1
|
Vasil TM, Fleury ES, Walker ED, Kuiper JR, Buckley JP, Cecil KM, Chen A, Kalkwarf HJ, Lanphear BP, Yolton K, Braun JM. Associations of pre- and postnatal per- and polyfluoroalkyl substance exposure with adolescents' eating behaviors. Environ Epidemiol 2024; 8:e343. [PMID: 39555184 PMCID: PMC11567689 DOI: 10.1097/ee9.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/02/2024] [Indexed: 11/19/2024] Open
Abstract
Background Per- and polyfluoroalkyl substances (PFAS), persistent environmental chemicals, may act as obesogens by interacting with neuroendocrine pathways regulating energy homeostasis and satiety signals influencing adolescent eating behaviors. Methods In 211 HOME Study adolescents (Cincinnati, OH; recruited 2003-2006), we measured PFAS concentrations in serum collected during pregnancy, at delivery, and at ages 3, 8, and 12 years. Caregivers completed the Child Eating Behavior Questionnaire (CEBQ) at age 12, and we calculated food approach and food avoidance scores. Using quantile-based g-computation, we estimated covariate-adjusted associations between a mixture of four gestational PFAS and CEBQ scores. We identified high (n = 76, 36%) and low (n = 135, 64%) longitudinal PFAS mixture exposure profiles between delivery and age 12 years using latent profile analysis and related these to CEBQ scores. We examined whether child sex or physical activity modified these associations. Results We observed no association of gestational PFAS mixture with food approach or food avoidance scores. Children in the higher longitudinal PFAS mixture profile had slightly higher food approach scores (β: 0.47, 95% CI: -0.27, 1.23) and similar food avoidance scores (β: -0.15, 95% CI: -0.75, 0.46) compared with children in the lower profile. We found some evidence that higher physical activity favorably modified the association between longitudinal PFAS mixture profiles and emotional overeating (interaction P value = 0.13). Child sex did not consistently modify any associations. Conclusions Serum PFAS concentrations were not consistently linked to adolescent eating behaviors in this study, suggesting alternative pathways, such as metabolic rate, may underlie previously observed associations between PFAS exposure and childhood obesity.
Collapse
Affiliation(s)
| | - Elvira S. Fleury
- Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Erica D. Walker
- Department of Epidemiology, Brown University, Providence, Rhode Island
| | - Jordan R. Kuiper
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, District of Columbia
| | - Jessie P. Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Kim M. Cecil
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Heidi J. Kalkwarf
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island
| |
Collapse
|
2
|
Leader J, Mínguez-Alarcón L, Williams PL, Ford JB, Dadd R, Chagnon O, Oken E, Calafat AM, Hauser R, Braun JM. Associations of parental preconception and maternal pregnancy urinary phthalate biomarker and bisphenol-a concentrations with child eating behaviors. Int J Hyg Environ Health 2024; 257:114334. [PMID: 38350281 PMCID: PMC10939723 DOI: 10.1016/j.ijheh.2024.114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Eating behaviors are controlled by the neuroendocrine system. Whether endocrine disrupting chemicals have the potential to affect eating behaviors has not been widely studied in humans. We investigated whether maternal and paternal preconception and maternal pregnancy urinary phthalate biomarker and bisphenol-A (BPA) concentrations were associated with children's eating behaviors. METHODS We used data from mother-father-child triads in the Preconception Environmental exposure And Childhood health Effects (PEACE) Study, an ongoing prospective cohort study of children aged 6-13 years whose parent(s) previously enrolled in a fertility clinic-based prospective preconception study. We quantified urinary concentrations of 11 phthalate metabolites and BPA in parents' urine samples collected preconceptionally and during pregnancy. Parents rated children's eating behavior using the Child Eating Behavior Questionnaire (CEBQ). Using multivariable linear regression, accounting for correlation among twins, we estimated covariate-adjusted associations of urinary phthalate biomarkers and BPA concentrations with CEBQ subscale scores. RESULTS This analysis included 195 children (30 sets of twins), 160 mothers and 97 fathers; children were predominantly non-Hispanic white (84%) and 53% were male. Paternal and maternal preconception monobenzyl phthalate (MBzP) concentrations and maternal preconception mono-n-butyl phthalate (MnBP) were positively associated with emotional overeating, food responsiveness, and desire to drink scores in children (β's= 0.11 [95% CI: 0.01, 0.20]-0.21 [95% CI: 0.10, 0.31] per loge unit increase in phthalate biomarker concentration). Paternal preconception BPA concentrations were inversely associated with scores on food approaching scales. Maternal pregnancy MnBP, mono-isobutyl phthalate (MiBP) and MBzP concentrations were associated with increased emotional undereating scores. Maternal pregnancy monocarboxy-isononyl phthalate concentrations were related to decreased food avoiding subscale scores. CONCLUSIONS In this cohort, higher maternal and paternal preconception urinary concentrations of some phthalate biomarkers were associated with increased food approaching behavior scores and decreased food avoiding behavior scores, which could lead to increased adiposity in children.
Collapse
Affiliation(s)
- Jordana Leader
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA.
| | - Lidia Mínguez-Alarcón
- Channing Division of Network Medicine, Harvard Medical School & Brigham and Women's Hospital, USA
| | - Paige L Williams
- Departments of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Ramace Dadd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Olivia Chagnon
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Russ Hauser
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, USA; Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
3
|
Peralta M, Lizcano F. Endocrine Disruptors and Metabolic Changes: Impact on Puberty Control. Endocr Pract 2024; 30:384-397. [PMID: 38185329 DOI: 10.1016/j.eprac.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE This study aims to explore the significant impact of environmental chemicals on disease development, focusing on their role in developing metabolic and endocrine diseases. The objective is to understand how these chemicals contribute to the increasing prevalence of precocious puberty, considering various factors, including epigenetic changes, lifestyle, and emotional disturbances. METHODS The study employs a comprehensive review of descriptive observational studies in both human and animal models to identify a degree of causality between exposure to environmental chemicals and disease development, specifically focusing on endocrine disruption. Due to ethical constraints, direct causation studies in human subjects are not feasible; therefore, the research relies on accumulated observational data. RESULTS Puberty is a crucial life period with marked physiological and psychological changes. The age at which sexual characteristics develop is changing in many regions. The findings indicate a correlation between exposure to endocrine-disrupting chemicals and the early onset of puberty. These chemicals have been shown to interfere with normal hormonal processes, particularly during critical developmental stages such as adolescence. The research also highlights the interaction of these chemical exposures with other factors, including nutritional history, social and lifestyle changes, and emotional stress, which together contribute to the prevalence of precocious puberty. CONCLUSION Environmental chemicals significantly contribute to the development of certain metabolic and endocrine diseases, particularly in the rising incidence of precocious puberty. Although the evidence is mainly observational, it adequately justifies regulatory actions to reduce exposure risks. Furthermore, these findings highlight the urgent need for more research on the epigenetic effects of these chemicals and their wider impact on human health, especially during vital developmental periods.
Collapse
Affiliation(s)
- Marcela Peralta
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia; Department of Endocrinology, Diabetes and Nutrition, Fundación CardioInfantil-Instituto de Cardiología, Bogotá, Colombia.
| |
Collapse
|
4
|
Adibi JJ, Zhao Y, Koistinen H, Mitchell RT, Barrett ES, Miller R, O'Connor TG, Xun X, Liang HW, Birru R, Smith M, Moog NK. Molecular pathways in placental-fetal development and disruption. Mol Cell Endocrinol 2024; 581:112075. [PMID: 37852527 PMCID: PMC10958409 DOI: 10.1016/j.mce.2023.112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
The first trimester of pregnancy ranks high in priority when minimizing harmful exposures, given the wide-ranging types of organogenesis occurring between 4- and 12-weeks' gestation. One way to quantify potential harm to the fetus in the first trimester is to measure a corollary effect on the placenta. Placental biomarkers are widely present in maternal circulation, cord blood, and placental tissue biopsied at birth or at the time of pregnancy termination. Here we evaluate ten diverse pathways involving molecules expressed in the first trimester human placenta based on their relevance to normal fetal development and to the hypothesis of placental-fetal endocrine disruption (perturbation in development that results in abnormal endocrine function in the offspring), namely: human chorionic gonadotropin (hCG), thyroid hormone regulation, peroxisome proliferator activated receptor protein gamma (PPARγ), leptin, transforming growth factor beta, epiregulin, growth differentiation factor 15, small nucleolar RNAs, serotonin, and vitamin D. Some of these are well-established as biomarkers of placental-fetal endocrine disruption, while others are not well studied and were selected based on discovery analyses of the placental transcriptome. A literature search on these biomarkers summarizes evidence of placenta-specific production and regulation of each biomarker, and their role in fetal reproductive tract, brain, and other specific domains of fetal development. In this review, we extend the theory of fetal programming to placental-fetal programming.
Collapse
Affiliation(s)
- Jennifer J Adibi
- Department of Epidemiology, University of Pittsburgh School of Public Health, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yaqi Zhao
- St. Jude's Research Hospital, Memphis, TN, USA
| | - Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Rod T Mitchell
- Department of Paediatric Endocrinology, Royal Hospital for Children and Young People, Edinburgh BioQuarter, Edinburgh, UK
| | - Emily S Barrett
- Environmental and Population Health Bio-Sciences, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Richard Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Xiaoshuang Xun
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Hai-Wei Liang
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Rahel Birru
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Megan Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nora K Moog
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
The Role of Genetics in Central Precocious Puberty: Confirmed and Potential Neuroendocrine Genetic and Epigenetic Contributors and Their Interactions with Endocrine Disrupting Chemicals (EDCs). ENDOCRINES 2022. [DOI: 10.3390/endocrines3030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Despite the growing prevalence of central precocious puberty (CPP), most cases are still diagnosed as “idiopathic” due to the lack of identifiable findings of other diagnostic etiology. We are gaining greater insight into some key genes affecting neurotransmitters and receptors and how they stimulate or inhibit gonadotropin-releasing hormone (GnRH) secretion, as well as transcriptional and epigenetic influences. Although the genetic contributions to pubertal regulation are more established in the hypogonadotropic hypogonadism (HH) literature, cases of CPP have provided the opportunity to learn more about its own genetic influences. There have been clinically confirmed cases of CPP associated with gene mutations in kisspeptin and its receptor (KISS1, KISS1R), Delta-like noncanonical Notch ligand 1 (DLK1), and the now most commonly identified genetic cause of CPP, makorin ring finger protein (MKRN3). In addition to these proven genetic causes, a number of other candidates continue to be evaluated. After reviewing the basic clinical aspects of puberty, we summarize what is known about the various genetic and epigenetic causes of CPP as well as discuss some of the potential effects of endocrine disrupting chemicals (EDCs) on some of these processes.
Collapse
|
6
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Patisaul HB. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:101-150. [PMID: 34452685 DOI: 10.1016/bs.apha.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hundreds of anthropogenic chemicals occupy our bodies, a situation that threatens the health of present and future generations. This chapter focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, that affect the neuroendocrine system to adversely impact health, with an emphasis on reproductive and metabolic pathways. The neuroendocrine system is highly sexually dimorphic and essential for maintaining homeostasis and appropriately responding to the environment. Comprising both neural and endocrine components, the neuroendocrine system is hormone sensitive throughout life and touches every organ system in the body. The integrative nature of the neuroendocrine system means that EDCs can have multi-system effects. Additionally, because gonadal hormones are essential for the sex-specific organization of numerous neuroendocrine pathways, endocrine disruption of this programming can lead to permanent deficits. Included in this review is a brief history of the neuroendocrine disruption field and a thorough discussion of the most common and less well understood neuroendocrine disruption modes of action. Also provided are extensive examples of how EDCs are likely contributing to neuroendocrine disorders such as obesity, and evidence that they have the potential for multi-generational effects.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
8
|
Nozari A, Do S, Trudeau VL. Applications of the SR4G Transgenic Zebrafish Line for Biomonitoring of Stress-Disrupting Compounds: A Proof-of-Concept Study. Front Endocrinol (Lausanne) 2021; 12:727777. [PMID: 34867778 PMCID: PMC8635770 DOI: 10.3389/fendo.2021.727777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023] Open
Abstract
Transgenic zebrafish models have been successfully used in biomonitoring and risk assessment studies of environmental pollutants, including xenoestrogens, pesticides, and heavy metals. We employed zebrafish larva (transgenic SR4G line) with a cortisol-inducible green fluorescence protein reporter (eGFP) as a model to detect stress responses upon exposure to compounds with environmental impact, including bisphenol A (BPA), vinclozolin (VIN), and fluoxetine (FLX). Cortisol, fluorescence signal, and mRNA levels of eGFP and 11 targeted genes were measured in a homogenized pool of zebrafish larvae, with six experimental replicates for each endpoint. Eleven targeted genes were selected according to their association with stress-axis and immediate early response class of genes. Hydrocortisone (CORT)and dexamethasone (DEX) were used as positive and negative controls, respectively. All measurements were done in two unstressed and stressed condition using standardized net handling as the stressor. A significant positive linear correlation between cortisol levels and eGFP mRNA levels was observed (r> 0.9). Based on eGFP mRNA levels in unstressed and stressed larvae two predictive models were trained (Random Forest and Logistic Regression). Both these models could correctly predict the blunted stress response upon exposure to BPA, VIN, FLX and the negative control, DEX. The negative predictive value (NPV) of these models were 100%. Similar NPV was observed when the predictive models trained based on the mRNA levels of the eleven assessed genes. Measurement of whole-body fluorescence intensity signal was not significant to detect blunted stress response. Our findings support the use of SR4G transgenic larvae as an in vivo biomonitoring model to screen chemicals for their stress-disrupting potentials. This is important because there is increasing evidence that brief exposures to environmental pollutants modify the stress response and critical coping behaviors for several generations.
Collapse
|
9
|
Walley SN, Krumm EA, Yasrebi A, Wiersielis KR, O'Leary S, Tillery T, Roepke TA. Maternal organophosphate flame-retardant exposure alters offspring feeding, locomotor and exploratory behaviors in a sexually-dimorphic manner in mice. J Appl Toxicol 2020; 41:442-457. [PMID: 33280148 DOI: 10.1002/jat.4056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/27/2022]
Abstract
Increased usage of organophosphate flame retardants (OPFRs) has led to detectable levels in pregnant women and neonates, which is associated with negative neurological outcomes. Therefore, we investigated if maternal OPFR exposure altered adult offspring feeding, locomotor, and anxiety-like behaviors on a low-fat (LFD) or high-fat diet (HFD). Wild-type C57Bl/6J dams were orally dosed with vehicle (sesame oil) or an OPFR mixture (1 mg/kg combination each of tris(1,3-dichloro-2-propyl)phosphate, triphenyl phosphate and tricresyl phosphate) from gestation day 7 to postnatal day 14. After weaning, pups were fed either a LFD or HFD until 19 weeks of age. Locomotor and anxiety-like behaviors were evaluated with the open field test, elevated plus maze, and metabolic cages. Feeding behaviors and meal patterns were analyzed by a Biological Data Acquisition System. Anogenital distance was reduced in OPFR-exposed male pups, but no effect was detected on adult body weight. We observed interactions of OPFR exposure and HFD consumption on locomotor and anxiety-like behavior in males, suggesting an anxiogenic effect while reducing overall nighttime activity. We also observed an interaction of OPFR exposure and HFD on weekly food intake and feeding behaviors. OPFR-exposed males consumed more total HFD than oil-exposed males during the 72-hour trial. However, when arcuate gene expression was analyzed, OPFR exposure induced Agrp expression in females, which would suggest greater orexigenic tone. Collectively, the implications of our study are that the behavioral effects of OPFR exposure are modulated by adult HFD consumption, which may influence the metabolic and neurological consequences of maternal OPFR exposure.
Collapse
Affiliation(s)
- Sabrina N Walley
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Elizabeth A Krumm
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Kimberly R Wiersielis
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Sarah O'Leary
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Taylor Tillery
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.,Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
10
|
Estrogen disruptors and neuroimmune signaling in obesity: focus on bisphenol A. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2019.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Greco EA, Lenzi A, Migliaccio S, Gessani S. Epigenetic Modifications Induced by Nutrients in Early Life Phases: Gender Differences in Metabolic Alteration in Adulthood. Front Genet 2019; 10:795. [PMID: 31572434 PMCID: PMC6749846 DOI: 10.3389/fgene.2019.00795] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
Metabolic chronic diseases, also named noncommunicable diseases (NCDs), are considered multifactorial pathologies, which are dramatically increased during the last decades. Noncommunicable diseases such as cardiovascular diseases, obesity, diabetes mellitus, cancers, and chronic respiratory diseases markedly increase morbidity, mortality, and socioeconomic costs. Moreover, NCDs induce several and complex clinical manifestations that lead to a gradual deterioration of health status and quality of life of affected individuals. Multiple factors are involved in the development and progression of these diseases such as sedentary behavior, smoking, pollution, and unhealthy diet. Indeed, nutrition has a pivotal role in maintaining health, and dietary imbalances represent major determinants favoring chronic diseases through metabolic homeostasis alterations. In particular, it appears that specific nutrients and adequate nutrition are important in all periods of life, but they are essential during specific times in early life such as prenatal and postnatal phases. Indeed, epidemiologic and experimental studies report the deleterious effects of an incorrect nutrition on health status several decades later in life. During the last decade, a growing interest on the possible role of epigenetic mechanisms as link between nutritional imbalances and NCDs development has been observed. Finally, because of the pivotal role of the hormones in fat, carbohydrate, and protein metabolism regulation throughout life, it is expected that any hormonal modification of these processes can imbalance metabolism and fat storage. Therefore, a particular interest to several chemicals able to act as endocrine disruptors has been recently developed. In this review, we will provide an overview and discuss the epigenetic role of some specific nutrients and chemicals in the modulation of physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Emanuela A Greco
- Section of Medical Pathophysiology, Endocrinology and Food Sciences, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Lenzi
- Section of Medical Pathophysiology, Endocrinology and Food Sciences, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Migliaccio
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Rome, Italy
| | - Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
12
|
Rapid and Sensitive Analysis of Hormones and Other Emerging Contaminants in Groundwater Using Ultrasound-Assisted Emulsification Microextraction with Solidification of Floating Organic Droplet Followed by GC-MS Detection. WATER 2019. [DOI: 10.3390/w11081638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ultrasound-assisted emulsification microextraction with solidification of floating organic droplet (USAEME-SFOD) has been applied to isolate hormones and other emerging contaminants from groundwater samples. Simultaneously with the extraction process, derivatization in the matrix was carried out using acetic anhydride. Quantification of studied organic pollutants was done through gas chromatography mass spectrometry (GC-MS). Hormones included β-estradiol (E2), estrone (E1), and diethylstilbestrol (DES). Other compounds belonged to groups of pharmaceuticals (diclofenac (DIC)), antiseptics (triclosan (TRC)), preservatives (propylparaben (PP) and butylparaben (BP)), sunscreen agents (benzophenone (BPH), and 3-(4-methylbenzylidene)camphor (3MBC)), repellents (N,N-diethyltoluamide (DEET)), industrial chemicals (bisphenol A (BPA), 4-t-octylphenol (4OP), 4-n-nonylphenol (4NP)). A non-toxic and inexpensive 1-undecanol was successfully used as the extraction solvent. Volume of extractant and derivatization agent, ionic strength, and time of extraction were optimized. Very low limits of detection (LoD) ranging from 0.01 to 5.9 ng/L were obtained. Recoveries ranged from 90% to 123%, with relative standard deviation being lower than 17%. The developed procedure was used to determine target compounds in groundwater collected at municipal waste landfills as well as in groundwater from wells distant from sources of pollution.
Collapse
|
13
|
Bai L, Liu J, Liu Q, Xu T, Liu H, Wu T, Zhang S, Li Y, You J. Surfactant-induced magnetic cationic phenolic resin and its application in the enrichment of the migrants from food contacting materials. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2018.1544147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ling Bai
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| | - Jiamin Liu
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| | - Qian Liu
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| | - Ting Xu
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| | - Hongzhan Liu
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| | - Ting Wu
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| | - Shijuan Zhang
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| | - Yanxin Li
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| | - Jinmao You
- Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, PR China
| |
Collapse
|
14
|
Papalou O, Kandaraki EA, Papadakis G, Diamanti-Kandarakis E. Endocrine Disrupting Chemicals: An Occult Mediator of Metabolic Disease. Front Endocrinol (Lausanne) 2019; 10:112. [PMID: 30881345 PMCID: PMC6406073 DOI: 10.3389/fendo.2019.00112] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/06/2019] [Indexed: 12/19/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs), a heterogeneous group of exogenous chemicals that can interfere with any aspect of endogenous hormones, represent an emerging global threat for human metabolism. There is now considerable evidence that the observed upsurge of metabolic disease cannot be fully attributed to increased caloric intake, physical inactivity, sleep deficit, and ageing. Among environmental factors implicated in the global deterioration of metabolic health, EDCs have drawn the biggest attention of scientific community, and not unjustifiably. EDCs unleash a coordinated attack toward multiple components of human metabolism, including crucial, metabolically-active organs such as hypothalamus, adipose tissue, pancreatic beta cells, skeletal muscle, and liver. Specifically, EDCs' impact during critical developmental windows can promote the disruption of individual or multiple systems involved in metabolism, via inducing epigenetic changes that can permanently alter the epigenome in the germline, enabling changes to be transmitted to the subsequent generations. The clear effect of this multifaceted attack is the manifestation of metabolic disease, clinically expressed as obesity, metabolic syndrome, diabetes mellitus, and non-alcoholic fatty liver disease. Although limitations of EDCs research do exist, there is no doubt that EDCs constitute a crucial parameter of the global deterioration of metabolic health we currently encounter.
Collapse
Affiliation(s)
- Olga Papalou
- Department of Endocrinology & Diabetes, Hygeia Hospital, Athens, Greece
| | | | | | - Evanthia Diamanti-Kandarakis
- Department of Endocrinology & Diabetes, Hygeia Hospital, Athens, Greece
- *Correspondence: Evanthia Diamanti-Kandarakis
| |
Collapse
|
15
|
Street ME, Angelini S, Bernasconi S, Burgio E, Cassio A, Catellani C, Cirillo F, Deodati A, Fabbrizi E, Fanos V, Gargano G, Grossi E, Iughetti L, Lazzeroni P, Mantovani A, Migliore L, Palanza P, Panzica G, Papini AM, Parmigiani S, Predieri B, Sartori C, Tridenti G, Amarri S. Current Knowledge on Endocrine Disrupting Chemicals (EDCs) from Animal Biology to Humans, from Pregnancy to Adulthood: Highlights from a National Italian Meeting. Int J Mol Sci 2018; 19:E1647. [PMID: 29865233 PMCID: PMC6032228 DOI: 10.3390/ijms19061647] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
Wildlife has often presented and suggested the effects of endocrine disrupting chemicals (EDCs). Animal studies have given us an important opportunity to understand the mechanisms of action of many chemicals on the endocrine system and on neurodevelopment and behaviour, and to evaluate the effects of doses, time and duration of exposure. Although results are sometimes conflicting because of confounding factors, epidemiological studies in humans suggest effects of EDCs on prenatal growth, thyroid function, glucose metabolism and obesity, puberty, fertility, and on carcinogenesis mainly through epigenetic mechanisms. This manuscript reviews the reports of a multidisciplinary national meeting on this topic.
Collapse
Affiliation(s)
- Maria Elisabeth Street
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Sergio Bernasconi
- Former Department of Medicine, University of Parma, Via A. Catalani 10, 43123 Parma, Italy.
| | - Ernesto Burgio
- ECERI European Cancer and Environment Research Institute, Square de Meeus, 38-40, 1000 Bruxelles, Belgium.
| | - Alessandra Cassio
- Pediatric Endocrinology Programme, Pediatrics Unit, Department of Woman, Child Health and Urologic Diseases, AOU S. Orsola-Malpighi, Via Massarenti, 11, 40138 Bologna, Italy.
| | - Cecilia Catellani
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Francesca Cirillo
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Annalisa Deodati
- Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Tor Vergata University, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Enrica Fabbrizi
- Department of Pediatrics and Neonatology, Augusto Murri Hospital, Via Augusto Murri, 17, 63900 Fermo, Itlay.
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Neonatal Pathology and Neonatal Section, AOU and University of Cagliari, via Ospedale, 54, 09124 Cagliari, Italy.
| | - Giancarlo Gargano
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Enzo Grossi
- Villa Santa Maria Institute, Neuropsychiatric Rehabilitation Center, Via IV Novembre 15, 22038 Tavernerio (Como), Italy.
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Pietro Lazzeroni
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Alberto Mantovani
- Department of Veterinary Public Health and Food Safety, Food and Veterinary Toxicology Unit ISS⁻National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Lucia Migliore
- Department of Traslational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56123 Pisa, Italy.
| | - Paola Palanza
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy.
| | - Giancarlo Panzica
- Laboratory of Neuroendocrinology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Via Cherasco 15, 10126 Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi (NICO), Regione Gonzole, 10, 10043 Orbassano (Turin), Italy.
| | - Anna Maria Papini
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019 Sesto Fiorentino, Florence, Italy.
| | - Stefano Parmigiani
- Unit of Evolutionary and Functional Biology-Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA)-University of Parma⁻11/a, 43124 Parma, Italy.
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of the Mother, Children and Adults, Pediatrics Unit, University of Modena and Reggio Emilia, via del Pozzo, 71, 41124 Modena, Italy.
| | - Chiara Sartori
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Gabriele Tridenti
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| | - Sergio Amarri
- Department of Obstetrics, Gynaecology and Paediatrics, Azienda USL-IRCCS, Viale Risorgimento 80, 42123 Reggio Emilia, Italy.
| |
Collapse
|