1
|
Chen Y, Zheng YX, Li YZ, Jia Z, Yuan Y. GDNF facilitates cognitive function recovery following neonatal surgical-induced learning and memory impairment via activation of the RET pathway and modulation of downstream effectors PKMζ and Kalirin in rats. Brain Res Bull 2024; 217:111078. [PMID: 39270804 DOI: 10.1016/j.brainresbull.2024.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVE The aim of this study is to elucidate the underlying mechanism through which glial cell line-derived neurotrophic factor (GDNF) improves cognitive deficits in adults resulting from neonatal surgical interventions. METHODS Newborn Sprague-Dawley rats, regardless of gender, were randomly allocated into seven groups on postnatal day 7 as follows (n=15): (1) Control group (not subjected to anesthesia, surgery, or any pharmaceutical interventions); (2) GDNF group (received intracerebroventricular injection of GDNF); (3) Surgery group (underwent right carotid artery exposure under anesthesia with 3 % sevoflurane); (4) Surgery plus GDNF group; (5) Surgery plus GDNF and type II JAK inhibitor NVP-BBT594 (BBT594) group (administered intraperitoneal injection of BBT594); (6) BBT group; and (7) Surgery plus BBT group. Starting from postnatal day 33, all rats underwent Barnes maze and fear conditioning tests, followed by decapitation under sevoflurane anesthesia for subsequent analyses. The left hemibrains underwent Golgi staining, while the right hemibrains were used for hippocampal protein extraction to assess Protein kinase Mζ (PKMζ) and Kalirin expression through western blotting. RESULTS GDNF demonstrated a mitigating effect on spatial learning and memory impairment, as well as context-related fear memory impairment, reductions in dendritic total lengths, and spinal density within the hippocampus induced by surgical intervention. Notably, all of these ameliorative effects of GDNF were reversed upon administration of the RET inhibitor BBT594. Additionally, GDNF alleviated the downregulation of protein expression of PKMζ and Kalirin in the hippocampus of rats subjected to surgery, subsequently reversed by BBT594. CONCLUSION The effective impact of GDNF on learning and memory impairment caused by surgical intervention appears to be mediated through the RET pathway. Moreover, GDNF may exert its influence by upregulating the expression of PKMζ and Kalirin, consequently enhancing the development of dendrites and dendritic spines.
Collapse
Affiliation(s)
- Yi Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yu-Xin Zheng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yi-Ze Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhen Jia
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuan Yuan
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
2
|
Ishchenko Y, Jeng AT, Feng S, Nottoli T, Manriquez-Rodriguez C, Nguyen KK, Carrizales MG, Vitarelli MJ, Corcoran EE, Greer CA, Myers SA, Koleske AJ. Heterozygosity for neurodevelopmental disorder-associated TRIO variants yields distinct deficits in behavior, neuronal development, and synaptic transmission in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574442. [PMID: 39131289 PMCID: PMC11312463 DOI: 10.1101/2024.01.05.574442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Genetic variants in TRIO are associated with neurodevelopmental disorders (NDDs) including schizophrenia (SCZ), autism spectrum disorder (ASD) and intellectual disability. TRIO uses its two guanine nucleotide exchange factor (GEF) domains to activate GTPases (GEF1: Rac1 and RhoG; GEF2: RhoA) that control neuronal development and connectivity. It remains unclear how discrete TRIO variants differentially impact these neurodevelopmental events. Here, we investigate how heterozygosity for NDD-associated Trio variants - +/K1431M (ASD), +/K1918X (SCZ), and +/M2145T (bipolar disorder, BPD) - impact mouse behavior, brain development, and synapse structure and function. Heterozygosity for different Trio variants impacts motor, social, and cognitive behaviors in distinct ways that align with clinical phenotypes in humans. Trio variants differentially impact head and brain size with corresponding changes in dendritic arbors of motor cortex layer 5 pyramidal neurons (M1 L5 PNs). Although neuronal structure was only modestly altered in the Trio variant heterozygotes, we observe significant changes in synaptic function and plasticity. We also identified distinct changes in glutamate synaptic release in +/K1431M and +/M2145T cortico-cortical synapses. The TRIO K1431M GEF1 domain has impaired ability to promote GTP exchange on Rac1, but +/K1431M mice exhibit increased Rac1 activity, associated with increased levels of the Rac1 GEF Tiam1. Acute Rac1 inhibition with NSC23766 rescued glutamate release deficits in +/K1431M variant cortex. Our work reveals that discrete NDD-associated Trio variants yield overlapping but distinct phenotypes in mice, demonstrates an essential role for Trio in presynaptic glutamate release, and underscores the importance of studying the impact of variant heterozygosity in vivo.
Collapse
Affiliation(s)
- Yevheniia Ishchenko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Amanda T Jeng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Shufang Feng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Gerontology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Timothy Nottoli
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Khanh K Nguyen
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Melissa G Carrizales
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Matthew J Vitarelli
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Ellen E Corcoran
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Charles A Greer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Samuel A Myers
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Cioffi L, Diviccaro S, Chrostek G, Caruso D, Garcia-Segura LM, Melcangi RC, Giatti S. Neuroactive steroids fluctuate with regional specificity in the central and peripheral nervous system across the rat estrous cycle. J Steroid Biochem Mol Biol 2024; 243:106590. [PMID: 39053702 DOI: 10.1016/j.jsbmb.2024.106590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Neuroactive steroids (i.e., sex steroid hormones and neurosteroids) are important physiological regulators of nervous function and potential neuroprotective agents for neurodegenerative and psychiatric disorders. Sex is an important component of such effects. However, even if fluctuations in sex steroid hormone level during the menstrual cycle are associated with neuropathological events in some women, the neuroactive steroid pattern in the brain across the ovarian cycle has been poorly explored. Therefore, we assessed the levels of pregnenolone, progesterone, and its metabolites (i.e., dihydroprogesterone, allopregnanolone and isoallopregnanolone), dehydroepiandrosterone, testosterone and its metabolites (i.e., dihydrotestosterone, 3α-diol and 17β-estradiol) across the rat ovarian cycle to determine whether their plasma fluctuations are similar to those occurring in the central (i.e., hippocampus and cerebral cortex) and peripheral (i.e., sciatic nerve) nervous system. Data obtained indicate that the plasma pattern of these molecules generally does not fully reflect the events occurring in the nervous system. In addition, for some neuroactive steroid levels, the pattern is not identical between the two brain regions and between the brain and peripheral nerves. Indeed, with the exception of progesterone, all other neuroactive steroids assessed here showed peculiar regional differences in their pattern of fluctuation in the nervous system during the estrous cycle. These observations may have important diagnostic and therapeutic consequences for neuropathological events influenced by the menstrual cycle.
Collapse
Affiliation(s)
- Lucia Cioffi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Italy
| | - Silvia Diviccaro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Italy
| | - Gabriela Chrostek
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Italy
| | - Luis Miguel Garcia-Segura
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Italy.
| | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Italy
| |
Collapse
|
4
|
Hyun SA, Ka M. Bisphenol A (BPA) and neurological disorders: An overview. Int J Biochem Cell Biol 2024; 173:106614. [PMID: 38944234 DOI: 10.1016/j.biocel.2024.106614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
The human body is commonly exposed to bisphenol A (BPA), which is widely used in consumer and industrial products. BPA is an endocrine-disrupting chemical that has adverse effects on human health. In particular, many studies have shown that BPA can cause various neurological disorders by affecting brain development and neural function during prenatal, infancy, childhood, and adulthood exposure. In this review, we discussed the correlation between BPA and neurological disorders based on molecular cell biology, neurophysiology, and behavioral studies of the effects of BPA on brain development and function. Recent studies, both animal and epidemiological, strongly indicate that BPA significantly impacts brain development and function. It hinders neural processes, such as proliferation, migration, and differentiation during development, affecting synaptic formation and activity. As a result, BPA is implicated in neurodevelopmental and neuropsychiatric disorders like autism spectrum disorder (ASD), attention-deficit hyperactivity disorder (ADHD), and schizophrenia.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| |
Collapse
|
5
|
Zhang L, Wu H, Fan Y, Tian F. Treadmill exercise prevents recognition memory impairment in VD rat model and enhancement of hippocampal structural synaptic plasticity. Brain Behav 2024; 14:e3633. [PMID: 39054262 PMCID: PMC11272414 DOI: 10.1002/brb3.3633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/22/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE In vascular dementia (VD), memory impairment caused by the damage of synaptic plasticity is the most prominent feature that afflicts patients and their families. Treadmill exercise has proven beneficial for memory by enhancing synaptic plasticity in animal models including stroke, dementia, and mental disorders. The aim of this study was to examine the effects of treadmill exercise on recognition memory and structural synaptic plasticity in VD rat model. METHODS Male Sprague-Dawley rats were randomly assigned into four groups: control group (C group, n = 6), vascular dementia group (VD group, n = 6), treadmill exercise and vascular dementia group (Exe-VD group, n = 6), and treadmill exercise group (Exe group, n = 6). Four-week treadmill exercise was performed in the Exe-VD and Exe groups. Then, the common carotid arteries of rats in the VD and Exe-VD groups were identified to establish the VD model. Behavior tests (open-field test and novel recognition memory test) were adopted to evaluate anxiety-like behavior and recognition memory. Transmission electron microscopy and Golgi staining were performed to observe synaptic ultrastructure and spine density in the hippocampus. RESULTS Our study demonstrated that VD rat exhibited significantly anxiety-like behavior and recognition impairment (p < .01), while treadmill exercise significantly alleviated anxiety-like behavior and improved recognition memory in VD rat (p < .01). Transmission electron microscopy revealed that hippocampal synapse numbers were significantly decreased in the VD group compared to the control group (p < .05). These alterations were reversed by treadmill exercise, and the rats exhibited healthier synaptic ultrastructure, including significantly increased synapse (p < .05). Meanwhile, golgi staining revealed that the spine numbers of the hippocampus were significantly decreased in the VD group compared to the control group (p < .05). When compared with the VD group, hippocampal spine numbers were significantly increased in the Exe-VD group (p < .05). CONCLUSION The improvement of VD-associated recognition memory by treadmill exercises is associated with enhanced structural synaptic plasticity in VD rat model.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of physical educationHenan normal universityXinxiangChina
| | - Hao Wu
- Beijing Key Laboratory of Sports Function Assessment and Technical AnalysisCapital University of Physical Education and SportsBeijingChina
| | - Yongzhao Fan
- Department of physical educationHenan normal universityXinxiangChina
- Beijing Key Laboratory of Sports Function Assessment and Technical AnalysisCapital University of Physical Education and SportsBeijingChina
| | - Fang Tian
- Department of Physical EducationNanjing Medical UniversityNanjingChina
| |
Collapse
|
6
|
Zelek WM, Bevan RJ, Morgan BP. Targeting terminal pathway reduces brain complement activation, amyloid load and synapse loss, and improves cognition in a mouse model of dementia. Brain Behav Immun 2024; 118:355-363. [PMID: 38485063 DOI: 10.1016/j.bbi.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
Complement is dysregulated in the brain in Alzheimer's Disease and in mouse models of Alzheimer's disease. Each of the complement derived effectors, opsonins, anaphylatoxins and membrane attack complex (MAC), have been implicated as drivers of disease but their relative contributions remain unclarified. Here we have focussed on the MAC, a lytic and pro-inflammatory effector, in the AppNL-G-F mouse amyloidopathy model. To test the role of MAC, we back-crossed to generate AppNL-G-F mice deficient in C7, an essential MAC component. C7 deficiency ablated MAC formation, reduced synapse loss and amyloid load and improved cognition compared to complement-sufficient AppNL-G-F mice at 8-10 months age. Adding back C7 caused increased MAC formation in brain and an acute loss of synapses in C7-deficient AppNL-G-F mice. To explore whether C7 was a viable therapeutic target, a C7-blocking monoclonal antibody was administered systemically for one month in AppNL-G-F mice aged 8-9 months. Treatment reduced brain MAC and amyloid deposition, increased synapse density and improved cognitive performance compared to isotype control-treated AppNL-G-F mice. The findings implicate MAC as a driver of pathology and highlight the potential for complement inhibition at the level of MAC as a therapy in Alzheimer's disease.
Collapse
Affiliation(s)
- Wioleta M Zelek
- UK Dementia Research Institute Cardiff and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales CF14 4XN, United Kingdom.
| | - Ryan J Bevan
- UK Dementia Research Institute Cardiff and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales CF14 4XN, United Kingdom
| | - Bryan Paul Morgan
- UK Dementia Research Institute Cardiff and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales CF14 4XN, United Kingdom.
| |
Collapse
|
7
|
Yu Y, Adsit LM, Smith IT. Comprehensive software suite for functional analysis and synaptic input mapping of dendritic spines imaged in vivo. NEUROPHOTONICS 2024; 11:024307. [PMID: 38628980 PMCID: PMC11021036 DOI: 10.1117/1.nph.11.2.024307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Significance Advances in genetically encoded sensors and two-photon imaging have unlocked functional imaging at the level of single dendritic spines. Synaptic activity can be measured in real time in awake animals. However, tools are needed to facilitate the analysis of the large datasets acquired by the approach. Commonly available software suites for imaging calcium transients in cell bodies are ill-suited for spine imaging as dendritic spines have structural characteristics distinct from those of the cell bodies. We present an automated tuning analysis tool (AUTOTUNE), which provides analysis routines specifically developed for the extraction and analysis of signals from subcellular compartments, including dendritic subregions and spines. Aim Although the acquisition of in vivo functional synaptic imaging data is increasingly accessible, a hurdle remains in the computation-heavy analyses of the acquired data. The aim of this study is to overcome this barrier by offering a comprehensive software suite with a user-friendly interface for easy access to nonprogrammers. Approach We demonstrate the utility and effectiveness of our software with demo analyses of dendritic imaging data acquired from layer 2/3 pyramidal neurons in mouse V1 in vivo. A user manual and demo datasets are also provided. Results AUTOTUNE provides a robust workflow for analyzing functional imaging data from neuronal dendrites. Features include source image registration, segmentation of regions-of-interest and detection of structural turnover, fluorescence transient extraction and smoothing, subtraction of signals from putative backpropagating action potentials, and stimulus and behavioral parameter response tuning analyses. Conclusions AUTOTUNE is open-source and extendable for diverse functional synaptic imaging experiments. The ease of functional characterization of dendritic spine activity provided by our software can accelerate new functional studies that complement decades of morphological studies of dendrites, and further expand our understanding of neural circuits in health and in disease.
Collapse
Affiliation(s)
- Yiyi Yu
- University of California, Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Liam M. Adsit
- University of California, Santa Barbara, Department of Molecular, Cellular and Developmental Biology, Santa Barbara, California, United States
| | - Ikuko T. Smith
- University of California, Santa Barbara, Department of Molecular, Cellular and Developmental Biology, Santa Barbara, California, United States
- University of California, Santa Barbara, Neuroscience Research Institute, Santa Barbara, California, United States
- University of California, Santa Barbara, Department of Psychological and Brain Sciences, Santa Barbara, California, United States
| |
Collapse
|
8
|
Ko MY, Park H, Chon SH, Kim YB, Cha SW, Lee BS, Hyun SA, Ka M. Differential regulations of neural activity and survival in primary cortical neurons by PFOA or PFHpA. CHEMOSPHERE 2024; 352:141379. [PMID: 38316277 DOI: 10.1016/j.chemosphere.2024.141379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Perfluorinated compounds (PFCs), organofluoride compounds comprising carbon-fluorine and carbon-carbon bonds, are used as water and oil repellents in textiles and pharmaceutical tablets; however, they are associated with potential neurotoxic effects. Moreover, the impact of PFCs on neuronal survival, activity, and regulation within the brain remains unclear. Additionally, the mechanisms through which PFCs induce neuronal toxicity are not well-understood because of the paucity of data. This study elucidates that perfluorooctanoic acid (PFOA) and perfluoroheptanoic acid (PFHpA) exert differential effects on the survival and activity of primary cortical neurons. Although PFOA triggers apoptosis in cortical neurons, PFHpA does not exhibit this effect. Instead, PFHpA modifies dendritic spine morphogenesis and synapse formation in primary cortical neuronal cultures, additionally enhancing neural activity and synaptic transmission. This research uncovers a novel mechanism through which PFCs (PFHpA and PFOA) cause distinct alterations in dendritic spine morphogenesis and synaptic activity, shedding light on the molecular basis for the atypical behaviors noted following PFC exposure. Understanding the distinct effects of PFHpA and PFOA could guide regulatory policies on PFC usage and inform clinical approaches to mitigate their neurotoxic effects, especially in vulnerable population.
Collapse
Affiliation(s)
- Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea; Collage of Veterinary of Medicine, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Sun-Hwa Chon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Yong-Bum Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sin-Woo Cha
- Department of Nonclinical Studies, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| |
Collapse
|
9
|
Latorre-Leal M, Rodriguez-Rodriguez P, Franchini L, Nikolidakis O, Daniilidou M, Delac L, Varshney MK, Arroyo-García LE, Eroli F, Winblad B, Blennow K, Zetterberg H, Kivipelto M, Pacciarini M, Wang Y, Griffiths WJ, Björkhem I, Matton A, Nalvarte I, Merino-Serrais P, Cedazo-Minguez A, Maioli S. CYP46A1-mediated cholesterol turnover induces sex-specific changes in cognition and counteracts memory loss in ovariectomized mice. SCIENCE ADVANCES 2024; 10:eadj1354. [PMID: 38266095 PMCID: PMC10807813 DOI: 10.1126/sciadv.adj1354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The brain-specific enzyme CYP46A1 controls cholesterol turnover by converting cholesterol into 24S-hydroxycholesterol (24OH). Dysregulation of brain cholesterol turnover and reduced CYP46A1 levels are observed in Alzheimer's disease (AD). In this study, we report that CYP46A1 overexpression in aged female mice leads to enhanced estrogen signaling in the hippocampus and improved cognitive functions. In contrast, age-matched CYP46A1 overexpressing males show anxiety-like behavior, worsened memory, and elevated levels of 5α-dihydrotestosterone in the hippocampus. We report that, in neurons, 24OH contributes to these divergent effects by activating sex hormone signaling, including estrogen receptors. CYP46A1 overexpression in female mice protects from memory impairments induced by ovariectomy while having no effects in gonadectomized males. Last, we measured cerebrospinal fluid levels of 24OH in a clinical cohort of patients with AD and found that 24OH negatively correlates with neurodegeneration markers only in women. We suggest that CYP46A1 activation is a valuable pharmacological target for enhancing estrogen signaling in women at risk of developing neurodegenerative diseases.
Collapse
Affiliation(s)
- María Latorre-Leal
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Luca Franchini
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Orestis Nikolidakis
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Makrina Daniilidou
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Ljerka Delac
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Mukesh K. Varshney
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Luis E. Arroyo-García
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Eroli
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Winblad
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
- University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Miia Kivipelto
- Department of Neurobiology Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | | | - Yuqin Wang
- Swansea University Medical School, SA2 8PP Swansea, UK
| | | | - Ingemar Björkhem
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Anna Matton
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Nalvarte
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Paula Merino-Serrais
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, Madrid, Spain
| | - Angel Cedazo-Minguez
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Silvia Maioli
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Zhou W, Xie X, Hu J, Wang M, Hu X, Shi L, Zhou C, Sun X. Relationship Between Microstructural Alterations and Cognitive Decline After Whole-Brain Radiation Therapy for Brain Metastases: An Exploratory Whole-Brain MR Analysis Based on Neurite Orientation Dispersion and Density Imaging. J Magn Reson Imaging 2024; 59:242-252. [PMID: 37183807 DOI: 10.1002/jmri.28781] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Cognitive impairment frequently occurs in patients with brain metastases (BM) after whole-brain radiotherapy (WBRT). It is crucial to explore the underlying mechanisms of cognitive impairment in BM patients receiving WBRT. PURPOSE To detect brain microstructural alterations in patients after WBRT by neurite orientation dispersion and density imaging (NODDI), and evaluate the performance of microstructural alterations in predicting cognitive impairment. STUDY TYPE Prospective. POPULATION Twenty-six patients (seven female; mean age, 60.9 years). FIELD STRENGTH/SEQUENCE 3-T, multi-shell diffusion-weighted single-shot echo-planar sequence. Three-dimensional magnetization-prepared rapid acquisition with gradient echo sequence. ASSESSMENT Mini-mental state examination (MMSE) evaluations were conducted prior to, following, 1 and 3 months after WBRT. The diffusion data were collected twice, 1 week before and 1 week after WBRT. NODDI analysis was conducted to assess microstructural alterations in whole brain (orientation dispersion index, neurite density index, volume fraction of isotropic water molecules). Reliable change indices (RCI) of MMSE were used to measure cognitive decline. The performance of support vector machine models based on NODDI parameters and clinical features (prednisone usage, tumor volume, etc.) in predicting MMSE-RCI was evaluated. STATISTICAL TESTS Paired t-test to assess alterations of NODDI measures and MMSE during follow-up. Statistical significance level of P-value <0.05. RESULTS Significantly decreased MMSE score was found at 3 months after WBRT. After WBRT, corpus callosum, medial prefrontal cortex, limbic lobe, occipital lobe, parietal lobe, putamen, globus pallidus lentiform, and thalamus demonstrated damage in NODDI parameters. The predicted MMSE-RCI based on NODDI features was significantly associated with the measured MMSE-RCI at 1 month (R = 0.573; P = 0.003) and 3 months (R = 0.687; P < 0.0001) after WBRT. DATA CONCLUSION Microstructural alterations in several brain regions including the middle prefrontal and limbic cortexes were observed in patients with BM following WBRT, which may contribute to subsequent cognitive decline. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Weiwen Zhou
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyun Xie
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiamiao Hu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengjia Wang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Hu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liming Shi
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaonan Sun
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Perović M, Heffernan EM, Einstein G, Mack ML. Learning exceptions to category rules varies across the menstrual cycle. Sci Rep 2023; 13:21999. [PMID: 38081874 PMCID: PMC10713535 DOI: 10.1038/s41598-023-48628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Ways in which ovarian hormones affect cognition have been long overlooked despite strong evidence of their effects on the brain. To address this gap, we study performance on a rule-plus-exception category learning task, a complex task that requires careful coordination of core cognitive mechanisms, across the menstrual cycle (N = 171). Results show that the menstrual cycle distinctly affects exception learning in a manner that parallels the typical rise and fall of estradiol across the cycle. Participants in their high estradiol phase outperform participants in their low estradiol phase and demonstrate more rapid learning of exceptions than a male comparison group. A likely mechanism underlying this effect is estradiol's impact on pattern separation and completion pathways in the hippocampus. These results provide novel evidence for the effects of the menstrual cycle on category learning, and underscore the importance of considering female sex-related variables in cognitive neuroscience research.
Collapse
Affiliation(s)
- Mateja Perović
- Department of Psychology, University of Toronto, 100 St. George St., Toronto, ON, M5S 3J3, Canada.
| | - Emily M Heffernan
- Department of Psychology, University of Toronto, 100 St. George St., Toronto, ON, M5S 3J3, Canada
| | - Gillian Einstein
- Department of Psychology, University of Toronto, 100 St. George St., Toronto, ON, M5S 3J3, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Tema Genus, Linköping University, Linköping, Sweden
- Rotman Research Institute, Baycrest Hospital, Toronto, Canada
| | - Michael L Mack
- Department of Psychology, University of Toronto, 100 St. George St., Toronto, ON, M5S 3J3, Canada
| |
Collapse
|
12
|
Chen MH, Lin HC, Chao T, Lee VSY, Hou CL, Wang TJ, Chen JR. Hyaluronic Acid Conjugated with 17β-Estradiol Effectively Alleviates Estropause-Induced Cognitive Deficits in Rats. Int J Mol Sci 2023; 24:15569. [PMID: 37958552 PMCID: PMC10649161 DOI: 10.3390/ijms242115569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Women are at a higher risk of cognitive impairments and Alzheimer's disease (AD), particularly after the menopause, when the estrous cycle becomes irregular and diminishes. Numerous studies have shown that estrogen deficiency, especially estradiol (E2) deficiency, plays a key role in this phenomenon. Recently, a novel polymeric drug, hyaluronic acid-17β-estradiol conjugate (HA-E2), has been introduced for the delivery of E2 to brain tissues. Studies have indicated that HA-E2 crosses the blood-brain barrier (BBB) and facilitates a prolonged E2 release profile while lowering the risk of estrogen-supplement-related side effects. In this study, we used ovariohysterectomy (OHE) rats, a postmenopausal cognitive deficit model, to explore the effect of a 2-week HA-E2 treatment (210 ng/kg body weight, twice a week) on the cholinergic septo-hippocampal innervation system, synaptic transmission in hippocampal pyramidal neurons and cognitive improvements. Our study revealed an 11% rise in choline acetyltransferase (ChAT) expression in both the medial septal nucleus (MS nucleus) and the hippocampus, along with a 14-18% increase in dendritic spine density in hippocampal pyramidal neurons, following HA-E2 treatment in OHE rats. These enhancements prompted the recovery of cognitive functions such as spatial learning and memory. These findings suggest that HA-E2 may prevent and improve estrogen-deficiency-induced cognitive impairment and AD.
Collapse
Affiliation(s)
- Mu-Hsuan Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, No. 145, Xingda Rd., Taichung 402202, Taiwan; (M.-H.C.); (H.-C.L.); (T.C.)
| | - Hsiao-Chun Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, No. 145, Xingda Rd., Taichung 402202, Taiwan; (M.-H.C.); (H.-C.L.); (T.C.)
| | - Tzu Chao
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, No. 145, Xingda Rd., Taichung 402202, Taiwan; (M.-H.C.); (H.-C.L.); (T.C.)
| | - Viola Szu-Yuan Lee
- Basic Research Division, Holy Stone Healthcare Co., Ltd., Taipei 11493, Taiwan; (V.S.-Y.L.); (C.-L.H.)
| | - Chia-Lung Hou
- Basic Research Division, Holy Stone Healthcare Co., Ltd., Taipei 11493, Taiwan; (V.S.-Y.L.); (C.-L.H.)
| | - Tsyr-Jiuan Wang
- Department of Nursing, National Taichung University of Science and Technology, No. 193, Section 1, Sanmin Rd., Taichung 403027, Taiwan
| | - Jeng-Rung Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, No. 145, Xingda Rd., Taichung 402202, Taiwan; (M.-H.C.); (H.-C.L.); (T.C.)
| |
Collapse
|
13
|
Gerasimov E, Bezprozvanny I, Vlasova OL. Activation of Gq-Coupled Receptors in Astrocytes Restores Cognitive Function in Alzheimer's Disease Mice Model. Int J Mol Sci 2023; 24:9969. [PMID: 37373117 PMCID: PMC10298315 DOI: 10.3390/ijms24129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most widespread neurodegenerative diseases. Most of the current AD therapeutic developments are directed towards improving neuronal cell function or facilitating Aβ amyloid clearance from the brain. However, some recent evidence suggests that astrocytes may play a significant role in the pathogenesis of AD. In this paper, we evaluated the effects of the optogenetic activation of Gq-coupled exogenous receptors expressed in astrocytes as a possible way of restoring brain function in the AD mouse model. We evaluated the effects of the optogenetic activation of astrocytes on long-term potentiation, spinal morphology and behavioral readouts in 5xFAD mouse model of AD. We determined that in vivo chronic activation of astrocytes resulted in the preservation of spine density, increased mushroom spine survival, and improved performance in cognitive behavioral tests. Furthermore, chronic optogenetic stimulation of astrocytes resulted in the elevation of EAAT-2 glutamate uptake transporter expression, which could be a possible explanation for the observed in vivo neuroprotective effects. The obtained results suggest that the persistent activation of astrocytes may be considered a potential therapeutic approach for the treatment of AD and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Evgenii Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.G.); (I.B.)
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.G.); (I.B.)
- Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Olga L. Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Khlopina St. 11, 194021 St. Petersburg, Russia; (E.G.); (I.B.)
| |
Collapse
|
14
|
Gall CM, Le AA, Lynch G. Sex differences in synaptic plasticity underlying learning. J Neurosci Res 2023; 101:764-782. [PMID: 33847004 PMCID: PMC10337639 DOI: 10.1002/jnr.24844] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022]
Abstract
Although sex differences in learning behaviors are well documented, sexual dimorphism in the synaptic processes of encoding is only recently appreciated. Studies in male rodents have built upon the discovery of long-term potentiation (LTP), and acceptance of this activity-dependent increase in synaptic strength as a mechanism of encoding, to identify synaptic receptors and signaling activities that coordinate the activity-dependent remodeling of the subsynaptic actin cytoskeleton that is critical for enduring potentiation and memory. These molecular substrates together with other features of LTP, as characterized in males, have provided an explanation for a range of memory phenomena including multiple stages of consolidation, the efficacy of spaced training, and the location of engrams at the level of individual synapses. In the present report, we summarize these findings and describe more recent results from our laboratories showing that in females the same actin regulatory mechanisms are required for hippocampal LTP and memory but, in females only, the engagement of both modulatory receptors such as TrkB and synaptic signaling intermediaries including Src and ERK1/2 requires neuron-derived estrogen and signaling through membrane-associated estrogen receptor α (ERα). Moreover, in association with the additional ERα involvement, females exhibit a higher threshold for hippocampal LTP and spatial learning. We propose that the distinct LTP threshold in females contributes to as yet unappreciated sex differences in information processing and features of learning and memory.
Collapse
Affiliation(s)
- Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Aliza A. Le
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
15
|
Kadlecova M, Freude K, Haukedal H. Complexity of Sex Differences and Their Impact on Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051261. [PMID: 37238932 DOI: 10.3390/biomedicines11051261] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Sex differences are present in brain morphology, sex hormones, aging processes and immune responses. These differences need to be considered for proper modelling of neurological diseases with clear sex differences. This is the case for Alzheimer's disease (AD), a fatal neurodegenerative disorder with two-thirds of cases diagnosed in women. It is becoming clear that there is a complex interplay between the immune system, sex hormones and AD. Microglia are major players in the neuroinflammatory process occurring in AD and have been shown to be directly affected by sex hormones. However, many unanswered questions remain as the importance of including both sexes in research studies has only recently started receiving attention. In this review, we provide a summary of sex differences and their implications in AD, with a focus on microglia action. Furthermore, we discuss current available study models, including emerging complex microfluidic and 3D cellular models and their usefulness for studying hormonal effects in this disease.
Collapse
Affiliation(s)
- Marion Kadlecova
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| | - Kristine Freude
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| | - Henriette Haukedal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 C Frederiksberg, Denmark
| |
Collapse
|
16
|
Oveisgharan S, Yang J, Yu L, Burba D, Bang W, Tasaki S, Grodstein F, Wang Y, Zhao J, De Jager PL, Schneider JA, Bennett DA. Estrogen Receptor Genes, Cognitive Decline, and Alzheimer Disease. Neurology 2023; 100:e1474-e1487. [PMID: 36697247 PMCID: PMC10104608 DOI: 10.1212/wnl.0000000000206833] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Lifetime risk of Alzheimer disease (AD) dementia is twofold higher in women compared with men, and low estrogen levels in postmenopause have been suggested as a possible contributor. We examined 3 ER (GPER1, ER2, and ER1) variants in association with AD traits as an indirect method to test the association between estrogen and AD in women. Although the study focus was on women, in a comparison, we separately examined ER molecular variants in men. METHODS Participants were followed for an average of 10 years in one of the 2 longitudinal clinical pathologic studies of aging. Global cognition was assessed using a composite score derived from 19 neuropsychological tests' scores. Postmortem pathologic assessment included examination of 3 AD (amyloid-β and tau tangles determined by immunohistochemistry, and a global AD pathology score derived from diffuse and neurotic plaques and neurofibrillary tangle count) and 8 non-AD pathology indices. ER molecular genomic variants included genotyping and examining ER DNA methylation and RNA expression in brain regions including the dorsolateral prefrontal cortex (DLPFC) that are major players in cognition and often have AD pathology. RESULTS The mean age of women (N = 1711) at baseline was 78.0 (SD = 7.7) years. In women, GPER1 molecular variants had the most consistent associations with AD traits. GPER1 DNA methylation was associated with cognitive decline, tau tangle density, and global AD pathology score. GPER1 RNA expression in DLPFC was related to cognitive decline and tau tangle density. Other associations included associations of ER2 and ER1 sequence variants and DNA methylation with cognition. RNA expressions in DLPFC of genes involved in signaling mechanisms of activated ERs were also associated with cognitive decline and tau tangle density in women. In men (N = 651, average age at baseline: 77.4 [SD = 7.3]), there were less robust associations between ER molecular genomic variants and AD cognitive and pathologic traits. No consistent association was seen between ER molecular genomic variations and non-AD pathologies in either of the sexes. DISCUSSION ER DNA methylation and RNA expression, and to some extent ER polymorphisms, were associated with AD cognitive and pathologic traits in women, and to a lesser extent in men.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL.
| | - Jingyun Yang
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Lei Yu
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Dominika Burba
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Woojeong Bang
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Shinya Tasaki
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Fran Grodstein
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Yanling Wang
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Jinying Zhao
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Philip Lawrence De Jager
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - Julie A Schneider
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (S.O., J.Y., L.Y., D.B., W.B., S.T., F.G., Y.W., J.A.S., D.A.B.), Rush University Medical Center, Chicago; Departments of Neurological Sciences (S.O., J.Y., L.Y., S.T., J.A.S., D.A.B.) and Internal Medicine (F.G.), Rush University Medical Center, Chicago, IL; Department of Epidemiology (J.Z.), University of Florida, Gainesville; Center for Translational & Computational Neuroimmunology (P.L.D.J.), Department of Neurology, Columbia University Irving Medical Center, New York; Taub Institute for Research on Alzheimer's Disease and the Aging Brain (P.L.D.J.), Columbia University Irving Medical Center, New York, New York; and Department of Pathology (J.A.S.), Rush University Medical Center, Chicago, IL
| |
Collapse
|
17
|
Elevated Hippocampal CRMP5 Mediates Chronic Stress-Induced Cognitive Deficits by Disrupting Synaptic Plasticity, Hindering AMPAR Trafficking, and Triggering Cytokine Release. Int J Mol Sci 2023; 24:ijms24054898. [PMID: 36902337 PMCID: PMC10003309 DOI: 10.3390/ijms24054898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Chronic stress is a critical risk factor for developing depression, which can impair cognitive function. However, the underlying mechanisms involved in chronic stress-induced cognitive deficits remain unclear. Emerging evidence suggests that collapsin response mediator proteins (CRMPs) are implicated in the pathogenesis of psychiatric-related disorders. Thus, the study aims to examine whether CRMPs modulate chronic stress-induced cognitive impairment. We used the chronic unpredictable stress (CUS) paradigm to mimic stressful life situations in C57BL/6 mice. In this study, we found that CUS-treated mice exhibited cognitive decline and increased hippocampal CRMP2 and CRMP5 expression. In contrast to CRMP2, CRMP5 levels strongly correlated with the severity of cognitive impairment. Decreasing hippocampal CRMP5 levels through shRNA injection rescued CUS-induced cognitive impairment, whereas increasing CRMP5 levels in control mice exacerbated memory decline after subthreshold stress treatment. Mechanistically, hippocampal CRMP5 suppression by regulating glucocorticoid receptor phosphorylation alleviates chronic stress-induced synaptic atrophy, disruption of AMPA receptor trafficking, and cytokine storms. Our findings show that hippocampal CRMP5 accumulation through GR activation disrupts synaptic plasticity, impedes AMPAR trafficking, and triggers cytokine release, thus playing a critical role in chronic stress-induced cognitive deficits.
Collapse
|
18
|
Frankfurt M, Nassrallah Z, Luine V. Steroid Hormone Interaction with Dendritic Spines: Implications for Neuropsychiatric Disease. ADVANCES IN NEUROBIOLOGY 2023; 34:349-366. [PMID: 37962800 DOI: 10.1007/978-3-031-36159-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines, key sites for neural plasticity, are influenced by gonadal steroids. In this chapter, we review the effects of gonadal steroids on dendritic spine density in areas important to cognitive function, the hippocampus, and prefrontal cortex. Most of these animal model studies investigated the effects of estrogen in females, but we also include more recent data on androgen effects in both males and females. The underlying genomic and non-genomic mechanisms related to gonadal steroid-induced spinogenesis are also reviewed. Subsequently, we discuss possible reasons for the observed sex differences in many neuropsychiatric diseases, which appear to be caused, in part, by aberrant synaptic connections that may involve dendritic spine pathology. Overall, knowledge concerning the regulation of dendritic spines by gonadal hormones has grown since the initial discoveries in the 1990s, and current research points to a potential role for aberrant spine functioning in many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maya Frankfurt
- Hofstra Northwell School of Nursing and Physician Assistant Studies, Hempstead, NY, USA.
| | - Zeinab Nassrallah
- Department of Science Education Zucker School of Medicine, 500 Hofstra University, Hempstead, NY, USA
| | - Victoria Luine
- Department of Psychology, Hunter College, New York, NY, USA
| |
Collapse
|
19
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Introduction: What Are Dendritic Spines? ADVANCES IN NEUROBIOLOGY 2023; 34:1-68. [PMID: 37962793 DOI: 10.1007/978-3-031-36159-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are cellular specializations that greatly increase the connectivity of neurons and modulate the "weight" of most postsynaptic excitatory potentials. Spines are found in very diverse animal species providing neural networks with a high integrative and computational possibility and plasticity, enabling the perception of sensorial stimuli and the elaboration of a myriad of behavioral displays, including emotional processing, memory, and learning. Humans have trillions of spines in the cerebral cortex, and these spines in a continuum of shapes and sizes can integrate the features that differ our brain from other species. In this chapter, we describe (1) the discovery of these small neuronal protrusions and the search for the biological meaning of dendritic spines; (2) the heterogeneity of shapes and sizes of spines, whose structure and composition are associated with the fine-tuning of synaptic processing in each nervous area, as well as the findings that support the role of dendritic spines in increasing the wiring of neural circuits and their functions; and (3) within the intraspine microenvironment, the integration and activation of signaling biochemical pathways, the compartmentalization of molecules or their spreading outside the spine, and the biophysical properties that can affect parent dendrites. We also provide (4) examples of plasticity involving dendritic spines and neural circuits relevant to species survival and comment on (5) current research advancements and challenges in this exciting research field.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
20
|
Huang J, Wu Y, Chai X, Wang S, Zhao Y, Hou Y, Ma Y, Chen S, Zhao S, Zhu X. β-Hydroxybutyric acid improves cognitive function in a model of heat stress by promoting adult hippocampal neurogenesis. STRESS BIOLOGY 2022; 2:57. [PMID: 37676574 PMCID: PMC10441921 DOI: 10.1007/s44154-022-00079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/15/2022] [Indexed: 09/08/2023]
Abstract
Heat stress has multiple potential effects on the brain, such as neuroinflammation, neurogenesis defects, and cognitive impairment. β-hydroxybutyric acid (BHBA) has been demonstrated to play neuroprotective roles in various models of neurological diseases. In the present study, we investigated the efficacy of BHBA in alleviating heat stress-induced impairments of adult hippocampal neurogenesis and cognitive function, as well as the underlying mechanisms. Mice were exposed to 43 ℃ for 15 min for 14 days after administration with saline, BHBA, or minocycline. Here, we showed for the first time that BHBA normalized memory ability in the heat stress-treated mice and attenuated heat stress-impaired hippocampal neurogenesis. Consistently, BHBA noticeably improved the synaptic plasticity in the heat stress-treated hippocampal neurons by inhibiting the decrease of synapse-associated proteins and the density of dendritic spines. Moreover, BHBA inhibited the expression of cleaved caspase-3 by suppressing endoplasmic reticulum (ER) stress, and increased the expression of brain-derived neurotrophic factor (BDNF) in the heat stress-treated hippocampus by activating the protein kinase B (Akt)/cAMP response element binding protein (CREB) and methyl-CpG binding protein 2 (MeCP2) pathways. These findings indicate that BHBA is a potential agent for improving cognitive functions in heat stress-treated mice. The action may be mediated by ER stress, and Akt-CREB-BDNF and MeCP2 pathways to improve adult hippocampal neurogenesis and synaptic plasticity.
Collapse
Affiliation(s)
- Jian Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yongji Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xuejun Chai
- Department of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi, 710021, People's Republic of China
| | - Shuai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yongkang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yan Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yue Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shanting Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
21
|
Tronson NC, Schuh KM. Hormonal contraceptives, stress, and the brain: The critical need for animal models. Front Neuroendocrinol 2022; 67:101035. [PMID: 36075276 DOI: 10.1016/j.yfrne.2022.101035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/26/2022] [Accepted: 09/01/2022] [Indexed: 01/10/2023]
Abstract
Hormonal contraceptives are among the most important health and economic developments in the 20thCentury, providing unprecedented reproductive control and a range of health benefits including decreased premenstrual symptoms and protections against various cancers. Hormonal contraceptives modulate neural function and stress responsivity. These changes are usually innocuous or even beneficial, including their effects onmood. However, in approximately 4-10% of users, or up to 30 million people at any given time, hormonal contraceptives trigger depression or anxiety symptoms. How hormonal contraceptives contribute to these responses and who is at risk for adverse outcomes remain unknown. In this paper, we discussstudies of hormonal contraceptive use in humans and describe the ways in which laboratory animal models of contraceptive hormone exposure will be an essential tool for expanding findings to understand the precise mechanisms by which hormonal contraceptives influence the brain, stress responses, and depression risk.
Collapse
Affiliation(s)
- Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | - Kristen M Schuh
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Bowman R, Frankfurt M, Luine V. Sex differences in cognition following variations in endocrine status. Learn Mem 2022; 29:234-245. [PMID: 36206395 PMCID: PMC9488023 DOI: 10.1101/lm.053509.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Spatial memory, mediated primarily by the hippocampus, is responsible for orientation in space and retrieval of information regarding location of objects and places in an animal's environment. Since the hippocampus is dense with steroid hormone receptors and is capable of robust neuroplasticity, it is not surprising that changes in spatial memory performance occur following a variety of endocrine alterations. Here, we review cognitive changes in both spatial and nonspatial memory tasks following manipulations of the hypothalamic-pituitary-adrenal and gonadal axes and after exposure to endocrine disruptors in rodents. Chronic stress impairs male performance on numerous behavioral cognitive tasks and enhances or does not impact female cognitive function. Sex-dependent changes in cognition following stress are influenced by both organizational and activational effects of estrogen and vary depending on the developmental age of the stress exposure, but responses to gonadal hormones in adulthood are more similar than different in the sexes. Also discussed are possible underlying neural mechanisms for these steroid hormone-dependent, cognitive effects. Bisphenol A (BPA), an endocrine disruptor, given at low levels during adolescent development, impairs spatial memory in adolescent male and female rats and object recognition memory in adulthood. BPA's negative effects on memory may be mediated through alterations in dendritic spine density in areas that mediate these cognitive tasks. In summary, this review discusses the evidence that endocrine status of an animal (presence or absence of stress hormones, gonadal hormones, or endocrine disruptors) impacts cognitive function and, at times, in a sex-specific manner.
Collapse
Affiliation(s)
- Rachel Bowman
- Department of Psychology, Sacred Heart University, Fairfield, Connecticut 06825, USA
| | - Maya Frankfurt
- Department of Psychology, Sacred Heart University, Fairfield, Connecticut 06825, USA
- Hofstra Northwell School of Nursing and Physician Assistant Studies, Hofstra University, Hempstead, New York 11549, USA
| | - Victoria Luine
- Department of Psychology, Hunter College of City University of New York, New York, New York 10065, USA
| |
Collapse
|
23
|
Saleki K, Banazadeh M, Saghazadeh A, Rezaei N. Aging, testosterone, and neuroplasticity: friend or foe? Rev Neurosci 2022; 34:247-273. [PMID: 36017670 DOI: 10.1515/revneuro-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
Abstract
Neuroplasticity or neural plasticity implicates the adaptive potential of the brain in response to extrinsic and intrinsic stimuli. The concept has been utilized in different contexts such as injury and neurological disease. Neuroplasticity mechanisms have been classified into neuroregenerative and function-restoring processes. In the context of injury, neuroplasticity has been defined in three post-injury epochs. Testosterone plays a key yet double-edged role in the regulation of several neuroplasticity alterations. Research has shown that testosterone levels are affected by numerous factors such as age, stress, surgical procedures on gonads, and pharmacological treatments. There is an ongoing debate for testosterone replacement therapy (TRT) in aging men; however, TRT is more useful in young individuals with testosterone deficit and more specific subgroups with cognitive dysfunction. Therefore, it is important to pay early attention to testosterone profile and precisely uncover its harms and benefits. In the present review, we discuss the influence of environmental factors, aging, and gender on testosterone-associated alterations in neuroplasticity, as well as the two-sided actions of testosterone in the nervous system. Finally, we provide practical insights for further study of pharmacological treatments for hormonal disorders focusing on restoring neuroplasticity.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,USERN Office, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| | - Mohammad Banazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, 76169 13555 Kerman, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 14176 13151 Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| |
Collapse
|
24
|
Harrington YA, Parisi JM, Duan D, Rojo-Wissar DM, Holingue C, Spira AP. Sex Hormones, Sleep, and Memory: Interrelationships Across the Adult Female Lifespan. Front Aging Neurosci 2022; 14:800278. [PMID: 35912083 PMCID: PMC9331168 DOI: 10.3389/fnagi.2022.800278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/09/2022] [Indexed: 01/26/2023] Open
Abstract
As the population of older adults grows, so will the prevalence of aging-related conditions, including memory impairments and sleep disturbances, both of which are more common among women. Compared to older men, older women are up to twice as likely to experience sleep disturbances and are at a higher risk of cognitive decline and Alzheimer's disease and related dementias (ADRD). These sex differences may be attributed in part to fluctuations in levels of female sex hormones (i.e., estrogen and progesterone) that occur across the adult female lifespan. Though women tend to experience the most significant sleep and memory problems during the peri-menopausal period, changes in memory and sleep have also been observed across the menstrual cycle and during pregnancy. Here, we review current knowledge on the interrelationships among female sex hormones, sleep, and memory across the female lifespan, propose possible mediating and moderating mechanisms linking these variables and describe implications for ADRD risk in later life.
Collapse
Affiliation(s)
- Yasmin A. Harrington
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jeanine M. Parisi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daisy Duan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Darlynn M. Rojo-Wissar
- The Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Center for Behavioral and Preventive Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Calliope Holingue
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Adam P. Spira
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Johns Hopkins Center on Aging and Health, Baltimore, MD, United States
| |
Collapse
|
25
|
Gross KS, Lincoln CM, Anderson MM, Geiger GE, Frick KM. Extracellular matrix metalloproteinase-9 (MMP-9) is required in female mice for 17β-estradiol enhancement of hippocampal memory consolidation. Psychoneuroendocrinology 2022; 141:105773. [PMID: 35490640 PMCID: PMC9173600 DOI: 10.1016/j.psyneuen.2022.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Abstract
Hippocampal plasticity and memory are modulated by the potent estrogen 17β-estradiol (E2). Research on the molecular mechanisms of hippocampal E2 signaling has uncovered multiple intracellular pathways that contribute to these effects, but few have questioned the role that extracellular signaling processes may play in E2 action. Modification of the extracellular matrix (ECM) by proteases like matrix metalloproteinase-9 (MMP-9) is critical for activity-dependent remodeling of synapses, and MMP-9 activity is required for hippocampal learning and memory. Yet little is known about the extent to which E2 regulates MMP-9 in the hippocampus, and the influence this interaction may have on hippocampal memory. Here, we examined the effects of hippocampal MMP-9 activity on E2-induced enhancement of spatial and object recognition memory consolidation. Post-training bilateral infusion of an MMP-9 inhibitor into the dorsal hippocampus of ovariectomized female mice blocked the enhancing effects of E2 on object placement and object recognition memory, supporting a role for MMP-9 in estrogenic regulation of memory consolidation. E2 also rapidly increased the activity of dorsal hippocampal MMP-9 without influencing its protein expression, providing further insight into hippocampal E2/MMP-9 interactions. Together, these results provide the first evidence that E2 regulates MMP-9 to modulate hippocampal memory and highlight the need to further study estrogenic regulation of extracellular modification.
Collapse
Affiliation(s)
| | | | | | | | - Karyn M. Frick
- Correspondence to: Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI 53211, USA. (K.M. Frick)
| |
Collapse
|
26
|
McLane VD, Lark ARS, Nass SR, Knapp PE, Hauser KF. HIV-1 Tat reduces apical dendritic spine density throughout the trisynaptic pathway in the hippocampus of male transgenic mice. Neurosci Lett 2022; 782:136688. [PMID: 35595189 DOI: 10.1016/j.neulet.2022.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/01/2022]
Abstract
Nearly one-third of persons infected with HIV-1 (PWH) develop HIV-associated neurocognitive disorders (HAND), which can be exacerbated by exposure to opioids. The impact of opioids on HIV-induced alterations in neuronal plasticity is less well understood. Both morphine exposure and HIV have been shown to disrupt synaptic growth and stability in the hippocampus suggesting a potential site of convergence for their deleterious effects. In the present study, we examined the density of dendritic spines in CA1 and CA3 pyramidal neurons, and granule neurons within the dentate gyrus representing the hippocampal trisynaptic pathway after short-term exposure to the HIV transactivator of transcription (Tat) protein and morphine. We exposed inducible male, HIV-1 Tat transgenic mice to escalating doses of morphine (10-40 mg/kg, b.i.d.) and examined synaptodendritic structure in Golgi-impregnated hippocampal neurons. HIV-1 Tat, but not morphine, systematically reduced the density of apical, but not basilar, dendrites of CA1 and CA3 pyramidal neurons, and granule neuronal apical dendrites, suggesting the coordinated loss of specific synaptic interconnections throughout the hippocampal trisynaptic pathway.
Collapse
Affiliation(s)
- Virginia D McLane
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Arianna R S Lark
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Sara R Nass
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA.
| | - Kurt F Hauser
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
27
|
Luine V, Mohan G, Attalla S, Jacome L, Frankfurt M. Androgens Enhance Recognition Memory and Dendritic Spine Density in the Hippocampus and Prefrontal Cortex of Ovariectomized Female Rats. Neuroscience 2022:S0306-4522(22)00287-1. [PMID: 35671881 PMCID: PMC9719572 DOI: 10.1016/j.neuroscience.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 12/28/2022]
Abstract
Estrogen replacement has been repeatedly shown to enhance memory and increase dendritic spine density in the hippocampus and prefrontal cortex of ovariectomized (OVX) female rats. Given the potential deleterious effects of chronic estrogen administration, the present study assessed cognitive function using recognition memory tasks and measured dendritic spine density in the CA1 region of the hippocampus and medial prefrontal cortex after subchronic androgen replacement to adult OVX female rats. All androgens enhanced recognition memory in OVX rats, but object placement (OP) and object recognition (OR) results differed. Only testosterone enhanced OR. Testosterone had no effect on OP while dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT) and androstenedione (AD) enhanced OP. Dendritic spine density was increased by both TP and DHEA in both brain areas (DHT and AD were not tested). Lastly, we used the aromatase inhibitor, letrozole, to discriminate between potential androgenic and estrogenic effects of androgens on behavior. Letrozole alone did not alter recognition memory in OVX rats and did not block the effects of either TP or DHEA on recognition memory suggesting that effects were mediated via androgenic mechanisms. The present results expand previous information on gonadal hormone actions and show that, in addition to estrogens, androgens also improve memory and increase spine density in brains of OVX female rats. While requiring further investigation, these observations provide a basis for therapeutic interventions in the treatment of menopausal, age or disease related memory loss.
Collapse
Affiliation(s)
- Victoria Luine
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY 10065, United States.
| | - Govini Mohan
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY 10065, United States
| | - Sara Attalla
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY 10065, United States
| | - Luis Jacome
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY 10065, United States
| | - Maya Frankfurt
- Hofstra Northwell School of Nursing and Physician Assistant Studies, 160 Hofstra University, 400A Shapiro Family Hall, Hempstead, NY 11549, United States
| |
Collapse
|
28
|
Koebele SV, Poisson ML, Palmer JM, Berns-Leone C, Northup-Smith SN, Peña VL, Strouse IM, Bulen HL, Patel S, Croft C, Bimonte-Nelson HA. Evaluating the Cognitive Impacts of Drospirenone, a Spironolactone-Derived Progestin, Independently and in Combination With Ethinyl Estradiol in Ovariectomized Adult Rats. Front Neurosci 2022; 16:885321. [PMID: 35692432 PMCID: PMC9177129 DOI: 10.3389/fnins.2022.885321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
Abstract
Oral contraceptives and hormone therapies require a progestogen component to prevent ovulation, curtail uterine hyperplasia, and reduce gynecological cancer risk. Diverse classes of synthetic progestogens, called progestins, are used as natural progesterone alternatives due to progesterone’s low oral bioavailability. Progesterone and several synthetic analogs can negatively impact cognition and reverse some neuroprotective estrogen effects. Here, we investigate drospirenone, a spironolactone-derived progestin, which has unique pharmacological properties compared to other clinically-available progestins and natural progesterone, for its impact on spatial memory, anxiety-like behavior, and brain regions crucial to these cognitive tasks. Experiment 1 assessed three drospirenone doses in young adult, ovariectomized rats, and found that a moderate drospirenone dose benefited spatial memory. Experiment 2 investigated this moderate drospirenone dose with and without concomitant ethinyl estradiol (EE) treatment, the most common synthetic estrogen in oral contraceptives. Results demonstrate that the addition of EE to drospirenone administration reversed the beneficial working memory effects of drospirenone. The hippocampus, entorhinal cortex, and perirhinal cortex were then probed for proteins known to elicit estrogen- and progestin- mediated effects on learning and memory, including glutamate decarboxylase (GAD)65, GAD67, and insulin-like growth factor receptor protein expression, using western blot. EE increased GAD expression in the perirhinal cortex. Taken together, results underscore the necessity to consider the distinct cognitive and neural impacts of clinically-available synthetic estrogen and progesterone analogs, and why they produce unique cognitive profiles when administered together compared to those observed when each hormone is administered separately.
Collapse
Affiliation(s)
- Stephanie V. Koebele
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Mallori L. Poisson
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Justin M. Palmer
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Claire Berns-Leone
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Steven N. Northup-Smith
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Veronica L. Peña
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Isabel M. Strouse
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Haidyn L. Bulen
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Shruti Patel
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Corissa Croft
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
- *Correspondence: Heather A. Bimonte-Nelson,
| |
Collapse
|
29
|
Jhan KY, Chang PK, Cheng CJ, Jung SM, Wang LC. Synaptic loss and progression in mice infected with Angiostrongylus cantonensis in the early stage. J Neuroinflammation 2022; 19:85. [PMID: 35414007 PMCID: PMC9006624 DOI: 10.1186/s12974-022-02436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/23/2022] [Indexed: 11/14/2022] Open
Abstract
Background Angiostrongylus cantonensis is also known as rat lungworm. Infection with this parasite is a zoonosis that can cause eosinophilic meningitis and/or eosinophilic meningoencephalitis in humans and may lead to fatal outcomes in severe cases. In this study, we explored the mechanisms of the impairments in the cognitive functions of mice infected with A. cantonensis. Methods In infected mice with different infective intensities at different timepoint postinfection, loss and recovery of cognitive functions such as learning and memory abilities were determined. Neuronal death and damage to synaptic structures were analyzed by Western blotting and IHC in infected mice with different infection intensities at different timepoint postinfection. Results The results of behavioral tests, pathological examinations, and Golgi staining showed that nerve damage caused by infection in mice occurred earlier than pathological changes of the brain. BDNF was expressed on 14 day post-infection. Cleaved caspase-3 increased significantly in the late stage of infection. However, IHC on NeuN indicated that no significant changes in the number of neurons were found between the infected and uninfected groups. Conclusions The synaptic loss caused by the infection of A. cantonensis provides a possible explanation for the impairment of cognitive functions in mice. The loss of cognitive functions may occur before severe immunological and pathological changes in the infected host. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02436-8.
Collapse
Affiliation(s)
- Kai-Yuan Jhan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Pi-Kai Chang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Chang-Gung Memorial Hospital, Chang-Gung Children Hospital at Linkou and Chang-Gung University, Taoyuan, 333, Taiwan
| | - Lian-Chen Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan. .,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
30
|
Estradiol effects on spatial memory in women. Behav Brain Res 2022; 417:113592. [PMID: 34560131 PMCID: PMC8578444 DOI: 10.1016/j.bbr.2021.113592] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/17/2021] [Accepted: 09/20/2021] [Indexed: 01/26/2023]
Abstract
To examine the role of estradiol in hippocampal-dependent spatial memory in women, 86 female undergraduates were tested in a virtual Morris water task (VMWT), a virtual radial arm maze (VRAM), and a mental rotation task (MRT) within a single daily session. The VMWT and RAM were also administered 24 h later to examine the effects of estradiol on memory consolidation. Women on oral contraceptives (OCs) or those who were naturally cycling and exhibited low estradiol (LE) or high estradiol (HE), as determined by salivary assays, were included. At the start of day two, the HE group showed superior spatial reference memory on the VMWT relative to the LE group, as evidenced by significantly shorter distances navigating to the hidden platform. The LE group also had the poorest probe trial performance at the start of day two compared to both other groups. There were no group differences in performance on the RAM or MRT. These results provide support for estradiol's role in the consolidation of spatial reference memory in women, and emphasize the differential sensitivities of various virtual memory tasks in assessing spatial memory function in women.
Collapse
|
31
|
Mu L, Cai J, Gu B, Yu L, Li C, Liu QS, Zhao L. Treadmill Exercise Prevents Decline in Spatial Learning and Memory in 3×Tg-AD Mice through Enhancement of Structural Synaptic Plasticity of the Hippocampus and Prefrontal Cortex. Cells 2022; 11:cells11020244. [PMID: 35053360 PMCID: PMC8774241 DOI: 10.3390/cells11020244] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 01/08/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized by deficits in learning and memory. A pathological feature of AD is the alterations in the number and size of synapses, axon length, dendritic complexity, and dendritic spine numbers in the hippocampus and prefrontal cortex. Treadmill exercise can enhance synaptic plasticity in mouse or rat models of stroke, ischemia, and dementia. The aim of this study was to examine the effects of treadmill exercise on learning and memory, and structural synaptic plasticity in 3×Tg-AD mice, a mouse model of AD. Here, we show that 12 weeks treadmill exercise beginning in three-month-old mice improves spatial working memory in six-month-old 3×Tg-AD mice, while non-exercise six-month-old 3×Tg-AD mice exhibited impaired spatial working memory. To investigate potential mechanisms for the treadmill exercise-induced improvement of spatial learning and memory, we examined structural synaptic plasticity in the hippocampus and prefrontal cortex of six-month-old 3×Tg-AD mice that had undergone 12 weeks of treadmill exercise. We found that treadmill exercise led to increases in synapse numbers, synaptic structural parameters, the expression of synaptophysin (Syn, a presynaptic marker), the axon length, dendritic complexity, and the number of dendritic spines in 3×Tg-AD mice and restored these parameters to similar levels of non-Tg control mice without treadmill exercise. In addition, treadmill exercise also improved these parameters in non-Tg control mice. Strengthening structural synaptic plasticity may represent a potential mechanism by which treadmill exercise prevents decline in spatial learning and memory and synapse loss in 3×Tg-AD mice.
Collapse
Affiliation(s)
- Lianwei Mu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Jiajia Cai
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
| | - Laikang Yu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
| | - Cui Li
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
- School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou 450001, China
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Li Zhao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China; (L.M.); (J.C.); (B.G.); (L.Y.); (C.L.)
- Correspondence: ; Tel.: +86-158-1043-5675
| |
Collapse
|
32
|
Rana AK, Sharma S, Patial V, Singh D. Lithium therapy subdues neuroinflammation to maintain pyramidal cells arborization and rescues neurobehavioural impairments in ovariectomized rats. Mol Neurobiol 2022; 59:1706-1723. [PMID: 35018576 DOI: 10.1007/s12035-021-02719-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Abstract
Oestrogen deprivation as a consequence of menopause alters the brain neuronal circuit and results in the development of neurobehavioural symptoms later. Hormone replacement therapy to some extent helps to overcome these abnormalities but is associated with various adverse events. Lithium therapy is being used to manage multiple neuropsychiatric disorders and is reported to maintain structural synaptic plasticity, suppress neuroinflammation, and promote adult neurogenesis. The present study examined the effect of lithium treatment on the neurobehavioural impairments in ovariectomized rat model mimicking clinical postmenopausal condition. A protective effect of lithium treatment was observed on the reconsolidation of spatial and recognition memory along with depression-like behaviour in ovariectomized rats. The Golgi-Cox staining revealed increased dendritic length and spine density in the pyramidal neurons of the CA1 region of the hippocampus, layer V of the somatosensory cortex, and layer II/III of the prefrontal cortex in the treated group. A significant reduction in pro-inflammatory markers, Il2, II6, and Il1b, was observed in the hippocampus, somatosensory cortex, and prefrontal cortex following lithium treatment. mRNA expression studies of Gfap and Pparg, along with histopathological analysis, suggested reactive astrogliosis to be a major contributor of neuroinflammation in ovariectomized rats that was normalized following lithium treatment. Further, the treatment inhibited Gsk-3β activity and maintained the normal level of β-catenin, CREB, and BDNF. The results revealed a defensive role of lithium against ovariectomy-induced neurobehavioural impairments, thus suggesting it to be a potential therapeutic agent for managing postmenopausal neurological symptoms.
Collapse
Affiliation(s)
- Anil Kumar Rana
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, 176061, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Supriya Sharma
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, 176061, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, 176061, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, 176061, Palampur, Himachal Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
33
|
Verma B, Sinha P, Ganesh S. Ayurvedic formulations amalaki rasayana and rasa sindoor improve age-associated memory deficits in mice by modulating dendritic spine densities. J Ayurveda Integr Med 2022; 13:100636. [PMID: 36436297 PMCID: PMC9700303 DOI: 10.1016/j.jaim.2022.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/07/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Emerging reports indicate that age-associated cognitive decline begins with the transition from young to middle-aged, and this neurological condition manifests mainly due to the progressive impairment in the adaptive homeostasis process. Moreover, cognitive decline is associated with neurodegenerative changes in older adults. OBJECTIVE Previous studies have shown that the administration of Ayurvedic formulations restores the homeostatic pathways and ameliorates neurodegeneration in animal models of neurodegenerative diseases. Therefore, we wanted to check whether Ayurvedic formulations can rescue or delay the age-associated cognitive decline in middle-aged mice. MATERIAL AND METHODS We fed two-month-old mice with amalaki aasayana (AR, 1025 mg/kg per day) or rasa sindoor (RS, 41 mg/kg per day) mixed in a gelatin-based jelly for six months. Mice eating regular chow or blank jelly served as control. Subsequently, we looked at the improvements in the cognitive and behavioural traits of the treated animals. We have also analysed the effect of these formulations on the dendritic processes of neurons, glial activation, and the formation of corpora amylacea. RESULTS We found a significant improvement in episodic, working- and reference-spatiotemporal memory in animals fed on AR or RS. Microscopic analyses revealed a significant increase in the dendritic spine density in the apical dendrites of the hippocampal pyramidal neurons. The treatment, however, did not significantly affect gliosis and corpora amylacea in the brains. CONCLUSIONS Both AR and RS showed beneficial effects on memory functions of the middle-aged mice, possibly due to their effect on the dendritic spine densities. Our findings provide strong evidence to conclude that formulations AR and RS can prevent or delay the onset of age-associated cognitive decline.
Collapse
|
34
|
Maioli S, Leander K, Nilsson P, Nalvarte I. Estrogen receptors and the aging brain. Essays Biochem 2021; 65:913-925. [PMID: 34623401 PMCID: PMC8628183 DOI: 10.1042/ebc20200162] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022]
Abstract
The female sex hormone estrogen has been ascribed potent neuroprotective properties. It signals by binding and activating estrogen receptors that, depending on receptor subtype and upstream or downstream effectors, can mediate gene transcription and rapid non-genomic actions. In this way, estrogen receptors in the brain participate in modulating neural differentiation, proliferation, neuroinflammation, cholesterol metabolism, synaptic plasticity, and behavior. Circulating sex hormones decrease in the course of aging, more rapidly at menopause in women, and slower in men. This review will discuss what this drop entails in terms of modulating neuroprotection and resilience in the aging brain downstream of spatiotemporal estrogen receptor alpha (ERα) and beta (ERβ) signaling, as well as in terms of the sex differences observed in Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, controversies related to ER expression in the brain will be discussed. Understanding the spatiotemporal signaling of sex hormones in the brain can lead to more personalized prevention strategies or therapies combating neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Maioli
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 57 Huddinge, Sweden
| |
Collapse
|
35
|
Changes in dendritic arborization related to the estrous cycle in pyramidal neurons of layer V of the motor cortex. J Chem Neuroanat 2021; 119:102042. [PMID: 34800658 DOI: 10.1016/j.jchemneu.2021.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
Many studies on neuronal plasticity have been conducted in the hippocampus and sensory cortices. In female rats in the estrus phase, when there is a low concentration of estradiol in the blood, there is a reduction in the dendritic spine density of CA1 neurons, while an increase in dendritic spines has been observed during metestrus, when progesterone levels are high. In comparison with the hippocampus, less information is known about dendritic remodeling of the motor cortex. Thus, the objective of the present study was to evaluate the neuronal morphology of pyramidal cells of layer V of the motor cortex in each phase of the estrous cycle. For this, we used Long-Evans strain rats and formed 4 experimental groups according to the phase of the estrous cycle at the moment of sacrifice: proestrus, estrus, metestrus, or diestrus. All animals were gently monitored regarding the expression of one estrous cycle in order to determine the regularity of the cycle. We obtained the brains in order to evaluate the neuronal morphology of neurons of layer V of the primary motor cortex following the Golgi-Cox method and Sholl analysis. Our results show that the dendritic arborization of neurons of rats sacrificed in the metestrus phase is reduced compared to the other phases of the estrous cycle. However, we did not find changes in dendritic spine density between experimental groups. When comparing our results with previous data, we can suggest that estrogens and progesterone differentially promote plasticity events in pyramidal neurons between different brain regions.
Collapse
|
36
|
Lee C, Wu D, Chen S, Lin Y, Lee T. Exercise intensities modulate cognitive function in spontaneously hypertensive rats through oxidative mediated synaptic plasticity in hippocampus. J Cell Mol Med 2021; 25:8546-8557. [PMID: 34328702 PMCID: PMC8419173 DOI: 10.1111/jcmm.16816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 06/13/2021] [Accepted: 07/15/2021] [Indexed: 12/28/2022] Open
Abstract
Oxidative damage in the brain may lead to cognitive impairments. There was considerable debate regarding the beneficial effects of physical exercise on cognitive functions because exercise protocols have varied widely across studies. We investigated whether different exercise intensities alter performance on cognitive tasks. The experiment was performed on spontaneously hypertensive rats (6 months at the established phase of hypertension) distributed into 3 groups: sedentary, low-intensity exercise and high-intensity exercise. Systolic blood pressure measurements confirmed hypertension in spontaneously hypertensive rats. In comparison to normotensive Wistar-Kyoto rats, sedentary spontaneously hypertensive rats had similar escape latencies and a similar preference for the correct quadrant in the probe trial. Compared to the sedentary group, the low-intensity exercise group had significantly better improvements in spatial memory assessed by Morris water maze. Low-intensity exercise was associated with attenuated reactive oxygen species, as measured by dihydroethidine fluorescence and nitrotyrosine staining in the dentate gyrus of the hippocampus. This was coupled with increased numbers of neurons and dendritic spines as well as a significant upregulation of synaptic density. In contrast, the beneficial effects of low-intensity exercise are abolished in high-intensity exercise as shown by increased free radical levels and an impairment in spatial memory. We concluded that exercise is an effective strategy to improve spatial memory in spontaneously hypertensive rats even at an established phase of hypertension. Low-intensity exercise exhibited better improvement on cognitive deficits than high-intensity exercise by attenuating free radical levels and improving downstream synaptic plasticity.
Collapse
Affiliation(s)
| | - De‐Yu Wu
- Catholic Sheng Kung Girls’ High SchoolTainanTaiwan
| | - Syue‐yi Chen
- Cardiovascular InstituteAn Nan HospitalChina Medical UniversityTainanTaiwan
| | - Yi‐Pin Lin
- Department of NeurologyAn Nan HospitalChina Medical UniversityTainanTaiwan
| | - Tsung‐Ming Lee
- Cardiovascular InstituteAn Nan HospitalChina Medical UniversityTainanTaiwan
- Department of MedicineChina Medical UniversityTaichungTaiwan
| |
Collapse
|
37
|
Abraham AG, Roa W. Hippocampal avoidance in prophylactic cranial irradiation for small cell lung cancer: benefits and pitfalls. J Thorac Dis 2021; 13:3235-3245. [PMID: 34164216 PMCID: PMC8182537 DOI: 10.21037/jtd-2019-rbmlc-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/03/2020] [Indexed: 11/25/2022]
Abstract
Small cell lung cancers (SCLC) are a group of cancers that are clinically and pathologically different from other lung cancers. They are associated with high recurrence rates and mortality, and many patients present with metastatic disease. Approximately ten percent of SCLC patients have brain metastases at time of diagnosis, and the cumulative incidence of brain metastases increases to more than fifty percent at two years, even with optimal treatment. Hence, in patients without brain metastases at presentation, prophylactic cranial irradiation (PCI) is an important component of treatment along with systemic chemotherapy and radiotherapy. The goal of PCI is to decrease the incidence of subsequent symptomatic brain metastases in patients who show an initial response to the systemic treatment. Various clinical trials have evaluated the utility of PCI and found substantial benefit. Unfortunately, the long-term toxicity associated with PCI, namely the neuro-cognitive impairment that may develop in patients as a result of the radiation toxicity to the hippocampal areas of the brain, has raised concern both for patients and their treating physicians. Various techniques have been tried to ameliorate the neuro-cognitive impairment associated with PCI, including pharmacological agents and highly conformal hippocampal avoidance radiation. All of these have shown promise, but there is a lack of clarity about the optimal way forward. Hippocampal avoidance PCI appears to be an excellent option and a number of groups are currently evaluating this technique. Although there is clear benefit with this specialized radiation treatment, there are also concerns about the risk of disease recurrence in the undertreated hippocampal areas. This review attempts to compile the available data regarding the benefits and pitfalls associated with hippocampal avoidance PCI in the setting of SCLC.
Collapse
Affiliation(s)
| | - Wilson Roa
- Department of Radiation Oncology, Cross Cancer Institute, Edmonton, Canada
| |
Collapse
|
38
|
Huijgens PT, Snoeren EMS, Meisel RL, Mermelstein PG. Effects of gonadectomy and dihydrotestosterone on neuronal plasticity in motivation and reward related brain regions in the male rat. J Neuroendocrinol 2021; 33:e12918. [PMID: 33340384 DOI: 10.1111/jne.12918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022]
Abstract
Gonadal hormones affect neuronal morphology to ultimately regulate behaviour. In female rats, oestradiol mediates spine plasticity in hypothalamic and limbic brain structures, contributing to long-lasting effects on motivated behaviour. Parallel effects of androgens in male rats have not been extensively studied. Here, we investigated the effect of both castration and androgen replacement on spine plasticity in the nucleus accumbens shell and core (NAcSh and NAcC), caudate putamen (CPu), medial amygdala (MeA) and medial preoptic nucleus (MPN). Intact and castrated (gonadectomy [GDX]) male rats were treated with dihydrotestosterone (DHT, 1.5 mg) or vehicle (oil) in three experimental groups: intact-oil, GDX-oil and GDX-DHT. Spine density and morphology, measured 24 hours after injection, were determined through three-dimensional reconstruction of confocal z-stacks of DiI-labelled dendritic segments. We found that GDX decreased spine density in the MPN, which was rescued by DHT treatment. DHT also increased spine density in the MeA in GDX animals compared to intact oil-treated animals. By contrast, DHT decreased spine density in the NAcSh compared to GDX males. No effect on spine density was observed in the NAcC or CPu. Spine length and spine head diameter were unaffected by GDX and DHT in the investigated brain regions. In addition, immunohistochemistry revealed that DHT treatment of GDX animals rapidly increased the number of cell bodies in the NAcSh positive for phosphorylated cAMP response-element binding protein, a downstream messenger of the androgen receptor. These findings indicate that androgen signalling plays a role in the regulation of spine plasticity within neurocircuits involved in motivated behaviours.
Collapse
Affiliation(s)
- Patty T Huijgens
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Eelke M S Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Robert L Meisel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
39
|
Schwabe MR, Taxier LR, Frick KM. It takes a neural village: Circuit-based approaches for estrogenic regulation of episodic memory. Front Neuroendocrinol 2020; 59:100860. [PMID: 32781195 PMCID: PMC7669700 DOI: 10.1016/j.yfrne.2020.100860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Cognitive behaviors, such as episodic memory formation, are complex processes involving coordinated activity in multiple brain regions. However, much of the research on hormonal regulation of cognition focuses on manipulation of one region at a time or provides a single snapshot of how a systemic treatment affects multiple brain regions without investigating how these regions might interact to mediate hormone effects. Here, we use estrogenic regulation of episodic memory as an example of how circuit-based approaches may be incorporated into future studies of hormones and cognition. We first review basic episodic memory circuitry, rapid mechanisms by which 17β-estradiol can alter circuit activity, and current knowledge about 17β-estradiol's effects on episodic memory. Next, we outline approaches that researchers can employ to consider circuit effects in their estrogen research and provide examples of how these methods have been used to examine hormonal regulation of memory and other behaviors.
Collapse
Affiliation(s)
- Miranda R Schwabe
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States.
| |
Collapse
|
40
|
Nicholson K, MacLusky NJ, Leranth C. Synaptic effects of estrogen. VITAMINS AND HORMONES 2020; 114:167-210. [PMID: 32723543 DOI: 10.1016/bs.vh.2020.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The concept that estradiol may act as a local neuromodulator in the brain, rapidly affecting connectivity and synaptic function, has been firmly established by research over the last 30 years. De novo synthesis of estradiol within the brain as well as signaling mechanisms mediating responses to the hormone have been demonstrated, along with morphological evidence indicating rapid changes in synaptic input following increases in local estradiol levels. These rapid synaptic effects may play important roles in both physiological and pathophysiological responses to changes in circulating hormone levels, as well as in neurodegenerative disease. How local effects of estradiol on synaptic plasticity are integrated into changes in the overall activity of neural networks in the brain, however, remains a subject that is only incompletely understood.
Collapse
Affiliation(s)
- Kate Nicholson
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Neil J MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Csaba Leranth
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, School of Medicine, New Haven, CT, United States.
| |
Collapse
|
41
|
Gholaminejad A, Gholamipour-Badie H, Nasehi M, Naghdi N. Prelimbic of Medial Prefrontal Cortex GABA Modulation through Testosterone on Spatial Learning and Memory. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1429-1444. [PMID: 32641952 PMCID: PMC6934985 DOI: 10.22037/ijpr.2019.1100745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prefrontal cortex (PFC) is involved in multiple functions including attentional processes, spatial orientation, short-term memory, and long-term memory. Our previous study indicated that microinjection of testosterone in CA1 impaired spatial learning and memory. Some evidence suggests that impairment effect of testosterone is mediated by GABAergic system. In the present study, we investigated the interaction of testosterone (androgenic receptor agonist) and bicuculline (GABAA receptor antagonist) on spatial learning and memory performance in the prelimbic (PL) of male Wistar rats. Cannulae were bilaterally implanted into the PL region of PFC and drugs were daily microinjected for two minutes in each side. There are 4 experiments. In the first experiment, three sham groups were operated (solvent of testosterone, bicuculline, testosterone plus bicuculline). In the second experiment, different doses of testosterone (40, 80 μg /0.5 μL DMSO/each side) were injected into the PL before each session. In the third experiment, intra PL injections of bicuculline (2, 4 μg/0.5 μL DMSO/each side) were given before every session. In the last experiment, testosterone (80μg/0.5 μL DMSO/each side) along with bicuculline (2 μg/0.5 μL DMSO/each side) was injected into the PL. The results showed there is no difference between control group and sham operated group. Testosterone 80 μg and bicuculline 2 μg, each given separately, and also in combination increased escape latency to find the platform compared to the sham operated and cause to impaired spatial learning and memory. It is shown that intra PL microinjection of bicuculline after testosterone treatment could not rescue the spatial learning and memory impaired induced by testosterone.
Collapse
Affiliation(s)
- Azadeh Gholaminejad
- Department of Physiology and Pharmacology, Pasteur Institute of Iran (IPI), Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | | | - Mohammad Nasehi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Cognitive and neuroscience research center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nasser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran (IPI), Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
42
|
Abstract
17β-Estradiol (E2) is a potent steroid hormone of both gonadal and neuronal origin that exerts profound effects on neuroplasticity in several brain regions. Dendritic spine and synapse formation and rearrangements are modulated and mediated by estrogens. In this chapter, we highlighted the essential background concerning the effects of E2 on synaptic rearrangements accompanied by synaptic plasticity in E2-sensitive brain regions that mediate learning and memory, i.e., cortex and hippocampus. We also address details of the molecular mechanisms underlying E2 regulation of spine dynamics. The proposed models of action of E2 overlaps with that for well-established synaptic modulators, such as adenosine. Thus, the possible synergistic effects of those two molecules in respect to synaptic rearrangement and plasticity were presented.
Collapse
|
43
|
Frankfurt M, Luine V, Bowman RE. A potential role for dendritic spines in bisphenol-A induced memory impairments during adolescence and adulthood. VITAMINS AND HORMONES 2020; 114:307-329. [PMID: 32723549 DOI: 10.1016/bs.vh.2020.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Developmental exposure to Bisphenol A (BPA), an endocrine disrupting chemical, alters many behaviors and neural parameters in rodents and non-human-primates. The effects of BPA are mediated via gonadal hormone, primarily, estrogen receptors, and are not limited to the perinatal period since recent studies show impairments further into development. The studies described in this chapter address the effects of BPA administration during early adolescence on memory and dendritic spine density in intact male and female rats as well as ovariectomized (OVX) rats in late adolescence and show that some of these adolescent induced changes endure into adulthood. In general, BPA impairs spatial memory and induces decreases in dendritic spine density in the hippocampus and the medial prefrontal cortex, two areas important for memory. The effects of adolescent BPA in intact females are compared to OVX females in an attempt to address the importance of estrogens in the mechanism(s) underlying the profound neuronal alterations occurring during adolescent development. In addition, potential mechanisms by which acute and chronic BPA induce structural alterations are discussed. These studies suggest a complex interaction between low doses of BPA, gonadal state and neural development.
Collapse
Affiliation(s)
- Maya Frankfurt
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| | | | | |
Collapse
|
44
|
Katrancha SM, Shaw JE, Zhao AY, Myers SA, Cocco AR, Jeng AT, Zhu M, Pittenger C, Greer CA, Carr SA, Xiao X, Koleske AJ. Trio Haploinsufficiency Causes Neurodevelopmental Disease-Associated Deficits. Cell Rep 2020; 26:2805-2817.e9. [PMID: 30840899 PMCID: PMC6436967 DOI: 10.1016/j.celrep.2019.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/22/2018] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Heterozygous coding mutations in TRIO are associated with neurodevelopmental disorders, including autism, schizophrenia, bipolar disorder, and epilepsy, and impair TRIO's biochemical activities. To model mutant alleles, we ablated one or both Trio alleles from excitatory neurons in the cortex and hippocampus of mice. Trio haploinsufficiency increases anxiety and impairs social preference and motor coordination. Trio loss reduces forebrain size and dendritic arborization but increases dendritic spine densities. Cortical synapses in Trio haploinsufficient mice are small, exhibit pre- and postsynaptic deficits, and cannot undergo long-term potentiation. Similar phenotypes are observed in Trio knockout mice. Overall, Trio haploinsufficiency causes severe disease-relevant deficits in behavior and neuronal structure and function. Interestingly, phosphodiesterase 4A5 (PDE4A5) levels are reduced and protein kinase A (PKA) signaling is increased when TRIO levels are reduced. Elevation of PDE4A5 and drug-based attenuation of PKA signaling rescue Trio haploinsufficiency-related dendritic spine defects, suggesting an avenue for therapeutic intervention for TRIO-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sara Marie Katrancha
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Juliana E Shaw
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Amy Y Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Samuel A Myers
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Amanda T Jeng
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
| | - Minsheng Zhu
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Christopher Pittenger
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; Department of Psychiatry, Yale University, New Haven, CT 06510, USA; Child Study Center, Yale University, New Haven, CT 06510, USA
| | - Charles A Greer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University, New Haven, CT 06510, USA; Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xiao Xiao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China.
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
45
|
Naderi M, Salahinejad A, Attaran A, Chivers DP, Niyogi S. Chronic exposure to environmentally relevant concentrations of bisphenol S differentially affects cognitive behaviors in adult female zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114060. [PMID: 32045791 DOI: 10.1016/j.envpol.2020.114060] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/02/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Evidence is emerging that environmental exposure to bisphenol S (BPS), a substitute for bisphenol A (BPA), to humans and wildlife is on the rise. However, research on the neurobehavioral effects of this endocrine disruptive chemical is still in its infancy. In this study, we aimed to investigate the effects of long-term exposure to environmentally relevant concentrations of BPS on recognition memory and its mechanism(s) of action, especially focusing on the glutamatergic/ERK/CREB pathway in the brain. Adult female zebrafish were exposed to the vehicle, 17β-estradiol (E2, 1 μg/L), or BPS (1, 10 and 30 μg/L) for 120 days. Fish were then tested in the object recognition (OR), object placement (OP), and social recognition tasks (SR). Chronic exposure to E2 and 1 μg/L of BPS improved fish performance in OP task. This was associated with an up-regulation in the mRNA expression of several subtypes of metabotropic and ionotropic glutamate receptors, an increase in the phosphorylation levels of ERK1/2 and CREB, and an elevated transcript abundance of several immediate early genes involved in synaptic plasticity and memory formation. In contrast, the exposure to 10 and 30 μg/L of BPS attenuated fish performance in all recognition memory tasks. The impairment of these memory functions was associated with a marked down-regulation in the expression and activity of genes and proteins involved in glutamatergic/ERK/CREB signaling cascade. Collectively, our study demonstrated that the long-term exposure to BPS elicits hermetic effects on the recognition memory in zebrafish. Furthermore, the effect of BPS on the recognition memory seems to be mediated by the glutamatergic/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
46
|
Abstract
This review highlights fifty years of progress in research on estradiol's role in regulating behavior(s). It was initially thought that estradiol was only involved in regulating estrus/menstrual cycles and concomitant sexual behavior, but it is now clear that estradiol also influences the higher order neural function of cognition. We provide a brief overview of estradiol's regulation of memory and some mechanisms which underlie its effects. Given systemically or directly into the hippocampus, to ovariectomized female rodents, estradiol or specific agonists, enhance learning and/or memory in a variety of rodent cognitive tasks. Acute (within minutes) or chronic (days) treatments enhance cognitive functions. Under the same treatment conditions, dendritic spine density on pyramidal neurons in the CA1 area of the hippocampus and medial prefrontal cortex increase which suggests that these changes are an important component of estrogen's ability to impact memory processes. Noradrenergic, dopaminergic and serotoninergic activity are also altered in these areas following estrogen treatments. Memory enhancements and increased spine density by estrogens are not limited to females but are also present in castrate males. In the next fifty years, neuroscientists need to determine how currently described neural changes mediate improved memory, how interactions among areas important for memory promote memory and the potential significance of neurally derived estrogens in normal cognitive processing. Answering these questions may provide significant advances for treatment of dementias as well as age and neuro-degenerative disease related memory loss.
Collapse
Affiliation(s)
- Victoria Luine
- Department of Psychology, Hunter College of CUNY, New York, NY, USA.
| | - Maya Frankfurt
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
47
|
Naderi M, Salahinejad A, Attaran A, Niyogi S, Chivers DP. Rapid effects of estradiol and its receptor agonists on object recognition and object placement in adult male zebrafish. Behav Brain Res 2020; 384:112514. [PMID: 32004591 DOI: 10.1016/j.bbr.2020.112514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
Abstract
In recent years, there has been a growing appreciation that 17β-estradiol (E2) can rapidly modulate learning and memory processes by binding to membrane estrogen receptors and cause the activation of a number of signaling cascades within the central nervous system. In this study, we sought to investigate the effects of post-training administration of E2 (100 ng/g, 1 μg/g, 10 μg/g) and involvement of the estrogen receptors (ERs) using selective ER agonists on the consolidation of object recognition (OR) and object placement memory (OP) in adult male zebrafish. The general activation of ERs with the highest E2 dose improved consolidation of memory in both learning tasks within 1.45 h of administration. Activation of classical ERs (ERα and ERβ) improved consolidation of OR memory, but had no effect on fish performance in OP task. On the other hand, activation of G protein-coupled ER1 impaired and enhanced consolidation of OR and OP memories, respectively. Memory improvement in both tasks was accompanied by a marked up-regulation in the expression of genes encoding ionotropic and metabotropic glutamate receptors in a task-dependent manner. In contrast, the down-regulation in the expression of certain ionotropic glutamate receptors was observed in fish with impaired OR memory. Moreover, our study also revealed an increase in the transcript abundance of genes associated with synaptic protein synthesis (brain-derived neurotrophic factor, synaptophysin, and the mechanistic target of rapamycin). These results suggest that E2 may affect consolidation of memory in zebrafish likely through rapid changes in synaptic morphology and function.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
48
|
Aguiar RP, Soares LM, Meyer E, da Silveira FC, Milani H, Newman-Tancredi A, Varney M, Prickaerts J, Oliveira RMW. Activation of 5-HT 1A postsynaptic receptors by NLX-101 results in functional recovery and an increase in neuroplasticity in mice with brain ischemia. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109832. [PMID: 31809832 DOI: 10.1016/j.pnpbp.2019.109832] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/18/2019] [Accepted: 12/01/2019] [Indexed: 12/18/2022]
Abstract
Pharmacological interventions that selectively activate serotonin 5-hydroxytryptramine-1A (5-HT1A) heteroreceptors may prevent or attenuate the consequences of brain ischemic episodes. The present study investigated whether the preferential 5-HT1A postsynaptic receptor agonist NLX-101 (a.k.a. F15599) mitigates cognitive and emotional impairments and affects neuroplasticity in mice that are subjected to the bilateral common carotid artery occlusion (BCCAO) model of brain ischemia. The selective serotonin reuptake inhibitor escitalopram (Esc) was used for comparative purposes because it is able to decrease morbidity and improve recovery in stroke patients and ischemic rodents. Sham and BCCAO mice received daily doses of NLX-101 (0.32 mg/kg, i.p) or Esc (20 mg/kg, i.p) for 28 days. During this period, they were evaluated for locomotor activity, anxiety- and despair-related behaviors and hippocampus-dependent cognitive function, using the open field, elevated zero maze, forced swim test and object location test, respectivelly. The mice's brains were processed for biochemical and histological analyses. BCCAO mice exhibited high anxiety and despair-like behaviors and performed worse than controls in the cognitive assessment. BCCAO induced neuronal and dendritic spine loss and decreases in the protein levels of neuronal plasticity markers, including brain-derived neurotrophic factor (BDNF), synaptophysin (SYN), and postsynaptic density protein-95 (PSD-95), in prefrontal cortex (PFC) and hippocampus. NLX-101 and Esc attenuated cognitive impairments and despair-like behaviors in BCCAO mice. Only Esc decreased anxiety-like behaviors due to brain ischemia. Both NLX-101 and Esc blocked the increase in plasma corticosterone levels and, restored BDNF, SYN and PSD-95 protein levels in the hippocampus. Moreover, both compounds impacted positively dentritic remodeling in the hippocampus and PFC of ischemic mice. In the PFC, NLX-101 increased the BDNF protein levels, while Esc in turn, attenuated the decrease in the PSD-95 protein levels induced by BCCAO. The present results suggest that activation of post-synaptic 5-HT1A receptors is the molecular mechanism for serotonergic protective effects in BCCAO. Moreover, post-synaptic biased agonists such as NLX-101 might constitute promising therapeutics for treatment of functional and neurodegenerative outcomes of brain ischemia.
Collapse
Affiliation(s)
- Rafael Pazinatto Aguiar
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Lígia Mendes Soares
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Fernanda Canova da Silveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | | | | | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rúbia M Weffort Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
49
|
De Luca SN, Soch A, Sominsky L, Nguyen TX, Bosakhar A, Spencer SJ. Glial remodeling enhances short-term memory performance in Wistar rats. J Neuroinflammation 2020; 17:52. [PMID: 32028971 PMCID: PMC7006153 DOI: 10.1186/s12974-020-1729-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Background Microglia play a key role in neuronal circuit and synaptic maturation in the developing brain. In the healthy adult, however, their role is less clear: microglial hyperactivation in adults can be detrimental to memory due to excessive synaptic pruning, yet learning and memory can also be impaired in the absence of these cells. In this study, we therefore aimed to determine how microglia contribute to short-term memory in healthy adults. Methods To this end, we developed a Cx3cr1-Dtr transgenic Wistar rat with a diphtheria toxin receptor (Dtr) gene inserted into the fractalkine receptor (Cx3cr1) promoter, expressed on microglia and monocytes. This model allows acute microglial and monocyte ablation upon application of diphtheria toxin, enabling us to directly assess microglia’s role in memory. Results Here, we show that short-term memory in the novel object and place recognition tasks is entirely unaffected by acute microglial ablation. However, when microglia repopulate the brain after depletion, learning and memory performance in these tasks is improved. This transitory memory enhancement is associated with an ameboid morphology in the newly repopulated microglial cells and increased astrocyte density that are linked with a higher density of mature hippocampal synaptic spines and differences in pre- and post-synaptic markers. Conclusions These data indicate that glia play a complex role in the healthy adult animal in supporting appropriate learning and memory and that subtle changes to the function of these cells may strategically enhance memory.
Collapse
Affiliation(s)
- Simone N De Luca
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, 3083, Australia
| | - Alita Soch
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, 3083, Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, 3083, Australia
| | - Thai-Xinh Nguyen
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, 3083, Australia
| | - Abdulhameed Bosakhar
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, 3083, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences RMIT University, Melbourne, VIC, 3083, Australia. .,ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
50
|
Bohm-Levine N, Goldberg AR, Mariani M, Frankfurt M, Thornton J. Reducing luteinizing hormone levels after ovariectomy improves spatial memory: Possible role of brain-derived neurotrophic factor. Horm Behav 2020; 118:104590. [PMID: 31593698 DOI: 10.1016/j.yhbeh.2019.104590] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/25/2019] [Accepted: 09/13/2019] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease and other forms of cognitive decline are significantly more prevalent in post-menopausal women. Decreased estrogen levels, due to menopause or ovariectomy, may contribute to memory impairments and neurodegeneration. Another result of decreased estrogen levels is elevated luteinizing hormone (LH). Elevated LH after menopause/ovariectomy has been shown to impair cognition in both human and animal studies. Lowering LH levels rescues spatial memory in ovariectomized (ovx) rodents, yet the mechanisms of these effects are still unclear. Estrogens appear to exert some of their effects on memory by increasing levels of brain-derived neurotrophic factor (BDNF) in the hippocampus. In these studies, we explored whether lowering LH may act by increasing BDNF. Ovx rats were treated with Antide, a gonadotropin releasing hormone receptor antagonist that lowers LH levels, or with estradiol. Both Antide and estradiol treatment enhanced spatial memory in ovx females. Both were found to be ineffective when a BDNF receptor antagonist was administered. Immunohistochemical analysis revealed that both Antide and estradiol increased BDNF expression in the hippocampus. Dendritic spine density on pyramidal cells in CA1 was unchanged by any treatment. These results provide evidence for a relationship between LH and BDNF in the hippocampus and demonstrate that estrogen-increasing and LH-lowering treatments may both require BDNF signaling in order to improve spatial memory.
Collapse
Affiliation(s)
- Nathaniel Bohm-Levine
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Alexander R Goldberg
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Monica Mariani
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Maya Frankfurt
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Janice Thornton
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA.
| |
Collapse
|