plasminogen activator and its receptor in squamous cell carcinoma of the oral tongue. Braz Oral Res 2018; 32:e93. [DOI: 10.1590/1807-3107bor-2018.vol32.0093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/25/2018] [Indexed: 01/31/2023] Open
|
18
|
Lee J, Oh ET, Choi MH, Kim HG, Park HJ, Kim C. Dual-functional cyclic peptide switch on mesoporous nanocontainers for selective CD44 targeting and on–off gatekeeping triggered by conformational transformation. NEW J CHEM 2018. [DOI: 10.1039/c8nj02179a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dual functional cyclic peptide gatekeeper with A6 sequence is designed not only for triggered drug release by conformational transformation of the peptide but also selective targeting of CD44.
Collapse
Affiliation(s)
- Jeonghun Lee
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Eun-Taex Oh
- Department of Biomedical Sciences
- School of Medicine
- Inha University
- Incheon 22212
- Korea
| | - Min Hyeuk Choi
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| | - Ha Gyeong Kim
- Department of Microbiology
- Hypoxia-related Disease Research Center
- College of Medicine
- Inha University
- Incheon 22212
| | - Heon Joo Park
- Department of Microbiology
- Hypoxia-related Disease Research Center
- College of Medicine
- Inha University
- Incheon 22212
| | - Chulhee Kim
- Department of Polymer Science and Engineering
- Inha University
- Incheon 22212
- Korea
| |
Collapse
|
19
|
Kanno Y, Maruyama C, Matsuda A, Ishisaki A. uPA-derived peptide, Å6 is involved in the suppression of lipopolysaccaride-promoted inflammatory osteoclastogenesis and the resultant bone loss. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:289-299. [PMID: 28493442 PMCID: PMC5569370 DOI: 10.1002/iid3.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/02/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022]
Abstract
Introduction Chronic inflammatory diseases such as rheumatoid arthritis and periodontitis frequently cause bone destruction. Inflammation‐induced bone loss results from the increase of bone‐resorbing osteoclasts. Recently, we demonstrated that urokinase type plasminogen activator (uPA) suppressed lipopolysaccaride (LPS)‐inflammatory osteoclastogenesis through the adenosine monophosphate‐activated protein kinase (AMPK) pathway, whereas its receptor (uPAR) promoted that through the Akt pathway. Methods We investigated the effects of uPA‐derived peptide (Å6) in the LPS‐induced inflammatory osteoclastogenesis and bone destruction. Results We found that Å6 attenuated inflammatory osteoclastogenesis and bone loss induced by LPS in mice. We also showed that Å6 attenuated the LPS‐promoted inflammatory osteoclastogenesis by inactivation of NF‐κB in RAW264.7 mouse monocyte/macrophage lineage cells. Furthermore, we showed that Å6 attenuated the Akt phosphorylation, and promoted the AMPK phosphorylation. Conclusion Å6 is involved in the suppression of LPS‐promoted inflammatory osteoclastgensis and bone destruction by regulating the AMPK and Akt pathways. These findings provide a basis for clinical strategies to improve the bone loss caused by inflammatory diseases.
Collapse
Affiliation(s)
- Yosuke Kanno
- Faculty of Pharmaceutical Science, Department of Clinical Pathological Biochemistry, Doshisha Women's Collage of Liberal Arts, Kyoto, Japan
| | - Chihiro Maruyama
- Faculty of Pharmaceutical Science, Department of Clinical Pathological Biochemistry, Doshisha Women's Collage of Liberal Arts, Kyoto, Japan
| | - Ayaka Matsuda
- Faculty of Pharmaceutical Science, Department of Clinical Pathological Biochemistry, Doshisha Women's Collage of Liberal Arts, Kyoto, Japan
| | - Akira Ishisaki
- Department of Biochemistry, Iwate Medical University School of Dentistry, Morioka, Iwate, Japan
| |
Collapse
|
20
|
Short peptides interfering with signaling pathways as new therapeutic tools for cancer treatment. Future Med Chem 2017; 9:199-221. [PMID: 28111982 DOI: 10.4155/fmc-2016-0189] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Short peptides have many advantages, such as low molecular weight, selectivity for a specific target, organelles or cells with minimal toxicity. We describe properties of short peptides, which interfere with communication networks in tumor cells and within microenvironment of malignant gliomas, the most common brain tumors. We focus on ligand/receptor axes and intracellular signaling pathways critical for gliomagenesis that could be targeted with interfering peptides. We review structures and efficacy of organelle-specific and cell-penetrating peptides and describe diverse chemical modifications increasing proteolytic stability and protecting synthetic peptides against degradation. We report results of application of short peptides in glioma therapy clinical trials, their rises and falls. The most advanced examples of therapeutics such as short interfering peptides combined with cell-penetrating peptides that show good effectiveness in disease models are presented. It is foreseen that identification of peptides with better clinical properties may improve their success rates in clinical trials.
Collapse
|
21
|
Zhao LP, Xu TM, Kan MJ, Xiao YC, Cui MH. A novel uPAg-KPI fusion protein inhibits the growth and invasion of human ovarian cancer cells in vitro. Int J Mol Med 2016; 37:1310-6. [PMID: 27035617 PMCID: PMC4829131 DOI: 10.3892/ijmm.2016.2540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/17/2016] [Indexed: 12/19/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA) acts by breaking down the basement membrane and is involved in cell proliferation, migration and invasion. These actions are mediated by binding to the uPA receptor (uPAR) via its growth factor domain (GFD). The present study evaluated the effects of uPAg-KPI, a fusion protein of uPA-GFD and a kunitz protease inhibitor (KPI) domain that is present in the amyloid β-protein precursor. Using SKOV-3 cells, an ovarian cancer cell line, we examined cell viability, migration, invasion and also protein expression. Furthermore, we examined wound healing, and migration and invasion using a Transwell assay. Our data showed that uPAg-KPI treatment reduced the viability of ovarian cancer SKOV-3 cells in both a concentration and time-dependent manner by arresting tumor cells at G1/G0 phase of the cell cycle. The IC50 of uPAg-KPI was 0.5 µg/µl after 48 h treatment. At this concentration, uPAg-KPI also inhibited tumor cell colony formation, wound closure, as well as cell migration and invasion capacity. At the protein level, western blot analysis demonstrated that uPAg-KPI exerted no significant effect on the expression of total extracellular signal-regulated kinase (ERK)1/ERK2 and AKT, whereas it suppressed levels of phosphorylated ERK1/ERK2 and AKT. Thus, we suggest that this novel uPAg-KPI fusion protein reduced cell viability, colony formation, wound healing and the invasive ability of human ovarian cancer SKOV-3 cells in vitro by regulating ERK and AKT signaling. Further studies using other cell lines will confirm these findings.
Collapse
Affiliation(s)
- Li-Ping Zhao
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Tian-Min Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Mu-Jie Kan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye-Chen Xiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Man-Hua Cui
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
22
|
Soysal SD, Tzankov A, Muenst SE. Role of the Tumor Microenvironment in Breast Cancer. Pathobiology 2015; 82:142-52. [DOI: 10.1159/000430499] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Gutjahr JC, Greil R, Hartmann TN. The Role of CD44 in the Pathophysiology of Chronic Lymphocytic Leukemia. Front Immunol 2015; 6:177. [PMID: 25941526 PMCID: PMC4403525 DOI: 10.3389/fimmu.2015.00177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/29/2015] [Indexed: 12/26/2022] Open
Abstract
CD44 interactions with hyaluronan (HA) play a key role in various malignancies, supporting tumor cell migration, adhesion, and survival. In contrast to solid tumors, the expression of CD44 standard and variant forms and their functional interplay with HA is less understood in hematological malignancies. Chronic lymphocytic leukemia (CLL) is a highly abundant B-cell malignancy with a well coordinated balance between cell cycle-arrest and proliferation of tumor subpopulations. The long-term survival and proliferation of CLL cells requires their dynamic interactions with stromal and immune cells in lymphoid organs. Interactions of HA with CD44 and HA-mediated motility receptor (RHAMM) contribute to CLL cell localization, and hence CLL pathophysiology, by shaping homing, interstitial migration, and adhesion of the tumor cells. CD44 can complex with key prognostic factors of CLL, particularly CD38 and CD49d, bridging the gap between prognosis and cellular function. Here, we review the current evidence for the individual and associated contributions of CD44 to CLL pathophysiology, the dynamic functional regulation of CD44 upon CLL cell activation, and possible therapeutic strategies targeting CD44 in CLL.
Collapse
Affiliation(s)
- Julia Christine Gutjahr
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Centre, Paracelsus Medical University , Salzburg , Austria ; Salzburg Cancer Research Institute , Salzburg , Austria
| | - Richard Greil
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Centre, Paracelsus Medical University , Salzburg , Austria ; Salzburg Cancer Research Institute , Salzburg , Austria
| | - Tanja Nicole Hartmann
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Centre, Paracelsus Medical University , Salzburg , Austria ; Salzburg Cancer Research Institute , Salzburg , Austria
| |
Collapse
|
24
|
Abstract
Hyaluronan (HA) is a non-sulfated glycosaminoglycan distributed throughout the extracellular matrix that plays a major role in cell adhesion, migration, and proliferation. CD44, a multifunctional cell surface glycoprotein, is a receptor for HA. In addition, CD44 is known to interact with other receptors and ligands, and to mediate a number of cellular functions as well as disease progression. Studies have shown that binding of HA to CD44 in cancer cells activates survival pathways resulting in cancer cell survival. This effect can be blocked by anti-CD44 monoclonal antibodies. A6 is a capped, eight l-amino acid peptide (Ac-KPSSPPEE-NH2) derived from the biologically active connecting peptide domain of the serine protease, human urokinase plasminogen activator (uPA). A6 neither binds to the uPA receptor (uPAR) nor interferes with uPA/uPAR binding. A6 binds to CD44 resulting in the inhibition of migration, invasion, and metastasis of tumor cells, and the modulation of CD44-mediated cell signaling. A6 has been shown to have no dose-limiting toxicity in animal studies. A6 has demonstrated efficacy and an excellent safety profile in Phase 1a, 1b, and 2 clinical trials. In animal models, A6 has also exhibited promising results for the treatment of diabetic retinopathy and wet age-related macular degeneration through the reduction of retinal vascular permeability and inhibition of choroidal neovascularization, respectively. Recently, A6 has been shown to be directly cytotoxic for B-lymphocytes obtained from patients with chronic lymphocytic leukemia expressing the kinase, ZAP-70. This review will discuss the activity of A6, A6 modulation of HA and CD44, and a novel strategy for therapeutic intervention in disease.
Collapse
|
25
|
Mekkawy AH, Pourgholami MH, Morris DL. Involvement of urokinase-type plasminogen activator system in cancer: an overview. Med Res Rev 2014; 34:918-56. [PMID: 24549574 DOI: 10.1002/med.21308] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently, there are several studies supporting the role of urokinase-type plasminogen activator (uPA) system in cancer. The association of uPA to its receptor triggers the conversion of plasminogen into plasmin. This process is regulated by the uPA inhibitors (PAI-1 and PAI-2). Plasmin promotes degradation of basement membrane and extracellular matrix (ECM) components as well as activation of ECM latent matrix metalloproteases. Degradation and remodeling of the surrounding tissues is crucial in the early steps of tumor progression by facilitating expansion of the tumor mass, release of tumor growth factors, activation of cytokines as well as induction of tumor cell proliferation, migration, and invasion. Hence, many tumors showed a correlation between uPA system component levels and tumor aggressiveness and survival. Therefore, this review summarizes the structure of the uPA system, its contribution to cancer progression, and the clinical relevance of uPA family members in cancer diagnosis. In addition, the review evaluates the significance of uPA system in the development of cancer-targeted therapies.
Collapse
Affiliation(s)
- Ahmed H Mekkawy
- Department of Surgery, Cancer Research Laboratories, St. George Hospital, University of New South Wales, Sydney, NSW 2217, Australia
| | | | | |
Collapse
|
26
|
Yang L, Sajja HK, Cao Z, Qian W, Bender L, Marcus AI, Lipowska M, Wood WC, Wang YA. uPAR-targeted optical imaging contrasts as theranostic agents for tumor margin detection. Am J Cancer Res 2013; 4:106-18. [PMID: 24396518 PMCID: PMC3881230 DOI: 10.7150/thno.7409] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/15/2013] [Indexed: 12/31/2022] Open
Abstract
Complete removal of tumors by surgery is the most important prognostic factor for cancer patients with the early stage cancers. The ability to identify invasive tumor edges of the primary tumor, locally invaded small tumor lesions, and drug resistant residual tumors following neoadjuvant therapy during surgery should significantly reduce the incidence of local tumor recurrence and improve survival of cancer patients. In this study, we report that urokinase plasminogen activator (uPA) and its receptor (uPAR) are the ligand/cell surface target pair for the development of targeted optical imaging probes for enhancing imaging contrasts in the tumor border. Recombinant peptides of the amino terminal fragment (ATF) of the receptor binding domain of uPA were labeled with near infrared fluorescence (NIR) dye molecules either as peptide-imaging or peptide-conjugated nanoparticle imaging probes. Systemic delivery of the uPAR-targeted imaging probes in mice bearing orthotopic human breast or pancreatic tumor xenografts or mouse mammary tumors led to the accumulation of the probes in the tumor and stromal cells, resulting in strong signals for optical imaging of tumors and identification of tumor margins. Histological analysis showed that a high level of uPAR-targeted nanoparticles was present in the tumor edge or active tumor stroma immediately adjacent to the tumor cells. Furthermore, following targeted therapy using uPAR-targeted theranostic nanoparticles, residual tumors were detectable by optical imaging through the imaging contrasts produced by NIR-dye-labeled theranostic nanoparticles in drug resistant tumor cells. Therefore, results of our study support the potential of the development of uPAR-targeted imaging and theranostic agents for image-guided surgery.
Collapse
|
27
|
Franco P, Carotenuto A, Marcozzi C, Votta G, Sarno C, Iaccarino I, Brancaccio D, De Vincenzo A, Novellino E, Grieco P, Stoppelli MP. Opposite modulation of cell migration by distinct subregions of urokinase connecting peptide. Chembiochem 2013; 14:882-9. [PMID: 23520074 DOI: 10.1002/cbic.201200774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Indexed: 11/07/2022]
Abstract
Functional analysis of isolated protein domains may uncover cryptic activities otherwise missed. The serine protease urokinase (uPA) has a clear-cut motogen activity that is catalytically independent and resides in its amino-terminal growth factor domain (GFD, residues 1-49) and connecting peptide region (CP, residues 132-158). To functionally dissect the CP region, we analysed the biological activity of two synthetic peptides corresponding to the N-terminal [uPA-(135-143), residues 135-143] and C-terminal [uPA-(144-158), residues 144-158] CP subregions. Most of the chemotactic activity of connecting peptide-derived peptide (CPp, [uPA-(135-158)]) for embryonic kidney HEK293/uPAR-25 cells is retained by uPA-(144-158) at nanomolar concentrations. In contrast, uPA-(135-143) inhibits basal, CPp -, vitronectin- and fibronectin-induced cell migration. Radioreceptor binding assays on intact HEK293 cells revealed that uPA-(135-143) and uPA-(144-158) are both able to compete with [(125)I]-CPp, albeit with different binding affinities. The consequences of phospho-mimicking, S138E substitution, were studied using [138E]uPA-(135-158) and [138E]uPA-(135-143) peptides. Unlike CPp, [138E]uPA-(135-158) and [138E]uPA-(135-143) exhibit remarkable inhibitory properties. Finally, analysis of the conformational preferences of the peptides allowed to identify secondary structure elements exclusively characterising the stimulatory CPp and uPA-(144-158) versus the inhibitory uPA-(135-143), [138E]uPA-(135-158) and [138E]uPA-(135-143) peptides. In conclusion, these data shed light on the cryptic activities of uPA connecting peptide, revealing the occurrence of two adjacent regions, both competing for binding to cell surface but conveying opposite signalling on cell migration.
Collapse
Affiliation(s)
- Paola Franco
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council, Via Castellino 111, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mani T, Wang F, Knabe WE, Sinn AL, Khanna M, Jo I, Sandusky GE, Sledge GW, Jones DR, Khanna R, Pollok KE, Meroueh SO. Small-molecule inhibition of the uPAR·uPA interaction: synthesis, biochemical, cellular, in vivo pharmacokinetics and efficacy studies in breast cancer metastasis. Bioorg Med Chem 2013; 21:2145-55. [PMID: 23411397 DOI: 10.1016/j.bmc.2012.12.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/13/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
The uPAR·uPA protein-protein interaction (PPI) is involved in signaling and proteolytic events that promote tumor invasion and metastasis. A previous study had identified 4 (IPR-803) from computational screening of a commercial chemical library and shown that the compound inhibited uPAR·uPA PPI in competition biochemical assays and invasion cellular studies. Here, we synthesize 4 to evaluate in vivo pharmacokinetic (PK) and efficacy studies in a murine breast cancer metastasis model. First, we show, using fluorescence polarization and saturation transfer difference (STD) NMR, that 4 binds directly to uPAR with sub-micromolar affinity of 0.2 μM. We show that 4 blocks invasion of breast MDA-MB-231, and inhibits matrix metalloproteinase (MMP) breakdown of the extracellular matrix (ECM). Derivatives of 4 also inhibited MMP activity and blocked invasion in a concentration-dependent manner. Compound 4 also impaired MDA-MB-231 cell adhesion and migration. Extensive in vivo PK studies in NOD-SCID mice revealed a half-life of nearly 5h and peak concentration of 5 μM. Similar levels of the inhibitor were detected in tumor tissue up to 10h. Female NSG mice inoculated with highly malignant TMD-MDA-MB-231 in their mammary fat pads showed that 4 impaired metastasis to the lungs with only four of the treated mice showing severe or marked metastasis compared to ten for the untreated mice. Compound 4 is a promising template for the development of compounds with enhanced PK parameters and greater efficacy.
Collapse
Affiliation(s)
- Timmy Mani
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Van Nuys Medical Science Building, MS 4023, 635 Barnhill Drive, Indianapolis, IN 46202-5122, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang J, Liu J. Tumor stroma as targets for cancer therapy. Pharmacol Ther 2012; 137:200-15. [PMID: 23064233 DOI: 10.1016/j.pharmthera.2012.10.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 12/16/2022]
Abstract
Cancer is not only composed malignant epithelial component but also stromal components such as fibroblasts, endothelial cells, and inflammatory cells, by which an appropriate tumor microenvironment (TME) is formed to promote tumorigenesis, progression, and metastasis. As the most abundant component in the TME, cancer-associated fibroblasts (CAFs) are involved in multifaceted mechanistic details including remodeling the extracellular matrix, suppressing immune responses, and secreting growth factors and cytokines that mediate signaling pathways to extensively affect tumor cell growth and invasiveness, differentiation, angiogenesis, and chronic inflammatory milieu. Today, more and more therapeutic strategies are purposefully designed to target the TME as well as tumor cells. This review will focus on the role of CAFs in tumor development and the novel strategies to target this component to inhibit the tumor growth.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology, State Key Laboratory of Tumor Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.
| | | |
Collapse
|
30
|
Gold MA, Brady WE, Lankes HA, Rose PG, Kelley JL, De Geest K, Crispens MA, Resnick KE, Howell SB. A phase II study of a urokinase-derived peptide (A6) in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2012; 125:635-9. [PMID: 22446624 DOI: 10.1016/j.ygyno.2012.03.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/08/2012] [Accepted: 03/08/2012] [Indexed: 11/19/2022]
Abstract
PURPOSE This multi-institutional phase II trial assessed the activity and tolerability of the anti-metastatic A6 peptide that binds CD44 in patients with persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal carcinoma (EOC/FTC/PPC). PATIENTS AND METHODS Women with persistent or recurrent EOC/FTC/PPC were eligible for participation if they had measurable disease defined by RECIST criteria, good performance status, and good overall organ function. Patients must have received one prior platinum-based chemotherapeutic regimen and were allowed to have received one additional cytotoxic regimen for the management of recurrent or persistent disease. Women received a 150 mg twice daily subcutaneous dose of A6 and continued on treatment until disease progression or unacceptable toxicity. Primary measures of clinical efficacy were objective tumor response and progression-free survival (PFS) at 6 months. The association of CD44 in archival tissue specimens with clinical outcome was investigated. RESULTS Thirty-one eligible patients were evaluated. No responses were observed. Two patients (6.5%) were progression free for at least 6 months. The median PFS was 2.0 months, and median overall survival has not yet been reached. One patient died of hemorrhage which was possibly study related. There were no grade 4 toxicities. The most common grade 3 toxicities were constitutional (2/31; 6.5%). Archival specimens were available for 27 patients, and 5 (18.5%) were CD44 positive by immunohistochemistry. CD44 expression was not associated with the 6-month PFS (p=0.342). CONCLUSION A6 was well tolerated but had minimal activity in patients with persistent or recurrent EOC/FTC/PPC.
Collapse
Affiliation(s)
- Michael A Gold
- Vanderbilt University Medical Center, B1100 Medical Center North, 1161 21st Avenue South, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Piotrowicz RS, Damaj BB, Hachicha M, Incardona F, Howell SB, Finlayson M. A6 peptide activates CD44 adhesive activity, induces FAK and MEK phosphorylation, and inhibits the migration and metastasis of CD44-expressing cells. Mol Cancer Ther 2011; 10:2072-82. [PMID: 21885863 DOI: 10.1158/1535-7163.mct-11-0351] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The A6 peptide (acetyl-KPSSPPEE-amino) has antitumor activity in the absence of significant adverse events in murine tumor models and clinical trials. A6 shares sequence homology with CD44, an adhesion receptor involved in metastasis that is also a marker of cancer stem cells and drug-resistant phenotypes. We investigated the mechanism of action of A6 by examining its effects on CD44 activity, cell migration, and metastasis. A6 inhibited the migration of a subset of ovarian and breast cancer cell lines, exhibiting IC(50) values of 5 to 110 nmol/L. The ability of A6 to inhibit migration in vitro correlated with CD44 expression. Immunopreciptation studies showed that CD44 binds A6 and that biotin-tagged A6 can be cross-linked to CD44. The binding of A6 altered the structure of CD44 such that it was no longer recognized by a monoclonal antibody to a specific epitope. Importantly, A6 potentiated the CD44-dependent adhesion of cancer cells to hyaluronic acid and activated CD44-mediated signaling, as evidenced by focal adhesion kinase and MAP/ERK kinase phosphorylation. In vivo, A6 (100 mg/kg delivered s.c. twice daily) reduced the number of lung foci generated by the i.v. injection of B16-F10 melanoma cells by 50% (P = 0.029 in an unpaired t test). We conclude that A6 potently blocks the migration of CD44-positive cells in vitro through an interaction with CD44 that alters its structure and activates CD44 to enhance ligand binding and downstream signaling. The concurrent ability of A6 to agonize the CD44 receptor suggests that CD44 activation may represent a novel strategy for inhibiting metastatic disease.
Collapse
|
32
|
Schmitt M, Harbeck N, Brünner N, Jänicke F, Meisner C, Mühlenweg B, Jansen H, Dorn J, Nitz U, Kantelhardt EJ, Thomssen C. Cancer therapy trials employing level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn 2011; 11:617-34. [PMID: 21745015 DOI: 10.1586/erm.11.47] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clinical research on cancer biomarkers is essential in understanding recent discoveries in cancer biology and heterogeneity of the cancer disease. However, there are only a few examples of clinically useful studies that have identified cancer biomarkers with clinical benefit. Urokinase-type plasminogen activator (uPA) and its inhibitor plasminogen activator inhibitor type 1 (PAI-1) are two of the few tumor tissue-associated cancer biomarkers that have been evaluated successfully and extensively in many preclinical and clinical studies for their clinical utility. Most of the studies have been conducted in early breast cancer to demonstrate the prognostic and predictive value for this malignancy. As a result of these investigations, uPA and PAI-1 have reached the highest level of clinical evidence, level of evidence 1. This article sheds light on the current status of major clinical Phase II and III breast cancer therapy trials (Chemo-N0, NNBC-3 and Plan B), and introduces ongoing clinical trials targeting uPA in advanced cancers of the breast and pancreas, employing synthetic small-size drugs to counteract uPA activity (WX-UK1, Mesupron(®)). The therapeutic effect of a uPA-derived small-size synthetic peptide (Å6) is tested in advanced ovarian cancer patients.
Collapse
Affiliation(s)
- Manfred Schmitt
- Clinical Research Unit, Department of Obstetrics and Gynecology (Frauenklinik), Klinikum rechts der Isar of the Technical University of Munich, Ismaninger Strasse 22, D-81675 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schmitt M, Mengele K, Napieralski R, Magdolen V, Reuning U, Gkazepis A, Sweep F, Brünner N, Foekens J, Harbeck N. Clinical utility of level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn 2011; 10:1051-67. [PMID: 21080821 DOI: 10.1586/erm.10.71] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The prognostic and/or predictive value of the cancer biomarkers, urokinase-type plasminogen activator (uPA) and its inhibitor (plasminogen activator inhibitor [PAI]-1), determined by ELISA in tumor-tissue extracts, was demonstrated for several cancer types in numerous clinically relevant retrospective or prospective studies, including a multicenter breast cancer therapy trial (Chemo-N0). Consequently, for the first time ever for any cancer biomarker for breast cancer, uPA and PAI-1 have reached the highest level of evidence, level-of-evidence-1. At present, two other breast cancer therapy trials, NNBC-3 and Plan B, also incorporating uPA and PAI-1 as treatment-assignment tools are in effect. Furthermore, small synthetic molecules targeting uPA are currently in Phase II clinical trials in patients afflicted with advanced cancer of the ovary, breast or pancreas.
Collapse
Affiliation(s)
- Manfred Schmitt
- Frauenklinik der Technischen Universitaet Muenchen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 2011; 4:165-78. [PMID: 21324931 PMCID: PMC3046088 DOI: 10.1242/dmm.004077] [Citation(s) in RCA: 1069] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dynamic remodeling of the extracellular matrix (ECM) is essential for development, wound healing and normal organ homeostasis. Life-threatening pathological conditions arise when ECM remodeling becomes excessive or uncontrolled. In this Perspective, we focus on how ECM remodeling contributes to fibrotic diseases and cancer, which both present challenging obstacles with respect to clinical treatment, to illustrate the importance and complexity of cell-ECM interactions in the pathogenesis of these conditions. Fibrotic diseases, which include pulmonary fibrosis, systemic sclerosis, liver cirrhosis and cardiovascular disease, account for over 45% of deaths in the developed world. ECM remodeling is also crucial for tumor malignancy and metastatic progression, which ultimately cause over 90% of deaths from cancer. Here, we discuss current methodologies and models for understanding and quantifying the impact of environmental cues provided by the ECM on disease progression, and how improving our understanding of ECM remodeling in these pathological conditions is crucial for uncovering novel therapeutic targets and treatment strategies. This can only be achieved through the use of appropriate in vitro and in vivo models to mimic disease, and with technologies that enable accurate monitoring, imaging and quantification of the ECM.
Collapse
Affiliation(s)
- Thomas R. Cox
- Cancer Research UK Tumour Cell Signalling Unit, Section of Cell and Molecular Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Janine T. Erler
- Cancer Research UK Tumour Cell Signalling Unit, Section of Cell and Molecular Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
35
|
Allen M, Louise Jones J. Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J Pathol 2010; 223:162-76. [PMID: 21125673 DOI: 10.1002/path.2803] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 12/13/2022]
Abstract
It is now recognized that the host microenvironment undergoes extensive change during the evolution and progression of cancer. This involves the generation of cancer-associated fibroblasts (CAFs), which, through release of growth factors and cytokines, lead to enhanced angiogenesis, increased tumour growth and invasion. It has also been demonstrated that CAFs may modulate the cancer stem cell (CSC) phenotype, which has therapeutic implications. The altered fibroblast phenotype also contributes to the development of an altered extracellular matrix (ECM), with synthesis of ECM isoforms rarely found in normal tissues, including tenascin-C isoforms and the fibronectin EDA isoform. There is also emerging evidence of how the tensile strength of the tumour-associated ECM may be modified and lead to altered signalling in tumour cells. The hypoxic environment of the tumour stimulates angiogenesis and also impacts on other aspects of cell signalling, including the c-met pathway and lysyl oxidase-mediated signalling, which can directly promote tumour cell invasion. The inflammatory infiltrate associated with many solid tumours also modulates tumour function, having both anti- and pro-tumour effects. All of these components of the microenvironment provide potential targets for therapeutic attack, with a number of molecules already in clinical trials. It is also becoming evident that characterizing the tumour microenvironment can provide important prognostic and predictive information about tumours, independent of the tumour cell phenotype.
Collapse
Affiliation(s)
- Michael Allen
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | | |
Collapse
|
36
|
Hildenbrand R, Allgayer H, Marx A, Stroebel P. Modulators of the urokinase-type plasminogen activation system for cancer. Expert Opin Investig Drugs 2010; 19:641-52. [PMID: 20402599 DOI: 10.1517/13543781003767400] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IMPORTANCE OF THE FIELD The serine protease urokinase-type plasminogen activator (uPA) and its receptor uPAR as well as two specific inhibitors, the plasminogen activator inhibitor type-1 (PAI-1) and type-2 (PAI-2), are involved in the control of extracellular matrix turnover and tumor growth. Data accumulating over the past 20 years have made increasingly clear that the uPA system has a multifunctional role in neoplastic evolution, affecting cancer cell proliferation, tumor angiogenesis, adhesion and migration. AREAS COVERED IN THIS REVIEW Several therapeutic strategies inhibiting the uPA system have been or are currently being developed for suppression of tumor growth. This review examines the role of the uPA system in tumor progression and assesses the various therapeutic strategies developed to selectively exploit this system. WHAT WILL THE READER GAIN We focus on the therapeutic developments of the last 15 years. In addition to antibodies and recombinant uPA- or uPAR-derived proteins, various antagonistic peptides as well as small molecules have been designed and synthesized that inhibit the uPA system, leading to reduced tumor progression. TAKE HOME MESSAGE The multifunctional potential of the uPA system in cancer has rendered this system an attractive novel target for anticancer therapy. A few novel tumor biology-based therapeutic strategies reported here, opening new ways for patient-optimized and individualized cancer therapy. It may be the right time to evaluate the hypothesis that the uPA system plays a pivotal role in cancer progression and that targeting this system will lead to clinical benefit in cancer patients.
Collapse
|
37
|
Abstract
The urokinase receptor (u-PAR) is one of the most critical molecules in migration, invasion, intravasation, and metastasis and is also a key regulator between tumour cell proliferation and dormancy. It is overexpressed in most human solid cancer types, which has led to increasing translational and clinical research on this molecule. The current review discusses in particular the in vivo, translational, and putative clinical relevance of u-PAR in the context of this latest development. It outlines how u-PAR is already being used and might increasingly be applied as a diagnostic tool, for example, in distinguishing benign from malignant neoplasms, as a molecular marker for predicting clinical response to chemotherapy or novel targeted therapy, and finally as a promising tool for the development of novel cancer therapeutics.
Collapse
|
38
|
Abstract
Despite the dismal outcome seen in the majority of epithelial ovarian cancer patients, there is ongoing progress in understanding the disease at a molecular level. Elucidation of pathways underlying disease progression and metastasis of ovarian cancer is key to development of targeted therapeutics. It is only in this way that therapeutic potential can be translated to reality. Here, we describe the evidence to date for the role of CSF-1/c-fms signaling in ovarian cancer invasiveness and metastasis, including the recent understanding of how CSF-1/c-fms expression is regulated with identification of significant post-transcriptional regulators.
Collapse
Affiliation(s)
- Setsuko K Chambers
- Women's Cancers, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
39
|
Mekkawy AH, Morris DL, Pourgholami MH. Urokinase plasminogen activator system as a potential target for cancer therapy. Future Oncol 2009; 5:1487-99. [DOI: 10.2217/fon.09.108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteolysis of extracellular matrix (ECM) and basement membrane is an essential mechanism used by cancer cells for their invasion and metastasis. The ECM proteinases are divided into three groups: metalloproteinases, cysteine proteinases and serine proteinases. The urokinase plasminogen activator (uPA) system is one of the serine proteinase systems involved in ECM degradation. Members of this system, including uPA and its receptor (uPAR), are overexpressed in several malignant tumors. This system plays a major role in adhesion, migration, invasion and metastasis of cancer cells, thus making it an important target for anticancer drug therapy. Several strategies, including the use of antisense oligodeoxynucleotides, ribozymes, DNAzyme, RNAi, uPA inhibitors, soluble uPAR, catalytically inactive uPA fragments, synthetic peptides and synthetic hybrids are under study, as they interfere with the expression and/or activity of uPA or uPAR in tumor cells. Herein, we discuss the various pharmaceutical strategies under investigation to combat the uPA activity in cancer.
Collapse
Affiliation(s)
| | | | - Mohammad H Pourgholami
- Cancer Research Laboratories, University of New South Wales, Department of Surgery, St George Hospital (SESIAHS), Sydney, NSW 2217, Australia
| |
Collapse
|
40
|
Chen H, Hao J, Wang L, Li Y. Coexpression of invasive markers (uPA, CD44) and multiple drug-resistance proteins (MDR1, MRP2) is correlated with epithelial ovarian cancer progression. Br J Cancer 2009; 101:432-40. [PMID: 19603017 PMCID: PMC2720231 DOI: 10.1038/sj.bjc.6605185] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Invasion and metastases of cancer cells and the development of resistance to anticancer therapies are the main causes of treatment failure and mortality in cancer patients. Methods: We evaluated invasive markers of urokinase plasminogen activator (uPA) and CD44 and multiple drug-resistance (MDR) markers of MDR1 and MRP2 in four epithelial ovarian cancer (EOC) cell lines, primary tumours (n=120) and matched metastatic lesions (n=40) by immunofluoresence labelling. We correlated uPA and CD44 with MDR markers in primary and metastatic cells using confocal microscope. We also investigated the relationship of the expression of uPA, CD44 and MDR1 with various progression parameters. Results: The coexpression of uPA and CD44 with MDR markers was found in primary and metastatic cells. The overexpression of uPA, CD44 and MDR1 was found in most primary and matched metastatic lesions of EOC, and was significantly associated with tumour stage, grade, residual disease status, relapse and presence of ascites (P<0.05), but not with histology type (P>0.05). Conclusions: Our results suggest that the overexpression of uPA, CD44 and MRD1 is correlated with EOC progression; both uPA and CD44 are related with drug resistance during EOC metastasis and could be useful therapeutically.
Collapse
Affiliation(s)
- H Chen
- Department of Gynecologic Oncology, Henan Tumour Hospital, 127 Dongming Rd, Zhengzhou, Henan 450008, China
| | | | | | | |
Collapse
|
41
|
Expression of urokinase plasminogen activator and its receptor in advanced epithelial ovarian cancer patients. Gynecol Oncol 2009; 114:265-72. [PMID: 19450871 DOI: 10.1016/j.ygyno.2009.04.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/21/2009] [Accepted: 04/23/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND The urokinase plasminogen activator (uPA) system has been implicated in progression and poor prognosis in epithelial ovarian cancer (EOC) patients. The present study investigated the distribution of uPA and its receptor (uPAR) in EOC cell lines, primary and metastatic tumors, and the relationship between uPA/uPAR and matrix metalloproteinase (MMP) expression using immunohistochemistry. We also studied the association between uPA/uPAR expression and clinical and pathological parameters including disease progression free survival (PFS). METHODS The expression of uPA/uPAR was examined on paraffin-embedded tissue sections from primary EOC (n=100), and matched metastatic lesions (n=30) of untreated patients, normal ovarian tissues (n=20) as well as 8 primary and metastatic EOC cell lines by immunohistochemistry. Co-immunolabeling of uPA and MMP-1, -2, -9 or MT1-MMP was examined using confocal microscopy. RESULTS The expression of uPA/uPAR was found in most primary (92% and 88% positive, respectively), metastatic ovarian tumors (93% and 90% positive, respectively), and all of examined EOC cell lines. The majority of specimens showed moderate to strong immunostaining of tumor and stromal cells; for primary specimens, this was significantly associated with tumor stage, grade and time to relapse (P<0.01). Overexpression of uPA/uPAR was found to be associated with an unfavorable prognosis with significantly reduced median disease PFS of 16 vs. 33 months for uPA (P<0.001), and 15 vs. 28 months for uPAR (P<0.001). Co-localization of uPA with MMP-1, -2, -9 or MT1-MMP was also seen in primary tumors and metastatic lesions. CONCLUSIONS The expression of uPA/uPAR was associated with EOC progression. uPA/uPAR are useful markers for EOC prognosis and could be promising therapeutic targets for treating incurable, recurrent EOC.
Collapse
|
42
|
Vocca I, Franco P, Alfano D, Votta G, Carriero MV, Estrada Y, Caputi M, Netti PA, Ossowski L, Stoppelli MP. Inhibition of migration and invasion of carcinoma cells by urokinase-derived antagonists of alphavbeta5 integrin activation. Int J Cancer 2009; 124:316-25. [PMID: 18844213 DOI: 10.1002/ijc.23933] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We previously showed that, while binding to urokinase receptor (uPAR) through its growth factor domain (GFD, residues 1-49), urokinase (uPA) can engage alphavbeta5 integrin through an internal domain (CP, residues 132-158). This novel uPA/alphavbeta5 interaction promotes cytoskeletal rearrangements and directional cell migration (Franco et al., J Cell Sci 2006;119:3424-34). We now show that treatment of cells with phosphomimic uPA (uPA138E/303E, serine 138 and 303 substituted with glutamic acid) strongly inhibits matrix-induced cell migration. Unlike uPA, binding of uPA138E/303E to cell surface did not induce F-actin enriched protruding structures and caused a 5-fold reduction in cell translocation speed, as determined by video tracking of living cells. Inhibition of migration was found to be independent of uPAR, since uPA variants lacking the GFD domain, but carrying the relevant Ser to Glu substitutions were as effective inhibitor as uPA138E/303E. Through several independent approaches, we established that the phosphomimics specifically bind to alphavbeta5 integrin through the CP region carrying the S138E mutation. This interaction blocks integrin activation, as determined by a decreased affinity of alphavbeta5 to vitronectin and a reduced association of the beta5 cytoplasmic tail with talin. Finally, stable expression of uPA138E/303E in human squamous carcinoma cells prevented tumor cell invasion in vivo. Thus, when expressed in cancer cells, the inhibitory phosphomimic effect was dominant over the effect of endogenously produced uPA. These results shed light on the regulation of cell migration by uPA phosphorylation and provide a realistic opportunity for a novel antiinvasive/metastatic therapeutic intervention.
Collapse
Affiliation(s)
- Immacolata Vocca
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, National Research Council, Via Castellino, 111, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Mary Clouser
- Division of Women's Cancers, Arizona Cancer Center, The University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|
44
|
A phase 2, randomized, double-blind, placebo-controlled trial of clinical activity and safety of subcutaneous A6 in women with asymptomatic CA125 progression after first-line chemotherapy of epithelial ovarian cancer. Gynecol Oncol 2008; 111:89-94. [PMID: 18760451 DOI: 10.1016/j.ygyno.2008.06.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 11/22/2022]
Abstract
OBJECTIVES A6 is a novel peptide that interferes with single-chain urokinase plasminogen activator activity and has shown anti-angiogenic, anti-migratory, and anti-invasive properties. We evaluated clinical efficacy and safety of subcutaneously administered A6 in women with epithelial ovarian cancer. METHODS Women with epithelial ovarian, fallopian tube, or primary peritoneal cancer in clinical remission after first-line chemotherapy with 2 consecutive increases of CA125 values above normal but with no disease on physical examination or imaging studies were randomly assigned to receive daily subcutaneous injections of placebo, low-dose A6 (150 mg), or high-dose A6 (300 mg) until disease progression or end of study participation. Primary endpoints were time to clinical progression of disease and safety of A6. Secondary endpoints were changes in serum CA125 and biomarkers of the urokinase system. RESULTS Data are available for 24 women (placebo, n=12; low-dose, n=8; high-dose n=4). A6 therapy was associated with a statistically significant delay in time to clinical progression (log-rank p-value 0.01) with a median of 100 days (95% CI: 64,168) for women who received A6 compared with 49 days (95% CI: 29,67) for women who received placebo. The treatments appeared to be well tolerated. Treatment was not associated with CA125 response (p=0.44). On-treatment values for plasma urokinase plasminogen activator receptor were statistically significantly lower in the A6 groups compared with placebo (p=0.02). CONCLUSIONS A6 therapy increases time to clinical disease progression and appears to be well tolerated in this patient population.
Collapse
|
45
|
Gupta A, Lotan Y, Ashfaq R, Roehrborn CG, Raj GV, Aragaki CC, Montorsi F, Shariat SF. Predictive value of the differential expression of the urokinase plasminogen activation axis in radical prostatectomy patients. Eur Urol 2008; 55:1124-33. [PMID: 18585843 DOI: 10.1016/j.eururo.2008.06.054] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND The urokinase plasminogen axis is composed of urokinase plasminogen activator (uPA), its receptor (uPAR), and its inhibitors (PAI-1 and PAI-2). This axis is involved in cell proliferation, angiogenesis, extracellular matrix degradation, invasion, and metastases. OBJECTIVE To assess the relationship of the uPA axis with pathologic features and outcomes in prostate cancer. DESIGN, SETTING, AND PARTICIPANTS Retrospective study of 230 consecutive patients treated with radical prostatectomy for clinically localized disease. INTERVENTIONS None. MEASUREMENTS Immunohistochemical staining for uPA, uPAR, and PAI-1 were carried out on serial archival tissue microarray specimens. These markers were histologically categorized as normal or overexpressed. Disease recurrence was classified as aggressive if metastases were present, if postrecurrence prostate-specific antigen (PSA) doubling time was <10 mo, or if the patients failed to respond to salvage local radiation therapy. RESULTS AND LIMITATIONS The median follow-up was 63 mo. The combined expression of uPA and PAI-1 was associated with extraprostatic extension (p=0.01) and seminal vesicle invasion (p=0.008). On multivariable analysis, the combined uPA/PAI-1 expression was associated with overall (risk ratio [RR]: 2.3; 95% confidence interval [CI]: 1.1-4.8; p=0.02) and aggressive disease recurrence (RR: 9.4; 95% CI: 3.5-25; p<0.0001) but not with nonaggressive disease recurrence. Expression of uPAR was not associated with any of the outcomes. The study is limited by its retrospective nature and lack of long-term follow-up. CONCLUSIONS Overexpression of both uPA and PAI-1 is associated with adverse pathologic features and higher risk of overall and aggressive disease recurrence in men treated with radical prostatectomy for clinically localized prostate cancer. After validation, these markers may be useful in selecting patients most likely to benefit from adjuvant therapy. These markers should also be considered for addition into postoperative prediction tools.
Collapse
Affiliation(s)
- Amit Gupta
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9110, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Curtin JF, Candolfi M, Xiong W, Lowenstein PR, Castro MG. Turning the gene tap off; implications of regulating gene expression for cancer therapeutics. Mol Cancer Ther 2008; 7:439-48. [PMID: 18347132 DOI: 10.1158/1535-7163.mct-07-2328] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer poses a tremendous therapeutic challenge worldwide, highlighting the critical need for developing novel therapeutics. A promising cancer treatment modality is gene therapy, which is a form of molecular medicine designed to introduce into target cells genetic material with therapeutic intent. Anticancer gene therapy strategies currently used in preclinical models, and in some cases in the clinic, include proapoptotic genes, oncolytic/replicative vectors, conditional cytotoxic approaches, inhibition of angiogenesis, inhibition of growth factor signaling, inactivation of oncogenes, inhibition of tumor invasion and stimulation of the immune system. The translation of these novel therapeutic modalities from the preclinical setting to the clinic has been driven by encouraging preclinical efficacy data and advances in gene delivery technologies. One area of intense research involves the ability to accurately regulate the levels of therapeutic gene expression to achieve enhanced efficacy and provide the capability to switch gene expression off completely if adverse side effects should arise. This feature could also be implemented to switch gene expression off when a successful therapeutic outcome ensues. Here, we will review recent developments related to the engineering of transcriptional switches within gene delivery systems, which could be implemented in clinical gene therapy applications directed at the treatment of cancer.
Collapse
Affiliation(s)
- James F Curtin
- University of California-Los Angeles and Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | |
Collapse
|
47
|
Liver regeneration and tumor stimulation--a review of cytokine and angiogenic factors. J Gastrointest Surg 2008; 12:966-80. [PMID: 18181006 DOI: 10.1007/s11605-007-0459-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 12/06/2007] [Indexed: 01/31/2023]
Abstract
Liver resection for metastatic (colorectal carcinoma) tumors is often followed by a significant incidence of tumor recurrence. Cellular and molecular changes resulting from hepatectomy and the subsequent liver regeneration process may influence the kinetics of tumor growth and contribute to recurrence. Clinical and experimental evidence suggests that factors involved in liver regeneration may also stimulate the growth of occult tumors and the reactivation of dormant micrometastases. An understanding of the underlying changes may enable alternative strategies to minimize tumor recurrence and improve patient survival after hepatectomy.
Collapse
|
48
|
Abstract
The process of angiogenesis is crucial for progression and metastasis of the majority of solid tumors including melanomas. The current review summarizes existing knowledge of the mechanisms of angiogenesis in melanoma, as well as current anti-angiogenic therapeutic strategies and their targets. We focus primarily on the role of key growth factors that are secreted by melanoma cells and known to trigger angiogenic responses, and their receptors as expressed on both endothelial and melanoma cells. Many of these growth factors function in synergy with receptors for extracellular matrix, integrins, and matrix metalloproteinases (MMPs). All of these systems of molecules are activated during major stages of angiogenesis such as endothelial migration, proliferation, and reorganization of surrounding extracellular matrix. The blockade of these molecules and their downstream pathways leads to inhibition of melanoma vascularization. Thus, these classes of molecules are essential for melanoma angiogenesis and, therefore, might serve as promising targets for therapeutic intervention. Many recently developed compounds targeting key pathways in angiogenesis are in their final stages of clinical trials.
Collapse
Affiliation(s)
- Ganapati H Mahabeleshwar
- Department of Molecular Cardiology, J.J. Jacobs Center for Thrombosis and Vascular Biology, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
49
|
Hofmeister V, Schrama D, Becker JC. Anti-cancer therapies targeting the tumor stroma. Cancer Immunol Immunother 2008; 57:1-17. [PMID: 17661033 PMCID: PMC11029837 DOI: 10.1007/s00262-007-0365-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 02/05/2007] [Indexed: 12/12/2022]
Abstract
For anti-tumor therapy different strategies have been employed, e.g., radiotherapy, chemotherapy, or immunotherapy. Notably, these approaches do not only address the tumor cells themselves, but also the tumor stroma cells, e.g., endothelial cells, fibroblasts, and macrophages. This is of advantage, since these cells actively contribute to the proliferative and invasive behavior of the tumor cells via secretion of growth factors, angiogenic factors, cytokines, and proteolytic enzymes. In addition, tumor stroma cells take part in immune evasion mechanisms of cancer. Thus, approaches targeting the tumor stroma attract increasing attention as anti-cancer therapy. Several molecules including growth factors (e.g., VEGF, CTGF), growth factor receptors (CD105, VEGFRs), adhesion molecules (alphavbeta3 integrin), and enzymes (CAIX, FAPalpha, MMPs, PSMA, uPA) are induced or upregulated in the tumor microenvironment which are otherwise characterized by a restricted expression pattern in differentiated tissues. Consequently, these molecules can be targeted by inhibitors as well as by active and passive immunotherapy to treat cancer. Here we discuss the results of these approaches tested in preclinical models and clinical trials.
Collapse
Affiliation(s)
- Valeska Hofmeister
- Department of Dermatology, Julius-Maximilians-University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - David Schrama
- Department of Dermatology, Julius-Maximilians-University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Jürgen C. Becker
- Department of Dermatology, Julius-Maximilians-University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| |
Collapse
|
50
|
Meng S, Tripathy D, Shete S, Ashfaq R, Saboorian H, Haley B, Frenkel E, Euhus D, Leitch M, Osborne C, Clifford E, Perkins S, Beitsch P, Khan A, Morrison L, Herlyn D, Terstappen LWMM, Lane N, Wang J, Uhr J. uPAR and HER-2 gene status in individual breast cancer cells from blood and tissues. Proc Natl Acad Sci U S A 2006; 103:17361-5. [PMID: 17079488 PMCID: PMC1838539 DOI: 10.1073/pnas.0608113103] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Overexpression of urokinase plasminogen activator system or HER-2 (erbB-2) in breast cancer is associated with a poor prognosis. HER-2 overexpression is caused by HER-2 gene amplification. The anti-HER-2 antibody trastuzumab significantly improves clinical outcome for HER2-positive breast cancer. Drugs that target the uPA system are in early clinical trials. The aims of this study were to determine whether urokinase plasminogen activator receptor (uPAR) gene amplification occurs and whether analysis of individual tumor cells (TCs) in the blood or tissue can add information to conventional pathological analysis that could help in diagnosis and treatment. Analysis of individual TCs indicates that uPAR amplification occurs in a significant portion of primary breast cancers and also circulating tumor cells (CTCs) from patients with advanced disease. There was complete concordance between touch preps (TPs) and conventional pathological examination of HER-2 and uPAR gene status in primary tumors. There was also excellent concordance of HER-2 gene status between primary tumors and CTCs provided that acquisition of HER-2 gene amplification in CTCs was taken into account. Unexpectedly, gene amplification of HER-2 and uPAR occurred most frequently in the same TC and patient, suggesting a biological bias and potential advantage for coamplification. Expression of HER-2 and uPAR in primary tumors predicted gene status in 100 and 92% of patients, respectively.
Collapse
Affiliation(s)
| | | | - Sanjay Shete
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | | | | | | | | | - David Euhus
- Surgery, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390
| | - Marilyn Leitch
- Surgery, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|