1
|
Tsingotjidou AS. Oxytocin: A Multi-Functional Biomolecule with Potential Actions in Dysfunctional Conditions; From Animal Studies and Beyond. Biomolecules 2022; 12:1603. [PMID: 36358953 PMCID: PMC9687803 DOI: 10.3390/biom12111603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 10/13/2023] Open
Abstract
Oxytocin is a hormone secreted from definite neuroendocrine neurons located in specific nuclei in the hypothalamus (mainly from paraventricular and supraoptic nuclei), and its main known function is the contraction of uterine and/or mammary gland cells responsible for parturition and breastfeeding. Among the actions of the peripherally secreted oxytocin is the prevention of different degenerative disorders. These actions have been proven in cell culture and in animal models or have been tested in humans based on hypotheses from previous studies. This review presents the knowledge gained from the previous studies, displays the results from oxytocin intervention and/or treatment and proposes that the well described actions of oxytocin might be connected to other numerous, diverse actions of the biomolecule.
Collapse
Affiliation(s)
- Anastasia S Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| |
Collapse
|
2
|
Chao AM, Wadden TA, Berkowitz RI, Blackburn G, Bolin P, Clark JM, Coday M, Curtis JM, Delahanty LM, Dutton GR, Evans M, Ewing LJ, Foreyt JP, Gay LJ, Gregg EW, Hazuda HP, Hill JO, Horton ES, Houston DK, Jakicic JM, Jeffery RW, Johnson KC, Kahn SE, Knowler WC, Kure A, Michalski KL, Montez MG, Neiberg RH, Patricio J, Peters A, Pi-Sunyer X, Pownall H, Reboussin D, Redmon B, Rejeski WJ, Steinburg H, Walker M, Williamson DA, Wing RR, Wyatt H, Yanovski SZ, Zhang P. Weight Change 2 Years After Termination of the Intensive Lifestyle Intervention in the Look AHEAD Study. Obesity (Silver Spring) 2020; 28:893-901. [PMID: 32320144 PMCID: PMC7437140 DOI: 10.1002/oby.22769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE This study evaluated weight changes after cessation of the 10-year intensive lifestyle intervention (ILI) in the Look AHEAD (Action for Health in Diabetes) study. It was hypothesized that ILI participants would be more likely to gain weight during the 2-year observational period following termination of weight-loss-maintenance counseling than would participants in the diabetes support and education (DSE) control group. METHODS Look AHEAD was a randomized controlled trial that compared the effects of ILI and DSE on cardiovascular morbidity and mortality in participants with overweight/obesity and type 2 diabetes. Look AHEAD was converted to an observational study in September 2012. RESULTS Two years after the end of the intervention (EOI), ILI and DSE participants lost a mean (SE) of 1.2 (0.2) kg and 1.8 (0.2) kg, respectively (P = 0.003). In addition, 31% of ILI and 23.9% of DSE participants gained ≥ 2% (P < 0.001) of EOI weight, whereas 36.3% and 45.9% of the respective groups lost ≥ 2% of EOI weight (P = 0.001). Two years after the EOI, ILI participants reported greater use of weight-control behaviors than DSE participants. CONCLUSIONS Both groups lost weight during the 2-year follow-up period, but more ILI than DSE participants gained ≥ 2% of EOI weight. Further understanding is needed of factors that affected long-term weight change in both groups.
Collapse
Affiliation(s)
| | - Ariana M Chao
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas A Wadden
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert I Berkowitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George Blackburn
- Division of Nutrition, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Paula Bolin
- Southwestern American Indian Center, National Institute of Diabetes and Digestive and Kidney Diseases and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Jeanne M Clark
- Division of General Internal Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mace Coday
- Departments of Preventive Medicine and Psychiatry, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jeffrey M Curtis
- Southwestern American Indian Center, National Institute of Diabetes and Digestive and Kidney Diseases and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Linda M Delahanty
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gareth R Dutton
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mary Evans
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Linda J Ewing
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John P Foreyt
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Linda J Gay
- Department of Psychiatry, The Miriam Hospital, Brown Medical School, Providence, Rhode Island, USA
| | - Edward W Gregg
- Division of Diabetes Translation, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Helen P Hazuda
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - James O Hill
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Edward S Horton
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Denise K Houston
- Department of Internal Medicine - Geriatrics, Wake Forest University, Winston-Salem, North Carolina, USA
| | - John M Jakicic
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert W Jeffery
- Divisions of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Karen C Johnson
- Departments of Preventive Medicine and Psychiatry, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, US Department of Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington, USA
| | - William C Knowler
- Southwestern American Indian Center, National Institute of Diabetes and Digestive and Kidney Diseases and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Anne Kure
- Division of Metabolism, Endocrinology and Nutrition, US Department of Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington, USA
| | - Katherine L Michalski
- Division of General Internal Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maria G Montez
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rebecca H Neiberg
- Department of Internal Medicine - Geriatrics, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Jennifer Patricio
- Department of Medicine, St. Luke's Roosevelt Hospital Center, Columbia University, New York, New York, USA
| | - Anne Peters
- Division of Endocrinology, University of Southern California, Los Angeles, California, USA
| | - Xavier Pi-Sunyer
- Department of Medicine, St. Luke's Roosevelt Hospital Center, Columbia University, New York, New York, USA
| | - Henry Pownall
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - David Reboussin
- Department of Internal Medicine - Geriatrics, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Bruce Redmon
- Divisions of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - W Jack Rejeski
- Department of Internal Medicine - Geriatrics, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Helmut Steinburg
- Departments of Preventive Medicine and Psychiatry, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Martha Walker
- Division of Endocrinology, University of Southern California, Los Angeles, California, USA
| | | | - Rena R Wing
- Department of Psychiatry, The Miriam Hospital, Brown Medical School, Providence, Rhode Island, USA
| | - Holly Wyatt
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan Z Yanovski
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - Ping Zhang
- Division of Diabetes Translation, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
3
|
McCormack SE, Blevins JE, Lawson EA. Metabolic Effects of Oxytocin. Endocr Rev 2020; 41:5658523. [PMID: 31803919 PMCID: PMC7012298 DOI: 10.1210/endrev/bnz012] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022]
Abstract
There is growing evidence that oxytocin (OXT), a hypothalamic hormone well recognized for its effects in inducing parturition and lactation, has important metabolic effects in both sexes. The purpose of this review is to summarize the physiologic effects of OXT on metabolism and to explore its therapeutic potential for metabolic disorders. In model systems, OXT promotes weight loss by decreasing energy intake. Pair-feeding studies suggest that OXT-induced weight loss may also be partly due to increased energy expenditure and/or lipolysis. In humans, OXT appears to modulate both homeostatic and reward-driven food intake, although the observed response depends on nutrient milieu (eg, obese vs. nonobese), clinical characteristics (eg, sex), and experimental paradigm. In animal models, OXT is anabolic to muscle and bone, which is consistent with OXT-induced weight loss occurring primarily via fat loss. In some human observational studies, circulating OXT concentrations are also positively associated with lean mass and bone mineral density. The impact of exogenous OXT on human obesity is the focus of ongoing investigation. Future randomized, placebo-controlled clinical trials in humans should include rigorous, standardized, and detailed assessments of adherence, adverse effects, pharmacokinetics/pharmacodynamics, and efficacy in the diverse populations that may benefit from OXT, in particular those in whom hypothalamic OXT signaling may be abnormal or impaired (eg, individuals with Sim1 deficiency, Prader-Willi syndrome, or craniopharyngioma). Future studies will also have the opportunity to investigate the characteristics of new OXT mimetic peptides and the obligation to consider long-term effects, especially when OXT is given to children and adolescents. (Endocrine Reviews XX: XX - XX, 2020).
Collapse
Affiliation(s)
- Shana E McCormack
- Neuroendocrine Center, Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, Washington.,Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Lawson EA, Olszewski PK, Weller A, Blevins JE. The role of oxytocin in regulation of appetitive behaviour, body weight and glucose homeostasis. J Neuroendocrinol 2020; 32:e12805. [PMID: 31657509 PMCID: PMC7186135 DOI: 10.1111/jne.12805] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Abstract
Obesity and its associated complications have reached epidemic proportions in the USA and also worldwide, highlighting the need for new and more effective treatments. Although the neuropeptide oxytocin (OXT) is well recognised for its peripheral effects on reproductive behaviour, the release of OXT from somatodendrites and axonal terminals within the central nervous system (CNS) is also implicated in the control of energy balance. In this review, we summarise historical data highlighting the effects of exogenous OXT as a short-term regulator of food intake in a context-specific manner and the receptor populations that may mediate these effects. We also describe what is known about the physiological role of endogenous OXT in the control of energy balance and whether serum and brain levels of OXT relate to obesity on a consistent basis across animal models and humans with obesity. We describe recent data on the effectiveness of chronic CNS administration of OXT to decrease food intake and weight gain or to elicit weight loss in diet-induced obese (DIO) and genetically obese mice and rats. Of clinical importance is the finding that chronic central and peripheral OXT treatments both evoke weight loss in obese animal models with impaired leptin signalling at doses that are not associated with visceral illness, tachyphylaxis or adverse cardiovascular effects. Moreover, these results have been largely recapitulated following chronic s.c. or intranasal treatment in DIO non-human primates (rhesus monkeys) and obese humans, respectively. We also identify plausible mechanisms that contribute to the effects of OXT on body weight and glucose homeostasis in rodents, non-human primates and humans. We conclude by describing the ongoing challenges that remain before OXT-based therapeutics can be used as a long-term strategy to treat obesity in humans.
Collapse
Affiliation(s)
- Elizabeth A Lawson
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Aron Weller
- Psychology Department and Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - James E Blevins
- Department of Veterans Affairs Medical Center, Office of Research and Development Medical Research Service, VA Puget Sound Health Care System, Seattle, WA, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
5
|
Matsumoto T, Kobayashi S, Ando M, Watanabe S, Iguchi M, Taguchi K, Kobayashi T. Impaired endothelium-derived hyperpolarization-type relaxation in superior mesenteric arteries isolated from female Otsuka Long-Evans Tokushima Fatty rats. Eur J Pharmacol 2017; 807:151-158. [PMID: 28433656 DOI: 10.1016/j.ejphar.2017.03.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/27/2017] [Accepted: 03/31/2017] [Indexed: 01/27/2023]
Abstract
Endothelium-derived hyperpolarization (EDH) is an important signaling mechanism of endothelium-dependent vasorelaxation, and little attention has been paid to the EDH-type responses in female metabolic syndrome such as that observed with type-2 diabetes. We previously reported that EDH-type relaxation was impaired in superior mesenteric arteries from male Otsuka Long-Evans Tokushima Fatty (OLETF) rat, a model of type-2 diabetes, however, the response was unclear in female OLETF rat. Thus, the aim of this study was to examine if EDH-type relaxation was altered in superior mesenteric arteries isolated from female OLETF rats compared to age-matched, control female Long-Evans Tokushima Otsuka (LETO) rats at age 50-59 weeks. We investigated concentration-relaxation curves for acetylcholine (at age 50-53 weeks), NS309 (an activator of small- and intermediate-conductance calcium-activated potassium channels) (at age 50-53 weeks), and GSK1016790A (an agonist of transient receptor potential vanilloid type 4, TRPV4) (at age 58 or 59 weeks) in the presence of the nitric oxide synthase inhibitor NG-nitro-L-arginine and the cyclooxygenase inhibitor indomethacin to investigate EDH-type responses in the superior mesenteric artery. Obesity, mild hyperglycemia, hyperinsulinemia, and hyperlipidemia (i.e., increased total cholesterol, triglyceride, and non-esterified fatty acids) were more frequent in OLETF rats than in age-matched LETO rats at age 50-53 weeks. Acetylcholine-, NS309-, and GSK1016790A-induced relaxations in arteries from OLETF rats were all significantly reduced compared to those in LETO rats. These results indicated that EDH-type relaxations were impaired in female OLETF rats. This novel experimental model may provide new insights into vascular dysfunction in metabolic syndrome in females.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Shota Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Makoto Ando
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Shun Watanabe
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Maika Iguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
6
|
Lerea JS, Ring LE, Hassouna R, Chong ACN, Szigeti-Buck K, Horvath TL, Zeltser LM. Reducing Adiposity in a Critical Developmental Window Has Lasting Benefits in Mice. Endocrinology 2016; 157:666-78. [PMID: 26587784 PMCID: PMC4733128 DOI: 10.1210/en.2015-1753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although most adults can lose weight by dieting, a well-characterized compensatory decrease in energy expenditure promotes weight regain more than 90% of the time. Using mice with impaired hypothalamic leptin signaling as a model of early-onset hyperphagia and obesity, we explored whether this unfavorable response to weight loss could be circumvented by early intervention. Early-onset obesity was associated with impairments in the structure and function of brown adipose tissue mitochondria, which were ameliorated by weight loss at any age. Although decreased sympathetic tone in weight-reduced adults resulted in net reductions in brown adipose tissue thermogenesis and energy expenditure that promoted rapid weight regain, this was not the case when dietary interventions were initiated at weaning. Enhanced energy expenditure persisted even after mice were allowed to resume overeating, leading to lasting reductions in adiposity. These findings reveal a time window when dietary interventions can produce metabolic improvements that are stably maintained.
Collapse
Affiliation(s)
- Jaclyn S Lerea
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Laurence E Ring
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Rim Hassouna
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Angie C N Chong
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Klara Szigeti-Buck
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Tamas L Horvath
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| | - Lori M Zeltser
- Institute of Human Nutrition (J.S.L., A.C.N.N.), Columbia University, New York, New York 10032; Department of Anesthesiology (L.E.R.), Columbia University, New York, New York 10032; Naomi Berrie Diabetes Center (R.H., L.M.Z.), Columbia University, New York, New York 10032; Department of Obstetrics, Gynecology, and Reproductive Sciences (K.S.-B., T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; Department of Neurobiology (T.L.H.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Pathology and Cell Biology (L.M.Z.), Columbia University, New York, New York 10032
| |
Collapse
|
7
|
Diane A, Kupreeva M, Borthwick F, Proctor SD, Pierce WD, Vine DF. Cardiometabolic and reproductive benefits of early dietary energy restriction and voluntary exercise in an obese PCOS-prone rodent model. J Endocrinol 2015; 226:193-206. [PMID: 26187902 DOI: 10.1530/joe-14-0711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2015] [Indexed: 01/11/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine-metabolic disorders in women of reproductive age characterized by ovulatory dysfunction, hyperandrogenism and cardiometabolic risk. The overweight-obese PCOS phenotype appears to have exacerbated reproductive dysfunction and cardiometabolic risk. In overweight-obese adult women with PCOS, exercise and energy restricted diets have shown limited and inconsistent effects on both cardiometabolic indices and reproductive outcomes. We hypothesized that an early lifestyle intervention involving exercise and dietary energy restriction to prevent or reduce the propensity for adiposity would modulate reproductive indices and cardiometabolic risk in an obese PCOS-prone rodent model. Weanling obese PCOS-prone and Lean-Control JCR:LA-cp rodents were given a chow diet ad libitum or an energy-restricted diet combined with or without voluntary exercise (4 h/day) for 8 weeks. Dietary energy restriction and exercise lowered total body weight gain and body fat mass by 30% compared to free-fed sedentary or exercising obese PCOS-prone animals (P<0.01). Energy restriction induced an increase in exercise intensity compared to free-feeding plus exercise conditions. Energy restriction and exercise decreased fasting plasma triglycerides and apoB48 concentrations in obese PCOS-prone animals compared to free-fed and exercise or sedentary groups. The energy restriction and exercise combination in obese PCOS-prone animals significantly increased plasma sex-hormone binding globulin, hypothalamic cocaine-and amphetamine-regulated transcript (CART) and Kisspeptin mRNA expression to levels of the Lean-Control group, and this was further associated with improvements in estrous cyclicity. The combination of exercise and dietary energy restriction when initiated in early life exerts beneficial effects on cardiometabolic and reproductive indices in an obese PCOS-prone rodent model, and this may be associated with normalization of the hypothalamic neuropeptides, Kisspeptin and CART.
Collapse
Affiliation(s)
- Abdoulaye Diane
- Metabolic and Cardiovascular Diseases LaboratoryAlberta Institute of Human Nutrition, Alberta Diabetes InstituteDepartment of SociologyUniversity of Alberta, Edmonton, AB, Canada
| | - Maria Kupreeva
- Metabolic and Cardiovascular Diseases LaboratoryAlberta Institute of Human Nutrition, Alberta Diabetes InstituteDepartment of SociologyUniversity of Alberta, Edmonton, AB, Canada
| | - Faye Borthwick
- Metabolic and Cardiovascular Diseases LaboratoryAlberta Institute of Human Nutrition, Alberta Diabetes InstituteDepartment of SociologyUniversity of Alberta, Edmonton, AB, Canada
| | - Spencer D Proctor
- Metabolic and Cardiovascular Diseases LaboratoryAlberta Institute of Human Nutrition, Alberta Diabetes InstituteDepartment of SociologyUniversity of Alberta, Edmonton, AB, Canada
| | - W David Pierce
- Metabolic and Cardiovascular Diseases LaboratoryAlberta Institute of Human Nutrition, Alberta Diabetes InstituteDepartment of SociologyUniversity of Alberta, Edmonton, AB, Canada
| | - Donna F Vine
- Metabolic and Cardiovascular Diseases LaboratoryAlberta Institute of Human Nutrition, Alberta Diabetes InstituteDepartment of SociologyUniversity of Alberta, Edmonton, AB, Canada Metabolic and Cardiovascular Diseases LaboratoryAlberta Institute of Human Nutrition, Alberta Diabetes InstituteDepartment of SociologyUniversity of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Leibel RL, Seeley RJ, Darsow T, Berg EG, Smith SR, Ratner R. Biologic Responses to Weight Loss and Weight Regain: Report From an American Diabetes Association Research Symposium. Diabetes 2015; 64:2299-309. [PMID: 26106187 DOI: 10.2337/db15-0004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rudolph L Leibel
- Division of Molecular Genetics and Naomi Berrie Diabetes Center, Columbia University, New York, NY
| | - Randy J Seeley
- Department of Surgery, North Campus Research Complex, University of Michigan School of Medicine, Ann Arbor, MI
| | - Tamara Darsow
- Division of Science and Medicine, American Diabetes Association, Alexandria, VA
| | - Erika Gebel Berg
- Division of Science and Medicine, American Diabetes Association, Alexandria, VA
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Sanford-Burnham Institute, Florida Hospital, Winter Park, FL
| | - Robert Ratner
- Division of Science and Medicine, American Diabetes Association, Alexandria, VA
| |
Collapse
|
9
|
Blevins JE, Baskin DG. Translational and therapeutic potential of oxytocin as an anti-obesity strategy: Insights from rodents, nonhuman primates and humans. Physiol Behav 2015; 152:438-49. [PMID: 26013577 DOI: 10.1016/j.physbeh.2015.05.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/15/2022]
Abstract
The fact that more than 78 million adults in the US are considered overweight or obese highlights the need to develop new, effective strategies to treat obesity and its associated complications, including type 2 diabetes, kidney disease and cardiovascular disease. While the neurohypophyseal peptide oxytocin (OT) is well recognized for its peripheral effects to stimulate uterine contraction during parturition and milk ejection during lactation, release of OT within the brain is implicated in prosocial behaviors and in the regulation of energy balance. Previous findings indicate that chronic administration of OT decreases food intake and weight gain or elicits weight loss in diet-induced obese (DIO) mice and rats. Furthermore, chronic systemic treatment with OT largely reproduces the effects of central administration to reduce weight gain in DIO and genetically obese rodents at doses that do not appear to result in tolerance. These findings have now been recently extended to more translational models of obesity showing that chronic subcutaneous or intranasal OT treatment is sufficient to elicit body weight loss in DIO nonhuman primates and pre-diabetic obese humans. This review assesses the potential use of OT as a therapeutic strategy for treatment of obesity in rodents, nonhuman primates, and humans, and identifies potential mechanisms that mediate this effect.
Collapse
Affiliation(s)
- James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Denis G Baskin
- VA Puget Sound Health Care System, Office of Research and Development, Medical Research Service, Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
10
|
Liu HW, Srinivasan M, Mahmood S, Smiraglia DJ, Patel MS. Adult-onset obesity induced by early life overnutrition could be reversed by moderate caloric restriction. Am J Physiol Endocrinol Metab 2013; 305:E785-94. [PMID: 23900419 PMCID: PMC3798704 DOI: 10.1152/ajpendo.00280.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Overnutrition during the suckling period (small litter, SL) results in the development of adult-onset obesity. Our aim was to investigate whether two levels of caloric restriction (CR) in the early postweaning period can reverse obese phenotype in SL rats. The normal litter (NL) had 12 pups/dam and SL had 3 male pups/dam from the postnatal day 3 until day 21. After weaning, rats consumed lab chow as indicated: 1) NL and SL groups were on ad libitum regimen up to day 140, 2) another SL group was pair-fed (SL/PF) to NL(∼14% reduction), 3) SL/PF/AL group was pair-fed up to day 94 and then switched to ad libitum feeding, 4) SL/CR group received 24% reduction (moderate CR) in food intake compared with SL, and 5) SL/CR/AL group was on 24% CR up to day 94 and then switched to ad libitum feeding. Pair-feeding reduced body weight gains and serum insulin and leptin levels compared with SL rats, but these parameters were restored to SL levels in the SL/PF/AL rats after switching to ad libitum feeding. Interestingly, the moderate CR normalized these parameters in SL/CR and SL/CR/AL rats compared with NL. The expression of neuropeptide Y, proopiomelanocortin, and leptin receptor returned to control levels in hypothalami from SL/CR and SL/CR/AL rats. These results indicate that appropriate manipulation of energy intake during the early postweaning period could lead to longer-lasting effects on the regulation of body weight homeostasis via reversal of the early preweaning programming effects on the hypothalamic appetite regulation mechanism.
Collapse
Affiliation(s)
- Hung-Wen Liu
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | | | | | | | | |
Collapse
|
11
|
Schroeder M, Kronfeld-Schor N, Weller A. Selective leptin insensitivity and alterations in female-reproductive patterns linked to hyperleptinemia during infancy. PLoS One 2013; 8:e59937. [PMID: 23544111 PMCID: PMC3609828 DOI: 10.1371/journal.pone.0059937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 02/22/2013] [Indexed: 12/24/2022] Open
Abstract
The dramatic increase in the prevalence of childhood obesity worldwide makes the investigation of its early developmental stages and effective prevention strategies an urgent issue. CCK1 deficient OLETF rats are a model of obesity previously used to study the early phases of this disorder. Here, we exposed wild type (LETO) females to an early obesogenic environment and genetically obese OLETF females to a lean postnatal environment, to assess long term alterations in leptin sensitivity, predisposition to diet induced obesity and adult female health. We found that genetically lean females reared by obese mothers presented early postnatal hyperleptemia, selectively reduced response to leptin and sensitivity to diet induced obesity when exposed to a high palatable diet as adults. The estrous cycle structure and intake profile were permanently disrupted, despite presenting normal adiposity/body weight/food intake. Genetically obese females reared by lean dams showed normalized early levels of leptin and reduced body weight, food intake and body fat at adulthood; normalized estrous cycle structure and food intake across the cycle, improved hormonal profile and peripheral leptin sensitivity and a remarkable progress in self-control when exposed to a high fat/palatable diet. Altogether, it appears that the early postnatal environment plays a critical role in determining later life coping with metabolic challenges and has an additive effect on the genetic predisposition that makes OLETF females morbidly obese as adults. This work also links, for the first time, alterations in the leptin system during early development to later life abnormalities related to female reproduction and health.
Collapse
|
12
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:68-71. [PMID: 22179589 DOI: 10.1097/med.0b013e32834fd881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Zhang XY, Zhang Q, Wang DH. Pre- and post-weaning cold exposure does not lead to an obese phenotype in adult Brandt's voles (Lasiopodomys brandtii). Horm Behav 2011; 60:210-8. [PMID: 21635895 DOI: 10.1016/j.yhbeh.2011.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
Evidence has shown that postnatal undernutrition, overnutrition and cold stress are associated with imbalanced metabolic regulation as rodents achieve adulthood. In this study, we used a breeding colony of Brandt's voles (Lasiopodomys brandtii), a wild rodent species from the Inner Mongolia grasslands in China, to examine the effects of pre- and post-weaning cold exposure on the adult body (fat) mass, serum hormones and hypothalamic neuropeptides. Unlike laboratory rodents, vole offspring exposed to pre-weaning cold did not exhibit overweight or obese phenotypes in adulthood compared with unexposed controls. Moreover, adult male voles that remained in colder conditions had less body mass and lower serum leptin levels despite having higher food intake compared to other groups. To understand the mechanism of this unexpected regulation, hypothalamic gene expression was assessed for pre- and post-weaning cold exposure. Voles exposed to cold before weaning increased hypothalamic, orexigenic agouti-related protein (AgRP) and decreased anorexigenic proopiomelanocortin (POMC) mRNA expression at weaning. These expression changes were associated with hyperphagia and catch-up growth after weaning. Interestingly, these changes in hypothalamic neuropeptides were short lasting because in adult voles these differences were no longer apparent, which might explain why the pre-weaning, cold-exposed voles did not become obese in adulthood. These data suggest that some species do not develop an obese phenotype in response to early life cold stress.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen Xilu, Chaoyang, Beijing 100101, China
| | | | | |
Collapse
|