1
|
Garduño-Gutiérrez R, Rodríguez-Manzo G, Velázquez-Alvarado A, Miller-Pérez C, León-Olea M. The endocrine disruptor DE-79 alters oxytocinergic transmission and sexual behavior expression in male rats. Toxicol Appl Pharmacol 2023; 479:116723. [PMID: 37844777 DOI: 10.1016/j.taap.2023.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), used as flame retardants are persistent organic pollutants exerting important health effects. PBDEs with >5 bromide substitutions were considered less harmful and therefore extensively used commercially. DE-79 was a widely used PBDE mixture of hexa-, hepta-, octa- and nona-brominated compounds that increases vasopressin (AVP) production. AVP and oxytocin (OT) are both produced in neurons of the supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei projecting to the neurohypophysis and to brain regions involved in copulatory behavior. OT plays an important role in male copulation. Since DE-79 alters AVP expression in the SON and PVN, it might also modify OT content and alter male sexual behavior. We analyzed if repeated DE-79 exposure of adult male rats affected OT content and OT receptor (OTR) density in the SON, PVN, medial preoptic area (mPOA), ventral tegmental area, nucleus accumbens, and amygdala, and if male copulatory behavior was affected. We show that DE-79 exposure produces a generalized decrease in brain OT immunoreactivity, increases OTR density in all brain regions analyzed but the mPOA, and reduces the ejaculatory threshold after a first ejaculation. The documented ejaculation-induced OT release might participate in this last effect. Thus, one-week DE-79 exposure alters the OT-OTR system and modifies male rat sexual performance. Based on the literature it could be speculated that these effects are related to the putative endocrine disrupting actions of DE-79, ultimately altering brain OT levels and OTR expression that might affect copulation and other important OT-mediated brain functions.
Collapse
Affiliation(s)
- René Garduño-Gutiérrez
- Departamento de Farmacobiología, Cinvestav Sede Sur, Calzada de los Tenorios 235, Col. Granjas Coapa, Delegación Tlalpan, Ciudad de México C.P.14330, Mexico
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Cinvestav Sede Sur, Calzada de los Tenorios 235, Col. Granjas Coapa, Delegación Tlalpan, Ciudad de México C.P.14330, Mexico.
| | - Alejandro Velázquez-Alvarado
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Av. México-Xochimilco101, Col. San Lorenzo Huipulco, Ciudad de México C.P. 14370, Mexico
| | - Carolina Miller-Pérez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Av. México-Xochimilco101, Col. San Lorenzo Huipulco, Ciudad de México C.P. 14370, Mexico
| | - Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Av. México-Xochimilco101, Col. San Lorenzo Huipulco, Ciudad de México C.P. 14370, Mexico.
| |
Collapse
|
2
|
Qian T, Wang H, Wang P, Geng L, Mei L, Osakada T, Wang L, Tang Y, Kania A, Grinevich V, Stoop R, Lin D, Luo M, Li Y. A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments. Nat Biotechnol 2023; 41:944-957. [PMID: 36593404 PMCID: PMC11182738 DOI: 10.1038/s41587-022-01561-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/12/2022] [Indexed: 01/03/2023]
Abstract
Oxytocin (OT), a peptide hormone and neuromodulator, is involved in diverse physiological and pathophysiological processes in the central nervous system and the periphery. However, the regulation and functional sequences of spatial OT release in the brain remain poorly understood. We describe a genetically encoded G-protein-coupled receptor activation-based (GRAB) OT sensor called GRABOT1.0. In contrast to previous methods, GRABOT1.0 enables imaging of OT release ex vivo and in vivo with suitable sensitivity, specificity and spatiotemporal resolution. Using this sensor, we visualize stimulation-induced OT release from specific neuronal compartments in mouse brain slices and discover that N-type calcium channels predominantly mediate axonal OT release, whereas L-type calcium channels mediate somatodendritic OT release. We identify differences in the fusion machinery of OT release for axon terminals versus somata and dendrites. Finally, we measure OT dynamics in various brain regions in mice during male courtship behavior. Thus, GRABOT1.0 provides insights into the role of compartmental OT release in physiological and behavioral functions.
Collapse
Affiliation(s)
- Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Peng Wang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lan Geng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Long Mei
- Neuroscience Institute, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Takuya Osakada
- Neuroscience Institute, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Lei Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China
| | - Yan Tang
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Alan Kania
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ron Stoop
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Dayu Lin
- Neuroscience Institute, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Tsinghua University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
3
|
Argiolas A, Argiolas FM, Argiolas G, Melis MR. Erectile Dysfunction: Treatments, Advances and New Therapeutic Strategies. Brain Sci 2023; 13:802. [PMID: 37239274 PMCID: PMC10216368 DOI: 10.3390/brainsci13050802] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Erectile dysfunction (ED) is the inability to get and maintain an adequate penile erection for satisfactory sexual intercourse. Due to its negative impacts on men's life quality and increase during aging (40% of men between 40 and 70 years), ED has always attracted researchers of different disciplines, from urology, andrology and neuropharmacology to regenerative medicine, and vascular and prosthesis implant surgery. Locally and/or centrally acting drugs are used to treat ED, e.g., phosphodiesterase 5 inhibitors (first in the list) given orally, and phentolamine, prostaglandin E1 and papaverine injected intracavernously. Preclinical data also show that dopamine D4 receptor agonists, oxytocin and α-MSH analogues may have a role in ED treatment. However, since pro-erectile drugs are given on demand and are not always efficacious, new strategies are being tested for long lasting cures of ED. These include regenerative therapies, e.g., stem cells, plasma-enriched platelets and extracorporeal shock wave treatments to cure damaged erectile tissues. Although fascinating, these therapies are laborious, expensive and not easily reproducible. This leaves old vacuum erection devices and penile prostheses as the only way to get an artificial erection and sexual intercourse with intractable ED, with penile prosthesis used only by accurately selected patients.
Collapse
Affiliation(s)
- Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.M.A.); (M.R.M.)
| | - Francesco Mario Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.M.A.); (M.R.M.)
| | - Giacomo Argiolas
- General Medicine Unit, Hospital San Michele, ARNAS“G. Brotzu”, Piazzale Ricchi 1, 09100 Cagliari, Italy;
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.M.A.); (M.R.M.)
| |
Collapse
|
4
|
Wu R, Xu Z, Song Z, Tai F. Providing or receiving alloparental care promote partner preference and alter central oxytocin and dopamine systems in adult mandarin voles. Horm Behav 2023; 152:105366. [PMID: 37116234 DOI: 10.1016/j.yhbeh.2023.105366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/15/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
Juveniles of cooperative breeding species usually remain in the natal area and provide care to younger siblings, a behavior considered one form of alloparenting in the natural condition. Previous studies have demonstrated the effects of providing or receiving alloparental care on adult behaviors, including anxiety-like behavior, social interaction, and parental behavior, but little is known about the influences on species-typical bonding behaviors, such as pair-bond formation. In this study, we explored this concept using socially monogamous mandarin voles (Lasiopodomys mandarinus). As the oxytocin (OT) and dopamine systems are involved in alloparental and pair-bonding behaviors, we also examined the levels of central OT and tyrosine hydroxylase (TH), as well as OT receptor (OTR) and dopamine D1-type and D2-type receptors (D1R and D2R) mRNA expression in the nucleus accumbens (NAcc) and amygdala to investigate the underlying mechanisms. Our results show that mandarin voles providing alloparental care to younger siblings displayed facilitation of partner preference formation, lower levels of OT expression in the paraventricular nucleus of the hypothalamus (PVN) and lateral hypothalamus (LH), and increased OTR and D2R mRNA expression in the NAcc compared to controls. Individuals receiving alloparental care also demonstrated facilitation of partner preference formation in adult voles. Additionally, alloparental care enhanced OT expression in the PVN, anterior medial preoptic nucleus (MPOAa), medial amygdala (MeA), and TH expression in the ventral tegmental area (VTA) and zona incerta (ZI). Furthermore, males displayed decreased D1R mRNA expression in the NAcc, whereas females showed slightly increased D2R expression in the amygdala. These results demonstrate that providing or received alloparental care can promote partner preference formation in monogamous species and that these changes are associated with altered OT and dopamine levels and their receptors in specific brain regions.
Collapse
Affiliation(s)
- Ruiyong Wu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| | - Zedong Xu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhenzhen Song
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| |
Collapse
|
5
|
Ménard S, Gelez H, Coria-Avila GA, Pfaus JG. Sexual experience increases oxytocin, but not vasopressin, receptor densities in the medial preoptic area, ventromedial hypothalamus, and central amygdala of male rats. Psychoneuroendocrinology 2022; 146:105900. [PMID: 36041295 DOI: 10.1016/j.psyneuen.2022.105900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
Oxytocin (OT) and vasopressin (VP) are considered to be principal neurochemical substrates of bonding in monogamous species. We have reported previously that conditioning of a sexual partner preference in male rats resulted in conditioned activation of OT and VP neurons in hypothalamic paraventricular and supraoptc nuclei. Here we asked whether such conditioning would also alter OT or VP receptor densities. Sexually naïve male rats were assigned to one of three groups (n = 15/group). The Paired group received 9 copulatory training trials with sexually receptive females scented with a neutral almond odor. The Unpaired group received 9 copulatory training trials with unscented sexually receptive females. The Naïve group were not given sexual experience. Paired and Unpaired males were given a final test in an open field with two receptive females, one scented and the other unscented, to assess the development of conditioned ejaculatory preference (CEP), which was expressed significantly in the Paired group. Brains from rats in the three groups were then assessed for OT receptor (OTR) or VP1a receptor (VPR) densities within cortical, limbic and hypothalamic structures using autoradiography with selective 125I-labeled receptor ligands. Sexual experience alone increased OTR significantly in the medial preoptic area (mPOA), ventromedial hypothalamus (VMH), and central nucleus of the amygdala (CeA) in both Paired- and Unpaired-trained males compared to sexually Naïve males. No differences were found for experience on VPR densities in any region. These data add to a growing body of evidence that sexual experience alters brain function and processing of sex-related cues, and suggest that enhanced activation of OTRs in the mPOA, VMH, and CeA by conditioned OT release in those regions may underlie CEP in the male rat.
Collapse
Affiliation(s)
- Shann Ménard
- Center for Studies in Behavioral Neurobiology, Department of Psychology,Concordia University, Montréal, QC H4B 1R6, Canada
| | - Hélène Gelez
- Center for Studies in Behavioral Neurobiology, Department of Psychology,Concordia University, Montréal, QC H4B 1R6, Canada; Pelvipharm Laboratories, University of Versailles, Saint-Quentin-en-Yvelines, Montigny le Bretonneux, France
| | - Genaro A Coria-Avila
- Center for Studies in Behavioral Neurobiology, Department of Psychology,Concordia University, Montréal, QC H4B 1R6, Canada; Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, VER 91193, Mexico
| | - James G Pfaus
- Center for Studies in Behavioral Neurobiology, Department of Psychology,Concordia University, Montréal, QC H4B 1R6, Canada; Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, 18200, Prague, Czech Republic; Laboratory of Sexual Neuroscience, Center for Sexual Health and Intervention, Czech National Institute of Mental Health, 25067 Klecany, Czech Republic.
| |
Collapse
|
6
|
Manjila SB, Betty R, Kim Y. Missing pieces in decoding the brain oxytocin puzzle: Functional insights from mouse brain wiring diagrams. Front Neurosci 2022; 16:1044736. [PMID: 36389241 PMCID: PMC9643707 DOI: 10.3389/fnins.2022.1044736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2023] Open
Abstract
The hypothalamic neuropeptide, oxytocin (Oxt), has been the focus of research for decades due to its effects on body physiology, neural circuits, and various behaviors. Oxt elicits a multitude of actions mainly through its receptor, the Oxt receptor (OxtR). Despite past research to understand the central projections of Oxt neurons and OxtR- coupled signaling pathways in different brain areas, it remains unclear how this nonapeptide exhibits such pleiotropic effects while integrating external and internal information. Most reviews in the field either focus on neuroanatomy of the Oxt-OxtR system, or on the functional effects of Oxt in specific brain areas. Here, we provide a review by integrating brain wide connectivity of Oxt neurons and their downstream circuits with OxtR expression in mice. We categorize Oxt connected brain regions into three functional modules that regulate the internal state, somatic visceral, and cognitive response. Each module contains three neural circuits that process distinct behavioral effects. Broad innervations on functional circuits (e.g., basal ganglia for motor behavior) enable Oxt signaling to exert coordinated modulation in functionally inter-connected circuits. Moreover, Oxt acts as a neuromodulator of neuromodulations to broadly control the overall state of the brain. Lastly, we discuss the mismatch between Oxt projections and OxtR expression across various regions of the mouse brain. In summary, this review brings forth functional circuit-based analysis of Oxt connectivity across the whole brain in light of Oxt release and OxtR expression and provides a perspective guide to future studies.
Collapse
Affiliation(s)
| | | | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
7
|
Buemann B. Oxytocin Release: A Remedy for Cerebral Inflammaging. Curr Aging Sci 2022; 15:218-228. [PMID: 35431008 DOI: 10.2174/1874609815666220414104832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Oxytocin facilitates reproduction both by physiological and behavioral mechanisms. Oxytocinergic neurons emerging from the hypothalamus release oxytocin from the pituitary gland to the blood by axonal discharge to regulate reproductive organs. However, at the same time, oxytocin is secreted into neighboring areas of the hypothalamus from the dendrites of these neurons. Here, the peptide acts by autocrine and paracrine mechanisms to influence other neuroendocrine systems. Furthermore, oxytocinergic neurons project to many different locations in the brain, where they affect sensory processing, affective functions, and reward. Additional to its regulatory role, significant anti-inflammatory and restoring effects of oxytocin have been reported from many invivo and in-vitro studies. The pervasive property of the oxytocin system may enable it generally to dampen stress reactions both peripherally and centrally, and protect neurons and supportive cells from inadequate inflammation and malfunctioning. Animal experiments have documented the importance of preserving immune- and stem cell functions in the hypothalamus to impede age-related destructive processes of the body. Sexual reward has a profound stimulating impact on the oxytocinergic activity, and the present article therefore presents the hypothesis that frequent sexual activity and gratigying social experiance may postpone the onset of frailty and age-associated diseases by neural protection from the bursts of oxytocin. Furthermore, suggestions are given how the neuroplastic properties of oxytocin may be utilized to enhance sexual reward by learning processes in order to further reinforce the release of this peptide.
Collapse
Affiliation(s)
- Benjamin Buemann
- Retired. Copenhagen, Denmark. Previous Affiliation: Research Department of Human Nutrition, The Royal Veterinary and Agricultural University, Copenhagen, Denmark
| |
Collapse
|
8
|
Jean A, Mhaouty-Kodja S, Hardin-Pouzet H. Hypothalamic cellular and molecular plasticity linked to sexual experience in male rats and mice. Front Neuroendocrinol 2021; 63:100949. [PMID: 34687674 DOI: 10.1016/j.yfrne.2021.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Male sexual behavior is subject to learning, resulting in increased efficiency of experienced males compared to naive ones. The improvement in behavioral parameters is underpinned by cellular and molecular changes in the neural circuit controlling sexual behavior, particularly in the hypothalamic medial preoptic area. This review provides an update on the mechanisms related to the sexual experience in male rodents, emphasizing the differences between rats and mice.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France.
| |
Collapse
|
9
|
Oxytocin, Erectile Function and Sexual Behavior: Last Discoveries and Possible Advances. Int J Mol Sci 2021; 22:ijms221910376. [PMID: 34638719 PMCID: PMC8509000 DOI: 10.3390/ijms221910376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
A continuously increasing amount of research shows that oxytocin is involved in numerous central functions. Among the functions in which oxytocin is thought to be involved are those that play a role in social and sexual behaviors, and the involvement of central oxytocin in erectile function and sexual behavior was indeed one of the first to be discovered in laboratory animals in the 1980s. The first part of this review summarizes the results of studies done in laboratory animals that support a facilitatory role of oxytocin in male and female sexual behavior and reveal mechanisms through which this ancient neuropeptide participates in concert with other neurotransmitters and neuropeptides in this complex function, which is fundamental for the species reproduction. The second part summarizes the results of studies done mainly with intranasal oxytocin in men and women with the aim to translate the results found in laboratory animals to humans. Unexpectedly, the results of these studies do not appear to confirm the facilitatory role of oxytocin found in male and female sexual behavior in animals, both in men and women. Possible explanations for the failure of oxytocin to improve sexual behavior in men and women and strategies to attempt to overcome this impasse are considered.
Collapse
|
10
|
Sakata JT, Catalano I, Woolley SC. Mechanisms, development, and comparative perspectives on experience-dependent plasticity in social behavior. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:35-49. [PMID: 34516724 DOI: 10.1002/jez.2539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/08/2021] [Indexed: 11/09/2022]
Abstract
Revealing the mechanisms underlying experience-dependent plasticity is a hallmark of behavioral neuroscience. While the study of social behavior has focused primarily on the neuroendocrine and neural control of social behaviors, the plasticity of these innate behaviors has received relatively less attention. Here, we review studies on mating-dependent changes to social behavior and neural circuitry across mammals, birds, and reptiles. We provide an overview of species similarities and differences in the effects of mating experiences on motivational and performative aspects of sexual behaviors, on sensory processing and preferences, and on the experience-dependent consolidation of sexual behavior. We also discuss recent insights into the neural mechanisms of and developmental influences on mating-dependent changes and outline promising approaches to investigate evolutionary parallels and divergences in experience-dependent plasticity.
Collapse
Affiliation(s)
- Jon T Sakata
- Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada.,Department of Biology, McGill University, Montreal, Québec, Canada
| | - Isabella Catalano
- Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada
| | - Sarah C Woolley
- Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada.,Department of Biology, McGill University, Montreal, Québec, Canada
| |
Collapse
|
11
|
|
12
|
Phan J, Alhassen L, Argelagos A, Alhassen W, Vachirakorntong B, Lin Z, Sanathara N, Alachkar A. Mating and parenting experiences sculpture mood-modulating effects of oxytocin-MCH signaling. Sci Rep 2020; 10:13611. [PMID: 32788646 PMCID: PMC7423941 DOI: 10.1038/s41598-020-70667-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/31/2020] [Indexed: 11/09/2022] Open
Abstract
The two hypothalamic neuropeptides oxytocin and melanin concentrating hormone (MCH) share several physiological actions such as the control of maternal care, sexual behavior, and emotions. In this study, we uncover the role for the oxytocin-MCH signaling pathway in mood regulation. We identify discrete effects of oxytocin-MCH signaling on depressive behavior and demonstrate that parenting and mating experiences shape these effects. We show that the selective deletion of OXT receptors from MCH neurons increases and decreases depressive behavior in sexually naïve and late postpartum female mice respectively, with no effect on sexually naïve male mice. We demonstrate that both parenting experience and mood-regulating effects of oxytocin-MCH are associated with synaptic plasticity in the reward and fear circuits revealed by the alterations of Arc expressions, which are associated with the depressive behavior. Finally, we uncover the sex-dependent effects of mating on depressive behavior; while the sexual activity reduces the basal levels of depressive behavior in male mice, it reduces in female mice evoked-depression only. We demonstrate that the oxytocin-MCH pathway mediates the effects of sexual activity on depressive behavior. Our data suggest that the oxytocin-MCH pathway can serve as a potential therapeutic target for the treatment of major depression and postpartum mood disorders.
Collapse
Affiliation(s)
- Joseph Phan
- Department of Pharmaceutical Sciences, University of California, Irvine, 356A Med Surge II, Irvine, CA, 92697-4625, USA
| | - Lamees Alhassen
- Department of Pharmaceutical Sciences, University of California, Irvine, 356A Med Surge II, Irvine, CA, 92697-4625, USA
| | - Allan Argelagos
- Department of Pharmaceutical Sciences, University of California, Irvine, 356A Med Surge II, Irvine, CA, 92697-4625, USA
| | - Wedad Alhassen
- Department of Pharmaceutical Sciences, University of California, Irvine, 356A Med Surge II, Irvine, CA, 92697-4625, USA
| | - Benjamin Vachirakorntong
- Department of Pharmaceutical Sciences, University of California, Irvine, 356A Med Surge II, Irvine, CA, 92697-4625, USA
| | - Zitong Lin
- Department of Pharmaceutical Sciences, University of California, Irvine, 356A Med Surge II, Irvine, CA, 92697-4625, USA
| | - Nayna Sanathara
- Department of Pharmaceutical Sciences, University of California, Irvine, 356A Med Surge II, Irvine, CA, 92697-4625, USA
| | - Amal Alachkar
- Department of Pharmaceutical Sciences, University of California, Irvine, 356A Med Surge II, Irvine, CA, 92697-4625, USA. .,Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California-Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
13
|
McMahon C, Althof S, Rosen R, Giuliano F, Miner M, Osterloh IH, Muirhead GJ, Harty B. The Oxytocin Antagonist Cligosiban Prolongs Intravaginal Ejaculatory Latency and Improves Patient-Reported Outcomes in Men with Lifelong Premature Ejaculation: Results of a Randomized, Double-Blind, Placebo-Controlled Proof-of-Concept Trial (PEPIX). J Sex Med 2020; 16:1178-1187. [PMID: 31351659 DOI: 10.1016/j.jsxm.2019.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cligosiban is an orally administered oxytocin receptor antagonist being developed to treat premature ejaculation (PE). AIM To determine the safety and efficacy of cligosiban capsules (dose range 400-800 mg) to improve intravaginal ejaculation latency time (IELT) and patient-reported outcomes in men with severe lifelong PE. METHODS Patients recorded details of at least 4 sexual intercourse events during a 4-week run-in period, after which they underwent baseline assessments. Patients were eligible for the study if they rated their control of ejaculation as poor/very poor and their stopwatch-assessed IELT was ≤1 minute in ≥75% of intercourse attempts. Eligible patients were randomized to an 8-week treatment period with double-blind cligosiban or placebo (to be taken 1 to 6 hours prior to sexual activity). The starting dose was 400 mg (not more than 1 dose per day) which could be increased to 800 mg after 2 and/or 4 weeks of treatment. Assessments were conducted at 2, 4, and 8 weeks. MAIN OUTCOME MEASURE Efficacy measures were comprised of IELT, self-rating of ejaculation control and ejaculation-related distress (recorded in an electronic diary after each intercourse attempt), premature ejaculation profile, and the Clinical Global Impression of Change. RESULTS The mean ratio of fold change from baseline in IELT to the last 4 weeks of treatment (cligosiban/placebo) was 1.9 compared to a baseline of 1.0 (P = .0079). The mean increase in IELT from baseline to the last 4 weeks of treatment was 61.0 seconds for cligosiban, which was significantly different from (and 3.6-fold greater than) the mean increase of 16.4 seconds for placebo (P = .0086). Statistically significant improvements in ejaculation control and ejaculation-related personal distress scores were also observed for cligosiban compared to little or no change with placebo. Cligosiban was generally well tolerated, with no serious or severe adverse events or other safety parameters. CLINICAL IMPLICATIONS This proof-of-concept study demonstrated the potential for cligosiban, an oxytocin antagonist, to successfully treat symptoms of severe lifelong PE. STRENGTHS AND LIMITATIONS This was a Phase II, randomized, double-blind, placebo-controlled study that was adequately powered to detect a clinically meaningful difference in change in IELT between cligosiban and placebo. Larger studies will be needed to confirm these findings, determine the optimal dose of cligosiban and assess efficacy in men with acquired PE. CONCLUSIONS Cligosiban was well tolerated, and resulted in significant benefits in both objective and subjective measures of ejaculatory control in men with lifelong PE and therefore offers significant potential as an on-demand, orally administered agent for the treatment of PE. McMahon C, Althof S, Rosen R, et al. The Oxytocin Antagonist Cligosiban Prolongs Intravaginal Ejaculatory Latency and Improves Patient-Reported Outcomes in Men with Lifelong Premature Ejaculation: Results of a Randomized, Double-Blind, Placebo-Controlled Proof-of-Concept Trial (PEPIX). J Sex Med 2019; 16:1178-1187.
Collapse
Affiliation(s)
- Christopher McMahon
- Australian Centre for Sexual Health, St. Leonards, New South Wales, Australia.
| | - Stanley Althof
- Center for Marital and Sexual Health of South Florida, West Palm Beach, FL, USA
| | | | - Francois Giuliano
- AP-HP, Neuro-Uro-Andrology, Physical Medicine and Rehabilitation Department, Raymond Poincaré Hospital, Garches, France; UMR1179 Inserm-Versailles Saint Quentin en Yvelines University, Versailles, France
| | - Martin Miner
- Departments of Family Medicine and Urology, Men's Health Center, Miriam Hospital, Brown University, Providence, RI, USA
| | | | | | - Brian Harty
- New England Research Institutes, Watertown, MA, USA
| |
Collapse
|
14
|
Freeman AR, Aulino EA, Caldwell HK, Ophir AG. Comparison of the distribution of oxytocin and vasopressin 1a receptors in rodents reveals conserved and derived patterns of nonapeptide evolution. J Neuroendocrinol 2020; 32:e12828. [PMID: 31925983 DOI: 10.1111/jne.12828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
Oxytocin (OT) and vasopressin (VP) are known modulators of social behaviour across rodents. Research has revealed the location of action of these nonapeptides through localization of their associated receptors, which include the oxytocin receptor (OTR) and the vasopressin 1a receptor (V1aR). As research into these complex systems has progressed, studies investigating how these systems modulate behaviour have remained relatively narrow in scope (ie, focused on how a single brain region shapes behaviour in only a handful of species). However, the brain regions that regulate social behaviour are part of interconnected neural networks for which coordinated activity enables behavioural variation. Thus, to better understand how nonapeptide systems have evolved under different selective pressures among rodent species, we conducted a meta-analysis using a multivariate comparative method to examine the patterns of OTR and V1aR density expression in this taxon. Several brain regions were highly correlated based on their OTR and V1aR binding patterns across species, supporting the notion that the distribution of these receptors is highly conserved in rodents. However, our results also revealed that specific patterns of V1aR density differed from OTR density, and within-genus variance for V1aR was low compared to between-genus variance, suggesting that these systems have responded and evolved quite differently to selective pressures over evolutionary time. We propose that, in addition to examining single brain regions of interest, taking a broad comparative approach when studying the OT and VP systems is important for understanding how the systemic action of nonapeptides modulate social behaviour across species.
Collapse
Affiliation(s)
| | | | - Heather K Caldwell
- Department of Biological Sciences, Kent State University, Kent, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | | |
Collapse
|
15
|
Oxytocin induces penile erection and yawning when injected into the bed nucleus of the stria terminalis: A microdialysis and immunohistochemical study. Behav Brain Res 2019; 375:112147. [PMID: 31408664 DOI: 10.1016/j.bbr.2019.112147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Oxytocin (5, 20 and 100 ng) injected unilaterally into the bed nucleus of the stria terminalis (BNST) of male rats stereotaxically implanted with a microinjection cannula coupled to a microdialysis probe, induces penile erection and yawning that occur concomitantly with a dose-dependent increase in the extracellular concentration of glutamic acid, dopamine and its main metabolite 3,4-dihydroxyphenilacetic acid (DOPAC), and nitrites (NO2-) in the dialysate obtained from the BNST by intracerebral microdialysis. The responses induced by oxytocin (100 ng) were all abolished by the oxytocin receptor antagonist d(CH2)5Tyr(Me)2-Orn8-vasotocin (1 μg), and reduced by CNQX (1 μg), a competitive antagonist of the AMPA receptors, both given into the BNST 25 min before oxytocin. In contrast, (+) MK-801 (1 μg), a non-competitive antagonist of NMDA receptors, and SCH 23390 (1 μg), a selective dopamine D1 receptor antagonist, reduced penile erection and yawning, but not glutamic acid and dopamine increases in the BNST dialysate induced by oxytocin. Immunohistochemistry revealed oxytocin-labelled neuronal structures in close proximity to tyrosine hydroxylase-labelled neurons or nitric oxide synthase-labelled cell bodies surrounded by intense vesicular glutamate transporter1-stained synapses in BNST sections where oxytocin injections induce the above responses. Together, these findings show that oxytocin injected into the BNST induces penile erection and yawning by activating not only the glutamatergic (and nitrergic) but also the dopaminergic neurotransmission, leading in turn to the activation of neural pathways mediating penile erection and yawning.
Collapse
|
16
|
Turner JM, Will RG, Harvey EA, Hattori T, Tobiansky DJ, Nutsch VL, Martz JR, Dominguez JM. Copulation induces expression of the immediate early gene Arc in mating-relevant brain regions of the male rat. Behav Brain Res 2019; 372:112006. [PMID: 31170433 DOI: 10.1016/j.bbr.2019.112006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/17/2019] [Accepted: 05/31/2019] [Indexed: 01/28/2023]
Abstract
The medial amygdala (MeA), bed nucleus of the stria terminalis (BNST), and medial preoptic area (mPOA) are important for the regulation of male sexual behavior. Sexual experience facilitates sexual behaviors and influences activity in these regions. The goal of this study was to determine whether sexual experience or copulation induces plasticity in the MeA, BNST, or mPOA of male rats, as indicated by changes in levels of Arc, which is indicative of activity-dependent synaptic plasticity in the brain. To this end, sexually naïve or experienced males were placed in mating arenas either alone, with an inaccessible estrus female, or with an accessible estrus female. Arc protein levels were then quantified in these three regions using immunohistochemistry. As expected, sexual experience facilitated copulation, as evidenced by a reduction in latencies to mount, intromit, and ejaculate. Copulation also increased the number of Arc-positive cells in the MeA, anterior BNST, posterior BNST, and the posterior mPOA, but not in the central-rostral region of the mPOA. Surprisingly, prior sexual experience did not impact levels of Arc, suggesting that copulation-induced Arc occurs in both sexually naïve and experienced males.
Collapse
Affiliation(s)
- Jonathan M Turner
- The Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Ryan G Will
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Eric A Harvey
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Tomoko Hattori
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Daniel J Tobiansky
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Victoria L Nutsch
- The Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Julia R Martz
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Juan M Dominguez
- The Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States; Department of Psychology, The University of Texas at Austin, Austin, TX, United States; Department of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
17
|
Comparing vasopressin and oxytocin fiber and receptor density patterns in the social behavior neural network: Implications for cross-system signaling. Front Neuroendocrinol 2019; 53:100737. [PMID: 30753840 PMCID: PMC7469073 DOI: 10.1016/j.yfrne.2019.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/24/2019] [Accepted: 02/07/2019] [Indexed: 01/23/2023]
Abstract
Vasopressin (AVP) and oxytocin (OXT) regulate social behavior by binding to their canonical receptors, the vasopressin V1a receptor (V1aR) and oxytocin receptor (OTR), respectively. Recent studies suggest that these neuropeptides may also signal via each other's receptors. The extent to which such cross-system signaling occurs likely depends on anatomical overlap between AVP/OXT fibers and V1aR/OTR expression. By comparing AVP/OXT fiber densities with V1aR/OTR binding densities throughout the rat social behavior neural network (SBNN), we propose the potential for cross-system signaling in four regions: the medial amygdala (MeA), bed nucleus of the stria terminalis (BNSTp), medial preoptic area, and periaqueductal grey. We also discuss possible implications of corresponding sex (higher in males versus females) and age (higher in adults versus juveniles) differences in AVP fiber and OTR binding densities in the MeA and BNSTp. Overall, this review reveals the need to unravel the consequences of potential cross-system signaling between AVP and OXT systems in the SBNN for the regulation of social behavior.
Collapse
|
18
|
Estrada-Reyes R, Dorantes-Barrón AM, Arrieta-Báez D, Gómez-Patiño MB, Bernal-Trujillo A, Castro-García M, Carro-Juárez M, Martínez-Mota L. Piper auritum Kunth (Piperaceae) improves the sexual performance of sluggish male rats through enhancing ejaculation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:453-463. [PMID: 30545804 DOI: 10.1016/j.jep.2018.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper auritum Kunth is employed as an aphrodisiac in the traditional medicine, but corroborative evidence for such effect is scarce. AIM OF THE STUDY The pro-sexual effect of an aqueous extract of P. auritum and its possible mechanisms were analyzed in two paradigms of male sexual function. MATERIAL AND METHODS Effects of an aqueous extract of P. auritum (PA, single administration) were investigated in the fictive ejaculation, and copulatory behavior paradigms in sexually sluggish male rats. WAY 100635 (antagonist of 5-HT1A receptors), atosiban (antagonist of oxytocinergic receptors), L-NAME (inhibitor of the nitric oxide synthase) and baclofen (antagonist of GABAB receptors) were used as pre-treatments in order to investigate the role of different neurotransmitter systems in PA actions. Chemical profile of PA was determined by Gases Chromatography and Ultra Performance Chromatography-Electrospray Ionization-Masses Spectrometry (UPLC-ESI-MS). RESULTS In males with retarded ejaculation, PA stimulated ejaculatory behavior and recovered electromyographic activity of pelvic musculature participating in seminal emission and ejaculation. All pre-treatments blocked stimulating effects of PA on the fictive ejaculation; additionally WAY 100635 interfered with PA actions on ejaculatory behavior. Safrol, apigenin dimethylether, myristicin, vaccihein A, sakuranin and sakuranetin flavonoids, were main constituents of PA, with possible participation in its pro-sexual effects. CONCLUSIONS Pro-sexual effects of P. auritum elicited at level of ejaculation were mediated by several neurotransmitter systems, among which serotonin and its 5-HT1A receptors play an important role. Present findings support P. auritum reputation as an aphrodisiac, with potential use in delayed ejaculation disorder.
Collapse
Affiliation(s)
- Rosa Estrada-Reyes
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 Ciudad de México, Mexico
| | - Ana María Dorantes-Barrón
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 Ciudad de México, Mexico
| | - Daniel Arrieta-Báez
- Instituto Politécnico Nacional CNMN, Luis Enrique Erro s/n, Unidad Prof. Adolfo López Mateos, Gustavo A. Madero, 07738 Ciudad de México, Mexico
| | - Mayra Beatriz Gómez-Patiño
- Instituto Politécnico Nacional CNMN, Luis Enrique Erro s/n, Unidad Prof. Adolfo López Mateos, Gustavo A. Madero, 07738 Ciudad de México, Mexico
| | - Andrea Bernal-Trujillo
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 Ciudad de México, Mexico
| | - Mario Castro-García
- Departamento of Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 Ciudad de México, Mexico
| | - Miguel Carro-Juárez
- Laboratorio de Comportamiento Reproductivo, Escuela de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tlaxcala, 90000 Tlaxcala, Mexico
| | - Lucía Martínez-Mota
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 Ciudad de México, Mexico.
| |
Collapse
|
19
|
Freeman AR, Hare JF, Caldwell HK. Central distribution of oxytocin and vasopressin 1a receptors in juvenile Richardson's ground squirrels. J Neurosci Res 2019; 97:772-789. [PMID: 30802986 DOI: 10.1002/jnr.24400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/15/2019] [Accepted: 01/31/2019] [Indexed: 12/30/2022]
Abstract
Oxytocin and vasopressin are well-conserved peptides important to the regulation of numerous aspects of social behavior, including sociality. Research exploring the distribution of the receptors for oxytocin (Oxtr) and for vasopressin (Avpr1a) in mammals has revealed associations between receptor distribution, sociality, and species' mating systems. Given that sociality and gregariousness can be tightly linked to reproduction, these nonapeptides unsurprisingly support affiliative behaviors that are important for mating and offspring care. We localized these receptors in juvenile Richardson's ground squirrel brains to determine whether distribution patterns of Oxtr and Avpr1a that are associated with promiscuous mating systems differ in rodents that also exhibit non-reproductive affiliation. These squirrels are social, colonial, and engage in nepotistic alarm calling behavior and affiliation outside of a reproductive context. Juveniles are the most affiliative age-class and are non-reproductive; making them ideal for examining these associations. We found that juveniles had dense Oxtr binding in the dentate gyrus of the hippocampus, amygdala, lateral septum, bed nucleus of the stria terminalis and medial geniculate nucleus. Juveniles had low to modest levels of Avpr1a binding in the medial preoptic area, olfactory bulbs, nucleus accumbens, superior colliculus, and inferior colliculus. We noted Oxtr and Avpr1a binding in the social behavior neural network (SBNN), further supporting a role of these nonapeptides in modulating social behavior across taxa. Oxtr and Avpr1a binding was also present in brain regions important to auditory processing that have known projections to the SBNN. We speculate that these neural substrates may be where these nonapeptides regulate communication.
Collapse
Affiliation(s)
- Angela R Freeman
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, Ohio
| | - James F Hare
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Heather K Caldwell
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, Ohio.,School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
20
|
Sauer C, Montag C, Reuter M, Kirsch P. Oxytocinergic modulation of brain activation to cues related to reproduction and attachment: Differences and commonalities during the perception of erotic and fearful social scenes. Int J Psychophysiol 2019; 136:87-96. [DOI: 10.1016/j.ijpsycho.2018.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/25/2018] [Accepted: 06/26/2018] [Indexed: 11/29/2022]
|
21
|
Salais-López H, Agustín-Pavón C, Lanuza E, Martínez-García F. The maternal hormone in the male brain: Sexually dimorphic distribution of prolactin signalling in the mouse brain. PLoS One 2018; 13:e0208960. [PMID: 30571750 PMCID: PMC6301622 DOI: 10.1371/journal.pone.0208960] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/27/2018] [Indexed: 01/10/2023] Open
Abstract
Research of the central actions of prolactin is highly focused on females, but this hormone has also documented roles in male physiology and behaviour. Here, we provide the first description of the pattern of prolactin-derived signalling in the male mouse brain, employing the immunostaining of phosphorylated signal transducer and activator of transcription 5 (pSTAT5) after exogenous prolactin administration. Next, we explore possible sexually dimorphic differences by comparing pSTAT5 immunoreactivity in prolactin-supplemented males and females. We also assess the role of testosterone in the regulation of central prolactin signalling in males by comparing intact with castrated prolactin-supplemented males. Prolactin-supplemented males displayed a widespread pattern of pSTAT5 immunoreactivity, restricted to brain centres showing expression of the prolactin receptor. Immunoreactivity for pSTAT5 was present in several nuclei of the preoptic, anterior and tuberal hypothalamus, as well as in the septofimbrial nucleus or posterodorsal medial amygdala of the telencephalon. Conversely, non-supplemented control males were virtually devoid of pSTAT5-immunoreactivity, suggesting that central prolactin actions in males are limited to situations concurrent with substantial hypophyseal prolactin release (e.g. stress or mating). Furthermore, comparison of prolactin-supplemented males and females revealed a significant, female-biased sexual dimorphism, supporting the view that prolactin has a preeminent role in female physiology and behaviour. Finally, in males, castration significantly reduced pSTAT5 immunoreactivity in some structures, including the paraventricular and ventromedial hypothalamic nuclei and the septofimbrial region, thus indicating a region-specific regulatory role of testosterone over central prolactin signalling.
Collapse
Affiliation(s)
- Hugo Salais-López
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Carmen Agustín-Pavón
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
- Departament de Biologia Cel·lular i de Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| | - Enrique Lanuza
- Departament de Biologia Cel·lular i de Biologia Funcional, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| | - Fernando Martínez-García
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| |
Collapse
|
22
|
Maejima S, Abe Y, Yamaguchi S, Musatov S, Ogawa S, Kondo Y, Tsukahara S. VGF in the Medial Preoptic Nucleus Increases Sexual Activity Following Sexual Arousal Induction in Male Rats. Endocrinology 2018; 159:3993-4005. [PMID: 30371765 DOI: 10.1210/en.2018-00804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/23/2018] [Indexed: 11/19/2022]
Abstract
The central part of the medial preoptic nucleus (MPNc) is associated with sexual arousal induction in male rats. However, it is largely unclear how males are sexually aroused and achieve their first copulation. We previously reported that more MPNc neurons activate during the first copulation than the second copulation. In this study, to explore the molecules responsible for sexual arousal induction, we performed DNA microarray of the MPNc in sexually naive males and males after they copulated for their first and second times. We then performed quantitative PCR analyses to validate the results of the DNA microarray. Six genes were identified. Their expression increased following copulation and was higher in males after they copulated for the first time than after the second time. The genes encode transcription factors (Fos, Nfil3, and Nr4a3), a serine/threonine kinase (Sik1), an antioxidant protein (Srxn1), and a neuropeptide precursor VGF (Vgf), which may be the candidate genes responsible for sexual arousal induction. We examined the effects of Vgf knockdown in the MPNc on sexual partner preference and sexual behavior in sexually inexperienced and experienced males to determine the role of VGF in sexual arousal induction. A preference for estrous female rats was reinforced, and the latency of mount and intromission became short after sexually inexperienced males copulated for the first time. However, Vgf knockdown disrupted these phenomena. Vgf knockdown did not have any significant effect in sexually experienced males. VGF-derived neuropeptides presumably serve as an effector molecule to increase sexual activity following sexual arousal induction.
Collapse
Affiliation(s)
- Sho Maejima
- Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Yuta Abe
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shohei Yamaguchi
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Sergei Musatov
- Laboratory of Molecular Neurosurgery, Weill Cornell University Medical College, New York, New York
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | - Yasuhiko Kondo
- Department of Animal Sciences, Teikyo University of Science, Uenohara, Japan
| | - Shinji Tsukahara
- Area of Life-NanoBio, Division of Strategy Research, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
23
|
Dhungel S, Rai D, Terada M, Orikasa C, Nishimori K, Sakuma Y, Kondo Y. Oxytocin is indispensable for conspecific-odor preference and controls the initiation of female, but not male, sexual behavior in mice. Neurosci Res 2018; 148:34-41. [PMID: 30502354 DOI: 10.1016/j.neures.2018.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/09/2018] [Accepted: 11/26/2018] [Indexed: 12/24/2022]
Abstract
Oxytocin (OT) has been demonstrated to be involved in various social behaviors in mammals. However, OT gene knockout (OTKO) mice can conceive and deliver successfully, though females cannot rear their pups because of lack of lactation. Here, we investigated the sociosexual behavior of both sexes in two experimental setups: olfactory preference for sexual partner's odor and direct social interaction in an enriched condition. In the preference test, mice were given a choice of two airborne odors derived from intact male and receptive female mice, or from intact or castrated male mice. Wild-type (WT) mice significantly preferred opposite-sex odors, whereas OTKO mice showed vigorous but equivalent exploration to all stimuli. In social interactions in the enriched condition, no difference in sexual behavior was found between WT and OTKO males. In contrast, WT female initiated sexual behavior at the second week test, while OTKO females required 4 weeks to receive successful mounts. Neuronal activation by odor stimulation was compared between WT and OTKO mice. The numbers of cFos-immunoreactive cells increased in the medial amygdala and the preoptic area after exposure to opposite-sex odors in WT mice, whereas the increase was suppressed in OTKO mice. We conclude that OT plays an important role in the regulation of olfactory-related social behavior in both male and female mice. The influence of OT was greater in female mice, especially during social interactions involving the acquisition of sexual experience.
Collapse
Affiliation(s)
- Sunil Dhungel
- Department of Physiology, Nippon Medical School, Tokyo, Japan; Department of Physiology, Nepalese Army Institute of Health Sciences, Kathmandu, Nepal
| | - Dilip Rai
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Misao Terada
- Laboratory Animal Research Center, Dokkyo Medical School, Tochigi, Japan
| | - Chitose Orikasa
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | | - Yasuo Sakuma
- Department of Physiology, Nippon Medical School, Tokyo, Japan; University of Tokyo Health Sciences, Tokyo, Japan
| | - Yasuhiko Kondo
- Department of Physiology, Nippon Medical School, Tokyo, Japan; Department of Animal Sciences, Teikyo University of Science, Yamanashi, Japan.
| |
Collapse
|
24
|
Osterloh IH, Muirhead GJ, Sultana S, Whaley S, van den Berg F, Atiee G. Pharmacokinetics, Safety, and Tolerability of Single Oral Doses of a Novel Oxytocin Receptor Antagonist—Cligosiban—in Development for Premature Ejaculation: Three Randomized Clinical Trials in Healthy Subjects. J Sex Med 2018; 15:1547-1557. [DOI: 10.1016/j.jsxm.2018.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
|
25
|
Rats selectively bred for showing divergent behavioral traits in response to stress or novelty or spontaneous yawning with a divergent frequency show similar changes in sexual behavior: the role of dopamine. Rev Neurosci 2018; 30:427-454. [DOI: 10.1515/revneuro-2018-0058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
Abstract
Abstract
Sexual behavior plays a fundamental role for reproduction in mammals and other animal species. It is characterized by an anticipatory and a consummatory phase, and several copulatory parameters have been identified in each phase, mainly in rats. Sexual behavior varies significantly across rats even when they are of the same strain and reared under identical conditions. This review shows that rats of the same strain selectively bred for showing a divergent behavioral trait when exposed to stress or novelty (i.e. Roman high and low avoidance rats, bred for their different avoidance response to the shuttle box, and high and low novelty exploration responders rats, bred for their different exploratory response to a novel environment) or a spontaneous behavior with divergent frequency (i.e. low and high yawning frequency rats, bred for their divergent yawning frequency) show similar differences in sexual behavior, mainly in copulatory pattern, but also in sexual motivation. As shown by behavioral pharmacology and intracerebral microdialysis experiments carried out mainly in Roman rats, these sexual differences may be due to a more robust dopaminergic tone present in the mesocorticolimbic dopaminergic system of one of the two sub-lines (e.g. high avoidance, high novelty exploration, and low yawning rat sub-lines). Thus, differences in genotype and/or in prenatal/postnatal environment lead not only to individual differences in temperament and environmental/emotional reactivity but also in sexual behavior. Because of the highly conserved mechanisms controlling reproduction in mammals, this may occur not only in rats but also in humans.
Collapse
|
26
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
27
|
Bowen MT, Neumann ID. Rebalancing the Addicted Brain: Oxytocin Interference with the Neural Substrates of Addiction. Trends Neurosci 2017; 40:691-708. [PMID: 29128108 DOI: 10.1016/j.tins.2017.10.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022]
Abstract
Drugs that act on the brain oxytocin (OXT) system may provide a much-needed treatment breakthrough for substance-use disorders. Targeting the brain OXT system has the potential to treat addiction to all major classes of addictive substance and to intervene across all stages of the addiction cycle. Emerging evidence suggests that OXT is able to interfere with such a wide range of addictive behaviours for such a wide range of addictive substances by rebalancing core neural systems that become dysregulated over the course of addiction. By improving our understanding of these interactions between OXT and the neural substrates of addiction, we will not only improve our understanding of addiction, but also our ability to effectively treat these devastating disorders.
Collapse
Affiliation(s)
- Michael T Bowen
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, NSW, Australia; The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia
| | - Inga D Neumann
- Regensburg Center of Neuroscience, Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
28
|
Sanna F, Bratzu J, Argiolas A, Melis MR. Oxytocin induces penile erection and yawning when injected into the bed nucleus of the stria terminalis: Involvement of glutamic acid, dopamine, and nitric oxide. Horm Behav 2017; 96:52-61. [PMID: 28916137 DOI: 10.1016/j.yhbeh.2017.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 08/19/2017] [Accepted: 09/09/2017] [Indexed: 02/02/2023]
Abstract
Oxytocin (5-100ng), but not Arg8-vasopressin (100ng), injected unilaterally into the bed nucleus of the stria terminalis (BNST) induces penile erection and yawning in a dose-dependent manner in male rats. The minimal effective dose was 20ng for penile erection and 5ng for yawning. Oxytocin responses were abolished not only by the oxytocin receptor antagonist d(CH2)5Tyr(Me)2-Orn8-vasotocin (1μg), but also by (+) MK-801 (1μg), an excitatory amino acid receptor antagonist of the N-methyl-d-aspartic acid (NMDA) subtype, SCH 23390 (1μg), a D1 receptor antagonist, but not haloperidol (1μg), a D2 receptor antagonist, and SMTC (40μg), an inhibitor of neuronal nitric oxide synthase, injected into the BNST 15min before oxytocin. Oxytocin-induced penile erection, but not yawning, was also abolished by CNQX (1μg), an excitatory amino acid receptor antagonist of the AMPA subtype. In contrast, oxytocin responses were not reduced by bicuculline (20ng), a GABAA receptor antagonist, phaclofen (5μg), a GABAB receptor antagonist, CP 376395, a CRF receptor-1 antagonist (5μg), or astressin 2B, a CRF receptor-2 antagonist (150ng). Considering the ability of NMDA (100ng) to induce penile erection and yawning when injected into the BNST and the available evidence showing possible interaction among oxytocin, glutamic acid, and dopamine in the BNST, oxytocin possibly activates glutamatergic neurotransmission in the BNST. This in turn leads to the activation of neural pathways projecting back to the paraventricular nucleus, medial preoptic area, ventral tegmental area, and/or ventral subiculum/amygdala, thereby inducing penile erection and yawning.
Collapse
Affiliation(s)
- Fabrizio Sanna
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy.
| | - Jessica Bratzu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy
| | - Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy; Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy; Institute of Neuroscience, National Research Council, Cagliari Section, Cittadella Universitaria, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy; Centre of Excellence for the Neurobiology of Addictions, University of Cagliari, SS 554, km 4,500, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
29
|
Blitzer DS, Wells TE, Hawley WR. Administration of an oxytocin receptor antagonist attenuates sexual motivation in male rats. Horm Behav 2017; 94:33-39. [PMID: 28596135 DOI: 10.1016/j.yhbeh.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/20/2017] [Accepted: 06/03/2017] [Indexed: 01/23/2023]
Abstract
In male rats, oxytocin impacts both sexual arousal and certain types of consummatory sexual behaviors. However, the role of oxytocin in the motivational aspects of sexual behavior has received limited attention. Given the role that oxytocin signaling plays in consummatory sexual behaviors, it was hypothesized that pharmacological attenuation of oxytocin signaling would reduce sexual motivation in male rats. Sexually experienced Long-Evans male rats were administered either an oxytocin receptor antagonist (L368,899 hydrochloride; 1mg/kg) or vehicle control into the intraperitoneal cavity 40min prior to placement into the center chamber of a three-chambered arena designed to assess sexual motivation. During the 20-minute test, a sexually experienced stimulus male rat and a sexually receptive stimulus female rat were separately confined to smaller chambers that were attached to the larger end chambers of the arena. However, physical contact between test and stimulus rats was prevented by perforated dividers. Immediately following the sexual motivation test, test male rats were placed with a sexually receptive female to examine consummatory sexual behaviors. Although both drug and vehicle treated rats exhibited a preference for the female, treatment with an oxytocin receptor antagonist decreased the amount of time spent with the female. There were no differences between drug and vehicle treated rats in either general activity, exploratory behaviors, the amount of time spent near the stimulus male rat, or consummatory sexual behaviors. Extending previous findings, these results indicate that oxytocin receptors are involved in sexual motivation in male rats.
Collapse
Affiliation(s)
- D S Blitzer
- Franklin and Marshall College, Department of Psychology, United States
| | - T E Wells
- Franklin and Marshall College, Department of Psychology, United States
| | - W R Hawley
- Franklin and Marshall College, Department of Psychology, United States; Edinboro University of Pennsylvania, Department of Psychology, United States.
| |
Collapse
|
30
|
Damián JP, Hötzel MJ, Banchero G, Ungerfeld R. Competition for oestrous ewes between rams reared by their mothers or artificially reared: Effects on sexual behaviour and testosterone and cortisol serum concentrations. Theriogenology 2017; 100:134-138. [PMID: 28708528 DOI: 10.1016/j.theriogenology.2017.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 11/18/2022]
Abstract
The objective of this study was to determine how the social competition for an oestrous ewe affects the sexual behaviour and the endocrine response in two groups of rams, one reared by their mothers and another artificially reared. Thus, we compared the sexual behaviour and testosterone and cortisol changes in each group of rams in competitive and non-competitive tests, both during the first and second breeding seasons. Two groups of rams were: 1) artificially reared lambs, separated from their dams 24-36 h after birth (Week 0) and artificially fed with sheep milk until 10 weeks of age (group AR, n = 14); and 2) lambs reared by their dams until 10 weeks of age (group DR, n = 13). Rams were subjected to non-competitive and competitive tests for an oestrous ewe during their first and second breeding seasons, when they were 8 and 20 months old, respectively. Sexual behaviours toward an oestrous ewe were recorded during 20 min and the testosterone and cortisol concentrations were determined in serum samples collected immediately before the test, and 20, 40 and 60 min after it. During the first breeding season, the number of flehmen decreased in DR rams, and the number of flehmen and ano-genital sniffings also decreased in DR rams, but the frequency of some copulatory behaviours increased (matings and ejaculation/total mounts in DR rams, and total mounts in AR rams) in competitive tests. During the second breeding season, competition caused a decrease in the number of all the recorded behaviours (courtship and copulation) with the exception of flehmen in AR rams; however, in DR rams only the number of the copulatory behaviours decreased under competition. Competition did not affect the endocrine response during the first breeding season. During the second breeding season, while testosterone concentrations were greater in non-competitive than in competitive tests at 60 min (P = 0.0008) in AR rams, in DR rams it tended to be greater (P = 0.09). Competition did not affect cortisol concentrations in any group or season, but in all tests the concentrations increased at the end of the test (P < 0.05). In conclusion, the lack of the mother during rearing negatively affected the sexual motivation and the testosterone response of rams to oestrous ewes in competitive tests, effects that were more evident when adults. Neither the absence of the mother during rearing nor competition for oestrous ewes affected the stress response (evidenced by increase in cortisol concentration) in rams during both seasons.
Collapse
Affiliation(s)
- J P Damián
- Departamento de Biología Molecular y Celular, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay.
| | - M J Hötzel
- Laboratório de Etologia Aplicada e Bem-Estar Animal, Departamento de Zootecnia e Desenvolvimento Rural, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - G Banchero
- Unidad de Ovinos, INIA "La Estanzuela", Colonia, Uruguay
| | - R Ungerfeld
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
31
|
Florez Acevedo S, Cardenas Parra LF. Rol Modulador de la Oxitocina en la Interacción Social y el Estrés Social. UNIVERSITAS PSYCHOLOGICA 2017. [DOI: 10.11144/javeriana.upsy15-5.rmoi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
La Oxitocina es un neuropéptido conocido por facilitar funciones del sistema nervioso periférico, relacionadas específicamente con el sistema reproductivo. Sin embargo, en las últimas décadas se ha reconocido la función moduladora de la Oxitocina en el comportamiento social, a través de su liberación en el sistema nervioso central. Así mismo, estudios han mencionado que la Oxitocina es un potencial ansiolítico cuando un individuo ha sido sometido a estrés social. Por lo tanto, el objetivo de esta revisión es presentar una caracterización de la Oxitocina y su relación con distintas formas de interacción social y el estrés social; a través de los resultados presentados en distintos estudios, tanto en modelos animales como en humanos. Además, se intenta mostrar la importancia de continuar con el estudio de la Oxitocina, dados los posibles vacíos teóricos y experimentales existentes, teniendo en cuenta las potenciales cualidades ansiolíticas de esta hormona.
Collapse
|
32
|
Qin X, Ma X, Liang J, Tu D, Luo Z, Huang J, Mo C. Profiles of brain central nervous system gene expression associated with ejaculation behavior in male rats. Behav Brain Res 2017; 324:21-29. [DOI: 10.1016/j.bbr.2017.01.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/22/2017] [Accepted: 01/27/2017] [Indexed: 01/23/2023]
|
33
|
Qin X, Ma X, Tu D, Luo Z, Huang J, Mo C. The effect of 8-OH-DPAT and dapoxetine on gene expression in the brain of male rats during ejaculation. Acta Pharm Sin B 2017; 7:381-389. [PMID: 28540176 PMCID: PMC5430880 DOI: 10.1016/j.apsb.2016.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The 5-HT1A receptor agonist 8-hydroxy-2-[di-n-propylamino] tetralin (8-OH-DPAT) promotes ejaculation of male rats, whereas dapoxetine delays this process. However, the gene expression profile of the brain at ejaculation following administrationof these two compounds has not been fully elucidated. In the present study, a transcriptomic BodyMap was generated by conducting mRNA-Seq on brain samples of male Sprague–Dawley rats. The study included four groups: pre-copulatory control (CK) group, ejaculation (EJ) group, 0.5 mg/kg 8-OH-DPAT-ejaculation group (DPAT), and 60 mg/kg dapoxetine-ejaculation (DAP) group. The resulting analysis generated an average of approximately 47 million sequence reads. Significant differences in the gene expression profiles of the aforementioned groups were observed in the EJ (257 genes), DPAT (349 genes) and the DAP (207 genes) compared with the control rats. The results indicate that the expression of Drd1 and Slc6a3 was significantly different after treatment with 8-OH-DPAT, whereas the expression of Drd4 was significantly different after treatment with dapoxetine. Other genes, such as Wnt9b, Cdkn1a and Fosb, exhibited significant differences in expression after the two treatments and are related to bladder cancer, renal cell carcinoma and sexual addiction. The present study reveals the basic pattern of gene expression that was activated at ejaculation in the presence of 8-OH-DPAT or dapoxetine, providing preliminary gene expression information during rat ejaculation.
Collapse
Affiliation(s)
- Xijun Qin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Corresponding author. Tel.: +86 13501187416; fax: +86 21 57643271.
| | - Dongping Tu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jie Huang
- Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Changming Mo
- Guangxi Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Nanning 530023, China
| |
Collapse
|
34
|
Nutsch VL, Bell MR, Will RG, Yin W, Wolfe A, Gillette R, Dominguez JM, Gore AC. Aging and estradiol effects on gene expression in the medial preoptic area, bed nucleus of the stria terminalis, and posterodorsal medial amygdala of male rats. Mol Cell Endocrinol 2017; 442:153-164. [PMID: 28007657 PMCID: PMC5276730 DOI: 10.1016/j.mce.2016.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/17/2016] [Accepted: 12/18/2016] [Indexed: 12/27/2022]
Abstract
Studies on the role of hormones in male reproductive aging have traditionally focused on testosterone, but estradiol (E2) also plays important roles in the control of masculine physiology and behavior. Our goal was to examine the effects of E2 on the expression of genes selected for E2-sensitivity, involvement in behavioral neuroendocrine functions, and impairments with aging. Mature adult (MAT, 5 mo) and aged (AG, 18 mo) Sprague-Dawley male rats were castrated, implanted with either vehicle or E2 subcutaneous capsules, and euthanized one month later. Bilateral punches were taken from the bed nucleus of the stria terminalis (BnST), posterodorsal medial amygdala (MePD) and the preoptic area (POA). RNA was extracted, and expression of 48 genes analyzed by qPCR using Taqman low-density arrays. Results showed that effects of age and E2 were age- and region-specific. In the POA, 5 genes were increased with E2 compared to vehicle, and there were no age effects. By contrast the BnST showed primarily age-related changes, with 6 genes decreasing with age. The MePD had 5 genes that were higher in aged than mature males, and 17 genes with significant interactions between age and E2. Gene families identified in the MePD included nuclear hormone receptors, neurotransmitters and neuropeptides and their receptors. Ten serum hormones were assayed in these same males, with results revealing both age- and E2-effects, in several cases quite profound. These results support the idea that the male brain continues to be highly sensitive to estradiol even with aging, but the nature of the response can be substantially different in mature and aging animals.
Collapse
Affiliation(s)
- Victoria L Nutsch
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Margaret R Bell
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Ryan G Will
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Andrew Wolfe
- Johns Hopkins University School of Medicine, Baltimore, MD, 21298, USA
| | - Ross Gillette
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Juan M Dominguez
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Andrea C Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA; Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
35
|
Johnson ZV, Walum H, Xiao Y, Riefkohl PC, Young LJ. Oxytocin receptors modulate a social salience neural network in male prairie voles. Horm Behav 2017; 87:16-24. [PMID: 27793769 PMCID: PMC5207344 DOI: 10.1016/j.yhbeh.2016.10.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/05/2016] [Accepted: 10/23/2016] [Indexed: 11/21/2022]
Abstract
Social behavior is regulated by conserved neural networks across vertebrates. Variation in the organization of neuropeptide systems across these networks is thought to contribute to individual and species diversity in network function during social contexts. For example, oxytocin (OT) is an ancient neuropeptide that binds to OT receptors (OTRs) in the brain and modulates social and reproductive behavior across vertebrate species, including humans. Central OTRs exhibit extraordinarily diverse expression patterns that are associated with individual and species differences in social behavior. In voles, OTR density in the nucleus accumbens (NAc)-a region important for social and reward learning-is associated with individual and species variation in social attachment behavior. Here we test whether OTRs in the NAc modulate a social salience network (SSN)-a network of interconnected brain nuclei thought to encode valence and incentive salience of sociosensory cues-during a social context in the socially monogamous male prairie vole. Using a selective OTR antagonist, we test whether activation of OTRs in the NAc during sociosexual interaction and mating modulates expression of the immediate early gene product Fos across nuclei of the SSN. We show that blockade of endogenous OTR signaling in the NAc during sociosexual interaction and mating does not strongly modulate levels of Fos expression in individual nodes of the network, but strongly modulates patterns of correlated Fos expression between the NAc and other SSN nuclei.
Collapse
Affiliation(s)
- Zachary V Johnson
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Hasse Walum
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Yao Xiao
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Paula C Riefkohl
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
36
|
Mate-choice copying, social information processing, and the roles of oxytocin. Neurosci Biobehav Rev 2016; 72:232-242. [PMID: 27923732 DOI: 10.1016/j.neubiorev.2016.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 01/07/2023]
Abstract
Social and sexual behaviors, including that of mate choice, are dependent on social information. Mate choice can be modified by prior and ongoing social factors and experience. The mate choice decisions of one individual can be influenced by either the actual or potential mate choice of another female or male. Such non-independent mate choice, where individuals gain social information and socially learn about and recognizes potential mates by observing the choices of another female or male, has been termed "mate-choice copying". Here we first briefly review how, why, and under what circumstances individuals engage in mate-choice copying. Secondly, we review the neurobiological mechanisms underlying mate-choice copying. In particular, we consider the roles of the nonapeptide, oxytocin, in the processing of social information and the expression of mate-choice copying.
Collapse
|
37
|
Abstract
Delayed ejaculation (DE) is an uncommon and a challenging disorder to treat. It is often quite concerning to patients and it can affect psychosocial well-being. Here we reviewed how DE is treated pharmacologically .We also highlighted specific settings where drugs could be introduced to medical practice. Electronic databases were searched from 1966 to February 2016, including PubMed MEDLINE, EMBASE, EBCSO Academic Search Complete, Cochrane Systematic Reviews Database, and Google Scholar using key words; delayed ejaculation, retarded ejaculation, inhibited ejaculation, drugs, treatment, or pharmacology. To achieve the maximum sensitivity of the search strategy and to identify all studies, we combined “delayed ejaculation” as Medical Subject Headings (MeSH) terms or keywords with each of “testosterone” or “cabergoline” or “bupropion” or “amantadine” or “cyproheptadine” or “midodrine” or “imipramine” or “ephedrine” or “pseudoephedrine” or “yohimbine” or “buspirone” or “oxytocin” or “bethanechol” as MeSH terms or keywords. There are a number of drugs to treat patients with DE including: testosterone, cabergoline, bupropion, amantadine, cyproheptadine, midodrine, imipramine, ephedrine, pseudoephedrine, yohimbine, buspirone, oxytocin, and bethanechol. Although there are many pharmacological treatment options, the evidence is still limited to small trials, case series or case reports. Review of literature showed that evidence level 1 (Double blind randomized clinical trial) studies were performed with testosterone, oxytocin, buspirone or bethanechol treatment. It is concluded that successful drug treatment of DE is still in its infancy. The clinicians need to be aware of the pathogenesis of DE and the pharmacological basis underlying the use of different drugs to extend better care for these patients. Various drugs are available to address such problem, however their evidence of efficacy is still limited and their choice needs to be individualized to each specific case.
Collapse
Affiliation(s)
| | | | - Taymour Mostafa
- Department of Andrology & Sexology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
38
|
Abstract
Over the past 20−30 years, the premature ejaculation (PE) treatment paradigm, previously limited to behavioural psychotherapy, has expanded to include drug treatment. Pharmacotherapy for PE predominantly targets the multiple neurotransmitters and receptors involved in the control of ejaculation which include serotonin, dopamine, oxytocin, norepinephrine, gamma amino-butyric acid (GABA) and nitric oxide (NO). The objective of this article is to review emerging PE interventions contemporary data on the treatment of PE was reviewed and critiqued using the principles of evidence-based medicine. Multiple well-controlled evidence-based studies have demonstrated the efficacy and safety of selective serotonin reuptake inhibitors (SSRIs) in delaying ejaculation, confirming their role as first-line agents for the medical treatment of lifelong and acquired PE. Daily dosing of SSRIs is likely to be associated with superior fold increases in IELT compared to on-demand SSRIs. On-demand SSRIs are less effective but may fulfill the treatment goals of many patients. Integrated pharmacotherapy and CBT may achieve superior treatment outcomes in some patients. PDE-5 inhibitors alone or in combination with SSRIs should be limited to men with acquired PE secondary to co-morbid ED. New on-demand rapid acting SSRIs, oxytocin receptor antagonists, or single agents that target multiple receptors may form the foundation of more effective future on-demand medication. Current evidence confirms the efficacy and safety of dapoxetine, off-label SSRI drugs, tramadol and topical anaesthetics drugs. Treatment with α1-adrenoceptor antagonists cannot be recommended until the results of large well-designed RCTs are published in major international peer-reviewed medical journals. As our understanding of the neurochemical control of ejaculation improves, new therapeutic targets and candidate molecules will be identified which may increase our pharmacotherapeutic armamentarium.
Collapse
Affiliation(s)
- Chris G McMahon
- Australian Centre for Sexual Health, Sydney, NSW 2065, Australia
| |
Collapse
|
39
|
Nutsch VL, Will RG, Robison CL, Martz JR, Tobiansky DJ, Dominguez JM. Colocalization of Mating-Induced Fos and D2-Like Dopamine Receptors in the Medial Preoptic Area: Influence of Sexual Experience. Front Behav Neurosci 2016; 10:75. [PMID: 27147996 PMCID: PMC4834303 DOI: 10.3389/fnbeh.2016.00075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/01/2016] [Indexed: 01/23/2023] Open
Abstract
Dopamine in the medial preoptic area (mPOA) stimulates sexual activity in males. This is evidenced by microdialysis and microinjection experiments revealing that dopamine receptor antagonists in the mPOA inhibit sexual activity, whereas agonists facilitate behavior. Microdialysis experiments similarly show a facilitative role for dopamine, as levels of dopamine in the mPOA increase with mating. While the majority of evidence suggests an important role for dopamine receptors in the mPOA in the regulation of male sexual behaviors, whether sexual activity or sexual experience influence dopamine receptor function in the mPOA has not been previously shown. Here we used immunohistochemical assays to determine whether varying levels of sexual activity or experience influence the number of cells containing Fos or D2 receptor immunoreactivity. Results show that sexual experience facilitated subsequent behavior, namely experience decreased latencies. Moreover, the number of cells with immunoreactivity for Fos or D2 correlated with levels of sexual experience and sexual activity. Sexual activity increased Fos immunoreactivity. Sexually experienced animals also had significantly more D2-positive cells. Sexually inexperienced animals copulating for the first time had a larger percentage of D2-positive cells containing Fos, when compared to sexually experienced animals. Finally, regardless of experience, animals that had sex prior to sacrifice had significantly more D2-positive cells that contained Fos, vs. animals that did not copulate. These findings are noteworthy because sexually experienced animals display increased sexual efficiency. The differences in activation of D2 and changes in receptor density may play a role in this efficiency and other behavioral changes across sexual experience.
Collapse
Affiliation(s)
- Victoria L Nutsch
- Institute for Neuroscience, The University of Texas at Austin Austin, TX, USA
| | - Ryan G Will
- Department of Psychology, The University of Texas at Austin Austin, TX, USA
| | | | - Julia R Martz
- Department of Psychology, The University of Texas at Austin Austin, TX, USA
| | - Daniel J Tobiansky
- Department of Psychology, The University of Texas at Austin Austin, TX, USA
| | - Juan M Dominguez
- Institute for Neuroscience, The University of Texas at AustinAustin, TX, USA; Department of Psychology, The University of Texas at AustinAustin, TX, USA
| |
Collapse
|
40
|
Futagami H, Sakuma Y, Kondo Y. Oxytocin mediates copulation-induced hypoalgesia of male rats. Neurosci Lett 2016; 618:122-126. [DOI: 10.1016/j.neulet.2016.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/13/2016] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
|
41
|
Egecioglu E, Prieto‐Garcia L, Studer E, Westberg L, Jerlhag E. The role of ghrelin signalling for sexual behaviour in male mice. Addict Biol 2016; 21:348-59. [PMID: 25475101 DOI: 10.1111/adb.12202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ghrelin, a gut-brain signal, is well known to regulate energy homeostasis, food intake and appetite foremost via hypothalamic ghrelin receptors (GHS-R1A). In addition, ghrelin activates the reward systems in the brain, namely the mesolimbic dopamine system, and regulates thereby the rewarding properties of addictive drugs as well as of palatable foods. Given that the mesolimbic dopamine system mandates the reinforcing properties of addictive drugs and natural rewards, such as sexual behaviour, we hypothesize that ghrelin plays an important role for male sexual behaviour, a subject for the present studies. Herein we show that ghrelin treatment increases, whereas pharmacological suppression (using the GHSR-1A antagonist JMV2959) or genetic deletion of the GHS-R1A in male mice decreases the sexual motivation for as well as sexual behaviour with female mice in oestrus. Pre-treatment with L-dopa (a dopamine precursor) prior to treatment with JMV2959 significantly increased the preference for female mouse compared with vehicle treatment. On the contrary, treatment with 5-hydroxythyptohan (a precursor for serotonin) prior to treatment with JMV2959 decreased the sexual motivation compared to vehicle. In separate experiments, we show that ghrelin and GHS-R1A antagonism do not affect the time spent over female bedding as measured in the androgen-dependent bedding test. Collectively, these data show that the hunger hormone ghrelin and its receptor are required for normal sexual behaviour in male mice and that the effects of the ghrelin signalling system on sexual behaviour involve dopamine neurotransmission.
Collapse
Affiliation(s)
- Emil Egecioglu
- Department of Pharmacology Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Sweden
| | - Luna Prieto‐Garcia
- Department of Pharmacology Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Sweden
| | - Erik Studer
- Department of Pharmacology Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Sweden
| | - Lars Westberg
- Department of Pharmacology Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology Institute of Neuroscience and Physiology The Sahlgrenska Academy at the University of Gothenburg Sweden
| |
Collapse
|
42
|
Romano A, Tempesta B, Micioni Di Bonaventura MV, Gaetani S. From Autism to Eating Disorders and More: The Role of Oxytocin in Neuropsychiatric Disorders. Front Neurosci 2016; 9:497. [PMID: 26793046 PMCID: PMC4709851 DOI: 10.3389/fnins.2015.00497] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
Oxytocin (oxy) is a pituitary neuropeptide hormone synthesized from the paraventricular and supraoptic nuclei within the hypothalamus. Like other neuropeptides, oxy can modulate a wide range of neurotransmitter and neuromodulator activities. Additionally, through the neurohypophysis, oxy is secreted into the systemic circulation to act as a hormone, thereby influencing several body functions. Oxy plays a pivotal role in parturition, milk let-down and maternal behavior and has been demonstrated to be important in the formation of pair bonding between mother and infants as well as in mating pairs. Furthermore, oxy has been proven to play a key role in the regulation of several behaviors associated with neuropsychiatric disorders, including social interactions, social memory response to social stimuli, decision-making in the context of social interactions, feeding behavior, emotional reactivity, etc. An increasing body of evidence suggests that deregulations of the oxytocinergic system might be involved in the pathophysiology of certain neuropsychiatric disorders such as autism, eating disorders, schizophrenia, mood, and anxiety disorders. The potential use of oxy in these mental health disorders is attracting growing interest since numerous beneficial properties are ascribed to this neuropeptide. The present manuscript will review the existing findings on the role played by oxy in a variety of distinct physiological and behavioral functions (Figure 1) and on its role and impact in different psychiatric disorders. The aim of this review is to highlight the need of further investigations on this target that might contribute to the development of novel more efficacious therapies.
Oxytocin regulatory control of different and complex processes. ![]()
Collapse
Affiliation(s)
- Adele Romano
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome Rome, Italy
| | - Bianca Tempesta
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome Rome, Italy
| | | | - Silvana Gaetani
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome Rome, Italy
| |
Collapse
|
43
|
Abstract
INTRODUCTION Over the past 20-30 years, the premature ejaculation (PE) treatment paradigm, previously limited to behavioral psychotherapy, has expanded to include drug treatment. Pharmacotherapy for PE predominantly targets the multiple neurotransmitters and receptors involved in the control of ejaculation, which include serotonin, dopamine, oxytocin, norepinephrine, gamma amino-butyric acid (GABA) and nitric oxide (NO). AIM The objective of this article is to review current and emerging PE interventions. METHODS Contemporary data on the treatment of PE were reviewed and critiqued using the principles of evidence-based medicine. MAIN OUTCOME MEASURE Integrated pharmacotherapy and cognitive behavioral therapy (CBT) may achieve superior treatment outcomes in some patients. Phosphodiesterase type 5 inhibitors alone or in combination with selective serotonin reuptake inhibitors (SSRIs) should be limited to men with acquired PE secondary to comorbid erectile dysfunction (ED). New on-demand rapid-acting SSRIs, oxytocin receptor antagonists, or single agents that target multiple receptors may form the foundation of more effective future on-demand medication. RESULTS Multiple well-controlled evidence-based studies have demonstrated the efficacy and safety of SSRIs in delaying ejaculation, confirming their role as first-line agents for the medical treatment of lifelong and acquired PE. Daily dosing of SSRIs is likely to be associated with superior fold increases in intravaginal ejaculation latency time compared with on-demand SSRIs. On-demand SSRIs are less effective but may fulfill the treatment goals of many patients. CONCLUSIONS Current evidence suggests that psychosexual CBT has a limited role in the contemporary management of PE and confirms the efficacy and safety of dapoxetine, off-label SSRI drugs, and topical anesthetics drugs. Treatment with tramadol, α1-adrenoceptor antagonists cannot be recommended until the results of large, well-designed randomized controlled trials are published in major international peer-reviewed medical journals. As our understanding of the neurochemical control of ejaculation improves, new therapeutic targets and candidate molecules will be identified, which may increase our pharmacotherepeutic armamentarium. McMahon CG. Current and emerging treatments for premature ejaculation. Sex Med Rev 2015;3:183-202.
Collapse
Affiliation(s)
- Chris G McMahon
- Australian Centre for Sexual Health, Sydney, NSW, Australia.
| |
Collapse
|
44
|
Ferraz MM, Sab IM, Silva MA, Santos DA, Ferraz MR. Prenatal Hypoxia Ischemia Increases Male Rat Sexual Behavior. J Sex Med 2015; 12:2013-21. [DOI: 10.1111/jsm.13006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Harari-Dahan O, Bernstein A. A general approach-avoidance hypothesis of oxytocin: accounting for social and non-social effects of oxytocin. Neurosci Biobehav Rev 2015; 47:506-19. [PMID: 25454355 DOI: 10.1016/j.neubiorev.2014.10.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/02/2014] [Accepted: 10/09/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND We critically reexamine extant theory and empirical study of Oxytocin. We question whether OT is, in fact, a "social neuropeptide" as argued in dominant theories of OT. METHOD We critically review human and animal research on the social and non-social effects of Oxytocin, including behavioral, psychophysiological, neurobiological, and neuroimaging studies. RESULTS We find that extant (social) theories of Oxytocin do not account for well-documented non-social effects of Oxytocin. Furthermore, we find a range of evidence that social and non-social effects of Oxytocin may be mediated by core approach-avoidance motivational processes. CONCLUSIONS We propose a General Approach-avoidance Hypothesis of Oxytocin (GAAO). We argue that the GAAO may provide a parsimonious account of established social and non-social effects of Oxytocin. We thus re-conceptualize the basic function(s) and mechanism(s) of action of Oxytocin. Finally, we highlight implications of the GAAO for basic and clinical research in humans
Collapse
|
46
|
Moaddab M, Hyland BI, Brown CH. Oxytocin enhances the expression of morphine-induced conditioned place preference in rats. Psychoneuroendocrinology 2015; 53:159-69. [PMID: 25618594 DOI: 10.1016/j.psyneuen.2015.01.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 12/24/2022]
Abstract
Drug addiction is characterized by drug-seeking and drug-taking and has devastating consequences on addicts as well as on society. Environmental contexts previously associated with drug use can elicit continued drug use and facilitate relapse. Accumulating evidence suggests that the neuropeptide oxytocin might be a potential treatment for behavioral disorders, including drug addiction. Here, we investigated the effects of central oxytocin administration on the acquisition and expression of morphine-induced conditioned place preference (CPP), a model for measuring the rewarding effects of drugs of abuse, in male Wistar rats. Intracerebroventricular (ICV) administration of oxytocin (0.2μg) or the specific oxytocin receptor antagonist (OTA), desGly-NH2, d(CH2)5[Tyr(Me)(2), Thr(4)] OVT, (0.75μg), on the conditioning days did not affect the acquisition of morphine-induced CPP. By contrast, ICV oxytocin, but not OTA, administration immediately prior to the post-conditioning session enhanced the expression of morphine-induced CPP, possibly by activation of oxytocin receptors in the nucleus accumbens shell (NAcSh). The oxytocin enhancement of morphine-induced CPP was not associated with any changes in the locomotor activity of morphine-conditioned rats. Together, these data suggest that central administration of exogenous oxytocin enhances the expression of morphine-induced CPP, at least in part, via activation of oxytocin receptors within the NAcSh.
Collapse
Affiliation(s)
- Mahsa Moaddab
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin 9054, Otago, New Zealand
| | - Brian I Hyland
- Department of Physiology, University of Otago, Dunedin 9054, Otago, New Zealand
| | - Colin H Brown
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin 9054, Otago, New Zealand.
| |
Collapse
|
47
|
de Jong TR, Neumann ID. Moderate Role of Oxytocin in the Pro-Ejaculatory Effect of the 5-HT1A Receptor Agonist 8-OH-DPAT. J Sex Med 2015; 12:17-28. [DOI: 10.1111/jsm.12742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
48
|
Acevedo-Rodriguez A, Mani SK, Handa RJ. Oxytocin and Estrogen Receptor β in the Brain: An Overview. Front Endocrinol (Lausanne) 2015; 6:160. [PMID: 26528239 PMCID: PMC4606117 DOI: 10.3389/fendo.2015.00160] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/28/2015] [Indexed: 12/12/2022] Open
Abstract
Oxytocin (OT) is a neuropeptide synthesized primarily by neurons of the paraventricular and supraoptic nuclei of the hypothalamus. These neurons have axons that project into the posterior pituitary and release OT into the bloodstream to promote labor and lactation; however, OT neurons also project to other brain areas where it plays a role in numerous brain functions. OT binds to the widely expressed OT receptor (OTR), and, in doing so, it regulates homeostatic processes, social recognition, and fear conditioning. In addition to these functions, OT decreases neuroendocrine stress signaling and anxiety-related and depression-like behaviors. Steroid hormones differentially modulate stress responses and alter OTR expression. In particular, estrogen receptor β activation has been found to both reduce anxiety-related behaviors and increase OT peptide transcription, suggesting a role for OT in this estrogen receptor β-mediated anxiolytic effect. Further research is needed to identify modulators of OT signaling and the pathways utilized and to elucidate molecular mechanisms controlling OT expression to allow better therapeutic manipulations of this system in patient populations.
Collapse
Affiliation(s)
- Alexandra Acevedo-Rodriguez
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Shaila K. Mani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX, USA
- Department Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Robert J. Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- *Correspondence: Robert J. Handa,
| |
Collapse
|
49
|
Dopamine is involved in the different patterns of copulatory behaviour of Roman high and low avoidance rats: Studies with apomorphine and haloperidol. Pharmacol Biochem Behav 2014; 124:211-9. [DOI: 10.1016/j.pbb.2014.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/07/2014] [Accepted: 06/15/2014] [Indexed: 01/14/2023]
|
50
|
Veening JG, de Jong TR, Waldinger MD, Korte SM, Olivier B. The role of oxytocin in male and female reproductive behavior. Eur J Pharmacol 2014; 753:209-28. [PMID: 25088178 DOI: 10.1016/j.ejphar.2014.07.045] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/30/2014] [Accepted: 07/24/2014] [Indexed: 01/01/2023]
Abstract
Oxytocin (OT) is a nonapeptide with an impressive variety of physiological functions. Among them, the 'prosocial' effects have been discussed in several recent reviews, but the direct effects on male and female sexual behavior did receive much less attention so far. As our contribution to honor the lifelong interest of Berend Olivier in the control mechanisms of sexual behavior, we decided to explore the role of OT in the present review. In the successive sections, some physiological mechanisms and the 'pair-bonding' effects of OT will be discussed, followed by sections about desire, female appetitive and copulatory behavior, including lordosis and orgasm. At the male side, the effects on erection and ejaculation are reviewed, followed by a section about 'premature ejaculation' and a possible role of OT in its treatment. In addition to OT, serotonin receives some attention as one of the main mechanisms controlling the effects of OT. In the succeeding sections, the importance of OT for 'the fruits of labor' is discussed, as it plays an important role in both maternal and paternal behavior. Finally, we pay attention to an intriguing brain area, the ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl), apparently functioning in both sexual and aggressive behavior, which are at first view completely opposite behavioral systems.
Collapse
Affiliation(s)
- J G Veening
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands; Department of Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - T R de Jong
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, 93053 Regensburg, Germany
| | - M D Waldinger
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands
| | - S M Korte
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands
| | - B Olivier
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|