1
|
DeLarge AF, Stanley MJ, Daniel JM. Female mice lacking membrane estrogen receptor alpha display impairments in spatial memory. Horm Behav 2024; 164:105597. [PMID: 38944999 DOI: 10.1016/j.yhbeh.2024.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/20/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Estrogens exert effects on cognition by acting on estrogen receptors (ER) including ERα. Activation of nuclear ERα results in classical genomic signaling leading to transcriptional changes that occur over hours to days. In contrast, activation of ERα localized to the membrane results in rapid signaling with effects occurring in seconds to minutes. The goal of the current study was to determine the role of membrane ERα in spatial memory. Female wildtype (WT) and transgenic mice that lack membrane ERα and express nuclear only ERα (NOER) were trained on an eight-arm radial-maze task. Following training, mice were tested on delay trials, in which delays ranging from 30 min to 5 h were inserted between the 4th and 5th arm choices. Performance was measured by number of proactive and retroactive errors. Proactive errors are short-term working memory errors defined by reentries into arms previously visited during the post-delay period or errors made during the pre-delay period. Retroactive errors are delay-dependent memory errors, defined as reentries into arms during the post-delay that were previously visited during the pre-delay. Consistent with a role for membrane ERα in rapid signaling, NOER mice made more proactive errors than WTs across all delays. NOER mice made more retroactive errors than WTs only after the 5-h delay. WT and NOER mice performed similarly on elevated plus maze and open field tests indicating no effects of membrane ERα on anxiety-related behavior or locomotor activity. Results reveal that membrane ERα plays important roles in both short-term and longer-term delay-dependent memory either directly or potentially indirectly through a role in the regulation of estradiol levels via the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Alyssa F DeLarge
- Department of Psychology, Tulane University, New Orleans, LA 70118, United States of America; Tulane Brain Institute, Tulane University, United States of America.
| | - Marcella J Stanley
- Tulane Brain Institute, Tulane University, United States of America; Neuroscience Program, Tulane University, United States of America
| | - Jill M Daniel
- Department of Psychology, Tulane University, New Orleans, LA 70118, United States of America; Tulane Brain Institute, Tulane University, United States of America; Neuroscience Program, Tulane University, United States of America
| |
Collapse
|
2
|
Jabra S, Rietsche M, Muellerleile J, O'Leary A, Slattery DA, Deller T, Fellenz M. Sex- and cycle-dependent changes in spine density and size in hippocampal CA2 neurons. Sci Rep 2024; 14:12252. [PMID: 38806649 PMCID: PMC11133407 DOI: 10.1038/s41598-024-62951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Sex hormones affect structural and functional plasticity in the rodent hippocampus. However, hormone levels not only differ between males and females, but also fluctuate across the female estrous cycle. While sex- and cycle-dependent differences in dendritic spine density and morphology have been found in the rodent CA1 region, but not in the CA3 or the dentate gyrus, comparable structural data on CA2, i.e. the hippocampal region involved in social recognition memory, is so far lacking. In this study, we, therefore, used wildtype male and female mice in diestrus or proestrus to analyze spines on dendritic segments from identified CA2 neurons. In basal stratum oriens, we found no differences in spine density, but a significant shift towards larger spine head areas in male mice compared to females. Conversely, in apical stratum radiatum diestrus females had a significantly higher spine density, and females in either cycle stage had a significant shift towards larger spine head areas as compared to males, with diestrus females showing the larger shift. Our results provide further evidence for the sexual dimorphism of hippocampal area CA2, and underscore the importance of considering not only the sex, but also the stage of the estrous cycle when interpreting morphological data.
Collapse
Affiliation(s)
- Sharif Jabra
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Michael Rietsche
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Julia Muellerleile
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University Frankfurt, University Hospital, Heinrich-Hoffmann-Straße 10, 60528, Frankfurt am Main, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Meike Fellenz
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Williams JS, Fattori MR, Honeyborne IR, Ritz SA. Considering hormones as sex- and gender-related factors in biomedical research: Challenging false dichotomies and embracing complexity. Horm Behav 2023; 156:105442. [PMID: 37913648 DOI: 10.1016/j.yhbeh.2023.105442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
The inclusion of sex and gender considerations in biomedicine has been increasing in light of calls from research and funding agencies, governmental bodies, and advocacy groups to direct research attention to these issues. Although the inclusion of both female and male participants is often an important element, overreliance on a female-male binary tends to oversimplify the interactions between sex- and gender-related factors and health, and runs a risk of being influenced by cultural stereotypes about sex and gender. When biomedical researchers are examining how hormones associated with gender and sex may influence pathways of interest, it is of crucial importance to approach this work with a critical lens on the rhetoric used, and in ways that acknowledge the complexity of hormone physiology. Here, we document the ways in which discourses around sex, gender and hormones shape our scientific thinking and practice in biomedical research, and review how the existing scientific knowledge about hormones reflects a complex and dynamic reality that is often not reflected outside of specialist niches of hormone biology. Where biomedical scientists take up sex- and gender-associated hormones as a way of addressing sex and gender considerations, it is valuable for us to bring a critical lens to the rhetoric and discourses used, to employ a sex contextualist approach in designing experimentation, and be rigorous and reflexive about the approaches used in analysis and interpretation of data. These strategies will allow us to design experimentation that goes beyond binaries, and grapples more directly with the material intricacies of sex, gender, and hormones.
Collapse
Affiliation(s)
| | - Michelle R Fattori
- Health Sciences Education Program, McMaster University, Hamilton, Ontario, Canada
| | - Isabella R Honeyborne
- Bachelor of Health Sciences (Honours) Program, McMaster University, Hamilton, Ontario, Canada
| | - Stacey A Ritz
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
4
|
Aspesi D, Bass N, Kavaliers M, Choleris E. The role of androgens and estrogens in social interactions and social cognition. Neuroscience 2023:S0306-4522(23)00151-3. [PMID: 37080448 DOI: 10.1016/j.neuroscience.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Gonadal hormones are becoming increasingly recognized for their effects on cognition. Estrogens, in particular, have received attention for their effects on learning and memory that rely upon the functioning of various brain regions. However, the impacts of androgens on cognition are relatively under investigated. Testosterone, as well as estrogens, have been shown to play a role in the modulation of different aspects of social cognition. This review explores the impact of testosterone and other androgens on various facets of social cognition including social recognition, social learning, social approach/avoidance, and aggression. We highlight the relevance of considering not only the actions of the most commonly studied steroids (i.e., testosterone, 17β-estradiol, and dihydrotestosterone), but also that of their metabolites and precursors, which interact with a plethora of different receptors and signalling molecules, ultimately modulating behaviour. We point out that it is also essential to investigate the effects of androgens, their precursors and metabolites in females, as prior studies have mostly focused on males. Overall, a comprehensive analysis of the impact of steroids such as androgens on behaviour is fundamental for a full understanding of the neural mechanisms underlying social cognition, including that of humans.
Collapse
Affiliation(s)
- Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph; Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph.
| |
Collapse
|
5
|
Kambona CM, Koua PA, Léon J, Ballvora A. Stress memory and its regulation in plants experiencing recurrent drought conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:26. [PMID: 36788199 PMCID: PMC9928933 DOI: 10.1007/s00122-023-04313-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Developing stress-tolerant plants continues to be the goal of breeders due to their realized yields and stability. Plant responses to drought have been studied in many different plant species, but the occurrence of stress memory as well as the potential mechanisms for memory regulation is not yet well described. It has been observed that plants hold on to past events in a way that adjusts their response to new challenges without altering their genetic constitution. This ability could enable training of plants to face future challenges that increase in frequency and intensity. A better understanding of stress memory-associated mechanisms leading to alteration in gene expression and how they link to physiological, biochemical, metabolomic and morphological changes would initiate diverse opportunities to breed stress-tolerant genotypes through molecular breeding or biotechnological approaches. In this perspective, this review discusses different stress memory types and gives an overall view using general examples. Further, focusing on drought stress, we demonstrate coordinated changes in epigenetic and molecular gene expression control mechanisms, the associated transcription memory responses at the genome level and integrated biochemical and physiological responses at cellular level following recurrent drought stress exposures. Indeed, coordinated epigenetic and molecular alterations of expression of specific gene networks link to biochemical and physiological responses that facilitate acclimation and survival of an individual plant during repeated stress.
Collapse
Affiliation(s)
- Carolyn Mukiri Kambona
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
| | - Patrice Ahossi Koua
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
- Deutsche Saatveredelung AG, Thüler Str. 30, 33154, Salzkotten-Thüle, Germany
| | - Jens Léon
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany
- Field Lab Campus Klein-Altendorf, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Agim Ballvora
- Department of Plant Breeding, Institut Für Nutzpflanzenwissenschaften Und Ressourcenschutz (INRES), RheinischeFriedrich-Wilhelms-University, Bonn, Germany.
| |
Collapse
|
6
|
Paletta P, Bass N, Aspesi D, Choleris E. Sex Differences in Social Cognition. Curr Top Behav Neurosci 2022; 62:207-234. [PMID: 35604571 DOI: 10.1007/7854_2022_325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this review we explore the sex differences underlying various types of social cognition. Particular focus will be placed on the behaviors of social recognition, social learning, and aggression. Known similarities and differences between sexes in the expressions of these behaviors and the known brain regions where these behaviors are mediated are discussed. The role that the sex hormones (estrogens and androgens) have as well as possible interactions with other neurochemicals, such as oxytocin, vasopressin, and serotonin is reviewed as well. Finally, implications about these findings on the mediation of social cognition are mediated and the sex differences related to humans are considered.
Collapse
Affiliation(s)
- Pietro Paletta
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
7
|
Rubio Arzola P, Shansky RM. Considering Organismal Physiology in Laboratory Studies of Rodent Behavior. Annu Rev Neurosci 2022; 45:387-402. [PMID: 35395164 DOI: 10.1146/annurev-neuro-111020-085500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Any experiment conducted in a rodent laboratory is done so against the backdrop of each animal's physiological state at the time of the experiment. This physiological state can be the product of multiple factors, both internal (e.g., animal sex, strain, hormone cycles, or circadian rhythms) and external (e.g., housing conditions, social status, and light/dark phases). Each of these factors has the potential to influence experimental outcomes, either independently or via interactions with others, and yet there is little consistency across laboratories in terms of the weight with which they are considered in experimental design. Such discrepancies-both in practice and in reporting-likely contribute to the perception of a reproducibility crisis in the field of behavioral neuroscience. In this review, we discuss how several of these sources of variability can impact outcomes within the realm of common learning and memory paradigms. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Rebecca M Shansky
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA;
| |
Collapse
|
8
|
Wang J, Jin S, Fu W, Liang Y, Yang Y, Xu X. Pubertal exposure to bisphenol-A affects social recognition and arginine vasopressin in the brain of male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112843. [PMID: 34601267 DOI: 10.1016/j.ecoenv.2021.112843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Social recognition is an ability of animals to identify and distinguish conspecifics, which is essential for nearly all social species to establish social relationships. Social recognition provides the basis for a variety of social behaviors. Because of modulated by gonadal hormones, it is possible that social cognition is affected by environmental endocrine disruptors (EEDs). In the present study, after being pubertal exposed to bisphenol A (BPA, 0.04, 0.4, and 4 mg/kg) for 18 days, adult male mice did not show significant dishabituation to a novel female stimulus in habituation-dishabituation task. The capacity for discriminating the odors between familiar and novel female urine or between male and female urine was suppressed in BPA-exposed male. In addition, BPA (0.4, 4 mg/kg) decreased the number of immunoreaction of AVP (AVP-ir) neurons in both the bed nucleus of the stria terminalis (BNST) and the medial amygdala (MeA), and BPA (0.04, 0.4, 4 mg/kg) reduced the level of V1αR in the lateral septum (LS) of adult male. Further, BPA decreased the levels of testosterone (T) in the brain and androgens receptor (AR) in the LS, the amygdala, and BNST, as well the levels of estrogen receptor α and β (ERα/β) in the amygdala and BNST. These results indicate that pubertal exposure to BPA affected the actions of both androgens and estrogens in the brain and inhibited AVP system of social circuits, and these alterations may be associated with impaired social recognition of adult male mice.
Collapse
Affiliation(s)
- Jinshan Wang
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China
| | - Shizhen Jin
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China
| | - Wenshuang Fu
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China
| | - Yufeng Liang
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China
| | - Yani Yang
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China
| | - Xiaohong Xu
- Chemistry and Life Sciences College, Key Laboratory of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Provincial Key Laboratory of Ecology, Zhejiang Normal University, PR China.
| |
Collapse
|
9
|
Been LE, Sheppard PAS, Galea LAM, Glasper ER. Hormones and neuroplasticity: A lifetime of adaptive responses. Neurosci Biobehav Rev 2021; 132:679-690. [PMID: 34808191 DOI: 10.1016/j.neubiorev.2021.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Major life transitions often co-occur with significant fluctuations in hormones that modulate the central nervous system. These hormones enact neuroplastic mechanisms that prepare an organism to respond to novel environmental conditions and/or previously unencountered cognitive, emotional, and/or behavioral demands. In this review, we will explore several examples of how hormones mediate neuroplastic changes in order to produce adaptive responses, particularly during transitions in life stages. First, we will explore hormonal influences on social recognition in both males and females as they transition to sexual maturity. Next, we will probe the role of hormones in mediating the transitions to motherhood and fatherhood, respectively. Finally, we will survey the long-term impact of reproductive experience on neuroplasticity in females, including potential protective effects and risk factors associated with reproductive experience in mid-life and beyond. Ultimately, a more complete understanding of how hormones influence neuroplasticity throughout the lifespan, beyond development, is necessary for understanding how individuals respond to life changes in adaptive ways.
Collapse
Affiliation(s)
- Laura E Been
- Department of Psychology, Haverford College, 370 Lancaster Avenue, Haverford, PA, 19041, USA.
| | - Paul A S Sheppard
- Department of Physiology and Pharmacology, Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 5B7, Canada.
| | - Liisa A M Galea
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, 2215 Wesbrook Mall, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Erica R Glasper
- Department of Psychology, University of Maryland, College Park, MD, 20742 USA.
| |
Collapse
|
10
|
Saré RM, Lemons A, Smith CB. Behavior Testing in Rodents: Highlighting Potential Confounds Affecting Variability and Reproducibility. Brain Sci 2021; 11:brainsci11040522. [PMID: 33924037 PMCID: PMC8073298 DOI: 10.3390/brainsci11040522] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Rodent models of brain disorders including neurodevelopmental, neuropsychiatric, and neurodegenerative diseases are essential for increasing our understanding of underlying pathology and for preclinical testing of potential treatments. Some of the most important outcome measures in such studies are behavioral. Unfortunately, reports from different labs are often conflicting, and preclinical studies in rodent models are not often corroborated in human trials. There are many well-established tests for assessing various behavioral readouts, but subtle aspects can influence measurements. Features such as housing conditions, conditions of testing, and the sex and strain of the animals can all have effects on tests of behavior. In the conduct of behavior testing, it is important to keep these features in mind to ensure the reliability and reproducibility of results. In this review, we highlight factors that we and others have encountered that can influence behavioral measures. Our goal is to increase awareness of factors that can affect behavior in rodents and to emphasize the need for detailed reporting of methods.
Collapse
|
11
|
Hong X, Ratri A, Choi SY, Tash JS, Ronca AE, Alwood JS, Christenson LK. Effects of spaceflight aboard the International Space Station on mouse estrous cycle and ovarian gene expression. NPJ Microgravity 2021; 7:11. [PMID: 33712627 PMCID: PMC7954810 DOI: 10.1038/s41526-021-00139-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian steroids dramatically impact normal homeostatic and metabolic processes of most tissues within the body, including muscle, bone, neural, immune, cardiovascular, and reproductive systems. Determining the effects of spaceflight on the ovary and estrous cycle is, therefore, critical to our understanding of all spaceflight experiments using female mice. Adult female mice (n = 10) were exposed to and sacrificed on-orbit after 37 days of spaceflight in microgravity. Contemporary control (preflight baseline, vivarium, and habitat; n = 10/group) groups were maintained at the Kennedy Space Center, prior to sacrifice and similar tissue collection at the NASA Ames Research Center. Ovarian tissues were collected and processed for RNA and steroid analyses at initial carcass thaw. Vaginal wall tissue collected from twice frozen/thawed carcasses was fixed for estrous cycle stage determinations. The proportion of animals in each phase of the estrous cycle (i.e., proestrus, estrus, metestrus, and diestrus) did not appreciably differ between baseline, vivarium, and flight mice, while habitat control mice exhibited greater numbers in diestrus. Ovarian tissue steroid concentrations indicated no differences in estradiol across groups, while progesterone levels were lower (p < 0.05) in habitat and flight compared to baseline females. Genes involved in ovarian steroidogenic function were not differentially expressed across groups. As ovarian estrogen can dramatically impact multiple non-reproductive tissues, these data support vaginal wall estrous cycle classification of all female mice flown in space. Additionally, since females exposed to long-term spaceflight were observed at different estrous cycle stages, this indicates females are likely undergoing ovarian cyclicity and may yet be fertile.
Collapse
Affiliation(s)
- Xiaoman Hong
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anamika Ratri
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Joseph S Tash
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - April E Ronca
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, CA, USA.,Department of Obstetrics & Gynecology, Wake Forest Medical School, Winston-Salem, NC, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA-Ames Research Center, Moffett Field, CA, USA
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
12
|
Adult-Born Neurons in the Hippocampus Are Essential for Social Memory Maintenance. eNeuro 2020; 7:ENEURO.0182-20.2020. [PMID: 33060182 PMCID: PMC7768285 DOI: 10.1523/eneuro.0182-20.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/18/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023] Open
Abstract
Throughout adulthood, the dentate gyrus continues to produce new granule cells, which integrate into the hippocampal circuitry. New neurons have been linked to several known functions of the hippocampus, including learning and memory, anxiety and stress regulation, and social behavior. We explored whether transgenic reduction of adult-born neurons in mice would impair social memory and the formation of social dominance hierarchies. We used a conditional transgenic mouse strain [thymidine kinase (TK) mice] that selectively reduces adult neurogenesis by treatment with the antiviral drug valganciclovir (VGCV). TK mice treated with VGCV were unable to recognize conspecifics as familiar 24 h after initial exposure. We then explored whether reducing new neurons completely impaired their ability to acquire or retrieve a social memory and found that TK mice treated with VGCV were able to perform at control levels when the time between exposure (acquisition) and reexposure (retrieval) was brief. We next explored whether adult-born neurons are involved in dominance hierarchy formation by analyzing their home cage behavior as well as their performance in the tube test, a social hierarchy test, and did not find any consistent alterations in behavior between control and TK mice treated with VGCV. These data suggest that adult neurogenesis is essential for social memory maintenance, but not for acquisition nor retrieval over a short time frame, with no effect on social dominance hierarchy. Future work is needed to explore whether the influence of new neurons on social memory is mediated through connections with the CA2, an area involved in social recognition.
Collapse
|
13
|
Taxier LR, Gross KS, Frick KM. Oestradiol as a neuromodulator of learning and memory. Nat Rev Neurosci 2020; 21:535-550. [PMID: 32879508 PMCID: PMC8302223 DOI: 10.1038/s41583-020-0362-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 12/24/2022]
Abstract
Although hormones such as glucocorticoids have been broadly accepted in recent decades as general neuromodulators of memory processes, sex steroid hormones such as the potent oestrogen 17β-oestradiol have been less well recognized by the scientific community in this capacity. The predominance of females in studies of oestradiol and memory and the general (but erroneous) perception that oestrogens are 'female' hormones have probably prevented oestradiol from being more widely considered as a key memory modulator in both sexes. Indeed, although considerable evidence supports a crucial role for oestradiol in regulating learning and memory in females, a growing body of literature indicates a similar role in males. This Review discusses the mechanisms of oestradiol signalling and provides an overview of the effects of oestradiol on spatial, object recognition, social and fear memories. Although the primary focus is on data collected in females, effects of oestradiol on memory in males will be discussed, as will sex differences in the molecular mechanisms that regulate oestrogenic modulation of memory, which may have important implications for the development of future cognitive therapeutics.
Collapse
Affiliation(s)
- Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
14
|
Liang ZS, Cimino I, Yalcin B, Raghupathy N, Vancollie VE, Ibarra-Soria X, Firth HV, Rimmington D, Farooqi IS, Lelliott CJ, Munger SC, O’Rahilly S, Ferguson-Smith AC, Coll AP, Logan DW. Trappc9 deficiency causes parent-of-origin dependent microcephaly and obesity. PLoS Genet 2020; 16:e1008916. [PMID: 32877400 PMCID: PMC7467316 DOI: 10.1371/journal.pgen.1008916] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/08/2020] [Indexed: 11/30/2022] Open
Abstract
Some imprinted genes exhibit parental origin specific expression bias rather than being transcribed exclusively from one copy. The physiological relevance of this remains poorly understood. In an analysis of brain-specific allele-biased expression, we identified that Trappc9, a cellular trafficking factor, was expressed predominantly (~70%) from the maternally inherited allele. Loss-of-function mutations in human TRAPPC9 cause a rare neurodevelopmental syndrome characterized by microcephaly and obesity. By studying Trappc9 null mice we discovered that homozygous mutant mice showed a reduction in brain size, exploratory activity and social memory, as well as a marked increase in body weight. A role for Trappc9 in energy balance was further supported by increased ad libitum food intake in a child with TRAPPC9 deficiency. Strikingly, heterozygous mice lacking the maternal allele (70% reduced expression) had pathology similar to homozygous mutants, whereas mice lacking the paternal allele (30% reduction) were phenotypically normal. Taken together, we conclude that Trappc9 deficient mice recapitulate key pathological features of TRAPPC9 mutations in humans and identify a role for Trappc9 and its imprinting in controlling brain development and metabolism.
Collapse
Affiliation(s)
- Zhengzheng S. Liang
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Irene Cimino
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Binnaz Yalcin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, France
| | | | | | - Ximena Ibarra-Soria
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Helen V. Firth
- Department of Clinical Genetics, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Debra Rimmington
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - I. Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | - Steven C. Munger
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Stephen O’Rahilly
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | | | - Anthony P. Coll
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Darren W. Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| |
Collapse
|
15
|
Clark KE, Messler KA, Ferkin MH. Sex differences in olfactory social recognition memory in meadow voles,
Microtus pennsylvanicus. Ethology 2020. [DOI: 10.1111/eth.13074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kelsey E. Clark
- Department of Biological Sciences University of Memphis Memphis TN USA
| | - Kaitlynn A. Messler
- Department of Biological Sciences University of Memphis Memphis TN USA
- Department of Health Professions University of Tennessee Health Science Center Memphis TN USA
| | - Michael H. Ferkin
- Department of Biological Sciences University of Memphis Memphis TN USA
| |
Collapse
|
16
|
Cognitive impairments in adult mice with RIP140 overexpression in neural stem cells. Behav Brain Res 2020; 393:112777. [PMID: 32579978 DOI: 10.1016/j.bbr.2020.112777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022]
Abstract
Receptor-interacting protein 140 (RIP140) is a transcription co-regulator of several transcription factors and a signal transduction regulator. RIP140 was recently implicated in the regulation of cognitive functions. The gene that encodes RIP140 is located on chromosome 21. An increase in RIP140 expression was observed in the fetal cerebral cortex and hippocampus in Down syndrome patients who exhibited strong cognitive disabilities. We hypothesized that RIP140 overexpression affects cognitive function in adult neural development. The present study used a Cre-dependent adeno-associated virus to selectively overexpress RIP140 in neural stem cells using nestin-Cre mice. RIP140 overexpression efficiency was evaluated at the subgranular zone (SGZ) of the dorsal dentate gyrus (dDG) and the subventricular zone (SVZ) of the lateral ventricles (LVs). Mice with RIP140 overexpression in the SGZ exhibited deficits in cognitive function and spatial learning and memory, measured in the Morris water maze, object-place recognition test, and novel object recognition test. However, overexpression of RIP140 in SVZ only impaired performance in the Morris water maze and novel object recognition test but not in the object-place recognition test. Altogether, these results indicated defects in cognitive functions that were associated with RIP140 overexpression in neural stem cells and revealed a behavioral phenotype that may be used as a framework for further investigating the neuropathogenesis of Down syndrome.
Collapse
|
17
|
Dombret C, Naulé L, Trouillet AC, Parmentier C, Hardin-Pouzet H, Mhaouty-Kodja S. Effects of neural estrogen receptor beta deletion on social and mood-related behaviors and underlying mechanisms in male mice. Sci Rep 2020; 10:6242. [PMID: 32277160 PMCID: PMC7148327 DOI: 10.1038/s41598-020-63427-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Estradiol derived from neural aromatization of testosterone plays a key role in the organization and activation of neural structures underlying male behaviors. This study evaluated the contribution of the estrogen receptor (ER) β in estradiol-induced modulation of social and mood-related behaviors by using mice lacking the ERβ gene in the nervous system. Mutant males exhibited reduced social interaction with same-sex congeners and impaired aggressive behavior. They also displayed increased locomotor activity, and reduced or unaffected anxiety-state level in three paradigms. However, when mice were exposed to unescapable stress in the forced swim and tail suspension tests, they spent more time immobile and a reduced time in swimming and climbing. These behavioral alterations were associated with unaffected circadian and restraint stress-induced corticosterone levels, and unchanged number of tryptophan hydroxylase 2-immunoreactive neurons in the dorsal raphe. By contrast, reduced mRNA levels of oxytocin and arginine-vasopressin were observed in the bed nucleus of stria terminalis, whereas no changes were detected in the hypothalamic paraventricular nucleus. The neural ERβ is thus involved to different extent levels in social and mood-related behaviors, with a particular action on oxytocin and arginine-vasopressin signaling pathways of the bed nucleus of stria terminalis, yet the involvement of other brain areas cannot be excluded.
Collapse
Affiliation(s)
- Carlos Dombret
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Lydie Naulé
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Anne-Charlotte Trouillet
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Caroline Parmentier
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France.
| |
Collapse
|
18
|
Petereit P, Rinn C, Stemmler G, Mueller EM. Oxytocin reduces the link between neural and affective responses after social exclusion. Biol Psychol 2019; 145:224-235. [DOI: 10.1016/j.biopsycho.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 01/25/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022]
|
19
|
Tsuda MC, Nagata K, Sagoshi S, Ogawa S. Estrogen and oxytocin involvement in social preference in male mice: a study using a novel long-term social preference paradigm with aromatase, estrogen receptor-α and estrogen receptor-β, oxytocin, and oxytocin receptor knockout male mice. Integr Zool 2019; 13:698-710. [PMID: 29873451 DOI: 10.1111/1749-4877.12343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Certain aspects of social behavior help animals make adaptive decisions during encounters with other animals. When mice choose to approach another conspecific, the motivation and preference behind the interaction is not well understood. Estrogen and oxytocin are known to influence a wide array of social behaviors, including social motivation and social preference. The present study investigated the effects of estrogen and oxytocin on social preference using aromatase (ArKO), estrogen receptor (ER) α (αERKO), ERβ (βERKO), oxytocin (OTKO), oxytocin receptor (OTRKO) knockout and their respective wild-type (WT) male mice. Mice were presented with gonadally-intact versus castrated male (IC), intact male versus ovariectomized female (IF), or intact male versus empty cage (IE) stimuli sets for 5 days. ArWT showed no preference for either stimuli in IC and IF and intact male preference in IE, but ArKO mice preferred a castrated male or an ovariectomized female, or had no preference for either stimulus in IC, IF and IE stimuli sets, respectively, suggesting reduced intact male preference. α and β WT mice preferred a castrated male, showed no preference, and preferred an intact male in IC, IF and IE, respectively. αERKO mice displayed similar modified social preference patterns as ArKO, whereas the social preference of βERKO mice remained similar to βWT. OTWT preferred a castrated male whereas OTKO, OTRWT and OTRKO mice failed to show any preference in IC and none showed preference for either stimuli in IF. Collectively, these findings suggest that estrogen regulates social preference in male mice and that impaired social preference in oxytocin-deficient mice may be due to severe deficits in social recognition.
Collapse
Affiliation(s)
- Mumeko C Tsuda
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuyo Nagata
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shoko Sagoshi
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
20
|
Georgiou P, Zanos P, Jenne CE, Gould TD. Sex-Specific Involvement of Estrogen Receptors in Behavioral Responses to Stress and Psychomotor Activation. Front Psychiatry 2019; 10:81. [PMID: 30863326 PMCID: PMC6399411 DOI: 10.3389/fpsyt.2019.00081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/06/2019] [Indexed: 12/25/2022] Open
Abstract
Fluctuating hormone levels, such as estradiol might underlie the difference in the prevalence of psychiatric disorders observed in women vs. men. Estradiol exert its effects primarily through binding on the two classical estrogen receptor subtypes, alpha (ERα) and beta (ERβ). Both receptors have been suggested to a have role in the development of psychiatric disorders, however, most of the current literature is limited to their role in females. We investigated the role of estrogen receptors on cognition (novel-object recognition), anxiety (open-field test, elevated-plus maze, and light/dark box), stress-responsive behaviors (forced-swim test, learned helplessness following inescapable shock, and sucrose preference), pre-pulse inhibition (PPI) and amphetamine-induced hyperlocomotion in both male and female mice either lacking the ERα or ERβ receptor. We found that female Esr1 -/- mice have attenuated pre-pulse inhibition, whereas female Esr2 -/- mice manifested enhanced pre-pulse inhibition. No pre-pulse inhibition difference was observed in male Esr1 -/- and Esr2 -/- mice. Moreover, amphetamine-induced hyperlocomotion was decreased in male Esr1 -/-, but not Esr2 -/- mice, while female Esr1 -/- and Esr2 -/- mice showed an enhanced response. Genetic absence of ERα did not alter the escape capability or sucrose preference following inescapable shock in both male and female mice. In contrast, female, but not male Esr2 -/- mice, manifested decreased escape failures compared with controls. Lack of Esr2 gene in male mice was associated with decreased sucrose preference following inescapable shock, suggesting susceptibility for development of anhedonia following stress. No sucrose preference differences were found in female Esr2 -/- mice following inescapable shock stress. Lastly, we demonstrated that lack of Esr1 or Esr2 genes had no effect on memory and anxiety-like behaviors in both male and female mice. Our findings indicate a differential sex-specific involvement of estrogen receptors in the development of stress-mediated maladaptive behaviors as well as psychomotor activation responses suggesting that these receptors might act as potential treatment targets in a sex-specific manner.
Collapse
Affiliation(s)
- Polymnia Georgiou
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Panos Zanos
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Carleigh E Jenne
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Todd D Gould
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Anatomy & Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Veterans Affairs Maryland Health Care System, Baltimore, MD, United States
| |
Collapse
|
21
|
Goñi-Balentziaga O, Perez-Tejada J, Renteria-Dominguez A, Lebeña A, Labaka A. Social instability in female rodents as a model of stress related disorders: A systematic review. Physiol Behav 2018; 196:190-199. [DOI: 10.1016/j.physbeh.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 01/29/2023]
|
22
|
Ogawa S, Tsukahara S, Choleris E, Vasudevan N. Estrogenic regulation of social behavior and sexually dimorphic brain formation. Neurosci Biobehav Rev 2018; 110:46-59. [PMID: 30392880 DOI: 10.1016/j.neubiorev.2018.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
It has long been known that the estrogen, 17β-estradiol (17β-E), plays a central role for female reproductive physiology and behavior. Numerous studies have established the neurochemical and molecular basis of estrogenic induction of female sexual behavior, i.e., lordosis, in animal models. In addition, 17β-E also regulates male-type sexual and aggressive behavior. In males, testosterone secreted from the testes is irreversibly aromatized to 17β-E in the brain. We discuss the contribution of two nuclear receptor isoforms, estrogen receptor (ER)α and ERβ to the estrogenic regulation of sexually dimorphic brain formation and sex-typical expression of these social behaviors. Furthermore, 17β-E is a key player for social behaviors such as social investigation, preference, recognition and memory as well as anxiety-related behaviors in social contexts. Recent studies also demonstrated that not only nuclear receptor-mediated genomic signaling but also membrane receptor-mediated non-genomic actions of 17β-E may underlie the regulation of these behaviors. Finally, we will discuss how rapidly developing research tools and ideas allow us to investigate estrogenic action by emphasizing behavioral neural networks.
Collapse
Affiliation(s)
- Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, WhiteKnights Campus, Reading, RG6 6AS, United Kingdom
| |
Collapse
|
23
|
Nakata M, Ågmo A, Sagoshi S, Ogawa S. The Role of Estrogen Receptor β (ERβ) in the Establishment of Hierarchical Social Relationships in Male Mice. Front Behav Neurosci 2018; 12:245. [PMID: 30405370 PMCID: PMC6204783 DOI: 10.3389/fnbeh.2018.00245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 10/01/2018] [Indexed: 11/13/2022] Open
Abstract
Acquisition of social dominance is important for social species including mice, for preferential access to foods and mates. Male mice establish social rank through agonistic behaviors, which are regulated by gonadal steroid hormone, testosterone, as its original form and aromatized form. It is well known that estrogen receptors (ERs), particularly ER α (ERα), mediate effects of aromatized testosterone, i.e., 17β-estradiol, but precise role played by ER β (ERβ) is still unclear. In the present study, we investigated effects of ERβ gene disruption on social rank establishment in male mice. Adult male ERβ knockout (βERKO) mice and their wild type (WT) littermates were paired based on genotype- and weight-matched manner and tested against each other repeatedly during 7 days experimental period. They underwent 4 trials of social interaction test in neutral cage (homogeneous set test) every other day. Along repeated trials, WT but not βERKO pairs showed a gradual increase of agonistic behaviors including aggression and tail rattling, and a gradual decrease of latency to social rank determination in tube test conducted after each trial of the social interaction test. Analysis of behavioral transition further suggested that WT winners in the tube test showed one-sided aggression during social interaction test suggesting WT pairs went through a process of social rank establishment. On the other hand, a dominant-subordinate relationship in βERKO pairs was not as apparent as that in WT pairs. Moreover, βERKO mice showed lower levels of aggressive behavior than WT mice in social interaction tests. These findings collectively suggest that ERβ may play a significant role in the establishment and maintenance of hierarchical social relationships among male mice.
Collapse
Affiliation(s)
- Mariko Nakata
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Japan.,Research Fellow, Japan Society for Promotion of Science (JSPS), Tokyo, Japan
| | - Anders Ågmo
- Department of Psychology, University of Tromsø, Tromsø, Norway
| | - Shoko Sagoshi
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
24
|
Perez EC, Rodgers SP, Inoue T, Pedersen SE, Leasure JL, Gaber MW. Olfactory Memory Impairment Differs by Sex in a Rodent Model of Pediatric Radiotherapy. Front Behav Neurosci 2018; 12:158. [PMID: 30116180 PMCID: PMC6084003 DOI: 10.3389/fnbeh.2018.00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/09/2018] [Indexed: 11/24/2022] Open
Abstract
Although an effective treatment for pediatric brain tumors, cranial radiation therapy (CRT) damages surrounding healthy tissue, thereby disrupting brain development. Animal models of pediatric CRT have primarily relied on visual tasks to assess cognitive impairment. Moreover, there has been a lack of sex comparisons as most research on the cognitive effects of pediatric CRT does not include females. Therefore, we utilized olfaction, an ethologically relevant sensory modality, to assess cognitive impairment in an animal model of CRT that included both male and female mice. Specifically, we used the novel odor recognition (NOdorR) task with social odors to test recognition memory, a cognitive parameter that has been associated with olfactory neurogenesis, a form of cellular plasticity damaged by CRT. In addition to odor recognition memory, olfactory ability or discrimination of non-social and social odors were assessed both acutely and 3 months after CRT. Magnetic resonance imaging (MRI) and histology were performed after behavioral testing to assess long-term damage by CRT. Long-term but not acute radiation-induced impairment in odor recognition memory was observed, consistent with delayed onset of cognitive impairment in human patients. Males showed greater exploration of social odors than females, but general exploration was not affected by irradiation. However, irradiated males had impaired odor recognition memory in adulthood, compared to non-irradiated males (or simply male controls). Female olfactory recognition memory, in contrast, was dependent on estrus stage. CRT damage was demonstrated by (1) histological evaluation of olfactory neurogenesis, which suggested a reduction in CRT versus control, and (2) imaging analyses which showed that the majority of brain regions were reduced in volume by CRT. Specifically, two regions involved in social odor processing (amygdala and piriform cortex) were damaged by cranial irradiation in males but not females, paralleling olfactory recognition findings.
Collapse
Affiliation(s)
- Emma C Perez
- Behavioral Neuroscience Lab, Department of Psychology, University of Houston, Houston, TX, United States.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Shaefali P Rodgers
- Behavioral Neuroscience Lab, Department of Psychology, University of Houston, Houston, TX, United States
| | - Taeko Inoue
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Steen E Pedersen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States.,Department of Physiology and Biochemistry, Ross University School of Medicine, Roseau, Dominica
| | - J Leigh Leasure
- Behavioral Neuroscience Lab, Department of Psychology, University of Houston, Houston, TX, United States.,Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - M Waleed Gaber
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
25
|
Paletta P, Sheppard PAS, Matta R, Ervin KSJ, Choleris E. Rapid effects of estrogens on short-term memory: Possible mechanisms. Horm Behav 2018; 104:88-99. [PMID: 29847771 DOI: 10.1016/j.yhbeh.2018.05.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 01/11/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. Estrogens affect learning and memory through rapid and delayed mechanisms. Here we review studies on rapid effects on short-term memory. Estradiol rapidly improves social and object recognition memory, spatial memory, and social learning when administered systemically. The dorsal hippocampus mediates estrogen rapid facilitation of object, social and spatial short-term memory. The medial amygdala mediates rapid facilitation of social recognition. The three estrogen receptors, α (ERα), β (ERβ) and the G-protein coupled estrogen receptor (GPER) appear to play different roles depending on the task and brain region. Both ERα and GPER agonists rapidly facilitate short-term social and object recognition and spatial memory when administered systemically or into the dorsal hippocampus and facilitate social recognition in the medial amygdala. Conversely, only GPER can facilitate social learning after systemic treatment and an ERβ agonist only rapidly improved short-term spatial memory when given systemically or into the hippocampus, but also facilitates social recognition in the medial amygdala. Investigations into the mechanisms behind estrogens' rapid effects on short term memory showed an involvement of the extracellular signal-regulated kinase (ERK) and the phosphoinositide 3-kinase (PI3K) kinase pathways. Recent evidence also showed that estrogens interact with the neuropeptide oxytocin in rapidly facilitating social recognition. Estrogens can increase the production and/or release of oxytocin and other neurotransmitters, such as dopamine and acetylcholine. Therefore, it is possible that estrogens' rapid effects on short-term memory may occur through the regulation of various neurotransmitters, although more research is need on these interactions as well as the mechanisms of estrogens' actions on short-term memory.
Collapse
Affiliation(s)
- Pietro Paletta
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Paul A S Sheppard
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Richard Matta
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kelsy S J Ervin
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
26
|
Borrow AP, Bales NJ, Stover SA, Handa RJ. Chronic Variable Stress Induces Sex-Specific Alterations in Social Behavior and Neuropeptide Expression in the Mouse. Endocrinology 2018; 159:2803-2814. [PMID: 29788320 PMCID: PMC6692887 DOI: 10.1210/en.2018-00217] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Chronic exposure to stressors impairs the function of multiple organ systems and has been implicated in increased disease risk. In the rodent, the chronic variable stress (CVS) paradigm has successfully modeled several stress-related illnesses. Despite striking disparities between men and women in the prevalence and etiology of disorders associated with chronic stress, most preclinical research examining chronic stressor exposure has focused on male subjects. One potential mediator of the consequences of CVS is oxytocin (OT), a known regulator of stress neurocircuitry and behavior. To ascertain the sex-specific effects of CVS in the C57BL/6 mouse on OT and the structurally similar neuropeptide arginine vasopressin (AVP), the numbers of immunoreactive and mRNA-containing neurons in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) were determined using immunohistochemistry and in situ hybridization, respectively. In addition, the mice underwent a battery of behavioral tests to determine whether CVS affects social behaviors known to be regulated by OT and AVP. Six weeks of CVS increased sociability in the female mouse and decreased PVN OT immunoreactivity (ir) and AVP mRNA. In the male mice, CVS decreased PVN OT mRNA but had no effect on social behavior, AVP, or OT-ir. CVS also increased the soma volume for PVN OT neurons. In contrast, OT and AVP neurons in the SON were unaffected by CVS treatment. These findings demonstrate clear sex differences in the effects of CVS on neuropeptides in the mouse, suggest a pathway through which CVS alters sociability and stress-coping responses in females and reveals a vulnerability to CVS in the C57BL/6 mouse strain.
Collapse
Affiliation(s)
- Amanda P Borrow
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Natalie J Bales
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Sally A Stover
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Correspondence: Robert J. Handa, PhD, Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, Colorado 80523. E-mail:
| |
Collapse
|
27
|
Lymer JM, Sheppard PAS, Kuun T, Blackman A, Jani N, Mahbub S, Choleris E. Estrogens and their receptors in the medial amygdala rapidly facilitate social recognition in female mice. Psychoneuroendocrinology 2018; 89:30-38. [PMID: 29309995 DOI: 10.1016/j.psyneuen.2017.12.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/20/2017] [Accepted: 12/27/2017] [Indexed: 11/26/2022]
Abstract
Estrogens have been shown to rapidly (within 1 h) affect learning and memory processes, including social recognition. Both systemic and hippocampal administration of 17β-estradiol facilitate social recognition in female mice within 40 min of administration. These effects were likely mediated by estrogen receptor (ER) α and the G-protein coupled estrogen receptor (GPER), as administration of the respective receptor agonists (PPT and G-1) also facilitated social recognition on a rapid time scale. The medial amygdala has been shown to be necessary for social recognition and long-term manipulations in rats have implicated medial amygdalar ERα. As such, our objective was to investigate whether estrogens and different ERs within the medial amygdala play a role in the rapid facilitation of social recognition in female mice. 17β-estradiol, G-1, PPT, or ERβ agonist DPN was infused directly into the medial amygdala of ovariectomized female mice. Mice were then tested in a social recognition paradigm, which was completed within 40 min, thus allowing the assessment of rapid effects of treatments. 17β-estradiol (10, 25, 50, 100 nM), PPT (300 nM), DPN (150 nM), and G-1 (50 nM) each rapidly facilitated social recognition. Therefore, estrogens in the medial amygdala rapidly facilitate social recognition in female mice, and the three main estrogen receptors: ERα, ERβ, and the GPER all are involved in these effects. This research adds to a network of brain regions, including the medial amygdala and the dorsal hippocampus, that are involved in mediating the rapid estrogenic facilitation of social recognition in female mice.
Collapse
Affiliation(s)
- Jennifer M Lymer
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Paul A S Sheppard
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Talya Kuun
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Andrea Blackman
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nilay Jani
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Sahnon Mahbub
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
28
|
Cicvaric A, Yang J, Bulat T, Zambon A, Dominguez-Rodriguez M, Kühn R, Sadowicz MG, Siwert A, Egea J, Pollak DD, Moeslinger T, Monje FJ. Enhanced synaptic plasticity and spatial memory in female but not male FLRT2-haplodeficient mice. Sci Rep 2018; 8:3703. [PMID: 29487336 PMCID: PMC5829229 DOI: 10.1038/s41598-018-22030-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/14/2018] [Indexed: 12/30/2022] Open
Abstract
The Fibronectin Leucine-Rich Transmembrane protein 2 (FLRT2) has been implicated in several hormone -and sex-dependent physiological and pathological processes (including chondrogenesis, menarche and breast cancer); is known to regulate developmental synapses formation, and is expressed in the hippocampus, a brain structure central for learning and memory. However, the role of FLRT2 in the adult hippocampus and its relevance in sex-dependent brain functions remains unknown. We here used adult single-allele FLRT2 knockout (FLRT2+/-) mice and behavioral, electrophysiological, and molecular/biological assays to examine the effects of FLRT2 haplodeficiency on synaptic plasticity and hippocampus-dependent learning and memory. Female and male FLRT2+/- mice presented morphological features (including body masses, brain shapes/weights, and brain macroscopic cytoarchitectonic organization), indistinguishable from their wild type counterparts. However, in vivo examinations unveiled enhanced hippocampus-dependent spatial memory recall in female FLRT2+/- animals, concomitant with augmented hippocampal synaptic plasticity and decreased levels of the glutamate transporter EAAT2 and beta estrogen receptors. In contrast, male FLRT2+/- animals exhibited deficient memory recall and decreased alpha estrogen receptor levels. These observations propose that FLRT2 can regulate memory functions in the adulthood in a sex-specific manner and might thus contribute to further research on the mechanisms linking sexual dimorphism and cognition.
Collapse
Affiliation(s)
- Ana Cicvaric
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Jiaye Yang
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Tanja Bulat
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Alice Zambon
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Manuel Dominguez-Rodriguez
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Rebekka Kühn
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael G Sadowicz
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Anjana Siwert
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Joaquim Egea
- Molecular and Developmental Neurobiology Research Group, Universitat de Lleida - IRBLleida, Office 1.13, Lab. 1.06. Avda. Rovira Roure, 80, 25198, Lleida, Spain
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Thomas Moeslinger
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Francisco J Monje
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
29
|
Sex differences in the effects of pre- and postnatal caffeine exposure on behavior and synaptic proteins in pubescent rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:416-425. [PMID: 28826637 DOI: 10.1016/j.pnpbp.2017.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 01/14/2023]
Abstract
Few studies have addressed the effects of caffeine in the puberty and/or adolescence in a sex dependent manner. Considering that caffeine intake has increased in this population, we investigated the behavioral and synaptic proteins changes in pubescent male and female rats after maternal consumption of caffeine. Adult female Wistar rats started to receive water or caffeine (0.1 and 0.3g/L in drinking water; low and moderate dose, respectively) during the active cycle at weekdays, two weeks before mating. The treatment lasted up to weaning and the offspring received caffeine until the onset of puberty (30-34days old). Behavioral tasks were performed to evaluate locomotor activity (open field task), anxious-like behavior (elevated plus maze task) and recognition memory (object recognition task) and synaptic proteins levels (proBDNF, BDNF, GFAP and SNAP-25) were verified in the hippocampus and cerebral cortex. While hyperlocomotion was observed in both sexes after caffeine treatment, anxiety-related behavior was attenuated by caffeine (0.3g/L) only in females. While moderate caffeine worsened recognition memory in females, an improvement in the long-term memory was observed in male rats for both doses. Coincident with memory improvement in males, caffeine increased pro- and BDNF in the hippocampus and cortex. Females presented increased proBDNF levels in both brain regions, with no effects of caffeine. While GFAP was not altered, moderate caffeine intake increased SNAP-25 in the cortex of female rats. Our findings revealed that caffeine promoted cognitive benefits in males associated with increased BDNF levels, while females showed less anxiety. Our findings revealed that caffeine promotes distinct behavioral outcomes and alterations in synaptic proteins during brain development in a sex dependent manner.
Collapse
|
30
|
Choleris E, Galea LAM, Sohrabji F, Frick KM. Sex differences in the brain: Implications for behavioral and biomedical research. Neurosci Biobehav Rev 2018; 85:126-145. [PMID: 29287628 PMCID: PMC5751942 DOI: 10.1016/j.neubiorev.2017.07.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/16/2017] [Indexed: 01/11/2023]
Abstract
Biological differences between males and females are found at multiple levels. However, females have too often been under-represented in behavioral neuroscience research, which has stymied the study of potential sex differences in neurobiology and behavior. This review focuses on the study of sex differences in the neurobiology of social behavior, memory, emotions, and recovery from brain injury, with particular emphasis on the role of estrogens in regulating forebrain function. This work, presented by the authors at the 2016 meeting of the International Behavioral Neuroscience Society, emphasizes varying approaches from several mammalian species in which sex differences have not only been documented, but also become the focus of efforts to understand the mechanistic basis underlying them. This information may provide readers with useful experimental tools to successfully address recently introduced regulations by granting agencies that either require (e.g. the National Institutes of Health in the United States and the Canadian Institutes of Health Research in Canada) or recommend (e.g. Horizon 2020 in Europe) the inclusion of both sexes in biomedical research.
Collapse
Affiliation(s)
- Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, MacKinnon Bldg. Room 4020, Guelph, ON N1G 2W1, Canada.
| | - Liisa A M Galea
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M HSC College of Medicine, Bryan, TX 77807, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| |
Collapse
|
31
|
MacLusky NJ, Thomas G, Leranth C. Low dietary soy isoflavonoids increase hippocampal spine synapse density in ovariectomized rats. Brain Res 2017; 1657:361-367. [PMID: 28063855 DOI: 10.1016/j.brainres.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/21/2016] [Accepted: 01/01/2017] [Indexed: 01/14/2023]
Abstract
High dietary intake of plant estrogens (phytoestrogens) can affect brain structure and function. The effects of phytoestrogen intake within the range of normal animal and human dietary consumption, however, remain uncertain. The aim of the present study was to determine the effects of the isoflavonoids present in a standard low phytoestrogen laboratory rat chow on spine synapse density in the stratum radiatum of area CA1 of the hippocampus. Weanling rats (22days old) were fed either standard chow (Teklad 2018), a nutritionally comparable diet without soy (Teklad 2016) or a custom diet containing Teklad 2016 supplemented with the principal soy isoflavonoids, daidzein and genistein, for 40days. Rats were ovariectomized at 54days of age. Eight days later, spine synapse density on the apical dendrites of hippocampal pyramidal neurons in the stratum radiatum of area CA1 was measured by electron microscopic stereological analysis. Animals maintained on Teklad 2016 exhibited an approximately 60% lower CA1 spine synapse density than animals consuming Teklad 2018. Replacing genistein and daidzein in Teklad 2016 returned synapse density to levels indistinguishable from those in animals on Teklad 2018. These results indicate that the isoflavonoids in a standard laboratory rat diet exert significant effects on spine synapse density in the CA1 region of the hippocampus. Since changes in spine synapse density in this region of the hippocampus have been linked to cognitive performance and mood state, these data suggest that even relatively low daily consumption of soy phytoestrogens may be sufficient to influence hippocampal function.
Collapse
Affiliation(s)
- Neil J MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Gladis Thomas
- Departments of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT 06520-8063, USA
| | - Csaba Leranth
- Departments of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT 06520-8063, USA; Neurobiology, Yale University School of Medicine, New Haven, CT 06520-8063, USA
| |
Collapse
|
32
|
Bernal-Mondragón C, Arriaga-Avila V, Martínez-Abundis E, Barrera-Mera B, Mercado-Gómez O, Guevara-Guzmán R. Effects of repeated 9 and 30-day exposure to extremely low-frequency electromagnetic fields on social recognition behavior and estrogen receptors expression in olfactory bulb of Wistar female rats. Neurol Res 2016; 39:165-175. [PMID: 27892794 DOI: 10.1080/01616412.2016.1252875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE We investigated the short- and long-term effects of extremely low-frequency electromagnetic fields (EMF) on social recognition behavior and expression of α- and β-estrogen receptors (ER). METHODS Rats were exposed to 60-Hz electromagnetic fields for 9 or 30 days and tested for social recognition behavior. Immunohistochemistry and western blot assays were performed to evaluate α- and β-ER expression in the olfactory bulb of intact, ovariectomized (OVX), and ovariectomized+estradiol (E2) replacement (OVX+E2). RESULTS Ovariectomization showed impairment of social recognition after 9 days of EMF exposure and a complete recovery after E2 replacement and so did those after 30 days. Short EMF exposure increased expression of β-ER in intact, but not in the others. Longer exposure produced a decrease in intact but an increase in OVX and OVX+E2. DISCUSSION Our findings suggest a significant role for β-estrogen receptors and a lack of effect for α-estrogen receptors on a social recognition task. ABBREVIATIONS EMF: extremely low frequency electromagnetic fields; ERs: estrogen receptors; OB: olfactory bulb; OVX: ovariectomized; OVX + E2: ovariectomized + estradiol replacement; IEI: interexposure interval; β-ER: beta estrogen receptor; E2: replacement of estradiol; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; WB: Western blot; PBS: phosphate-buffer saline; PB: phosphate-buffer.
Collapse
Affiliation(s)
- C Bernal-Mondragón
- a Facultad de Medicina, Departamento de Fisiología , Universidad Nacional Autónoma de México , Ciudad de México , Mexico
| | - V Arriaga-Avila
- a Facultad de Medicina, Departamento de Fisiología , Universidad Nacional Autónoma de México , Ciudad de México , Mexico
| | - E Martínez-Abundis
- b División Académica Multidisciplinaria de Comalcalco , Universidad Juárez Autónoma de Tabasco , Comalcalco , Mexico
| | - B Barrera-Mera
- a Facultad de Medicina, Departamento de Fisiología , Universidad Nacional Autónoma de México , Ciudad de México , Mexico
| | - O Mercado-Gómez
- a Facultad de Medicina, Departamento de Fisiología , Universidad Nacional Autónoma de México , Ciudad de México , Mexico
| | - R Guevara-Guzmán
- a Facultad de Medicina, Departamento de Fisiología , Universidad Nacional Autónoma de México , Ciudad de México , Mexico
| |
Collapse
|
33
|
Karlsson SA, Studer E, Kettunen P, Westberg L. Neural Androgen Receptors Modulate Gene Expression and Social Recognition But Not Social Investigation. Front Behav Neurosci 2016; 10:41. [PMID: 27014003 PMCID: PMC4792870 DOI: 10.3389/fnbeh.2016.00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/22/2016] [Indexed: 12/02/2022] Open
Abstract
The role of sex and androgen receptors (ARs) for social preference and social memory is rather unknown. In this study of mice we compared males, females and males lacking ARs specifically in the nervous system, ARNesDel, with respect to social preference, assessed with the three-chambered apparatus test, and social recognition, assessed with the social discrimination procedure. In the social discrimination test we also evaluated the tentative importance of the sex of the stimulus animal. Novel object recognition and olfaction were investigated to complement the results from the social tests. Gene expression analysis was performed to reveal molecules involved in the effects of sex and androgens on social behaviors. All three test groups showed social preference in the three-chambered apparatus test. In both social tests an AR-independent sexual dimorphism was seen in the persistence of social investigation of female conspecifics, whereas the social interest toward male stimuli mice was similar in all groups. Male and female controls recognized conspecifics independent of their sex, whereas ARNesDel males recognized female but not male stimuli mice. Moreover, the non-social behaviors were not affected by AR deficiency. The gene expression analyses of hypothalamus and amygdala indicated that Oxtr, Cd38, Esr1, Cyp19a1, Ucn3, Crh, and Gtf2i were differentially expressed between the three groups. In conclusion, our results suggest that ARs are required for recognition of male but not female conspecifics, while being dispensable for social investigation toward both sexes. In addition, the AR seems to regulate genes related to oxytocin, estrogen and William’s syndrome.
Collapse
Affiliation(s)
- Sara A Karlsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Erik Studer
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| |
Collapse
|
34
|
Karlsson S, Henningsson S, Hovey D, Zettergren A, Jonsson L, Cortes DS, Melke J, Laukka P, Fischer H, Westberg L. Social memory associated with estrogen receptor polymorphisms in women. Soc Cogn Affect Neurosci 2016; 11:877-83. [PMID: 26955855 DOI: 10.1093/scan/nsw010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/21/2016] [Indexed: 11/12/2022] Open
Abstract
The ability to recognize the identity of faces and voices is essential for social relationships. Although the heritability of social memory is high, knowledge about the contributing genes is sparse. Since sex differences and rodent studies support an influence of estrogens and androgens on social memory, polymorphisms in the estrogen and androgen receptor genes (ESR1, ESR2, AR) are candidates for this trait. Recognition of faces and vocal sounds, separately and combined, was investigated in 490 subjects, genotyped for 10 single nucleotide polymorphisms (SNPs) in ESR1, four in ESR2 and one in the AR Four of the associations survived correction for multiple testing: women carrying rare alleles of the three ESR2 SNPs, rs928554, rs1271572 and rs1256030, in linkage disequilibrium with each other, displayed superior face recognition compared with non-carriers. Furthermore, the uncommon genotype of the ESR1 SNP rs2504063 was associated with better recognition of identity through vocal sounds, also specifically in women. This study demonstrates evidence for associations in women between face recognition and variation in ESR2, and recognition of identity through vocal sounds and variation in ESR1. These results suggest that estrogen receptors may regulate social memory function in humans, in line with what has previously been established in mice.
Collapse
Affiliation(s)
- Sara Karlsson
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Henningsson
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Hovey
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Zettergren
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and
| | - Lina Jonsson
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Diana S Cortes
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Jonas Melke
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Petri Laukka
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,
| |
Collapse
|
35
|
Karlsson SA, Haziri K, Hansson E, Kettunen P, Westberg L. Effects of sex and gonadectomy on social investigation and social recognition in mice. BMC Neurosci 2015; 16:83. [PMID: 26608570 PMCID: PMC4660658 DOI: 10.1186/s12868-015-0221-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/17/2015] [Indexed: 01/02/2023] Open
Abstract
Background An individual’s ability to recognise and pay attention to others is crucial in order to behave appropriately in various social situations. Studies in humans have shown a sex bias in sociability as well as social memory, indicating that females have better face memory and gaze more at the eyes of others, but information about the factors that underpin these differences is sparse. Our aim was therefore to investigate if sociability and social recognition differ between female and male mice, and if so, to what extent gonadal hormones may be involved. Intact and gonadectomised male and female mice were assessed for sociability and social recognition using the three-chambered sociability paradigm, as well as the social discrimination test. Furthermore, we conducted a novel object recognition test, a locomotor activity test and an odour habituation/dishabituation test. Results The present study showed that the ability to recognise other individuals is intact in males with and without gonads, as well as in intact females, whereas it is hampered in gonadectomised females. Additionally, intact male mice displayed more persistent investigatory behaviour compared to the other groups, although the intact females showed elevated basal locomotor activity. In addition, all groups had intact object memory and habituated to odours. Conclusions Our results suggest that intact male mice investigate conspecifics more than females do, and these differences seem to depend upon circulating hormones released from the testis. As these results seem to contrast what is known from human studies, they should be taken into consideration when using the three-chambered apparatus, and similar paradigms as animal models of social deficits in e.g. autism. Other behavioural tests, and animal models, may be more suitable for translational studies between patients and experimental animals.
Collapse
Affiliation(s)
- Sara A Karlsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Kaltrina Haziri
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Evelyn Hansson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
36
|
Toor I, Clement D, Carlson EN, Holmes MM. Olfaction and social cognition in eusocial naked mole-rats, Heterocephalus glaber. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Frick KM, Kim J, Tuscher JJ, Fortress AM. Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents. Learn Mem 2015; 22:472-93. [PMID: 26286657 PMCID: PMC4561402 DOI: 10.1101/lm.037267.114] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 01/24/2023]
Abstract
Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17β-estradiol (E2), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes the effects of E2 on hippocampal spinogenesis, neurogenesis, physiology, and memory, with particular attention paid to the effects of E2 in male rodents. The estrogen receptors, cell-signaling pathways, and epigenetic processes necessary for E2 to enhance memory in female rodents are also discussed in detail. Finally, practical considerations for working with female rodents are described for those investigators thinking of adding females to their experimental designs.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jennifer J Tuscher
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
38
|
Ervin KSJ, Lymer JM, Matta R, Clipperton-Allen AE, Kavaliers M, Choleris E. Estrogen involvement in social behavior in rodents: Rapid and long-term actions. Horm Behav 2015; 74:53-76. [PMID: 26122289 DOI: 10.1016/j.yhbeh.2015.05.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/16/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
Abstract
This article is part of a Special Issue ("Estradiol and cognition"). Estrogens have repeatedly been shown to influence a wide array of social behaviors, which in rodents are predominantly olfactory-mediated. Estrogens are involved in social behavior at multiple levels of processing, from the detection and integration of socially relevant olfactory information to more complex social behaviors, including social preferences, aggression and dominance, and learning and memory for social stimuli (e.g. social recognition and social learning). Three estrogen receptors (ERs), ERα, ERβ, and the G protein-coupled ER 1 (GPER1), differently affect these behaviors. Social recognition, territorial aggression, and sexual preferences and mate choice, all requiring the integration of socially related olfactory information, seem to primarily involve ERα, with ERβ playing a lesser, modulatory role. In contrast, social learning consistently responds differently to estrogen manipulations than other social behaviors. This suggests differential ER involvement in brain regions important for specific social behaviors, such as the ventromedial and medial preoptic nuclei of the hypothalamus in social preferences and aggression, the medial amygdala and hippocampus in social recognition, and the prefrontal cortex and hippocampus in social learning. While the long-term effects of ERα and ERβ on social behavior have been extensively investigated, our knowledge of the rapid, non-genomic, effects of estrogens is more limited and suggests that they may mediate some social behaviors (e.g. social learning) differently from long-term effects. Further research is required to compare ER involvement in regulating social behavior in male and female animals, and to further elucidate the roles of the more recently described G protein-coupled ERs, both the GPER1 and the Gq-mER.
Collapse
Affiliation(s)
- Kelsy S J Ervin
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer M Lymer
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Richard Matta
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | | | - Martin Kavaliers
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
39
|
Venerosi A, Tait S, Stecca L, Chiarotti F, De Felice A, Cometa MF, Volpe MT, Calamandrei G, Ricceri L. Effects of maternal chlorpyrifos diet on social investigation and brain neuroendocrine markers in the offspring - a mouse study. Environ Health 2015; 14:32. [PMID: 25889763 PMCID: PMC4448273 DOI: 10.1186/s12940-015-0019-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/20/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Chlorpyrifos (CPF) is one of the most widely used organophosphate pesticides worldwide. Epidemiological studies on pregnant women and their children suggest a link between in utero CPF exposure and delay in psychomotor and cognitive maturation. A large number of studies in animal models have shown adverse effects of CPF on developing brain and more recently on endocrine targets. Our aim was to determine if developmental exposure to CPF affects social responsiveness and associated molecular neuroendocrine markers at adulthood. METHOD Pregnant CD1 outbred mice were fed from gestational day 15 to lactation day 14 with either a CPF-added (equivalent to 6 mg/kg/bw/day during pregnancy) or a standard diet. We then assessed in the offspring the long-term effects of CPF exposure on locomotion, social recognition performances and gene expression levels of selected neurondocrine markers in amygdala and hypothalamus. RESULTS No sign of CPF systemic toxicity was detected. CPF induced behavioral alterations in adult offspring of both sexes: CPF-exposed males displayed enhanced investigative response to unfamiliar social stimuli, whereas CPF-exposed females showed a delayed onset of social investigation and lack of reaction to social novelty. In parallel, molecular effects of CPF were sex dimorphic: in males CPF increased expression of estrogen receptor beta in hypothalamus and decreased oxytocin expression in amygdala; CPF increased vasopressin 1a receptor expression in amygdala in both sexes. CONCLUSIONS These data indicate that developmental CPF affects mouse social behavior and interferes with development of sex-dimorphic neuroendocrine pathways with potential disruptive effects on neuroendocrine axes homeostasis. The route of exposure selected in our study corresponds to relevant human exposure scenarios, our data thus supports the view that neuroendocrine effects, especially in susceptible time windows, should deserve more attention in risk assessment of OP insecticides.
Collapse
Affiliation(s)
- Aldina Venerosi
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | - Sabrina Tait
- Department Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Stecca
- Department Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| | - Flavia Chiarotti
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | - Alessia De Felice
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | | | - Maria Teresa Volpe
- Department Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| | - Gemma Calamandrei
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Ricceri
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
40
|
James BM, Li Q, Luo L, Kendrick KM. Aged neuronal nitric oxide knockout mice show preserved olfactory learning in both social recognition and odor-conditioning tasks. Front Cell Neurosci 2015; 9:105. [PMID: 25870540 PMCID: PMC4375995 DOI: 10.3389/fncel.2015.00105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/09/2015] [Indexed: 12/27/2022] Open
Abstract
There is evidence for both neurotoxic and neuroprotective roles of nitric oxide (NO) in the brain and changes in the expression of the neuronal isoform of NO synthase (nNOS) gene occur during aging. The current studies have investigated potential support for either a neurotoxic or neuroprotective role of NO derived from nNOS in the context of aging by comparing olfactory learning and locomotor function in young compared to old nNOS knockout (nNOS−/−) and wildtype control mice. Tasks involving social recognition and olfactory conditioning paradigms showed that old nNOS−/− animals had improved retention of learning compared to similar aged wildtype controls. Young nNOS−/− animals showed superior reversal learning to wildtypes in a conditioned learning task, although their performance was weakened with age. Interestingly, whereas young nNOS−/− animals were impaired in long term memory for social odors compared to wildtype controls, in old animals this pattern was reversed, possibly indicating beneficial compensatory changes influencing olfactory memory may occur during aging in nNOS−/− animals. Possibly such compensatory changes may have involved increased NO from other NOS isoforms since the memory deficit in young nNOS−/− animals could be rescued by the NO-donor, molsidomine. Both nNOS−/− and wildtype animals showed an age-associated decline in locomotor activity although young nNOS−/− animals were significantly more active than wildtypes, possibly due to an increased interest in novelty. Overall our findings suggest that lack of NO release via nNOS may protect animals to some extent against age-associated cognitive decline in memory tasks typically involving olfactory and hippocampal regions, but not against declines in reversal learning or locomotor activity.
Collapse
Affiliation(s)
- Bronwen M James
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan, China ; Department of Medicine, St Bernard's Hospital Gibraltar, UK
| | - Qin Li
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan, China
| | - Lizhu Luo
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan, China
| | - Keith M Kendrick
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China Chengdu, Sichuan, China
| |
Collapse
|
41
|
Dillon TS, Fox LC, Han C, Linster C. 17β-estradiol enhances memory duration in the main olfactory bulb in CD-1 mice. Behav Neurosci 2014; 127:923-31. [PMID: 24341716 DOI: 10.1037/a0034839] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rodents rely heavily on odor detection, discrimination, and memory to locate food, find mates, care for pups, and avoid predators. Estrogens have been shown to increase memory retention in rodents performing spatial memory and object placement tasks. Here we evaluate the extent to which 17β-estradiol modulates memory formation and duration in the olfactory system. Adult CD-1 mice were gonadectomized and given either systemic 17β-estradiol replacement, local 17β-estradiol in the main olfactory bulb, or no replacement. Before performing the behavioral task the mice were given saline or PHTPP (an estrogen receptor β [ER-β] antagonist) via bilateral infusion into the main olfactory bulb. As the beta-type estrogen receptor (ER-β) is more abundant than the alpha-type estrogen receptor in the murine main olfactory bulb, the current study focuses on 17β-estradiol and its interactions with ERβ. Habituation, a simple, nonassociative learning task in which an animal is exposed to the same odor over successive presentations, was used to evaluate the animals' ability to detect odors and form an olfactory memory. To evaluate memory duration, we added a final trial of intertrial interval time (30 or 60 min) in which we presented the habituated odor. Neither surgical nor drug manipulation affected the ability of mice to detect or habituate to an odor. After habituation, gonadectomized 17β-estradiol-treated mice retained memory of an odor for 30 min, whereas non-estradiol-treated, 17β-estradiol+ERβ antagonist (PHTPP), and untreated male mice did not remember an odor 30 min after habituation. The results show that both systemic and local bulbar infusions of 17β-estradiol enhance odor memory duration in mice.
Collapse
|
42
|
Cao Y, Wu R, Tai F, Zhang X, Yu P, An X, Qiao X, Hao P. Neonatal paternal deprivation impairs social recognition and alters levels of oxytocin and estrogen receptor α mRNA expression in the MeA and NAcc, and serum oxytocin in mandarin voles. Horm Behav 2014; 65:57-65. [PMID: 24291055 DOI: 10.1016/j.yhbeh.2013.11.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 11/17/2013] [Accepted: 11/19/2013] [Indexed: 01/20/2023]
Abstract
Paternal care is necessary for the healthy development of social behavior in monogamous rodents and social recognition underpins social behavior in these animals. The effects of paternal care on the development of social recognition and underlying neuroendocrine mechanisms, especially the involvement of oxytocin and estrogen pathways, remain poorly understood. We investigated the effects of paternal deprivation (PD: father was removed from neonatal pups and mother alone raised the offspring) on social recognition in mandarin voles (Microtus mandarinus), a socially monogamous rodent. Paternal deprivation was found to inhibit the development of social recognition in female and male offspring according to a habituation-dishabituation paradigm. Paternal deprivation resulted in increased inactivity and reduced investigation during new encounters with other animals. Paternal deprivation reduced oxytocin receptor (OTR) and estrogen receptor α (ERα) mRNA expression in the medial amygdala and nucleus accumbens. Paternal deprivation reduced serum oxytocin (OT) concentration in females, but had no effect on males. Our results provide substantial evidence that paternal deprivation inhibits the development of social recognition in female and male mandarin voles and alters social behavior later in life. This is possibly the result of altered expression of central OTR and ERα and serum OT levels caused by paternal deprivation.
Collapse
Affiliation(s)
- Yan Cao
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Ruiyong Wu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| | - Xia Zhang
- University of Ottawa, Institute of Mental Health Research, Ottawa, Ontario K1Z 7K4, Canada
| | - Peng Yu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xiaolei An
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xufeng Qiao
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Ping Hao
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|
43
|
Trojan Genes or Transparent Genomes? Sexual Selection and Potential Impacts of Genetically Modified Animals in Natural Ecosystems. Evol Biol 2013. [DOI: 10.1007/s11692-013-9268-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Ervin KSJ, Phan A, Gabor CS, Choleris E. Rapid oestrogenic regulation of social and nonsocial learning. J Neuroendocrinol 2013; 25:1116-32. [PMID: 23876061 DOI: 10.1111/jne.12079] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/26/2013] [Accepted: 07/16/2013] [Indexed: 12/16/2022]
Abstract
Much research on oestrogens has focused on their long-term action, exerting behavioural effects within hours to days through gene transcription. Oestrogens also affect behaviour on a much shorter time scale. These rapid effects are assumed to occur through cell signalling and can elicit a behavioural effect as early as 15 min after treatment. These effects on behaviour have primarily been explored through the action of oestradiol at three well-known oestrogen receptors (ERs): ERα, ERβ and the more recently described G protein-coupled ER1 (GPER1). The rapid effects of oestradiol and ER agonists have been tested on both social and nonsocial learning paradigms. Social learning refers to a paradigm in which an animal acquires information and modifies its behaviour based on observation of another animal, commonly studied using the social transmission of food preferences paradigm. When administered shortly before testing, oestradiol rapidly improves social learning on this task, although no ER agonist has definitive, comparable improving effects. Some evidence points to GPER1, whereas ERα impairs, and ERβ activation has no effect on social learning. Conversely, ERα and GPER1 play a larger role than ERβ in the rapid improving effect of oestrogens on nonsocial learning, including social and object recognition. In addition, when administered immediately post-acquisition, oestrogens also rapidly improve memory consolidation in a variety of learning paradigms: object recognition, object placement, inhibitory avoidance and the Morris water maze, indicating that oestradiol affects the consolidation of multiple types of memory. Evidence suggests that these improvements are the result of oestrogens acting in the dorsal hippocampus where selective activation of all three ERs shows rapid improving effects on spatial learning comparable to oestradiol. However, the hippocampus is not necessary for rapid oestradiol improvements on social recognition. Although acute treatment with oestradiol enhances learning and memory on various social and nonsocial learning paradigms, the specific ERs play different roles in each type of learning. Future research should aim to further determine the roles of ERs with respect to the enhancing effects of oestradiol on learning and memory, and also determine where in the brain oestradiol acts to affect social and nonsocial learning.
Collapse
Affiliation(s)
- K S J Ervin
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada
| | | | | | | |
Collapse
|
45
|
Zheng DJ, Foley L, Rehman A, Ophir AG. Social recognition is context dependent in single male prairie voles. Anim Behav 2013; 86:10.1016/j.anbehav.2013.09.015. [PMID: 24273328 PMCID: PMC3834614 DOI: 10.1016/j.anbehav.2013.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Single males might benefit from knowing the identity of neighbouring males when establishing and defending boundaries. Similarly, males should discriminate between individual females if this leads to more reproductive opportunities. Contextual social cues may alter the value of learning identity. Knowing the identity of competitors that intrude into an animal's territory may be more salient than knowing the identity of individuals on whose territory an animal is trespassing. Hence, social and environmental context could affect social recognition in many ways. Here we test social recognition of socially monogamous single male prairie voles, Microtus ochrogaster. In experiment 1 we tested recognition of male or female conspecifics and found that males discriminated between different males but not between different females. In experiment 2 we asked whether recognition of males is influenced when males are tested in their own cage (familiar), in a clean cage (neutral) or in the home cage of another male (unfamiliar). Although focal males discriminated between male conspecifics in all three contexts, individual variation in recognition was lower when males were tested in their home cage (in the presence of familiar social cues) compared to when the context lacked social cues (neutral). Experiment 1 indicates that selective pressures may have operated to enhance male territorial behaviour and indiscriminate mate selection. Experiment 2 suggests that the presence of a conspecific cue heightens social recognition and that home-field advantages might extend to social cognition. Taken together, our results indicate social recognition depends on the social and possibly territorial context.
Collapse
Affiliation(s)
| | - Lauren Foley
- Department of Zoology, Oklahoma State University, Stillwater, OK, U.S.A
| | - Asad Rehman
- Department of Zoology, Oklahoma State University, Stillwater, OK, U.S.A
| | | |
Collapse
|
46
|
Zettergren A, Jonsson L, Johansson D, Melke J, Lundström S, Anckarsäter H, Lichtenstein P, Westberg L. Associations between polymorphisms in sex steroid related genes and autistic-like traits. Psychoneuroendocrinology 2013; 38:2575-84. [PMID: 23867117 DOI: 10.1016/j.psyneuen.2013.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/24/2013] [Accepted: 06/07/2013] [Indexed: 01/27/2023]
Abstract
Sex differences in psychiatric disorders are common, which is particularly striking in autism spectrum disorders (ASDs) that are four times more prevalent in boys. High levels of testosterone during early development have been hypothesized to be a risk factor for ASDs, supported by several studies showing fetal testosterone levels, as well as indirect measures of prenatal androgenization, to be associated with ASDs and autistic-like traits (ALTs). Further, the importance of sex steroid related genes in ASDs is supported by studies reporting associations between polymorphisms in genes involved in sex steroid synthesis/metabolism and ASDs and ALTs. The aim of the present study was to investigate possible associations between 29 single nucleotide polymorphisms (SNPs) in eight genes related to sex steroids and autistic features. Individuals included in the study belong to a subset (n=1771) from The Child and Adolescent Twin Study in Sweden (CATSS), which are all assessed for ALTs. For two SNPs, rs2747648 located in the 3'-UTR of ESR1 encoding the estrogen receptor alpha and rs523349 (Leu89Val) located in SRD5A2 encoding 5-alpha-reductase, type 2, highly significant associations with ALTs were found in boys and girls, respectively. The results of the present study suggest that SNPs in sex steroid related genes, known to affect gene expression (rs2747648 in ESR1) and enzymatic activity (Leu89Val in SRD5A2), seem to be associated with ALTs in a general population. In conclusion, the current findings provide further support for a role of sex steroids in the pathophysiology of ASDs.
Collapse
Affiliation(s)
- Anna Zettergren
- Institute of Neuroscience and Physiology, Department of Pharmacology, University of Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Srivastava DP, Woolfrey KM, Penzes P. Insights into rapid modulation of neuroplasticity by brain estrogens. Pharmacol Rev 2013; 65:1318-50. [PMID: 24076546 PMCID: PMC3799233 DOI: 10.1124/pr.111.005272] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Converging evidence from cellular, electrophysiological, anatomic, and behavioral studies suggests that the remodeling of synapse structure and function is a critical component of cognition. This modulation of neuroplasticity can be achieved through the actions of numerous extracellular signals. Moreover, it is thought that it is the integration of different extracellular signals regulation of neuroplasticity that greatly influences cognitive function. One group of signals that exerts powerful effects on multiple neurologic processes is estrogens. Classically, estrogens have been described to exert their effects over a period of hours to days. However, there is now increasing evidence that estrogens can rapidly influence multiple behaviors, including those that require forebrain neural circuitry. Moreover, these effects are found in both sexes. Critically, it is now emerging that the modulation of cognition by rapid estrogenic signaling is achieved by activation of specific signaling cascades and regulation of synapse structure and function, cumulating in the rewiring of neural circuits. The importance of understanding the rapid effects of estrogens on forebrain function and circuitry is further emphasized as investigations continue to consider the potential of estrogenic-based therapies for neuropathologies. This review focuses on how estrogens can rapidly influence cognition and the emerging mechanisms that underlie these effects. We discuss the potential sources and the biosynthesis of estrogens within the brain and the consequences of rapid estrogenic-signaling on the remodeling of neural circuits. Furthermore, we argue that estrogens act via distinct signaling pathways to modulate synapse structure and function in a manner that may vary with cell type, developmental stage, and sex. Finally, we present a model in which the coordination of rapid estrogenic-signaling and activity-dependent stimuli can result in long-lasting changes in neural circuits, contributing to cognition, with potential relevance for the development of novel estrogenic-based therapies for neurodevelopmental or neurodegenerative disorders.
Collapse
Affiliation(s)
- Deepak P Srivastava
- Department of Neuroscience & Centre for the Cellular Basis of Behaviour, 125 Coldharbour Lane, The James Black Centre, Institute of Psychiatry, King's College London, London, SE5 9NU, UK.
| | | | | |
Collapse
|
48
|
Using mouse models to investigate sex-linked genetic effects on brain, behaviour and vulnerability to neuropsychiatric disorders. Brain Res Bull 2013; 92:12-20. [DOI: 10.1016/j.brainresbull.2011.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/17/2011] [Accepted: 06/27/2011] [Indexed: 11/20/2022]
|
49
|
McIntyre RE, Lakshminarasimhan Chavali P, Ismail O, Carragher DM, Sanchez-Andrade G, Forment JV, Fu B, Del Castillo Velasco-Herrera M, Edwards A, van der Weyden L, Yang F, Ramirez-Solis R, Estabel J, Gallagher FA, Logan DW, Arends MJ, Tsang SH, Mahajan VB, Scudamore CL, White JK, Jackson SP, Gergely F, Adams DJ. Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome. PLoS Genet 2012; 8:e1003022. [PMID: 23166506 PMCID: PMC3499256 DOI: 10.1371/journal.pgen.1003022] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 08/23/2012] [Indexed: 02/07/2023] Open
Abstract
Disruption of the centromere protein J gene, CENPJ (CPAP, MCPH6, SCKL4), which is a highly conserved and ubiquitiously expressed centrosomal protein, has been associated with primary microcephaly and the microcephalic primordial dwarfism disorder Seckel syndrome. The mechanism by which disruption of CENPJ causes the proportionate, primordial growth failure that is characteristic of Seckel syndrome is unknown. By generating a hypomorphic allele of Cenpj, we have developed a mouse (Cenpj(tm/tm)) that recapitulates many of the clinical features of Seckel syndrome, including intrauterine dwarfism, microcephaly with memory impairment, ossification defects, and ocular and skeletal abnormalities, thus providing clear confirmation that specific mutations of CENPJ can cause Seckel syndrome. Immunohistochemistry revealed increased levels of DNA damage and apoptosis throughout Cenpj(tm/tm) embryos and adult mice showed an elevated frequency of micronucleus induction, suggesting that Cenpj-deficiency results in genomic instability. Notably, however, genomic instability was not the result of defective ATR-dependent DNA damage signaling, as is the case for the majority of genes associated with Seckel syndrome. Instead, Cenpj(tm/tm) embryonic fibroblasts exhibited irregular centriole and centrosome numbers and mono- and multipolar spindles, and many were near-tetraploid with numerical and structural chromosomal abnormalities when compared to passage-matched wild-type cells. Increased cell death due to mitotic failure during embryonic development is likely to contribute to the proportionate dwarfism that is associated with CENPJ-Seckel syndrome.
Collapse
Affiliation(s)
- Rebecca E. McIntyre
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Pavithra Lakshminarasimhan Chavali
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre and Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Ozama Ismail
- Mouse Genetics Project, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Damian M. Carragher
- Mouse Genetics Project, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Josep V. Forment
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Beiyuan Fu
- Molecular Cytogenetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Andrew Edwards
- Wellcome Trust Center for Human Genetics, Oxford, United Kingdom
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Fengtang Yang
- Molecular Cytogenetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Ramiro Ramirez-Solis
- Mouse Genetics Project, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Jeanne Estabel
- Mouse Genetics Project, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Ferdia A. Gallagher
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Darren W. Logan
- Genetics of Instinctive Behaviour, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Mark J. Arends
- Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Stephen H. Tsang
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
- Bernard and Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Vinit B. Mahajan
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States of America
| | - Cheryl L. Scudamore
- Department of Pathology and Infectious Diseases, Royal Veterinary College, London, United Kingdom
| | - Jacqueline K. White
- Mouse Genetics Project, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Stephen P. Jackson
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Fanni Gergely
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre and Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - David J. Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
50
|
Pompili A, Arnone B, Gasbarri A. Estrogens and memory in physiological and neuropathological conditions. Psychoneuroendocrinology 2012; 37:1379-96. [PMID: 22309827 DOI: 10.1016/j.psyneuen.2012.01.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 12/22/2022]
Abstract
Ovarian hormones can influence brain regions crucial to higher cognitive functions, such as learning and memory, acting at structural, cellular and functional levels, and modulating neurotransmitter systems. Among the main effects of estrogens, the protective role that they may play against the deterioration of cognitive functions occurring with normal aging is of essential importance. In fact, during the last century, there has been a 30 years increase in female life expectancy, from 50 to 83 years; however, the mean age of spontaneous menopause remains stable, 50-51 years, with variability related to race and ethnicity. Therefore, women are now spending a greater fraction of their lives in a hypoestrogenic state. Although many cognitive functions seem to be unaffected by normal aging, age-related impairments are particularly evident in tasks involving working memory (WM), whose deficits are a recognized feature of Alzheimer's disease (AD). Many studies conducted over the past two decades showed that the female gonadal hormone estradiol can influence performance of learning and memory tasks, both in animal and humans. There is a great deal of evidence, mostly from animal models, that estrogens can facilitate or enhance performance on WM tasks; therefore, it is very important to clarify their role on this type of memory. To this aim, in this review we briefly describe the most relevant neurobiological bases of estrogens, that can explain their effects on cognitive functioning, and then we summarize the results of works conducted in our laboratory, both on animals and humans, utilizing the menstrual/estrous cycle as a useful noninvasive model. Finally, we review the possible role of estrogens in neuropathological conditions, such as AD and schizophrenia.
Collapse
Affiliation(s)
- Assunta Pompili
- Department of Biomedical Sciences and Technologies, University of L'Aquila, L'Aquila, Italy.
| | | | | |
Collapse
|