1
|
Coles CA, Woodman KG, Gibbs EM, Crosbie RH, White JD, Lamandé SR. Benfotiamine improves dystrophic pathology and exercise capacity in mdx mice by reducing inflammation and fibrosis. Hum Mol Genet 2024; 33:1339-1355. [PMID: 38710523 PMCID: PMC11262745 DOI: 10.1093/hmg/ddae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a progressive and fatal neuromuscular disease. Cycles of myofibre degeneration and regeneration are hallmarks of the disease where immune cells infiltrate to repair damaged skeletal muscle. Benfotiamine is a lipid soluble precursor to thiamine, shown clinically to reduce inflammation in diabetic related complications. We assessed whether benfotiamine administration could reduce inflammation related dystrophic pathology. Benfotiamine (10 mg/kg/day) was fed to male mdx mice (n = 7) for 15 weeks from 4 weeks of age. Treated mice had an increased growth weight (5-7 weeks) and myofibre size at treatment completion. Markers of dystrophic pathology (area of damaged necrotic tissue, central nuclei) were reduced in benfotiamine mdx quadriceps. Grip strength was increased and improved exercise capacity was found in mdx treated with benfotiamine for 12 weeks, before being placed into individual cages and allowed access to an exercise wheel for 3 weeks. Global gene expression profiling (RNAseq) in the gastrocnemius revealed benfotiamine regulated signalling pathways relevant to dystrophic pathology (Inflammatory Response, Myogenesis) and fibrotic gene markers (Col1a1, Col1a2, Col4a5, Col5a2, Col6a2, Col6a2, Col6a3, Lum) towards wildtype levels. In addition, we observed a reduction in gene expression of inflammatory gene markers in the quadriceps (Emr1, Cd163, Cd4, Cd8, Ifng). Overall, these data suggest that benfotiamine reduces dystrophic pathology by acting on inflammatory and fibrotic gene markers and signalling pathways. Given benfotiamine's excellent safety profile and current clinical use, it could be used in combination with glucocorticoids to treat DMD patients.
Collapse
MESH Headings
- Animals
- Mice
- Mice, Inbred mdx
- Fibrosis/drug therapy
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/metabolism
- Inflammation/drug therapy
- Inflammation/genetics
- Inflammation/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Male
- Thiamine/analogs & derivatives
- Thiamine/pharmacology
- Physical Conditioning, Animal
- Disease Models, Animal
Collapse
Affiliation(s)
- Chantal A Coles
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| | - Keryn G Woodman
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
- Department of Genetics, Yale Medical School, Yale University, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | - Elizabeth M Gibbs
- Department of Integrative Biology and Physiology, University of California, 612 Charles E Young Dr S, Los Angeles 90095, California, USA
- Center for Duchenne Muscular Dystrophy, University of California, 615 Charles E Young Dr S, Los Angeles 90095, California, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, 612 Charles E Young Dr S, Los Angeles 90095, California, USA
- Center for Duchenne Muscular Dystrophy, University of California, 615 Charles E Young Dr S, Los Angeles 90095, California, USA
- Department of Neurology, David Geffen School of Medicine, University of California, 610 Charles E Young Dr S, Los Angeles, California 90095, USA
| | - Jason D White
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
- Charles Sturt University, Office of the Deputy Vice Chancellor Research, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - Shireen R Lamandé
- Murdoch Childrens Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, Victoria 3052, Australia
- Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
2
|
Bettendorff L. Synthetic Thioesters of Thiamine: Promising Tools for Slowing Progression of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11296. [PMID: 37511056 PMCID: PMC10379298 DOI: 10.3390/ijms241411296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Thiamine (vitamin B1) is essential for the brain. This is attributed to the coenzyme role of thiamine diphosphate (ThDP) in glucose and energy metabolism. The synthetic thiamine prodrug, the thioester benfotiamine (BFT), has been extensively studied and has beneficial effects both in rodent models of neurodegeneration and in human clinical studies. BFT has no known adverse effects and improves cognitive outcomes in patients with mild Alzheimer's disease. In cell culture and animal models, BFT has antioxidant and anti-inflammatory properties that seem to be mediated by a mechanism independent of the coenzyme function of ThDP. Recent in vitro studies show that another thiamine thioester, O,S-dibenzoylthiamine (DBT), is even more efficient than BFT, especially with respect to its anti-inflammatory potency, and is effective at lower concentrations. Thiamine thioesters have pleiotropic properties linked to an increase in circulating thiamine concentrations and possibly in hitherto unidentified open thiazole ring derivatives. The identification of the active neuroprotective metabolites and the clarification of their mechanism of action open extremely promising perspectives in the field of neurodegenerative, neurodevelopmental, and psychiatric conditions. The present review aims to summarize existing data on the neuroprotective effects of thiamine thioesters and give a comprehensive account.
Collapse
Affiliation(s)
- Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA Neurosciences, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
3
|
Chhabra A, Jain N, Varshney R, Sharma M. H2S regulates redox signaling downstream of cardiac β-adrenergic receptors in a G6PD-dependent manner. Cell Signal 2023; 107:110664. [PMID: 37004833 DOI: 10.1016/j.cellsig.2023.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Stimulating β-adrenergic receptors (β-AR) culminates in pathological hypertrophy - a condition underlying multiple cardiovascular diseases (CVDs). The ensuing signal transduction network appears to involve mutually communicating phosphorylation-cascades and redox signaling modules, although the regulators of redox signaling processes remain largely unknown. We previously showed that H2S-induced Glucose-6-phosphate dehydrogenase (G6PD) activity is critical for suppressing cardiac hypertrophy in response to adrenergic stimulation. Here, we extended our findings and identified novel H2S-dependent pathways constraining β-AR-induced pathological hypertrophy. We demonstrated that H2S regulated early redox signal transduction processes - including suppression of cue-dependent production of reactive oxygen species (ROS) and oxidation of cysteine thiols (R-SOH) on critical signaling intermediates (including AKT1/2/3 & ERK1/2). Consistently, the maintenance of intracellular levels of H2S dampened the transcriptional signature associated with pathological hypertrophy upon β-AR-stimulation, as demonstrated by RNA-seq analysis. We further prove that H2S remodels cell metabolism by promoting G6PD activity to enforce changes in the redox state that favor physiological cardiomyocyte growth over pathological hypertrophy. Thus, our data suggest that G6PD is an effector of H2S-mediated suppression of pathological hypertrophy and that the accumulation of ROS in the G6PD-deficient background can drive maladaptive remodeling. Our study reveals an adaptive role for H2S relevant to basic and translational studies. Identifying adaptive signaling mediators of the β-AR-induced hypertrophy may reveal new therapeutic targets and routes for CVD therapy optimization.
Collapse
Affiliation(s)
- Aastha Chhabra
- Peptide & Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Neha Jain
- Peptide & Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Rajeev Varshney
- Peptide & Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India
| | - Manish Sharma
- Peptide & Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi 110054, India.
| |
Collapse
|
4
|
Mousavinezhad-Moghaddam M, Behnam-Rassouli M, Valizadeh N, Mahdavi-Shahri N, Rezaee SA. Thiamine as a peripheral neuro-protective agent in comparison with N-acetyl cysteine in axotomized rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:919-926. [PMID: 37427326 PMCID: PMC10329241 DOI: 10.22038/ijbms.2023.67157.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 03/18/2023] [Indexed: 07/11/2023]
Abstract
Objectives In this study, the impact of thiamine (Thi), N-acetyl cysteine (NAC), and dexamethasone (DEX) were investigated in axotomized rats, as a model for neural injury. Materials and Methods Sixty-five axotomized rats were divided into two different experimental approaches, the first experiments included five study groups (n=5): intrathecal Thi (Thi.it), intraperitoneal (Thi), NAC, DEX, and control. Cell survival was assessed in L5DRG in the 4th week by histological assessment. In the second study, 40 animals were engaged to assess Bcl-2, Bax, IL-6, and TNF-α expression in L4-L5DRG in the 1st and 2nd weeks after sural nerve axotomy under treatment of these agents (n=10). Results Ghost cells were observed in morphological assessment of L5DRG sections, and following stereological analysis, the volume and neuronal cell counts significantly were improved in the NAC and Thi.it groups in the 4th week (P<0.05). Although Bcl-2 expression did not show significant differences, Bax was reduced in the Thi group (P=0.01); and the Bcl-2/Bax ratio increased in the NAC group (1st week, P<0.01). Furthermore, the IL-6 and TNF-α expression decreased in the Thi and NAC groups, on the 1st week of treatment (P≤0.05 and P<0.01). However, in the 2nd week, the IL-6 expression in both Thi and NAC groups (P<0.01), and the TNF-α expression in the DEX group (P=0.05) were significantly decreased. Conclusion The findings may classify Thi in the category of peripheral neuroprotective agents, in combination with routine medications. Furthermore, it had strong cell survival effects as it could interfere with the destructive effects of TNF-α by increasing Bax.
Collapse
Affiliation(s)
| | | | - Narges Valizadeh
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naser Mahdavi-Shahri
- Biology Department, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Glucose 6-P Dehydrogenase—An Antioxidant Enzyme with Regulatory Functions in Skeletal Muscle during Exercise. Cells 2022; 11:cells11193041. [PMID: 36231003 PMCID: PMC9563910 DOI: 10.3390/cells11193041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Hypomorphic Glucose 6-P dehydrogenase (G6PD) alleles, which cause G6PD deficiency, affect around one in twenty people worldwide. The high incidence of G6PD deficiency may reflect an evolutionary adaptation to the widespread prevalence of malaria, as G6PD-deficient red blood cells (RBCs) are hostile to the malaria parasites that infect humans. Although medical interest in this enzyme deficiency has been mainly focused on RBCs, more recent evidence suggests that there are broader implications for G6PD deficiency in health, including in skeletal muscle diseases. G6PD catalyzes the rate-limiting step in the pentose phosphate pathway (PPP), which provides the precursors of nucleotide synthesis for DNA replication as well as reduced nicotinamide adenine dinucleotide phosphate (NADPH). NADPH is involved in the detoxification of cellular reactive oxygen species (ROS) and de novo lipid synthesis. An association between increased PPP activity and the stimulation of cell growth has been reported in different tissues including the skeletal muscle, liver, and kidney. PPP activity is increased in skeletal muscle during embryogenesis, denervation, ischemia, mechanical overload, the injection of myonecrotic agents, and physical exercise. In fact, the highest relative increase in the activity of skeletal muscle enzymes after one bout of exhaustive exercise is that of G6PD, suggesting that the activation of the PPP occurs in skeletal muscle to provide substrates for muscle repair. The age-associated loss in muscle mass and strength leads to a decrease in G6PD activity and protein content in skeletal muscle. G6PD overexpression in Drosophila Melanogaster and mice protects against metabolic stress, oxidative damage, and age-associated functional decline, and results in an extended median lifespan. This review discusses whether the well-known positive effects of exercise training in skeletal muscle are mediated through an increase in G6PD.
Collapse
|
6
|
Qiu Y, Buffonge S, Ramnath R, Jenner S, Fawaz S, Arkill KP, Neal C, Verkade P, White SJ, Hezzell M, Salmon AHJ, Suleiman MS, Welsh GI, Foster RR, Madeddu P, Satchell SC. Endothelial glycocalyx is damaged in diabetic cardiomyopathy: angiopoietin 1 restores glycocalyx and improves diastolic function in mice. Diabetologia 2022; 65:879-894. [PMID: 35211778 PMCID: PMC8960650 DOI: 10.1007/s00125-022-05650-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Diabetic cardiomyopathy (DCM) is a serious and under-recognised complication of diabetes. The first sign is diastolic dysfunction, which progresses to heart failure. The pathophysiology of DCM is incompletely understood but microcirculatory changes are important. Endothelial glycocalyx (eGlx) plays multiple vital roles in the microcirculation, including in the regulation of vascular permeability, and is compromised in diabetes but has not previously been studied in the coronary microcirculation in diabetes. We hypothesised that eGlx damage in the coronary microcirculation contributes to increased microvascular permeability and hence to cardiac dysfunction. METHODS We investigated eGlx damage and cardiomyopathy in mouse models of type 1 (streptozotocin-induced) and type 2 (db/db) diabetes. Cardiac dysfunction was determined by echocardiography. We obtained eGlx depth and coverage by transmission electron microscopy (TEM) on mouse hearts perfusion-fixed with glutaraldehyde and Alcian Blue. Perivascular oedema was assessed from TEM images by measuring the perivascular space area. Lectin-based fluorescence was developed to study eGlx in paraformaldehyde-fixed mouse and human tissues. The eGlx of human conditionally immortalised coronary microvascular endothelial cells (CMVECs) in culture was removed with eGlx-degrading enzymes before measurement of protein passage across the cell monolayer. The mechanism of eGlx damage in the diabetic heart was investigated by quantitative reverse transcription-PCR array and matrix metalloproteinase (MMP) activity assay. To directly demonstrate that eGlx damage disturbs cardiac function, isolated rat hearts were treated with enzymes in a Langendorff preparation. Angiopoietin 1 (Ang1) is known to restore eGlx and so was used to investigate whether eGlx restoration reverses diastolic dysfunction in mice with type 1 diabetes. RESULTS In a mouse model of type 1 diabetes, diastolic dysfunction (confirmed by echocardiography) was associated with loss of eGlx from CMVECs and the development of perivascular oedema, suggesting increased microvascular permeability. We confirmed in vitro that eGlx removal increases CMVEC monolayer permeability. We identified increased MMP activity as a potential mechanism of eGlx damage and we observed loss of syndecan 4 consistent with MMP activity. In a mouse model of type 2 diabetes we found a similar loss of eGlx preceding the development of diastolic dysfunction. We used isolated rat hearts to demonstrate that eGlx damage (induced by enzymes) is sufficient to disturb cardiac function. Ang1 restored eGlx and this was associated with reduced perivascular oedema and amelioration of the diastolic dysfunction seen in mice with type 1 diabetes. CONCLUSIONS/INTERPRETATION The association of CMVEC glycocalyx damage with diastolic dysfunction in two diabetes models suggests that it may play a pathophysiological role and the enzyme studies confirm that eGlx damage is sufficient to impair cardiac function. Ang1 rapidly restores the CMVEC glycocalyx and improves diastolic function. Our work identifies CMVEC glycocalyx damage as a potential contributor to the development of DCM and therefore as a therapeutic target.
Collapse
Affiliation(s)
- Yan Qiu
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK.
| | - Stanley Buffonge
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Raina Ramnath
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Sophie Jenner
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Sarah Fawaz
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Kenton P Arkill
- Biodiscovery Institute, Medicine, University of Nottingham, Nottingham, UK
| | - Chris Neal
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Stephen J White
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Melanie Hezzell
- Bristol Veterinary School, University of Bristol, Langford, UK
| | - Andrew H J Salmon
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
- Renal Service, Specialist Medicine and Health of Older People, North Shore Hospital, Waitemata District Health Board, Takapuna, Auckland, New Zealand
| | - M-Saadeh Suleiman
- Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Rebecca R Foster
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Paolo Madeddu
- Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Simon C Satchell
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Wang Z, Qiu Z, Hua S, Yang W, Chen Y, Huang F, Fan Y, Tong L, Xu T, Tong X, Yang K, Jin W. Nuclear Tkt promotes ischemic heart failure via the cleaved Parp1/Aif axis. Basic Res Cardiol 2022; 117:18. [PMID: 35380314 DOI: 10.1007/s00395-022-00925-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/31/2023]
Abstract
Transketolase (Tkt), an enzyme in pentose phosphate pathway, has been reported to regulate genome instability and cell survival in cancers. Yet, the role of Tkt after myocardial ischemic injury remains to be elucidated. Label-free proteomics revealed dramatic elevation of Tkt in murine hearts after myocardial infarction (MI). Lentivirus-mediated Tkt knockdown ameliorated cardiomyocyte apoptosis and preserved the systolic function after myocardial ischemic injury. In contrast, Tkt overexpression led to the opposite effects. Inducible conditional cardiomyocyte Tkt-knockout mice were generated, and cardiomyocyte-expressed Tkt was found to play an intrinsic role in the ischemic heart failure of these model mice. Furthermore, through luciferase assay and chromatin immunoprecipitation, Tkt was shown to be a direct target of transcription factor Krüppel-like factor 5 (Klf5). In cardiomyocytes under ischemic stress, Tkt redistributed into the nucleus. By binding with the full-length poly(ADP-ribose) polymerase 1 (Parp1), facilitating its cleavage, and activating apoptosis inducible factor (Aif) subsequently, nuclear Tkt demonstrated its non-metabolic functions. Overall, our study confirmed that elevated nuclear Tkt plays a noncanonical role in promoting cardiomyocyte apoptosis via the cleaved Parp1/Aif pathway, leading to the deterioration of cardiac dysfunction.
Collapse
Affiliation(s)
- Zhiyan Wang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200023, People's Republic of China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200023, People's Republic of China
| | - Zeping Qiu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200023, People's Republic of China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200023, People's Republic of China
| | - Sha Hua
- Department of Cardiology, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, 149 S. Chongqing Road, Shanghai, 200020, People's Republic of China
| | - Wenbo Yang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200023, People's Republic of China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200023, People's Republic of China
| | - Yanjia Chen
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200023, People's Republic of China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200023, People's Republic of China
| | - Fanyi Huang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200023, People's Republic of China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200023, People's Republic of China
| | - Yingze Fan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200023, People's Republic of China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200023, People's Republic of China
| | - Lingfeng Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Tianle Xu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025, People's Republic of China
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 S. Chongqing Road, Shanghai, 200025, People's Republic of China.
| | - Ke Yang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200023, People's Republic of China.
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200023, People's Republic of China.
| | - Wei Jin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200023, People's Republic of China.
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200023, People's Republic of China.
- Department of Cardiology, Ruijin Hospital/Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, 149 S. Chongqing Road, Shanghai, 200020, People's Republic of China.
| |
Collapse
|
8
|
Makarchikov AF, Kudyrka TG, Luchko TA, Yantsevich AV, Rusina IM, Makar AA, Kolas IK, Usanov SA. Synthesis, physico-chemical properties and effect of adenosine thiamine triphosphate on vitamin B 1 metabolism in the liver of alloxan diabetic rats. Biochim Biophys Acta Gen Subj 2022; 1866:130086. [PMID: 35016976 DOI: 10.1016/j.bbagen.2022.130086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Adenosine thiamine triphosphate (AThTP) is a nucleotide discovered in bacteria and some other living organisms more than a decade ago. No biochemical function for AThTP has been established yet, however, experimental data available indicate its possible involvement in metabolic regulation or cell signaling. Metabolism of AThTP in mammals, as well as the feasibility of its pharmacological application, is essentially unstudied. METHODS Preparative low-pressure chromatography was employed to purify chemically synthesized AThTP with its further analysis by mass spectrometry, HPLC, UV and fluorescence spectroscopy. Enzyme activity assays along with HPLC were used to examine the effects of AThTP and thiamine on vitamin B1 metabolism in the liver of alloxan-induced diabetic rats. RESULTS An improved procedure for AThTP synthesis and purification is elaborated. Solution stability, optical spectral properties and the molar absorption coefficient for AThTP were determined. The levels of thiamine compounds were found to be increased in the liver of diabetic rats. Neither AThTP nor thiamine treatment affected hepatic vitamin B1 metabolism. Fasting blood glucose concentration was also unchangeable after AThTP or thiamine administration. GENERAL SIGNIFICANCE Contrast to the widespread view about thiamine deficiency in diabetes, our results clearly shows an adaptive increase in the level of B1 vitamers in the liver of alloxan diabetic rats with no further rising after AThTP or thiamine treatment at a moderate dose. Neither AThTP nor thiamine is effective in glycaemic control. These findings are to be considered in future studies dealing with thiamine or its analogues application to correct metabolic disturbances in diabetes.
Collapse
Affiliation(s)
- Alexander F Makarchikov
- Grodno State Agrarian University, 28 Tereshkova St., Grodno 230008, Belarus; Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences of Belarus, 50 BLK, Grodno 230030, Belarus.
| | - Tatsiana G Kudyrka
- Grodno State Agrarian University, 28 Tereshkova St., Grodno 230008, Belarus; Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences of Belarus, 50 BLK, Grodno 230030, Belarus
| | - Tatyana A Luchko
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences of Belarus, 50 BLK, Grodno 230030, Belarus
| | - Aliaksei V Yantsevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 5/2 Kuprevicha St., Minsk 220141, Belarus
| | - Iryna M Rusina
- Grodno State Agrarian University, 28 Tereshkova St., Grodno 230008, Belarus; Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences of Belarus, 50 BLK, Grodno 230030, Belarus
| | - Alena A Makar
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences of Belarus, 50 BLK, Grodno 230030, Belarus
| | - Iryna K Kolas
- Grodno State Agrarian University, 28 Tereshkova St., Grodno 230008, Belarus; Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences of Belarus, 50 BLK, Grodno 230030, Belarus
| | - Sergey A Usanov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 5/2 Kuprevicha St., Minsk 220141, Belarus
| |
Collapse
|
9
|
Piquereau J, Boitard SE, Ventura-Clapier R, Mericskay M. Metabolic Therapy of Heart Failure: Is There a Future for B Vitamins? Int J Mol Sci 2021; 23:30. [PMID: 35008448 PMCID: PMC8744601 DOI: 10.3390/ijms23010030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/17/2023] Open
Abstract
Heart failure (HF) is a plague of the aging population in industrialized countries that continues to cause many deaths despite intensive research into more effective treatments. Although the therapeutic arsenal to face heart failure has been expanding, the relatively short life expectancy of HF patients is pushing towards novel therapeutic strategies. Heart failure is associated with drastic metabolic disorders, including severe myocardial mitochondrial dysfunction and systemic nutrient deprivation secondary to severe cardiac dysfunction. To date, no effective therapy has been developed to restore the cardiac energy metabolism of the failing myocardium, mainly due to the metabolic complexity and intertwining of the involved processes. Recent years have witnessed a growing scientific interest in natural molecules that play a pivotal role in energy metabolism with promising therapeutic effects against heart failure. Among these molecules, B vitamins are a class of water soluble vitamins that are directly involved in energy metabolism and are of particular interest since they are intimately linked to energy metabolism and HF patients are often B vitamin deficient. This review aims at assessing the value of B vitamin supplementation in the treatment of heart failure.
Collapse
Affiliation(s)
- Jérôme Piquereau
- UMR-S 1180, Inserm Unit of Signaling and Cardiovascular Pathophysiology, Faculty of Pharmacy, Université Paris-Saclay, 92296 Chatenay-Malabry, France; (S.E.B.); (R.V.-C.)
| | | | | | - Mathias Mericskay
- UMR-S 1180, Inserm Unit of Signaling and Cardiovascular Pathophysiology, Faculty of Pharmacy, Université Paris-Saclay, 92296 Chatenay-Malabry, France; (S.E.B.); (R.V.-C.)
| |
Collapse
|
10
|
Arc-Chagnaud C, Salvador-Pascual A, Garcia-Dominguez E, Olaso-Gonzalez G, Correas AG, Serna E, Brioche T, Chopard A, Fernandez-Marcos PJ, Serrano M, Serrano AL, Muñoz-Cánoves P, Sebastiá V, Viña J, Gomez-Cabrera MC. Glucose 6-P dehydrogenase delays the onset of frailty by protecting against muscle damage. J Cachexia Sarcopenia Muscle 2021; 12:1879-1896. [PMID: 34704386 PMCID: PMC8718080 DOI: 10.1002/jcsm.12792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frailty is a major age-associated syndrome leading to disability. Oxidative damage plays a significant role in the promotion of frailty. The cellular antioxidant system relies on reduced nicotinamide adenine dinucleotide phosphate (NADPH) that is highly dependent on glucose 6-P dehydrogenase (G6PD). The G6PD-overexpressing mouse (G6PD-Tg) is protected against metabolic stresses. Our aim was to examine whether this protection delays frailty. METHODS Old wild-type (WT) and G6PD-Tg mice were evaluated longitudinally in terms of frailty. Indirect calorimetry, transcriptomic profile, and different skeletal muscle quality markers and muscle regenerative capacity were also investigated. RESULTS The percentage of frail mice was significantly lower in the G6PD-Tg than in the WT genotype, especially in 26-month-old mice where 50% of the WT were frail vs. only 13% of the Tg ones (P < 0.001). Skeletal muscle transcriptomic analysis showed an up-regulation of respiratory chain and oxidative phosphorylation (P = 0.009) as well as glutathione metabolism (P = 0.035) pathways in the G6PD-Tg mice. Accordingly, the Tg animals exhibited an increase in reduced glutathione (34.5%, P < 0.01) and a decrease on its oxidized form (-69%, P < 0.05) and in lipid peroxidation (4-HNE: -20.5%, P < 0.05). The G6PD-Tg mice also showed reduced apoptosis (BAX/Bcl2: -25.5%, P < 0.05; and Bcl-xL: -20.5%, P < 0.05), lower levels of the intramuscular adipocyte marker FABP4 (-54.7%, P < 0.05), and increased markers of mitochondrial content (COX IV: 89.7%, P < 0.05; Grp75: 37.8%, P < 0.05) and mitochondrial OXPHOS complexes (CII: 81.25%, P < 0.01; CIII: 52.5%, P < 0.01; and CV: 37.2%, P < 0.05). Energy expenditure (-4.29%, P < 0.001) and the respiratory exchange ratio were lower (-13.4%, P < 0.0001) while the locomotor activity was higher (43.4%, P < 0.0001) in the 20-month-old Tg, indicating a major energetic advantage in these mice. Short-term exercise training in young C57BL76J mice induced a robust activation of G6PD in skeletal muscle (203.4%, P < 0.05), similar to that achieved in the G6PD-Tg mice (142.3%, P < 0.01). CONCLUSIONS Glucose 6-P dehydrogenase deficiency can be an underestimated risk factor for several human pathologies and even frailty. By overexpressing G6PD, we provide the first molecular model of robustness. Because G6PD is regulated by pharmacological and physiological interventions like exercise, our results provide molecular bases for interventions that by increasing G6PD will delay the onset of frailty.
Collapse
Affiliation(s)
- Coralie Arc-Chagnaud
- Freshage Research Group, Department of Physiology, School of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Andrea Salvador-Pascual
- Freshage Research Group, Department of Physiology, School of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.,Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology, School of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, School of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Angela G Correas
- Freshage Research Group, Department of Physiology, School of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Eva Serna
- Freshage Research Group, Department of Physiology, School of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Thomas Brioche
- INRAE, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, Montpellier, France
| | - Angele Chopard
- INRAE, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, Montpellier, France
| | - Pablo J Fernandez-Marcos
- Metabolic Syndrome Group - BIOPROMET, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Manuel Serrano
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Antonio L Serrano
- Department of Experimental and Health Sciences, University Pompeu Fabra and CIBERNED, Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.,Department of Experimental and Health Sciences, University Pompeu Fabra and CIBERNED, Barcelona, Spain.,Spanish National Center on Cardiovascular Research (CNIC), Madrid, Spain
| | - Vicente Sebastiá
- Clinica Ypsilon de medicina física y rehabilitación, Valencia, Spain
| | - Jose Viña
- Freshage Research Group, Department of Physiology, School of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, School of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
11
|
Yuko AE, Carvalho Rigaud VO, Kurian J, Lee JH, Kasatkin N, Behanan M, Wang T, Luchesse AM, Mohsin S, Koch WJ, Wang H, Khan M. LIN28a induced metabolic and redox regulation promotes cardiac cell survival in the heart after ischemic injury. Redox Biol 2021; 47:102162. [PMID: 34628272 PMCID: PMC8515487 DOI: 10.1016/j.redox.2021.102162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
RATIONALE Cell-based therapeutics have been extensively used for cardiac repair yet underperform due to inability of the donated cells to survive in near anoxia after cardiac injury. Cellular metabolism is linked to maintenance of cardiac stem cell (CSC) renewal, proliferation and survival. Ex vivo expansion alters (CSC) metabolism increasing reliance on oxygen dependent respiration. Whether promoting 'metabolic flexibility' in CSCs augments their ability to survive in near anoxia and repair the heart after injury remains untested. OBJECTIVE Determine the effect of LIN28a induced metabolic flexibility on cardiac tissue derived stem like cell (CTSC) survival and repair after cardiac injury. METHODS AND RESULTS LIN28a expression coincides during heart development but is lost in adult CTSCs. Reintroduction of LIN28a in adult CTSC (CTSC-LIN) increased proliferation, survival, expression of pluripotency genes and reduced senescence compared to control (CTSC-GFP). Metabolomic analysis show glycolytic intermediates upregulated in CTSC-LIN together with increased lactate production, pyruvate kinase activity, glucose uptake, ECAR and expression of glycolytic enzymes compared to CTSC-GFP. Additionally, CTSC-LIN showed significantly reduced ROS generation and increase antioxidant markers. In response to H2O2 induced oxidative stress, CTSC-LIN showed increased survival and expression of glycolytic genes. LIN28a salutary effects on CTSCs were linked to PDK1/let-7 signaling pathway with loss of PDK1 or alteration of let-7 abrogating LIN28a effects. Following transplantation in the heart after myocardial infarction (MI), CTSC-LIN showed 6% survival rate at day 7 after injection compared to control cells together with increased proliferation and significant increase in cardiac structure and function 8 weeks after MI. Finally, CSTC-LIN showed enhanced ability to secrete paracrine factors under hypoxic conditions and ability to promote cardiomyocyte proliferation following ischemic cardiac injury. CONCLUSIONS LIN28a modification promotes metabolic flexibility in CTSCs enhancing proliferation and survival post transplantation including ability to repair the heart after myocardial injury.
Collapse
Affiliation(s)
| | | | | | - Ji H Lee
- Center for Metabolic Disease Research (CMDR), USA
| | | | | | - Tao Wang
- Cardiovascular Research Institute (CVRC), USA
| | | | - Sadia Mohsin
- Cardiovascular Research Institute (CVRC), USA; Department of Pharmacology, LKSOM, Temple University, LKSOM, Temple University, USA
| | - Walter J Koch
- Center for Translational Medicine (CTM), LKSOM, Temple University, USA
| | - Hong Wang
- Center for Metabolic Disease Research (CMDR), USA
| | - Mohsin Khan
- Center for Metabolic Disease Research (CMDR), USA; Department of Physiology, LKSOM, Temple University, USA.
| |
Collapse
|
12
|
Jin ES, Lee MH, Malloy CR. 13 C NMR of glutamate for monitoring the pentose phosphate pathway in myocardium. NMR IN BIOMEDICINE 2021; 34:e4533. [PMID: 33900680 DOI: 10.1002/nbm.4533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
After administration of 13 C-labeled glucose, the activity of the pentose phosphate pathway (PPP) is often assessed by the distribution of 13 C in lactate. However, in some tissues, such as the well-oxygenated heart, the concentration of lactate may be too low for convenient analysis by NMR. Here, we examined 13 C-labeled glutamate as an alternative biomarker of the PPP in the heart. Isolated rat hearts were perfused with media containing [2,3-13 C2 ]glucose and the tissue extracts were analyzed. Metabolism of [2,3-13 C2 ]glucose yields [1,2-13 C2 ]pyruvate via glycolysis and [2,3-13 C2 ]pyruvate via the PPP. Pyruvate is in exchange with lactate or is further metabolized to glutamate through pyruvate dehydrogenase and the TCA cycle. A doublet from [4,5-13 C2 ]glutamate, indicating flux through the PPP, was readily detected in 13 C NMR of heart extracts even when the corresponding doublet from [2,3-13 C2 ]lactate was minimal. Benfotiamine, known to induce the PPP, caused an increase in production of [4,5-13 C2 ]glutamate. In rats receiving [2,3-13 C2 ]glucose, brain extracts showed well-resolved signals from both [2,3-13 C2 ]lactate and [4,5-13 C2 ]glutamate in 13 C NMR spectra. Assessment of the PPP in the brain based on glutamate had a strong linear correlation with lactate-based assessment. In summary, 13 C NMR analysis of glutamate enabled detection of the low PPP activity in isolated hearts. This analyte is an alternative to lactate for monitoring the PPP with the use of [2,3-13 C2 ]glucose.
Collapse
Affiliation(s)
- Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Min H Lee
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- VA North Texas Health Care System, Dallas, Texas, USA
| |
Collapse
|
13
|
The Controversial Role of Glucose-6-Phosphate Dehydrogenase Deficiency on Cardiovascular Disease: A Narrative Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5529256. [PMID: 34007401 PMCID: PMC8110402 DOI: 10.1155/2021/5529256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disorders (CVD) are highly prevalent and the leading cause of death worldwide. Atherosclerosis is responsible for most cases of CVD. The plaque formation and subsequent thrombosis in atherosclerosis constitute an ongoing process that is influenced by numerous risk factors such as hypertension, diabetes, dyslipidemia, obesity, smoking, inflammation, and sedentary lifestyle. Among the various risk and protective factors, the role of glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common inborn enzyme disorder across populations, is still debated. For decades, it has been considered a protective factor against the development of CVD. However, in the recent years, growing scientific evidence has suggested that this inherited condition may act as a CVD risk factor. The role of G6PD deficiency in the atherogenic process has been investigated using in vitro or ex vivo cellular models, animal models, and epidemiological studies in human cohorts of variable size and across different ethnic groups, with conflicting results. In this review, the impact of G6PD deficiency on CVD was critically reconsidered, taking into account the most recent acquisitions on molecular and biochemical mechanisms, namely, antioxidative mechanisms, glutathione recycling, and nitric oxide production, as well as their mutual interactions, which may be impaired by the enzyme defect in the context of the pentose phosphate pathway. Overall, current evidence supports the notion that G6PD downregulation may favor the onset and evolution of atheroma in subjects at risk of CVD. Given the relatively high frequency of this enzyme deficiency in several regions of the world, this finding might be of practical importance to tailor surveillance guidelines and facilitate risk stratification.
Collapse
|
14
|
Stem Cell Metabolism: Powering Cell-Based Therapeutics. Cells 2020; 9:cells9112490. [PMID: 33207756 PMCID: PMC7696341 DOI: 10.3390/cells9112490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Cell-based therapeutics for cardiac repair have been extensively used during the last decade. Preclinical studies have demonstrated the effectiveness of adoptively transferred stem cells for enhancement of cardiac function. Nevertheless, several cell-based clinical trials have provided largely underwhelming outcomes. A major limitation is the lack of survival in the harsh cardiac milieu as only less than 1% donated cells survive. Recent efforts have focused on enhancing cell-based therapeutics and understanding the biology of stem cells and their response to environmental changes. Stem cell metabolism has recently emerged as a critical determinant of cellular processes and is uniquely adapted to support proliferation, stemness, and commitment. Metabolic signaling pathways are remarkably sensitive to different environmental signals with a profound effect on cell survival after adoptive transfer. Stem cells mainly generate energy through glycolysis while maintaining low oxidative phosphorylation (OxPhos), providing metabolites for biosynthesis of macromolecules. During commitment, there is a shift in cellular metabolism, which alters cell function. Reprogramming stem cell metabolism may represent an attractive strategy to enhance stem cell therapy for cardiac repair. This review summarizes the current literature on how metabolism drives stem cell function and how this knowledge can be applied to improve cell-based therapeutics for cardiac repair.
Collapse
|
15
|
Lew JKS, Pearson JT, Saw E, Tsuchimochi H, Wei M, Ghosh N, Du CK, Zhan DY, Jin M, Umetani K, Shirai M, Katare R, Schwenke DO. Exercise Regulates MicroRNAs to Preserve Coronary and Cardiac Function in the Diabetic Heart. Circ Res 2020; 127:1384-1400. [PMID: 32907486 DOI: 10.1161/circresaha.120.317604] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE Diabetic heart disease (DHD) is a debilitating manifestation of type 2 diabetes mellitus. Exercise has been proposed as a potential therapy for DHD, although the effectiveness of exercise in preventing or reversing the progression of DHD remains controversial. Cardiac function is critically dependent on the preservation of coronary vascular function. OBJECTIVE We aimed to elucidate the effectiveness and mechanisms by which exercise facilitates coronary and cardiac-protection during the onset and progression of DHD. METHODS AND RESULTS Diabetic db/db and nondiabetic mice, with or without underlying cardiac dysfunction (16 and 8 weeks old, respectively) were subjected to either moderate-intensity exercise or high-intensity exercise for 8 weeks. Subsequently, synchrotron microangiography, immunohistochemistry, Western blot, and real-time polymerase chain reaction were used to assess time-dependent changes in cardiac and coronary structure and function associated with diabetes mellitus and exercise and determine whether these changes reflect the observed changes in cardiac-enriched and vascular-enriched microRNAs (miRNAs). We show that, if exercise is initiated from 8 weeks of age, both moderate-intensity exercise and high-intensity exercise prevented the onset of coronary and cardiac dysfunction, apoptosis, fibrosis, microvascular rarefaction, and disruption of miRNA signaling, as seen in the nonexercised diabetic mice. Conversely, the cardiovascular benefits of moderate-intensity exercise were absent if the exercise was initiated after the diabetic mice had already established cardiac dysfunction (ie, from 16 weeks of age). The experimental silencing or upregulation of miRNA-126 activity suggests the mechanism underpinning the cardiovascular benefits of exercise were mediated, at least in part, through tissue-specific miRNAs. CONCLUSIONS Our findings provide the first experimental evidence for the critical importance of early exercise intervention in ameliorating the onset and progression of DHD. Our results also suggest that the beneficial effects of exercise are mediated through the normalization of cardiovascular-enriched miRNAs, which are dysregulated in DHD.
Collapse
Affiliation(s)
- Jason Kar-Sheng Lew
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand (J.K.-S.L., E.S., M.W., N.G., R.K., D.O.S.)
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (J.T.P., H.T., C.-K.D., D.-Y.Z., M.-H.K.).,Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia (J.T.P.)
| | - Eugene Saw
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand (J.K.-S.L., E.S., M.W., N.G., R.K., D.O.S.)
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (J.T.P., H.T., C.-K.D., D.-Y.Z., M.-H.K.)
| | - Melanie Wei
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand (J.K.-S.L., E.S., M.W., N.G., R.K., D.O.S.)
| | - Nilanjan Ghosh
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand (J.K.-S.L., E.S., M.W., N.G., R.K., D.O.S.)
| | - Cheng-Kun Du
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (J.T.P., H.T., C.-K.D., D.-Y.Z., M.-H.K.)
| | - Dong-Yun Zhan
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (J.T.P., H.T., C.-K.D., D.-Y.Z., M.-H.K.)
| | - Meihua Jin
- Department of Advanced Medical Research for Pulmonary Hypertension, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (M.S., M.J.)
| | - Keiji Umetani
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan (K.U.)
| | - Mikiyasu Shirai
- Department of Advanced Medical Research for Pulmonary Hypertension, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (M.S., M.J.)
| | - Rajesh Katare
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand (J.K.-S.L., E.S., M.W., N.G., R.K., D.O.S.)
| | - Daryl O Schwenke
- Department of Physiology, School of Biomedical Sciences, HeartOtago, University of Otago, Dunedin, New Zealand (J.K.-S.L., E.S., M.W., N.G., R.K., D.O.S.)
| |
Collapse
|
16
|
Dysregulation of ghrelin in diabetes impairs the vascular reparative response to hindlimb ischemia in a mouse model; clinical relevance to peripheral artery disease. Sci Rep 2020; 10:13651. [PMID: 32788622 PMCID: PMC7423620 DOI: 10.1038/s41598-020-70391-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/21/2020] [Indexed: 11/25/2022] Open
Abstract
Type 2 diabetes is a prominent risk factor for peripheral artery disease (PAD). Yet, the mechanistic link between diabetes and PAD remains unclear. This study proposes that dysregulation of the endogenous hormone ghrelin, a potent modulator of vascular function, underpins the causal link between diabetes and PAD. Moreover, this study aimed to demonstrate the therapeutic potential of exogenous ghrelin in a diabetic mouse model of PAD. Standard ELISA analysis was used to quantify and compare circulating levels of ghrelin between (i) human diabetic patients with or without PAD (clinic) and (ii) db/db diabetic and non-diabetic mice (lab). Db/db mice underwent unilateral hindlimb ischaemia (HLI) for 14 days and treated with or without exogenous ghrelin (150 µg/kg/day.) Subsequently vascular reparation, angiogenesis, hindlimb perfusion, structure and function were assessed using laser Doppler imaging, micro-CT, microangiography, and protein and micro-RNA (miRNA) analysis. We further examined hindlimb perfusion recovery of ghrelin KO mice to determine whether an impaired vascular response to HLI is linked to ghrelin dysregulation in diabetes. Patients with PAD, with or without diabetes, had significantly lower circulating levels of endogenous ghrelin, compared to healthy individuals. Diabetic db/db mice had ghrelin levels that were only 7% of non-diabetic mice. The vascular reparative capacity of diabetic db/db mice in response to HLI was impaired compared to non-diabetic mice and, importantly, comparable to ghrelin KO mice. Daily therapeutic treatment of db/db mice with ghrelin for 14 days post HLI, stimulated angiogenesis, and improved skeletal muscle architecture and cell survival, which was associated with an increase in pro-angiogenic miRNAs-126 and -132. These findings unmask an important role for endogenous ghrelin in vascular repair following limb ischemia, which appears to be downregulated in diabetic patients. Moreover, these results implicate exogenous ghrelin as a potential novel therapy to enhance perfusion in patients with lower limb PAD, especially in diabetics.
Collapse
|
17
|
Deshmukh SV, Prabhakar B, Kulkarni YA. Water Soluble Vitamins and their Role in Diabetes and its Complications. Curr Diabetes Rev 2020; 16:649-656. [PMID: 31526351 DOI: 10.2174/1573399815666190916114040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/18/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diabetes is a metabolic disorder associated with abnormally high levels of glucose in the blood due to inadequate production of insulin or inadequate sensitivity of cells to the action of insulin. Diabetes has become an increasing challenge in the world. The predicted diabetic population according to the World Health Organization is 8.7% between the age group 20-70 years. There are many complications linked to prolonged high blood glucose levels, such as microvascular complications and macrovascular complications. Vitamins play an important role in glucose metabolism and the potential utility of supplementation is relevant for the prevention and/or management of diabetes mellitus and its complications. METHODS Literature search was performed using various dataset like PUBMED, EBSCO, ProQuest, Scopus and selected websites like the National Institute of Health and the World Health Organization. RESULT Water-soluble vitamins have been thoroughly studied for their activity in diabetes and diabetic complications. CONCLUSION Water-soluble vitamins like B1, B3, B6, B7, B9 and B12 have notable effects in diabetes mellitus and its related complications like nephropathy, neuropathy, retinopathy and cardiomyopathy.
Collapse
Affiliation(s)
- Shreeya V Deshmukh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta road, Vile Parle (W), Mumbai-400056, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta road, Vile Parle (W), Mumbai-400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta road, Vile Parle (W), Mumbai-400056, India
| |
Collapse
|
18
|
Rawal S, Nagesh PT, Coffey S, Van Hout I, Galvin IF, Bunton RW, Davis P, Williams MJA, Katare R. Early dysregulation of cardiac-specific microRNA-208a is linked to maladaptive cardiac remodelling in diabetic myocardium. Cardiovasc Diabetol 2019; 18:13. [PMID: 30696455 PMCID: PMC6352455 DOI: 10.1186/s12933-019-0814-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/14/2019] [Indexed: 02/08/2023] Open
Abstract
Background The diabetic heart undergoes remodelling contributing to an increased incidence of heart failure in individuals with diabetes at a later stage. The molecular regulators that drive this process in the diabetic heart are still unknown. Methods Real-time (RT) PCR analysis was performed to determine the expression of cardiac specific microRNA-208a in right atrial appendage (RAA) and left ventricular (LV) biopsy tissues collected from diabetic and non-diabetic patients undergoing coronary artery bypass graft surgery. To determine the time-dependent changes, cardiac tissue were collected from type 2 diabetic mice at different age groups. A western blotting analysis was conducted to determine the expression of contractile proteins α- and β-myosin heavy chain (MHC) and thyroid hormone receptor-α (TR-α), the negative regulator of β-MHC. To determine the beneficial effects of therapeutic modulation of miR-208a, high glucose treated adult mouse HL-1 cardiomyocytes were transfected with anti-miR-208a. Results RT-PCR analysis showed marked upregulation of miR-208a from early stages of diabetes in type 2 diabetic mouse heart, which was associated with a marked increase in the expression of pro-hypertrophic β-MHC and downregulation of TR-α. Interestingly, upregulation of miR-208a preceded the switch of α-/β-MHC isoforms and the development of diastolic and systolic dysfunction. We also observed significant upregulation of miR-208a and modulation of miR-208a associated proteins in the type 2 human diabetic heart. Therapeutic inhibition of miR-208a activity in high glucose treated HL-1 cardiomyocytes prevented the activation of β-MHC and hence the hypertrophic response. Conclusion Our results provide the first evidence that early modulation of miR-208a in the diabetic heart induces alterations in the downstream signaling pathway leading to cardiac remodelling and that therapeutic inhibition of miR-208a may be beneficial in preventing diabetes-induced adverse remodelling of the heart.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Physiology-HeartOtago, Otago School of Medical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand.,New York University, New York, USA
| | - Prashanth Thevakar Nagesh
- Department of Microbiology & Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.,New York University, New York, USA
| | - Sean Coffey
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Isabelle Van Hout
- Department of Physiology-HeartOtago, Otago School of Medical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - Ivor F Galvin
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Richard W Bunton
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Philip Davis
- Department of Cardiothoracic Surgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael J A Williams
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology-HeartOtago, Otago School of Medical Sciences, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand.
| |
Collapse
|
19
|
Chhabra A, Mishra S, Kumar G, Gupta A, Keshri GK, Bharti B, Meena RN, Prabhakar AK, Singh DK, Bhargava K, Sharma M. Glucose-6-phosphate dehydrogenase is critical for suppression of cardiac hypertrophy by H 2S. Cell Death Discov 2018; 4:6. [PMID: 29531803 PMCID: PMC5841415 DOI: 10.1038/s41420-017-0010-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Hydrogen Sulfide (H2S), recently identified as the third endogenously produced gaseous messenger, is a promising therapeutic prospect for multiple cardio-pathological states, including myocardial hypertrophy. The molecular niche of H2S in normal or diseased cardiac cells is, however, sparsely understood. Here, we show that β-adrenergic receptor (β-AR) overstimulation, known to produce hypertrophic effects in cardiomyocytes, rapidly decreased endogenous H2S levels. The preservation of intracellular H2S levels under these conditions strongly suppressed hypertrophic responses to adrenergic overstimulation, thus suggesting its intrinsic role in this process. Interestingly, unbiased global transcriptome sequencing analysis revealed an integrated metabolic circuitry, centrally linked by NADPH homeostasis, as the direct target of intracellular H2S augmentation. Within these gene networks, glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme (producing NADPH) in pentose phosphate pathway, emerged as the critical node regulating cellular effects of H2S. Utilizing both cellular and animal model systems, we show that H2S-induced elevated G6PD activity is critical for the suppression of cardiac hypertrophy in response to adrenergic overstimulation. We also describe experimental evidences suggesting multiple processes/pathways involved in regulation of G6PD activity, sustained over extended duration of time, in response to endogenous H2S augmentation. Our data, thus, revealed H2S as a critical endogenous regulator of cardiac metabolic circuitry, and also mechanistic basis for its anti-hypertrophic effects.
Collapse
Affiliation(s)
- Aastha Chhabra
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Shalini Mishra
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Gaurav Kumar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Asheesh Gupta
- Biochemical Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Gaurav Kumar Keshri
- Biochemical Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Brij Bharti
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Ram Niwas Meena
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Amit Kumar Prabhakar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | | | - Kalpana Bhargava
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Manish Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| |
Collapse
|
20
|
Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts. Physiol Rev 2018; 98:419-475. [PMID: 29351515 DOI: 10.1152/physrev.00043.2016] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Bianca C Bernardo
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Natalie L Patterson
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute , Melbourne , Australia ; Department of Paediatrics, University of Melbourne , Victoria , Australia ; Department of Diabetes, Central Clinical School, Monash University , Victoria , Australia ; Department of Medicine, Central Clinical School, Monash University , Victoria , Australia ; and Department of Physiology, School of Biomedical Sciences , Victoria , Australia
| |
Collapse
|
21
|
Tiwari M. Glucose 6 phosphatase dehydrogenase (G6PD) and neurodegenerative disorders: Mapping diagnostic and therapeutic opportunities. Genes Dis 2017; 4:196-203. [PMID: 30258923 PMCID: PMC6150112 DOI: 10.1016/j.gendis.2017.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
Glucose 6 phosphate dehydrogenase (G6PD) is a key and rate limiting enzyme in the pentose phosphate pathway (PPP). The physiological significance of enzyme is providing reduced energy to specific cells like erythrocyte by maintaining co-enzyme nicotinamide adenine dinucleotide phosphate (NADPH). There are preponderance research findings that demonstrate the enzyme (G6PD) role in the energy balance, and it is associated with blood-related diseases and disorders, primarily the anemia resulted from G6PD deficiency. The X-linked genetic deficiency of G6PD and associated non-immune hemolytic anemia have been studied widely across the globe. Recent advancement in biology, more precisely neuroscience has revealed that G6PD is centrally involved in many neurological and neurodegenerative disorders. The neuroprotective role of the enzyme (G6PD) has also been established, as well as the potential of G6PD in oxidative damage and the Reactive Oxygen Species (ROS) produced in cerebral ischemia. Though G6PD deficiency remains a global health issue, however, a paradigm shift in research focusing the potential of the enzyme in neurological and neurodegenerative disorders will surely open a new avenue in diagnostics and enzyme therapeutics. Here, in this study, more emphasis was made on exploring the role of G6PD in neurological and inflammatory disorders as well as non-immune hemolytic anemia, thus providing diagnostic and therapeutic opportunities.
Collapse
Key Words
- ALS, Amyotrophic lateral sclerosis
- DOPA, L-3, 4-dihydroxyphenylalanine
- EC, enzyme commission
- G6 PD, glucose 6 phosphatase dehydrogenase
- Glucose 6 phosphate dehydrogenase
- Hemolytic anemia
- MND, motor neuron disease
- MS, multiples sclerosis
- Metabolic disorders
- Neurodegenerative disorders
- PPP, pentose phosphate pathway
- RBCs, red blood cells
- ROS, reactive oxygen species
- pQ, poly-glutamine
Collapse
Affiliation(s)
- Manju Tiwari
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India
| |
Collapse
|
22
|
Integration of flux measurements to resolve changes in anabolic and catabolic metabolism in cardiac myocytes. Biochem J 2017; 474:2785-2801. [PMID: 28706006 PMCID: PMC5545928 DOI: 10.1042/bcj20170474] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
Abstract
Although ancillary pathways of glucose metabolism are critical for synthesizing cellular building blocks and modulating stress responses, how they are regulated remains unclear. In the present study, we used radiometric glycolysis assays, [13C6]-glucose isotope tracing, and extracellular flux analysis to understand how phosphofructokinase (PFK)-mediated changes in glycolysis regulate glucose carbon partitioning into catabolic and anabolic pathways. Expression of kinase-deficient or phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in rat neonatal cardiomyocytes co-ordinately regulated glycolytic rate and lactate production. Nevertheless, in all groups, >40% of glucose consumed by the cells was unaccounted for via catabolism to pyruvate, which suggests entry of glucose carbons into ancillary pathways branching from metabolites formed in the preparatory phase of glycolysis. Analysis of 13C fractional enrichment patterns suggests that PFK activity regulates glucose carbon incorporation directly into the ribose and the glycerol moieties of purines and phospholipids, respectively. Pyrimidines, UDP-N-acetylhexosamine, and the fatty acyl chains of phosphatidylinositol and triglycerides showed lower 13C incorporation under conditions of high PFK activity; the isotopologue 13C enrichment pattern of each metabolite indicated limitations in mitochondria-engendered aspartate, acetyl CoA and fatty acids. Consistent with this notion, high glycolytic rate diminished mitochondrial activity and the coupling of glycolysis to glucose oxidation. These findings suggest that a major portion of intracellular glucose in cardiac myocytes is apportioned for ancillary biosynthetic reactions and that PFK co-ordinates the activities of the pentose phosphate, hexosamine biosynthetic, and glycerolipid synthesis pathways by directly modulating glycolytic intermediate entry into auxiliary glucose metabolism pathways and by indirectly regulating mitochondrial cataplerosis.
Collapse
|
23
|
Down-regulation of miR-15a/b accelerates fibrotic remodelling in the Type 2 diabetic human and mouse heart. Clin Sci (Lond) 2017; 131:847-863. [PMID: 28289072 DOI: 10.1042/cs20160916] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022]
Abstract
Aim: Myocardial fibrosis is a well-established cause of increased myocardial stiffness and subsequent diastolic dysfunction in the diabetic heart. The molecular regulators that drive the process of fibrotic events in the diabetic heart are still unknown. We determined the role of the microRNA (miR)-15 family in fibrotic remodelling of the diabetic heart.Methods and results: Right atrial appendage (RAA) and left ventricular (LV) biopsy tissues collected from diabetic and non-diabetic (ND) patients undergoing coronary artery bypass graft surgery showed significant down-regulation of miR-15a and -15b. This was associated with marked up-regulation of pro-fibrotic transforming growth factor-β receptor-1 (TGFβR1) and connective tissue growth factor (CTGF), direct targets for miR-15a/b and pro-senescence p53 protein. Interestingly, down-regulation of miR-15a/b preceded the development of diastolic dysfunction and fibrosis in Type 2 diabetic mouse heart. Therapeutic restoration of miR-15a and -15b in HL-1 cardiomyocytes reduced the activation of pro-fibrotic TGFβR1 and CTGF, and the pro-senescence p53 protein expression, confirming a causal regulation of these fibrotic and senescence mediators by miR-15a/b. Moreover, conditioned medium (CM) collected from cardiomyocytes treated with miR-15a/b markedly diminished the differentiation of diabetic human cardiac fibroblasts.Conclusion: Our results provide first evidence that early down-regulation of miR-15a/b activates fibrotic signalling in diabetic heart, and hence could be a potential target for the treatment/prevention of diabetes-induced fibrotic remodelling of the heart.
Collapse
|
24
|
Dixit P, Donnelly H, Edamatsu M, Galvin I, Bunton R, Katare R. Progenitor cells from atria, ventricle and peripheral blood of the same patients exhibit functional differences associated with cardiac repair. Int J Cardiol 2016; 228:412-421. [PMID: 27875722 DOI: 10.1016/j.ijcard.2016.11.178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/06/2016] [Indexed: 12/26/2022]
Abstract
AIM Deciding the best cell type for cardiac regeneration remains a big challenge. No studies have directly compared the functional efficacy of cardiac progenitor cells (CPCs) with extra-cardiac stem cells isolated from the same patient. METHODS AND RESULTS We compared the functional characteristics of endothelial progenitor cells (EPCs), right atrial (RAA) CPCs and left ventricular (LV) CPCs isolated from the same patients (n=14). Within the same heart, RAA and LV CPCs exhibited marked differences in surface marker expression, with RAA CPCs exhibiting better expansion potential and migration properties. When subjected to hypoxia and serum starvation to simulate in vivo ischemic environment, RAA and LV CPCs exhibited similar pattern of resistance to apoptotic cell death under ischemia. Interestingly, EPCs exhibited highest resistance to apoptotic cell death, however, they also showed the lowest proliferation under hypoxia. RT-profiler array showed comparable gene expression pattern in RAA and LV CPCs, while they were differentially expressed in EPCs. Further, treating human umbilical vein endothelial cells with conditioned medium (CM) from LV showed maximum angiogenic potential, while cardiomyocytes treated with CM from RAA showed greatest survival under hypoxic conditions. CONCLUSIONS Results from this study provide the first evidence that progenitor cells from different regions exhibit functional differences within the same patient.
Collapse
Affiliation(s)
- Parul Dixit
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - Hayden Donnelly
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - Midori Edamatsu
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - Ivor Galvin
- Department of Cardiothoracic Surgery, University of Otago, Dunedin, New Zealand
| | - Richard Bunton
- Department of Cardiothoracic Surgery, University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
25
|
Katare R, Rawal S, Munasinghe PE, Tsuchimochi H, Inagaki T, Fujii Y, Dixit P, Umetani K, Kangawa K, Shirai M, Schwenke DO. Ghrelin Promotes Functional Angiogenesis in a Mouse Model of Critical Limb Ischemia Through Activation of Proangiogenic MicroRNAs. Endocrinology 2016; 157:432-45. [PMID: 26672806 DOI: 10.1210/en.2015-1799] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Current therapeutic strategies for the treatment of critical limb ischemia (CLI) have only limited success. Recent in vitro evidence in the literature, using cell lines, proposes that the peptide hormone ghrelin may have angiogenic properties. In this study, we aim to investigate if ghrelin could promote postischemic angiogenesis in a mouse model of CLI and, further, identify the mechanistic pathway(s) that underpin ghrelin's proangiogenic properties. CLI was induced in male CD1 mice by femoral artery ligation. Animals were then randomized to receive either vehicle or acylated ghrelin (150 μg/kg sc) for 14 consecutive days. Subsequently, synchrotron radiation microangiography was used to assess hindlimb perfusion. Subsequent tissue samples were collected for molecular and histological analysis. Ghrelin treatment markedly improved limb perfusion by promoting the generation of new capillaries and arterioles (internal diameter less than 50 μm) within the ischemic hindlimb that were both structurally and functionally normal; evident by robust endothelium-dependent vasodilatory responses to acetylcholine. Molecular analysis revealed that ghrelin's angiogenic properties were linked to activation of prosurvival Akt/vascular endothelial growth factor/Bcl-2 signaling cascade, thus reducing the apoptotic cell death and subsequent fibrosis. Further, ghrelin treatment activated proangiogenic (miR-126 and miR-132) and antifibrotic (miR-30a) microRNAs (miRs) while inhibiting antiangiogenic (miR-92a and miR-206) miRs. Importantly, in vitro knockdown of key proangiogenic miRs (miR-126 and miR-132) inhibited the angiogenic potential of ghrelin. These results therefore suggest that clinical use of ghrelin for the early treatment of CLI may be a promising and potent inducer of reparative vascularization through modulation of key molecular factors.
Collapse
Affiliation(s)
- Rajesh Katare
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Shruti Rawal
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Pujika Emani Munasinghe
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Hirotsugu Tsuchimochi
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Tadakatsu Inagaki
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Yutaka Fujii
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Parul Dixit
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Keiji Umetani
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Kenji Kangawa
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Mikiyasu Shirai
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| | - Daryl O Schwenke
- Department of Physiology, HeartOtago (R.K., S.R., P.E.M., P.D., D.O.S.), University of Otago, Dunedin, 9010 New Zealand; Department of Cardiac Physiology (H.T., T.I., Y.F., M.S.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan; Japan Synchrotron Radiation Research Institute (K.U.), Hyogo, 679-5198 Japan; and Director (K.K.), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, 565-8565 Japan
| |
Collapse
|
26
|
Wang W, Wang H, Geng QX, Wang HT, Miao W, Cheng B, Zhao D, Song GM, Leanne G, Zhao Z. Augmentation of autophagy by atorvastatin via Akt/mTOR pathway in spontaneously hypertensive rats. Hypertens Res 2015. [PMID: 26224487 DOI: 10.1038/hr.2015.85] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Autophagy is activated in hypertension-induced cardiac hypertrophy. However, the mechanisms and significance of an activated autophagy are not clear. This study was designed to determine the role of atorvastatin (ATO) in cardiac autophagy and associated benefits on cardiac remodeling and left ventricular function in spontaneously hypertensive rats (SHRs). Twenty-eight male SHRs at 8 weeks of age were randomized to treatment with vehicle (saline solution; SHR+V) or ATO (SHR+ATO; 50 mg kg(-1) per day) for 6 or 12 months. Age-matched male Wistar-Kyoto (WKY) rats were used as normotensive controls. Cardiac magnetic resonance was used to evaluate cardiac function and structure. Compared with WKY rats, SHRs showed significant left ventricle (LV) dysfunction, remodeling and increases in cardiomyocyte size, which were all attenuated by 6 and 12 months of ATO treatment. Compared with WKY rats, autophagy was activated in the hearts of SHRs and this effect was amplified by chronic ATO treatment, particularly following 12 months of treatment. Protein expression levels of microtubule-associated protein-1 light chain 3-II and beclin-1, the biomarkers of an activated cardiac autophagy, were significantly elevated in ATO-treated versus vehicle-treated SHRs and control WKY rats. Cardiac Akt and phosphorylated mammalian target of rapamycin (mTOR) expression were also increased in the hearts of SHR versus WKY rats, and this effect was attenuated by ATO treatment. These findings suggest that ATO-mediated improvements in LV function and structure in SHRs may be, in part, through its regulation of cardiac autophagy via the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiovascular Surgery, Shandong University Qilu Hospital, Shandong, China.,Department of Cardiology, Shandong Provincial Chest Hospital, Shandong, China
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Qing-Xin Geng
- Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, Shandong, China
| | - Hua-Ting Wang
- Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, Shandong, China
| | - Wei Miao
- Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, Shandong, China
| | - Bo Cheng
- Department of Cardiology, Shandong Provincial Chest Hospital, Shandong, China
| | - Di Zhao
- Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Guang-Min Song
- Department of Cardiovascular Surgery, Shandong University Qilu Hospital, Shandong, China
| | - Groban Leanne
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zhuo Zhao
- Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, Shandong, China
| |
Collapse
|
27
|
Test-retest repeatability of myocardial blood flow and infarct size using ¹¹C-acetate micro-PET imaging in mice. Eur J Nucl Med Mol Imaging 2015; 42:1589-600. [PMID: 26142729 DOI: 10.1007/s00259-015-3111-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/04/2015] [Indexed: 12/12/2022]
Abstract
PURPOSE Global and regional responses of absolute myocardial blood flow index (iMBF) are used as surrogate markers to assess response to therapies in coronary artery disease. In this study, we assessed the test-retest repeatability of iMBF imaging, and the accuracy of infarct sizing in mice using (11)C-acetate PET. METHODS (11)C-Acetate cardiac PET images were acquired in healthy controls, endothelial nitric oxide synthase (eNOS) knockout transgenic mice, and mice after myocardial infarction (MI) to estimate global and regional iMBF, and myocardial infarct size compared to (18)F-FDG PET and ex-vivo histology results. RESULTS Global test-retest iMBF values had good coefficients of repeatability (CR) in healthy mice, eNOS knockout mice and normally perfused regions in MI mice (CR = 1.6, 2.0 and 1.5 mL/min/g, respectively). Infarct size measured on (11)C-acetate iMBF images was also repeatable (CR = 17 %) and showed a good correlation with the infarct sizes found on (18)F-FDG PET and histopathology (r (2) > 0.77; p < 0.05). CONCLUSION (11)C-Acetate micro-PET assessment of iMBF and infarct size is repeatable and suitable for serial investigation of coronary artery disease progression and therapy.
Collapse
|
28
|
Wang L, Yuan Y, Li J, Ren H, Cai Q, Chen X, Liang H, Shan H, Fu ZD, Gao X, Lv Y, Yang B, Zhang Y. MicroRNA-1 aggravates cardiac oxidative stress by post-transcriptional modification of the antioxidant network. Cell Stress Chaperones 2015; 20:411-20. [PMID: 25583113 PMCID: PMC4406930 DOI: 10.1007/s12192-014-0565-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/14/2014] [Accepted: 12/21/2014] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress plays an important role in cardiovascular diseases. Studies have shown that miR-1 plays an important role in the regulation of cardiomyocyte apoptosis, which can be the result of oxidative stress. This study was designed to determine whether increased miR-1 levels lead to alterations in the expression of proteins related to oxidative stress, which could contribute to heart dysfunction. We compared cardiac function in wild-type (WT) and miR-1 transgene (miR-1/Tg) C57BL/6 mice (n ≥ 10/group). Echocardiography showed that stroke volume (SV), ejection fraction (EF), and fractional shortening (FS) were significantly decreased in miR-1/Tg mice. Concomitantly, the level of reactive oxygen species (ROS) was elevated in the cardiomyocytes from the miR-1/Tg mice, and activities of lactate dehydrogenase (LDH) and creatinine kinase (CK) in plasma were also increased in the miR-1/Tg mice. All of these changes could be reversed by LNA-anti-miR-1. In the cardiomyocytes of neonatal Wistar rats, overexpression of miR-1 exhibits higher ROS levels and lower resistance to H2O2-induced oxidative stress. We demonstrated that SOD1, Gclc, and G6PD are novel targets of miR-1 for post-transcriptional repression. MicroRNA-1 post-transcriptionally represses the expression of SOD1, Gclc, and G6PD, which is likely to contribute to the increased ROS level and the susceptibility to oxidative stress of the hearts of miR-1 transgenic mice.
Collapse
Affiliation(s)
- Lu Wang
- />Department of Pharmacology, Harbin Medical University, Xuefu Rd 194, Harbin, 150081 Heilongjiang People’s Republic of China
- />Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Ye Yuan
- />Department of Pharmacology, Harbin Medical University, Xuefu Rd 194, Harbin, 150081 Heilongjiang People’s Republic of China
- />Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Jing Li
- />Department of Pharmacology, Harbin Medical University, Xuefu Rd 194, Harbin, 150081 Heilongjiang People’s Republic of China
| | - Hequn Ren
- />Department of Pharmacology, Harbin Medical University, Xuefu Rd 194, Harbin, 150081 Heilongjiang People’s Republic of China
- />Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Qingxin Cai
- />Department of Pharmacology, Harbin Medical University, Xuefu Rd 194, Harbin, 150081 Heilongjiang People’s Republic of China
- />Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Xu Chen
- />Department of Pharmacology, Harbin Medical University, Xuefu Rd 194, Harbin, 150081 Heilongjiang People’s Republic of China
- />Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Haihai Liang
- />Department of Pharmacology, Harbin Medical University, Xuefu Rd 194, Harbin, 150081 Heilongjiang People’s Republic of China
- />Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Hongli Shan
- />Department of Pharmacology, Harbin Medical University, Xuefu Rd 194, Harbin, 150081 Heilongjiang People’s Republic of China
- />Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Zidong Donna Fu
- />Department of Pharmacology, Harbin Medical University, Xuefu Rd 194, Harbin, 150081 Heilongjiang People’s Republic of China
- />Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Xu Gao
- />Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
- />Department of Biochemistry, Harbin Medical University, Harbin, China
| | - Yanjie Lv
- />Department of Pharmacology, Harbin Medical University, Xuefu Rd 194, Harbin, 150081 Heilongjiang People’s Republic of China
- />Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Baofeng Yang
- />Department of Pharmacology, Harbin Medical University, Xuefu Rd 194, Harbin, 150081 Heilongjiang People’s Republic of China
- />Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yan Zhang
- />Department of Pharmacology, Harbin Medical University, Xuefu Rd 194, Harbin, 150081 Heilongjiang People’s Republic of China
- />Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
29
|
Ascione R, Rowlinson J, Avolio E, Katare R, Meloni M, Spencer HL, Mangialardi G, Norris C, Kränkel N, Spinetti G, Emanueli C, Madeddu P. Migration towards SDF-1 selects angiogenin-expressing bone marrow monocytes endowed with cardiac reparative activity in patients with previous myocardial infarction. Stem Cell Res Ther 2015; 6:53. [PMID: 25889213 PMCID: PMC4440500 DOI: 10.1186/s13287-015-0028-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/04/2014] [Accepted: 02/27/2015] [Indexed: 12/20/2022] Open
Abstract
Introduction Chemokine-directed migration is crucial for homing of regenerative cells to the infarcted heart and correlates with outcomes of cell therapy trials. Hence, transplantation of chemokine-responsive bone marrow cells may be ideal for treatment of myocardial ischemia. To verify the therapeutic activity of bone marrow mononuclear cells (BM-MNCs) selected by in vitro migration towards the chemokine stromal cell-derived factor-1 (SDF-1) in a mouse model of myocardial infarction (MI), we used BM-MNCs from patients with previous large MI recruited in the TransACT-1&2 cell therapy trials. Methods Unfractioned BM-MNCs, SDF-1-responsive, and SDF-1-nonresponsive BM-MNCs isolated by patients recruited in the TransACT-1&2 cell therapy trials were tested in Matrigel assay to evaluate angiogenic potential. Secretome and antigenic profile were characterized by flow cytometry. Angiogenin expression was measured by RT-PCR. Cells groups were also intramyocardially injected in an in vivo model of MI (8-week-old immune deficient CD1-FOXN1nu/nu mice). Echocardiography and hemodynamic measurements were performed before and at 14 days post-MI. Arterioles and capillaries density, infiltration of inflammatory cells, interstitial fibrosis, and cardiomyocyte proliferation and apoptosis were assessed by immunohistochemistry. Results In vitro migration enriched for monocytes, while CD34+ and CD133+ cells and T lymphocytes remained mainly confined in the non-migrated fraction. Unfractioned total BM-MNCs promoted angiogenesis on Matrigel more efficiently than migrated or non-migrated cells. In mice with induced MI, intramyocardial injection of unfractionated or migrated BM-MNCs was more effective in preserving cardiac contractility and pressure indexes than vehicle or non-migrated BM-MNCs. Moreover, unfractioned BM-MNCs enhanced neovascularization, whereas the migrated fraction was unique in reducing the infarct size and interstitial fibrosis. In vitro studies on isolated cardiomyocytes suggest participation of angiogenin, a secreted ribonuclease that inhibits protein translation under stress conditions, in promotion of cardiomyocyte survival by migrated BM-MNCs. Conclusions Transplantation of bone marrow cells helps post-MI healing through distinct actions on vascular cells and cardiomyocytes. In addition, the SDF-1-responsive fraction is enriched with angiogenin-expressing monocytes, which may improve cardiac recovery through activation of cardiomyocyte response to stress. Identification of factors linking migratory and therapeutic outcomes could help refine regenerative approaches. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0028-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raimondo Ascione
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Jonathan Rowlinson
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Elisa Avolio
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Rajesh Katare
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Marco Meloni
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Helen L Spencer
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Giuseppe Mangialardi
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Caroline Norris
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | | | | | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| | - Paolo Madeddu
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Upper Maudlin Road, Bristol, BS2 8HW, UK.
| |
Collapse
|
30
|
The Role of MicroRNAs in Cardiac Stem Cells. Stem Cells Int 2015; 2015:194894. [PMID: 25802528 PMCID: PMC4329769 DOI: 10.1155/2015/194894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/14/2014] [Accepted: 01/05/2015] [Indexed: 12/12/2022] Open
Abstract
Stem cells are considered as the next generation drug treatment in patients with cardiovascular disease who are resistant to conventional treatment. Among several stem cells used in the clinical setting, cardiac stem cells (CSCs) which reside in the myocardium and epicardium of the heart have been shown to be an effective option for the source of stem cells. In normal circumstances, CSCs primarily function as a cell store to replace the physiologically depleted cardiovascular cells, while under the diseased condition they have been shown to experimentally regenerate the diseased myocardium. In spite of their major functional role, molecular mechanisms regulating the CSCs proliferation and differentiation are still unknown. MicroRNAs (miRs) are small, noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Recent studies have demonstrated the important role of miRs in regulating stem cell proliferation and differentiation, as well as other physiological and pathological processes related to stem cell function. This review summarises the current understanding of the role of miRs in CSCs. A deeper understanding of the mechanisms by which miRs regulate CSCs may lead to advances in the mode of stem cell therapies for the treatment of cardiovascular diseases.
Collapse
|
31
|
Gaspar JA, Doss MX, Hengstler JG, Cadenas C, Hescheler J, Sachinidis A. Unique metabolic features of stem cells, cardiomyocytes, and their progenitors. Circ Res 2014; 114:1346-60. [PMID: 24723659 DOI: 10.1161/circresaha.113.302021] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, growing attention has been directed toward stem cell metabolism, with the key observation that the plasticity of stem cells also reflects the plasticity of their energy substrate metabolism. There seems to be a clear link between the self-renewal state of stem cells, in which cells proliferate without differentiation, and the activity of specific metabolic pathways. Differentiation is accompanied by a shift from anaerobic glycolysis to mitochondrial respiration. This metabolic switch of differentiating stem cells is required to cover the energy demands of the different organ-specific cell types. Among other metabolic signatures, amino acid and carbohydrate metabolism is most prominent in undifferentiated embryonic stem cells, whereas the fatty acid metabolic signature is unique in cardiomyocytes derived from embryonic stem cells. Identifying the specific metabolic pathways involved in pluripotency and differentiation is critical for further progress in the field of developmental biology and regenerative medicine. The recently generated knowledge on metabolic key processes may help to generate mature stem cell-derived somatic cells for therapeutic applications without the requirement of genetic manipulation. In the present review, the literature about metabolic features of stem cells and their cardiovascular cell derivatives as well as the specific metabolic gene signatures differentiating between stem and differentiated cells are summarized and discussed.
Collapse
Affiliation(s)
- John Antonydas Gaspar
- From the Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany (J.A.G., M.X.D., J.H., A.S.); and Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany (J.G.H., C.C.)
| | | | | | | | | | | |
Collapse
|
32
|
Downregulation of transketolase activity is related to inhibition of hippocampal progenitor cell proliferation induced by thiamine deficiency. BIOMED RESEARCH INTERNATIONAL 2014; 2014:572915. [PMID: 25028661 PMCID: PMC4083768 DOI: 10.1155/2014/572915] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/12/2014] [Accepted: 05/18/2014] [Indexed: 11/17/2022]
Abstract
In animal experiments, hippocampal neurogenesis and the activity of thiamine-dependent transketolase decrease markedly under conditions of thiamine deficiency. To further investigate the effect of thiamine deficiency on the proliferation of hippocampal progenitor cells (HPCs) and the potential mechanisms involved in this effect, we cultured HPCs in vitro in the absence of thiamine and found that proliferation and transketolase activity were both significantly repressed. Furthermore, specific inhibition of transketolase activity by oxythiamine strongly inhibited HPC proliferation in a dose-dependent manner. However, thiamine deficiency itself inhibited the proliferation to a greater degree than did oxythiamine. Taken together, our results suggest that modulation of transketolase activity might be one of the mechanisms by which thiamine regulates the proliferation of hippocampal progenitor cells.
Collapse
|
33
|
Pácal L, Kuricová K, Kaňková K. Evidence for altered thiamine metabolism in diabetes: Is there a potential to oppose gluco- and lipotoxicity by rational supplementation? World J Diabetes 2014; 5:288-295. [PMID: 24936250 PMCID: PMC4058733 DOI: 10.4239/wjd.v5.i3.288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/14/2014] [Accepted: 05/16/2014] [Indexed: 02/05/2023] Open
Abstract
Growing prevalence of diabetes (type 2 as well as type 1) and its related morbidity due to vascular complications creates a large burden on medical care worldwide. Understanding the molecular pathogenesis of chronic micro-, macro- and avascular complications mediated by hyperglycemia is of crucial importance since novel therapeutic targets can be identified and tested. Thiamine (vitamin B1) is an essential cofactor of several enzymes involved in carbohydrate metabolism and published data suggest that thiamine metabolism in diabetes is deficient. This review aims to point out the physiological role of thiamine in metabolism of glucose and amino acids, to present overview of thiamine metabolism and to describe the consequences of thiamine deficiency (either clinically manifest or latent). Furthermore, we want to explain why thiamine demands are increased in diabetes and to summarise data indicating thiamine mishandling in diabetics (by review of the studies mapping the prevalence and the degree of thiamine deficiency in diabetics). Finally, we would like to summarise the evidence for the beneficial effect of thiamine supplementation in progression of hyperglycemia-related pathology and, therefore, to justify its importance in determining the harmful impact of hyperglycemia in diabetes. Based on the data presented it could be concluded that although experimental studies mostly resulted in beneficial effects, clinical studies of appropriate size and duration focusing on the effect of thiamine supplementation/therapy on hard endpoints are missing at present. Moreover, it is not currently clear which mechanisms contribute to the deficient action of thiamine in diabetes most. Experimental studies on the molecular mechanisms of thiamine deficiency in diabetes are critically needed before clear answer to diabetes community could be given.
Collapse
|
34
|
Ho HY, Cheng ML, Chiu DTY. Glucose-6-phosphate dehydrogenase--beyond the realm of red cell biology. Free Radic Res 2014; 48:1028-48. [PMID: 24720642 DOI: 10.3109/10715762.2014.913788] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is critical to the maintenance of NADPH pool and redox homeostasis. Conventionally, G6PD deficiency has been associated with hemolytic disorders. Most biochemical variants were identified and characterized at molecular level. Recently, a number of studies have shone light on the roles of G6PD in aspects of physiology other than erythrocytic pathophysiology. G6PD deficiency alters the redox homeostasis, and affects dysfunctional cell growth and signaling, anomalous embryonic development, and altered susceptibility to infection. The present article gives a brief review of basic science and clinical findings about G6PD, and covers the latest development in the field. Moreover, how G6PD status alters the susceptibility of the affected individuals to certain degenerative diseases is also discussed.
Collapse
Affiliation(s)
- H-Y Ho
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Kwei-san, Tao-yuan , Taiwan
| | | | | |
Collapse
|
35
|
Jung KH, Lee JH, Park JW, Paik JY, Quach CHT, Lee EJ, Lee KH. Annexin V Imaging Detects Diabetes-Accelerated Apoptosis and Monitors the Efficacy of Benfotiamine Treatment in Ischemic Limbs of Mice. Mol Imaging 2014. [DOI: 10.2310/7290.2014.00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kyung-Ho Jung
- From the Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Hee Lee
- From the Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Won Park
- From the Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Young Paik
- From the Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cung Hoa Thien Quach
- From the Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Jeong Lee
- From the Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung-Han Lee
- From the Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Moore A, Shindikar A, Fomison-Nurse I, Riu F, Munasinghe PE, Ram TP, Saxena P, Coffey S, Bunton RW, Galvin IF, Williams MJA, Emanueli C, Madeddu P, Katare R. Rapid onset of cardiomyopathy in STZ-induced female diabetic mice involves the downregulation of pro-survival Pim-1. Cardiovasc Diabetol 2014; 13:68. [PMID: 24685144 PMCID: PMC4073808 DOI: 10.1186/1475-2840-13-68] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/21/2014] [Indexed: 02/06/2023] Open
Abstract
Background Diabetic women are five times more likely to develop congestive heart failure compared with two fold for men. The underlying mechanism for this gender difference is not known. Here we investigate the molecular mechanisms responsible for this female disadvantage and attempt safeguarding cardiomyocytes viability and function through restoration of pro-survival Pim-1. Methods and Results Diabetes was induced by injection of streptozotocin in CD1 mice of both genders. Functional and dimensional parameters measurement using echocardiography revealed diastolic dysfunction in female diabetic mice within 8 weeks after STZ-induced diabetes. This was associated with significant downregulation of pro-survival Pim-1 and upregulation of pro-apoptotic Caspase-3, microRNA-1 and microRNA-208a. Male diabetic mice did not show any significant changes at this time point (P < 0.05 vs. female diabetic). Further, the onset of ventricular remodelling was quicker in female diabetic mice showing marked left ventricular dilation, reduced ejection fraction and poor contractility (P < 0.05 vs. male diabetic at 12 and 16 weeks of STZ-induced diabetes). Molecular analysis of samples from human diabetic hearts confirmed the results of pre-clinical studies, showing marked downregulation of Pim-1 in the female diabetic heart (P < 0.05 vs. male diabetic). Finally, in vitro restoration of Pim-1 reversed the female disadvantage in diabetic cardiomyocytes. Conclusions We provide novel insights into the molecular mechanisms behind the rapid onset of cardiomyopathy in female diabetics. These results suggest the requirement for the development of gender-specific treatments for diabetic cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Rajesh Katare
- Department of Physiology-HeartOtago, Otago School of Medical Sciences, University of Otago, PO Box 913, Dunedin 9054, New Zealand.
| |
Collapse
|
37
|
Mapanga RF, Joseph D, Symington B, Garson KL, Kimar C, Kelly-Laubscher R, Essop M. Detrimental effects of acute hyperglycaemia on the rat heart. Acta Physiol (Oxf) 2014; 210:546-64. [PMID: 24286628 DOI: 10.1111/apha.12184] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/27/2013] [Accepted: 10/19/2013] [Indexed: 01/08/2023]
Abstract
AIM Hyperglycaemia is an important risk factor for acute myocardial infarction. It can lead to increased induction of non-oxidative glucose pathways (NOGPs) - polyol and hexosamine biosynthetic pathways, advanced glycation end products and protein kinase C - that may contribute to cardiovascular diseases onset. However, the precise underlying mechanisms remain poorly understood. Here we hypothesized that acute hyperglycaemia increases myocardial oxidative stress and NOGP activation resulting in cardiac dysfunction during ischaemia-reperfusion and that inhibition of, and/or shunting flux away from NOGPs [by benfotiamine (BFT) treatment], leads to cardioprotection. METHODS We employed several experimental systems: (i) Isolated rat hearts were perfused ex vivo with Krebs-Henseleit buffer containing 33 mm glucose vs. controls (11 mm glucose) ± global ischaemia and reperfusion ± BFT (first 20 min of reperfusion); (ii) Infarct size determination as per the ischaemic protocol, but with regional ischaemia and reperfusion ± BFT treatment; in separate experiments, NOGP inhibitors were also employed for (i) and (ii); and (iii) In vivo coronary ligations performed on streptozotocin-treated rats ± BFT treatment (early reperfusion). RESULTS Acute hyperglycaemia generated myocardial oxidative stress, NOGP activation and apoptosis, but caused no impairment of cardiac function during pre-ischaemia, thereby priming hearts for later damage. Following ischaemia-reperfusion (under hyperglycaemic conditions), such effects were exacerbated together with cardiac contractile dysfunction. Moreover, inhibition of respective NOGPs and shunting away by BFT treatment (in part) improved cardiac function during ischaemia-reperfusion. CONCLUSION Coordinate NOGP activation in response to acute hyperglycaemia results in contractile dysfunction during ischaemia-reperfusion, allowing for the development of novel cardioprotective agents.
Collapse
Affiliation(s)
- R. F. Mapanga
- Cardio-Metabolic Research Group (CMRG); Department of Physiological Sciences; Stellenbosch University; Stellenbosch South Africa
| | - D. Joseph
- Cardio-Metabolic Research Group (CMRG); Department of Physiological Sciences; Stellenbosch University; Stellenbosch South Africa
| | - B. Symington
- Cardio-Metabolic Research Group (CMRG); Department of Physiological Sciences; Stellenbosch University; Stellenbosch South Africa
| | - K.-L. Garson
- Cardio-Metabolic Research Group (CMRG); Department of Physiological Sciences; Stellenbosch University; Stellenbosch South Africa
| | - C. Kimar
- Cardio-Metabolic Research Group (CMRG); Department of Physiological Sciences; Stellenbosch University; Stellenbosch South Africa
| | - R. Kelly-Laubscher
- Department of Human Biology; Faculty of Health Sciences; University of Cape Town; Observatory South Africa
| | - M.Faadiel Essop
- Cardio-Metabolic Research Group (CMRG); Department of Physiological Sciences; Stellenbosch University; Stellenbosch South Africa
| |
Collapse
|
38
|
Rawal S, Manning P, Katare R. Cardiovascular microRNAs: as modulators and diagnostic biomarkers of diabetic heart disease. Cardiovasc Diabetol 2014; 13:44. [PMID: 24528626 PMCID: PMC3976030 DOI: 10.1186/1475-2840-13-44] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/10/2014] [Indexed: 02/06/2023] Open
Abstract
Diabetic heart disease (DHD) is the leading cause of morbidity and mortality among the people with diabetes, with approximately 80% of the deaths in diabetics are due to cardiovascular complications. Importantly, heart disease in the diabetics develop at a much earlier stage, although remaining asymptomatic till the later stage of the disease, thereby restricting its early detection and active therapeutic management. Thus, a better understanding of the modulators involved in the pathophysiology of DHD is necessary for the early diagnosis and development of novel therapeutic implications for diabetes-associated cardiovascular complications. microRNAs (miRs) have recently been evolved as key players in the various cardiovascular events through the regulation of cardiac gene expression. Besides their credible involvement in controlling the cellular processes, they are also released in to the circulation in disease states where they serve as potential diagnostic biomarkers for cardiovascular disease. However, their potential role in DHD as modulators as well as diagnostic biomarkers is largely unexplored. In this review, we describe the putative mechanisms of the selected cardiovascular miRs in relation to cardiovascular diseases and discuss their possible involvement in the pathophysiology and early diagnosis of DHD.
Collapse
Affiliation(s)
| | | | - Rajesh Katare
- Department of Physiology, HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
39
|
Leonardini A, Avogaro A. Abnormalities of the cardiac stem and progenitor cell compartment in experimental and human diabetes. Arch Physiol Biochem 2013; 119:179-87. [PMID: 23772700 DOI: 10.3109/13813455.2013.798334] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diabetic cardiomyopathy consists of a series of structural and functional changes. Accumulating evidence supports the concept that a "cardiac stem cell compartment disease" plays an important role in the pathophysiology of diabetic cardiomyopathy. In diabetic hearts, human cardiac stem/progenitor cells (CSPC) are reduced and manifest defective proliferative capacity. Hyperglycaemia, hyperlipidemia, inflammation, and the consequent oxidative stress are enhanced in diabetes: these conditions can induce defects in both growth and survival of these cells with an imbalance between cell death and cell replacement, thus favouring the onset of diabetic cardiomyopathy and its progression towards heart failure. The preservation of CSPC compartment can contribute to counteract the negative impact of diabetes on the myocardium. The recent studies summarized in this review have improved our understanding of the development and stem cell biology within the cardiovascular system. However, several issues remain unsolved before cell therapy can become a clinical therapeutically relevant strategy.
Collapse
Affiliation(s)
- Anna Leonardini
- Department of Emergency and Organ Transplantation - Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro , Bari , Italy and
| | | |
Collapse
|
40
|
Luong KVQ, Nguyễn LTH. The beneficial role of thiamine in Parkinson disease. CNS Neurosci Ther 2013; 19:461-8. [PMID: 23462281 PMCID: PMC6493530 DOI: 10.1111/cns.12078] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/24/2013] [Accepted: 01/26/2013] [Indexed: 12/29/2022] Open
Abstract
Parkinson disease (PD) is the second most common form of neurodegeneration among elderly individuals. PD is clinically characterized by tremors, rigidity, slowness of movement, and postural imbalance. In this paper, we review the evidence for an association between PD and thiamine. Interestingly, a significant association has been demonstrated between PD and low levels of serum thiamine, and thiamine supplements appear to have beneficial clinical effects against PD. Multiple studies have evaluated the connection between thiamine and PD pathology, and candidate pathways involve the transcription factor Sp1, p53, Bcl-2, caspase-3, tyrosine hydroxylase, glycogen synthase kinase-3β, vascular endothelial growth factor, advanced glycation end products, nuclear factor kappa B, mitogen-activated protein kinase, and the reduced form of nicotinamide adenine dinucleotide phosphate. Thus, a review of the literature suggests that thiamine plays a role in PD, although further investigation into the effects of thiamine in PD is needed.
Collapse
Affiliation(s)
- Khanh V Q Luong
- Vietnamese American Medical Research Foundation, Westminster, CA 92683, USA
| | | |
Collapse
|
41
|
Uncovering the beginning of diabetes: the cellular redox status and oxidative stress as starting players in hyperglycemic damage. Mol Cell Biochem 2013; 376:103-10. [PMID: 23292031 DOI: 10.1007/s11010-012-1555-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/19/2012] [Indexed: 01/18/2023]
Abstract
Early hyperglycemic insult can lead to permanent, cumulative damage that might be one of the earliest causes for a pre-diabetic situation. Despite this, the early phases of hyperglycemic exposure have been poorly studied. We have previously demonstrated that mitochondrial injury takes place early on upon hyperglycemic exposure. In this work, we demonstrate that just 1 h of hyperglycemic exposure is sufficient to induce increased mitochondrial membrane potential and generation. This is accompanied (and probably caused) by a decrease in the cells' NAD(+)/NADH ratio. Furthermore, we show that the modulation of the activity of parallel pathways to glycolysis can alter the effects of hyperglycemic exposure. Activation of the pentose phosphate pathway leads to diminished effects of glucose on the above parameters, either by removing glucose from glycolysis or by NADPH generation. We also demonstrate that the hexosamine pathway inhibition also leads to a decreased effect of excess glucose. So, this work demonstrates the need for increased focus of study on the reductive status of the cell as one of the most important hallmarks of initial hyperglycemic damage.
Collapse
|
42
|
Katare R, Oikawa A, Cesselli D, Beltrami AP, Avolio E, Muthukrishnan D, Munasinghe PE, Angelini G, Emanueli C, Madeddu P. Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes. Cardiovasc Res 2013; 97:55-65. [PMID: 22997160 PMCID: PMC3619276 DOI: 10.1093/cvr/cvs291] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIMS Diabetes impinges upon mechanisms of cardiovascular repair. However, the biochemical adaptation of cardiac stem cells to sustained hyperglycaemia remains largely unknown. Here, we investigate the molecular targets of high glucose-induced damage in cardiac progenitor cells (CPCs) from murine and human hearts and attempt safeguarding CPC viability and function through reactivation of the pentose phosphate pathway. METHODS AND RESULTS Type-1 diabetes was induced by streptozotocin. CPC abundance was determined by flow cytometry. Proliferating CPCs were identified in situ by immunostaining for the proliferation marker Ki67. Diabetic hearts showed marked reduction in CPC abundance and proliferation when compared with controls. Moreover, Sca-1(pos) CPCs isolated from hearts of diabetic mice displayed reduced activity of key enzymes of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD), and transketolase, increased levels of superoxide and advanced glucose end-products (AGE), and inhibition of the Akt/Pim-1/Bcl-2 signalling pathway. Similarly, culture of murine CPCs or human CD105(pos) progenitor cells in high glucose inhibits the pentose phosphate and pro-survival signalling pathways, leading to the activation of apoptosis. In vivo and in vitro supplementation with benfotiamine reactivates the pentose phosphate pathway and rescues CPC availability and function. This benefit is abrogated by either G6PD silencing by small interfering RNA (siRNA) or Akt inhibition by dominant-negative Akt. CONCLUSION We provide new evidence of the negative impact of diabetes and high glucose on mechanisms controlling CPC redox state and survival. Boosting the pentose phosphate pathway might represent a novel mechanistic target for protection of CPC integrity.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Ly/metabolism
- Apoptosis/drug effects
- Biomarkers/metabolism
- Blood Glucose/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Endoglin
- Flow Cytometry
- Glucosephosphate Dehydrogenase/genetics
- Glucosephosphate Dehydrogenase/metabolism
- Glycation End Products, Advanced/metabolism
- Humans
- Immunohistochemistry
- Ki-67 Antigen/metabolism
- Male
- Membrane Proteins/metabolism
- Mice
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Stress/drug effects
- Pentose Phosphate Pathway/drug effects
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-pim-1/metabolism
- RNA Interference
- Receptors, Cell Surface/metabolism
- Signal Transduction/drug effects
- Stem Cells/drug effects
- Stem Cells/metabolism
- Stem Cells/pathology
- Superoxides/metabolism
- Thiamine/analogs & derivatives
- Thiamine/pharmacology
- Transfection
- Transketolase/metabolism
Collapse
Affiliation(s)
- Rajesh Katare
- Chair of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS28HW, UK
- Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 913, Dunedin 9054, New Zealand
| | - Atsuhiko Oikawa
- Chair of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS28HW, UK
| | - Daniela Cesselli
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Antonio P. Beltrami
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Elisa Avolio
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Deepti Muthukrishnan
- Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 913, Dunedin 9054, New Zealand
| | - Pujika Emani Munasinghe
- Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 913, Dunedin 9054, New Zealand
| | - Gianni Angelini
- Department of Cardiac Surgery, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Costanza Emanueli
- Chair of Vascular Pathology and Regeneration, Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Paolo Madeddu
- Chair of Experimental Cardiovascular Medicine, Bristol Heart Institute, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS28HW, UK
| |
Collapse
|
43
|
The role of thiamine in HIV infection. Int J Infect Dis 2012; 17:e221-7. [PMID: 23274124 DOI: 10.1016/j.ijid.2012.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 12/15/2022] Open
Abstract
Patients infected with HIV have a high prevalence of thiamine deficiency. Genetic studies have provided the opportunity to determine which proteins link thiamine to HIV pathology, i.e., renin-angiotensin system, poly(ADP-ribosyl) polymerase 1, Sp1 promoter gene, transcription factor p53, apoptotic factor caspase 3, and glycogen synthetase kinase 3β. Thiamine also affects HIV through non-genomic factors, i.e., matrix metalloproteinase, vascular endothelial growth factor, heme oxygenase 1, the prostaglandins, cyclooxygenase 2, reactive oxygen species, and nitric oxide. In conclusion, thiamine may benefit HIV patients, but further investigation of the role of thiamine in HIV infection is needed.
Collapse
|
44
|
Liu SQ, Tefft BJ, Roberts DT, Zhang LQ, Ren Y, Li YC, Huang Y, Zhang D, Phillips HR, Wu YH. Cardioprotective proteins upregulated in the liver in response to experimental myocardial ischemia. Am J Physiol Heart Circ Physiol 2012; 303:H1446-58. [DOI: 10.1152/ajpheart.00362.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Myocardial ischemia (MI) activates innate cardioprotective mechanisms, enhancing cardiomyocyte tolerance to ischemia. Here, we report a MI-activated liver-dependent mechanism for myocardial protection. In response to MI in the mouse, hepatocytes exhibited 6- to 19-fold upregulation of genes encoding secretory proteins, including α-1-acid glycoprotein (AGP)2, bone morphogenetic protein-binding endothelial regulator (BMPER), chemokine (C-X-C motif) ligand 13, fibroblast growth factor (FGF)21, neuregulin (NRG)4, proteoglycan 4, and trefoil factor (TFF)3. Five of these proteins, including AGP2, BMPER, FGF21, NRG4, and TFF3, were identified as cardioprotective proteins since administration of each protein significantly reduced the fraction of myocardial infarcts (37 ± 9%, 34 ± 7%, 32 ± 8%, 39 ± 6%, and 31 ± 7%, respectively, vs. 48 ± 7% for PBS at 24 h post-MI). The serum level of the five proteins elevated significantly in association with protein upregulation in hepatocytes post-MI. Suppression of a cardioprotective protein by small interfering (si)RNA-mediated gene silencing resulted in a significant increase in the fraction of myocardial infarcts, and suppression of all five cardioprotective proteins with siRNAs further intensified myocardial infarction. While administration of a single cardioprotective protein mitigated myocardial infarction, administration of all five proteins furthered the beneficial effect, reducing myocardial infarct fractions from PBS control values from 46 ± 6% (5 days), 41 ± 5% (10 days), and 34 ± 4% (30 days) to 35 ± 5%, 28 ± 5%, and 24 ± 4%, respectively. These observations suggest that the liver contributes to cardioprotection in MI by upregulating and releasing protective secretory proteins. These proteins may be used for the development of cardioprotective agents.
Collapse
Affiliation(s)
- Shu Q. Liu
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois
| | - Brandon J. Tefft
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois
| | - Derek T. Roberts
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois
| | - Li-Qun Zhang
- Rehabilitation Institute of Chicago, Chicago, Illinois
| | - Yupeng Ren
- Rehabilitation Institute of Chicago, Chicago, Illinois
| | - Yan Chun Li
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois; and
| | - Yong Huang
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois; and
| | - Di Zhang
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois
| | - Harry R. Phillips
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina
| | - Yu H. Wu
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois
| |
Collapse
|
45
|
Hecker PA, Leopold JA, Gupte SA, Recchia FA, Stanley WC. Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease. Am J Physiol Heart Circ Physiol 2012; 304:H491-500. [PMID: 23241320 DOI: 10.1152/ajpheart.00721.2012] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the rate-determining step in the pentose phosphate pathway and produces NADPH to fuel glutathione recycling. G6PD deficiency is the most common enzyme deficiency in humans and affects over 400 million people worldwide; however, its impact on cardiovascular disease is poorly understood. The glutathione pathway is paramount to antioxidant defense, and G6PD-deficient cells do not cope well with oxidative damage. Limited clinical evidence indicates that G6PD deficiency may be associated with hypertension. However, there are also data to support a protective role of G6PD deficiency in decreasing the risk of heart disease and cardiovascular-associated deaths, perhaps through a decrease in cholesterol synthesis. Studies in G6PD-deficient (G6PDX) mice are mixed and provide evidence for both protective and deleterious effects. G6PD deficiency may provide a protective effect through decreasing cholesterol synthesis, superoxide production, and reductive stress. However, recent studies indicate that G6PDX mice are moderately more susceptible to ventricular dilation in response to myocardial infarction or pressure overload-induced heart failure. Furthermore, G6PDX hearts do not recover as well as nondeficient mice when faced with ischemia-reperfusion injury, and G6PDX mice are susceptible to the development of age-associated cardiac hypertrophy. Overall, the limited available data indicate a complex interplay in which adverse effects of G6PD deficiency may outweigh potential protective effects in the face of cardiac stress. Definitive clinical studies in large populations are needed to determine the effects of G6PD deficiency on the development of cardiovascular disease and subsequent outcomes.
Collapse
Affiliation(s)
- Peter A Hecker
- Division of Cardiology and Department of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
46
|
Hecker PA, Lionetti V, Ribeiro RF, Rastogi S, Brown BH, O'Connell KA, Cox JW, Shekar KC, Gamble DM, Sabbah HN, Leopold JA, Gupte SA, Recchia FA, Stanley WC. Glucose 6-phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure. Circ Heart Fail 2012; 6:118-26. [PMID: 23170010 DOI: 10.1161/circheartfailure.112.969576] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Glucose 6-phosphate dehydrogenase (G6PD) is the most common deficient enzyme in the world. In failing hearts, G6PD is upregulated and generates reduced nicotinamide adenine dinucleotide phosphate (NADPH) that is used by the glutathione pathway to remove reactive oxygen species but also as a substrate by reactive oxygen species-generating enzymes. Therefore, G6PD deficiency might prevent heart failure by decreasing NADPH and reactive oxygen species production. METHODS AND RESULTS This hypothesis was evaluated in a mouse model of human G6PD deficiency (G6PDX mice, ≈40% normal activity). Myocardial infarction with 3 months follow-up resulted in left ventricular dilation and dysfunction in both wild-type and G6PDX mice but significantly greater end diastolic volume and wall thinning in G6PDX mice. Similarly, pressure overload induced by transverse aortic constriction (TAC) for 6 weeks caused greater left ventricular dilation in G6PDX mice than wild-type mice. We further stressed transverse aortic constriction mice by feeding a high fructose diet to increase flux through G6PD and reactive oxygen species production and again observed worse left ventricular remodeling and a lower ejection fraction in G6PDX than wild-type mice. Tissue content of lipid peroxidation products was increased in G6PDX mice in response to infarction and aconitase activity was decreased with transverse aortic constriction, suggesting that G6PD deficiency increases myocardial oxidative stress and subsequent damage. CONCLUSIONS Contrary to our hypothesis, G6PD deficiency increased redox stress in response to infarction or pressure overload. However, we found only a modest acceleration of left ventricular remodeling, suggesting that, in individuals with G6PD deficiency and concurrent hypertension or myocardial infarction, the risk for developing heart failure is higher but limited by compensatory mechanisms.
Collapse
Affiliation(s)
- Peter A Hecker
- Division of Cardiology and Department of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med 2012; 53:421-36. [PMID: 22580150 DOI: 10.1016/j.freeradbiomed.2012.05.006] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 04/14/2012] [Accepted: 05/03/2012] [Indexed: 01/10/2023]
Abstract
The pentose phosphate pathway, one of the main antioxidant cellular defense systems, has been related for a long time almost exclusively to its role as a provider of reducing power and ribose phosphate to the cell. In addition to this "traditional" correlation, in the past years multiple roles have emerged for this metabolic cascade, involving the cell cycle, apoptosis, differentiation, motility, angiogenesis, and the response to anti-tumor therapy. These findings make the pentose phosphate pathway a very interesting target in tumor cells. This review summarizes the latest discoveries relating the activity of the pentose phosphate pathway to various aspects of tumor metabolism, such as cell proliferation and death, tissue invasion, angiogenesis, and resistance to therapy, and discusses the possibility that drugs modulating the pathway could be used as potential tools in tumor therapy.
Collapse
Affiliation(s)
- Chiara Riganti
- Department of Genetics, Biology, and Biochemistry, University of Torino, Turin, Italy.
| | | | | | | | | |
Collapse
|
48
|
Benavides-Vallve C, Corbacho D, Iglesias-Garcia O, Pelacho B, Albiasu E, Castaño S, Muñoz-Barrutia A, Prosper F, Ortiz-de-Solorzano C. New strategies for echocardiographic evaluation of left ventricular function in a mouse model of long-term myocardial infarction. PLoS One 2012; 7:e41691. [PMID: 22848568 PMCID: PMC3407217 DOI: 10.1371/journal.pone.0041691] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/25/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The aim of this article is to present an optimized acquisition and analysis protocol for the echocardiographic evaluation of left ventricle (LV) remodeling in a mouse model of myocardial infarction (MI). METHODOLOGY 13 female DBA/2J mice underwent permanent occlusion of the left anterior descending (LAD) coronary artery leading to MI. Mice echocardiography was performed using a Vevo 770 (Visualsonics, Canada) before infarction, and 7, 14, 30, 60, 90 and 120 days after LAD ligation. LV systolic function was evaluated using different parameters, including the fractional area change (FAC%) computed in four high-temporal resolution B-mode short axis images taken at different ventricular levels, and in one parasternal long axis. Pulsed wave and tissue Doppler modes were used to evaluate the diastolic function and Tei Index for global cardiac function. The echocardiographic measurements of infarct size were validated histologically using collagen deposition labeled by Sirius red staining. All data was analyzed using Shapiro-Wilk and Student's t-tests. PRINCIPAL FINDINGS Our results reveal LV dilation resulting in marked remodeling an severe systolic dysfunction, starting seven days after MI (LV internal apical diameter, basal = 2.82±0.24, 7d = 3.49±0.42; p<0.001. End-diastolic area, basal = 18.98±1.81, 7d = 22.04±2.11; p<0.001). A strong statistically significant negative correlation exists between the infarct size and long-axis FAC% (r = -0.946; R(2) = 0.90; p<0.05). Moreover, the measured Tei Index values confirmed significant post-infarction impairment of the global cardiac function (basal = 0.46±0.07, 7d = 0.55±0.08, 14 d = 0.57±0.06, 30 d = 0.54±0.06, 60 d = 0.54±0.07, 90 d = 0.57±0.08; p<0.01). CONCLUSIONS/SIGNIFICANCE In summary, we have performed a complete characterization of LV post-infarction remodeling in a DBA/2J mouse model of MI, using parameters adapted to the particular characteristics of the model In the future, this well characterized model will be used in both investigative and pharmacological studies that require accurate quantitative monitoring of cardiac recovery after myocardial infarction.
Collapse
Affiliation(s)
- Carolina Benavides-Vallve
- Imaging Unit, Fundación para la Investigación Médica Aplicada, University of Navarra, Pamplona, Navarra, Spain
| | - David Corbacho
- Imaging Unit, Fundación para la Investigación Médica Aplicada, University of Navarra, Pamplona, Navarra, Spain
| | - Olalla Iglesias-Garcia
- Imaging Unit, Fundación para la Investigación Médica Aplicada, University of Navarra, Pamplona, Navarra, Spain
| | - Beatriz Pelacho
- Imaging Unit, Fundación para la Investigación Médica Aplicada, University of Navarra, Pamplona, Navarra, Spain
| | - Edurne Albiasu
- Imaging Unit, Fundación para la Investigación Médica Aplicada, University of Navarra, Pamplona, Navarra, Spain
| | - Sara Castaño
- Cardiology Department, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Arrate Muñoz-Barrutia
- Imaging Unit, Fundación para la Investigación Médica Aplicada, University of Navarra, Pamplona, Navarra, Spain
| | - Felipe Prosper
- Imaging Unit, Fundación para la Investigación Médica Aplicada, University of Navarra, Pamplona, Navarra, Spain
| | - Carlos Ortiz-de-Solorzano
- Imaging Unit, Fundación para la Investigación Médica Aplicada, University of Navarra, Pamplona, Navarra, Spain
| |
Collapse
|
49
|
Luong KVQ, Nguyen LTH. The impact of thiamine treatment in the diabetes mellitus. J Clin Med Res 2012; 4:153-60. [PMID: 22719800 PMCID: PMC3376872 DOI: 10.4021/jocmr890w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2012] [Indexed: 01/19/2023] Open
Abstract
Thiamine acts as a coenzyme for transketolase (Tk) and for the pyruvate dehydrogenase and α-ketoglutarate dehydrogenase complexes, enzymes which play a fundamental role for intracellular glucose metabolism. The relationship between thiamine and diabetes mellitus (DM) has been reported in the literature. Thiamine levels and thiamine-dependent enzyme activities have been reduced in DM. Genetic studies provide opportunity to link the relationship between thiamine and DM (such as Tk, SLC19A2 gene, transcription factor Sp1, α-1-antitrypsin, and p53). Thiamine and its derivatives have been demonstrated to prevent the activation of the biochemical pathways (increased flux through the polyol pathway, formation of advanced glycation end-products, activation of protein kinase C, and increased flux through the hexosamine biosynthesis pathway) induced by hyperglycemia in DM.Thiamine definitively has a role in the diabetic endothelial vascular diseases (micro and macroangiopathy), lipid profile, retinopathy, nephropathy, cardiopathy, and neuropathy.
Collapse
|
50
|
Adluri RS, Thirunavukkarasu M, Zhan L, Dunna NR, Akita Y, Selvaraju V, Otani H, Sanchez JA, Ho YS, Maulik N. Glutaredoxin-1 overexpression enhances neovascularization and diminishes ventricular remodeling in chronic myocardial infarction. PLoS One 2012; 7:e34790. [PMID: 22523530 PMCID: PMC3327713 DOI: 10.1371/journal.pone.0034790] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 03/08/2012] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress plays a critical role in the pathophysiology of cardiac failure, including the modulation of neovascularization following myocardial infarction (MI). Redox molecules thioredoxin (Trx) and glutaredoxin (Grx) superfamilies actively maintain intracellular thiol-redox homeostasis by scavenging reactive oxygen species. Among these two superfamilies, the pro-angiogenic function of Trx-1 has been reported in chronic MI model whereas similar role of Grx-1 remains uncertain. The present study attempts to establish the role of Grx-1 in neovascularization and ventricular remodeling following MI. Wild-type (WT) and Grx-1 transgenic (Grx-1(Tg/+)) mice were randomized into wild-type sham (WTS), Grx-1(Tg/+) Sham (Grx-1(Tg/+)S), WTMI, Grx-1(Tg/+)MI. MI was induced by permanent occlusion of the LAD coronary artery. Sham groups underwent identical time-matched surgical procedures without LAD ligation. Significant increase in arteriolar density was observed 7 days (d) after surgical intervention in the Grx-1(Tg/+)MI group as compared to the WTMI animals. Further, improvement in myocardial functional parameters 30 d after MI was observed including decreased LVIDs, LVIDd, increased ejection fraction and, fractional shortening was also observed in the Grx-1(Tg/+)MI group as compared to the WTMI animals. Moreover, attenuation of oxidative stress and apoptotic cardiomyocytes was observed in the Grx-1(Tg/+)MI group as compared to the WTMI animals. Increased expression of p-Akt, VEGF, Ang-1, Bcl-2, survivin and DNA binding activity of NF-κB were observed in the Grx-1(Tg/+)MI group when compared to WTMI animals as revealed by Western blot analysis and Gel-shift analysis, respectively. These results are the first to demonstrate that Grx-1 induces angiogenesis and diminishes ventricular remodeling apparently through neovascularization mediated by Akt, VEGF, Ang-1 and NF-κB as well as Bcl-2 and survivin-mediated anti-apoptotic pathway in the infarcted myocardium.
Collapse
Affiliation(s)
- Ram Sudheer Adluri
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Lijun Zhan
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Nageswara Rao Dunna
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Yuzo Akita
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Hajime Otani
- Second Department of Internal Medicine, Kansai Medical University, Moriguchi, Japan
| | - Juan A. Sanchez
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Ye-Shih Ho
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|