1
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
2
|
Foroshani S, Karp A, Aronow WS, Lanier GM. The role of phosphodiesterase 9A inhibitors in heart failure. Expert Opin Investig Drugs 2024; 33:543-547. [PMID: 38702878 DOI: 10.1080/13543784.2024.2349813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION There are currently limited effective treatments available to improve lusitropy in patients suffering from heart failure with preserved ejection fraction. The role of PDE9A in diastolic dysfunction has been well-studied over recent years, with a special focus on its association with myocardial hypertrophy. Recent insights into PDE9A inhibition have brought to light the potential for reversal of cardiac remodeling, with multiple studies showing promising results in preclinical data. AREAS COVERED This expert opinion provides an overview of the role of PDE9A in diastolic heart dysfunction along with the efficacy of PDE9A inhibitors in laboratory models of heart failure with preserved ejection fraction. EXPERT OPINION The available data on PDE9A inhibition in preclinical studies suggest that there is potential for reversal of diastolic dysfunction and myocardial hypertrophy, however, conflicting data suggests that further studies are required before progressing to clinical trials.
Collapse
Affiliation(s)
| | - Avrohom Karp
- Medicine, New York Medical College, Valhalla, NY, USA
| | - Wilbert S Aronow
- Departments of Cardiology and Medicine Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Gregg M Lanier
- Departments of Cardiology and Medicine Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
3
|
Paratz ED, Mundisugih J, Rowe SJ, Kizana E, Semsarian C. Gene Therapy in Cardiology: Is a Cure for Hypertrophic Cardiomyopathy on the Horizon? Can J Cardiol 2024; 40:777-788. [PMID: 38013066 DOI: 10.1016/j.cjca.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy worldwide, affecting approximately 1 in 500 individuals. Current therapeutic interventions include lifestyle optimisation, medications, septal reduction therapies, and, rarely, cardiac transplantation. Advances in our understanding of disease-causing genetic variants in HCM and their associated molecular mechanisms have led to the potential for targeted therapeutics and implementation of precision and personalised medicine. Results from preclinical research are promising and raise the question of whether cure of some subtypes of HCM may be possible in the future. This review provides an overview of current genetic therapy platforms, including 1) genome editing, 2) gene replacement, 3) allelic-specific silencing, and 4) signalling pathway modulation. The current applicability of each of these platforms within the paradigm of HCM is examined, with updates on current and emerging trials in each domain. Barriers and limitations within the current landscape are also highlighted. Despite recent advances, translation of genetic therapy for HCM to clinical practice is still in early development. In realising the promises of genetic HCM therapies, ethical and equitable access to safe gene therapy must be prioritised.
Collapse
Affiliation(s)
- Elizabeth D Paratz
- Baker Heart and Diabetes Institute, Prahran, Victoria, Australia; St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Faculty of Medicine, Dentistry and Health Sciences, Melbourne University, Parkville, Victoria, Australia.
| | - Juan Mundisugih
- Centre for Heart Research, Westmead Institute for Medical Research, Westmead Clinical School, University of Sydney, Westmead, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephanie J Rowe
- Baker Heart and Diabetes Institute, Prahran, Victoria, Australia; St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Faculty of Medicine, Dentistry and Health Sciences, Melbourne University, Parkville, Victoria, Australia
| | - Eddy Kizana
- Centre for Heart Research, Westmead Institute for Medical Research, Westmead Clinical School, University of Sydney, Westmead, New South Wales, Australia
| | - Christopher Semsarian
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia; Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
4
|
Perike S, Gonzalez-Gonzalez FJ, Abu-Taha I, Damen FW, Hanft LM, Lizama KS, Aboonabi A, Capote AE, Aguilar-Sanchez Y, Levin B, Han Z, Sridhar A, Grand J, Martin J, Akar JG, Warren CM, Solaro RJ, Sang-Ging O, Darbar D, McDonald KS, Goergen CJ, Wolska BM, Dobrev D, Wehrens XH, McCauley MD. PPP1R12C Promotes Atrial Hypocontractility in Atrial Fibrillation. Circ Res 2023; 133:758-771. [PMID: 37737016 PMCID: PMC10616980 DOI: 10.1161/circresaha.123.322516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Atrial fibrillation (AF)-the most common sustained cardiac arrhythmia-increases thromboembolic stroke risk 5-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function remain unknown. We tested the hypothesis that increased expression of PPP1R12C (protein phosphatase 1 regulatory subunit 12C)-the PP1 (protein phosphatase 1) regulatory subunit targeting MLC2a (atrial myosin light chain 2)-causes hypophosphorylation of MLC2a and results in atrial hypocontractility. METHODS Right atrial appendage tissues were isolated from human patients with AF versus sinus rhythm controls. Western blots, coimmunoprecipitation, and phosphorylation studies were performed to examine how the PP1c (PP1 catalytic subunit)-PPP1R12C interaction causes MLC2a dephosphorylation. In vitro studies of pharmacological MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) inhibitor (BDP5290) in atrial HL-1 cells were performed to evaluate PP1 holoenzyme activity on MLC2a. Cardiac-specific lentiviral PPP1R12C overexpression was performed in mice to evaluate atrial remodeling with atrial cell shortening assays, echocardiography, and AF inducibility with electrophysiology studies. RESULTS In human patients with AF, PPP1R12C expression was increased 2-fold versus sinus rhythm controls (P=2.0×10-2; n=12 and 12 in each group) with >40% reduction in MLC2a phosphorylation (P=1.4×10-6; n=12 and 12 in each group). PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF (P=2.9×10-2 and 6.7×10-3, respectively; n=8 and 8 in each group). In vitro studies utilizing drug BDP5290, which inhibits T560-PPP1R12C phosphorylation, demonstrated increased PPP1R12C binding with both PP1c and MLC2a and dephosphorylation of MLC2a. Mice treated with lentiviral PPP1R12C vector demonstrated a 150% increase in left atrial size versus controls (P=5.0×10-6; n=12, 8, and 12), with reduced atrial strain and atrial ejection fraction. Pacing-induced AF in mice treated with lentiviral PPP1R12C vector was significantly higher than in controls (P=1.8×10-2 and 4.1×10-2, respectively; n=6, 6, and 5). CONCLUSIONS Patients with AF exhibit increased levels of PPP1R12C protein compared with controls. PPP1R12C overexpression in mice increases PP1c targeting to MLC2a and causes MLC2a dephosphorylation, which reduces atrial contractility and increases AF inducibility. These findings suggest that PP1 regulation of sarcomere function at MLC2a is a key determinant of atrial contractility in AF.
Collapse
Affiliation(s)
- Srikanth Perike
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL
| | - Francisco J. Gonzalez-Gonzalez
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Germany
| | - Frederick W. Damen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia
| | - Ken S. Lizama
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL
| | - Anahita Aboonabi
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
| | - Andrielle E. Capote
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
| | - Yuriana Aguilar-Sanchez
- Department of Integrative Physiology and The Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX
| | | | - Zhenbo Han
- Department of Pharmacology and Regenerative Medicine, College of Medicine,University of Illinois at Chicago
| | - Arvind Sridhar
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
| | - Jacob Grand
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
| | | | | | - Chad M. Warren
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
| | - R. John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
| | - Ong Sang-Ging
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Pharmacology and Regenerative Medicine, College of Medicine,University of Illinois at Chicago
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL
| | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Beata M. Wolska
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Germany
- Department of Integrative Physiology and The Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX
- Department of Medicine, Montréal Heart Institute and Université de Montréal, Montréal, Canada
| | - Xander H.T. Wehrens
- Department of Integrative Physiology and The Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX
| | - Mark D. McCauley
- Division of Cardiology, Department of Medicine, College of Medicine, University of Illinois at Chicago
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, University of Illinois at Chicago
- Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
5
|
Perike S, Gonzalez-Gonzalez FJ, Abu-Taha I, Damen FW, Lizama KS, Aboonabi A, Capote AE, Aguilar-Sanchez Y, Levin B, Han Z, Sridhar A, Grand J, Martin J, Akar JG, Warren CM, Solaro RJ, Ong SG, Darbar D, Goergen CJ, Wolska BM, Dobrev D, Wehrens XHT, McCauley MD. Myosin Light Chain Dephosphorylation by PPP1R12C Promotes Atrial Hypocontractility in Atrial Fibrillation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537590. [PMID: 37131731 PMCID: PMC10153354 DOI: 10.1101/2023.04.19.537590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, increases thromboembolic stroke risk five-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function remain unknown. We tested the hypothesis that increased expression of PPP1R12C, the PP1 regulatory subunit targeting atrial myosin light chain 2 (MLC2a), causes hypophosphorylation of MLC2a and results in atrial hypocontractility. Methods Right atrial appendage tissues were isolated from human AF patients versus sinus rhythm (SR) controls. Western blots, co-immunoprecipitation, and phosphorylation studies were performed to examine how the PP1c-PPP1R12C interaction causes MLC2a de-phosphorylation. In vitro studies of pharmacologic MRCK inhibitor (BDP5290) in atrial HL-1 cells were performed to evaluate PP1 holoenzyme activity on MLC2a. Cardiac-specific lentiviral PPP1R12C overexpression was performed in mice to evaluate atrial remodeling with atrial cell shortening assays, echocardiography, and AF inducibility with EP studies. Results In human patients with AF, PPP1R12C expression was increased two-fold versus SR controls ( P =2.0×10 -2 , n=12,12 in each group) with > 40% reduction in MLC2a phosphorylation ( P =1.4×10 -6 , n=12,12 in each group). PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF ( P =2.9×10 -2 and 6.7×10 -3 respectively, n=8,8 in each group). In vitro studies utilizing drug BDP5290, which inhibits T560-PPP1R12C phosphorylation, demonstrated increased PPP1R12C binding with both PP1c and MLC2a, and dephosphorylation of MLC2a. Lenti-12C mice demonstrated a 150% increase in LA size versus controls ( P =5.0×10 -6 , n=12,8,12), with reduced atrial strain and atrial ejection fraction. Pacing-induced AF in Lenti-12C mice was significantly higher than controls ( P =1.8×10 -2 and 4.1×10 -2 respectively, n= 6,6,5). Conclusions AF patients exhibit increased levels of PPP1R12C protein compared to controls. PPP1R12C overexpression in mice increases PP1c targeting to MLC2a and causes MLC2a dephosphorylation, which reduces atrial contractility and increases AF inducibility. These findings suggest that PP1 regulation of sarcomere function at MLC2a is a key determinant of atrial contractility in AF.
Collapse
|
6
|
Langa P, Marszalek RJ, Warren CM, Chowdhury SK, Halas M, Batra A, Rafael-Clyke K, Bacon A, Goldspink PH, Solaro RJ, Wolska BM. Altered coronary artery function, arteriogenesis and endothelial YAP signaling in postnatal hypertrophic cardiomyopathy. Front Physiol 2023; 14:1136852. [PMID: 37064918 PMCID: PMC10102353 DOI: 10.3389/fphys.2023.1136852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Introduction: Hypertrophic cardiomyopathy (HCM) is a cardiovascular genetic disease caused largely by sarcomere protein mutations. Gaps in our understanding exist as to how maladaptive sarcomeric biophysical signals are transduced to intra- and extracellular compartments leading to HCM progression. To investigate early HCM progression, we focused on the onset of myofilament dysfunction during neonatal development and examined cardiac dynamics, coronary vascular structure and function, and mechano-transduction signaling in mice harboring a thin-filament HCM mutation. Methods: We studied postnatal days 7-28 (P7-P28) in transgenic (TG) TG-cTnT-R92Q and non-transgenic (NTG) mice using skinned fiber mechanics, echocardiography, biochemistry, histology, and immunohistochemistry. Results: At P7, skinned myofiber bundles exhibited an increased Ca2+-sensitivity (pCa50 TG: 5.97 ± 0.04, NTG: 5.84 ± 0.01) resulting from cTnT-R92Q expression on a background of slow skeletal (fetal) troponin I and α/β myosin heavy chain isoform expression. Despite the transition to adult isoform expressions between P7-P14, the increased Ca2+- sensitivity persisted through P28 with no apparent differences in gross morphology among TG and NTG hearts. At P7 significant diastolic dysfunction was accompanied by coronary flow perturbation (mean diastolic velocity, TG: 222.5 ± 18.81 mm/s, NTG: 338.7 ± 28.07 mm/s) along with localized fibrosis (TG: 4.36% ± 0.44%, NTG: 2.53% ± 0.47%). Increased phosphorylation of phospholamban (PLN) was also evident indicating abnormalities in Ca2+ homeostasis. By P14 there was a decline in arteriolar cross-sectional area along with an expansion of fibrosis (TG: 9.72% ± 0.73%, NTG: 2.72% ± 0.2%). In comparing mechano-transduction signaling in the coronary arteries, we uncovered an increase in endothelial YAP expression with a decrease in its nuclear to cytosolic ratio at P14 in TG hearts, which was reversed by P28. Conclusion: We conclude that those early mechanisms that presage hypertrophic remodeling in HCM include defective biophysical signals within the sarcomere that drive diastolic dysfunction, impacting coronary flow dynamics, defective arteriogenesis and fibrosis. Changes in mechano-transduction signaling between the different cellular compartments contribute to the pathogenesis of HCM.
Collapse
Affiliation(s)
- Paulina Langa
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Richard J. Marszalek
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Chad M. Warren
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Shamim K. Chowdhury
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Monika Halas
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ashley Batra
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Koreena Rafael-Clyke
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Angelie Bacon
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Paul H. Goldspink
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - R. John Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Beata M. Wolska
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Division of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Keyt LK, Duran JM, Bui QM, Chen C, Miyamoto MI, Silva Enciso J, Tardiff JC, Adler ED. Thin filament cardiomyopathies: A review of genetics, disease mechanisms, and emerging therapeutics. Front Cardiovasc Med 2022; 9:972301. [PMID: 36158814 PMCID: PMC9489950 DOI: 10.3389/fcvm.2022.972301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
All muscle contraction occurs due to the cyclical interaction between sarcomeric thin and thick filament proteins within the myocyte. The thin filament consists of the proteins actin, tropomyosin, Troponin C, Troponin I, and Troponin T. Mutations in these proteins can result in various forms of cardiomyopathy, including hypertrophic, restrictive, and dilated phenotypes and account for as many as 30% of all cases of inherited cardiomyopathy. There is significant evidence that thin filament mutations contribute to dysregulation of Ca2+ within the sarcomere and may have a distinct pathomechanism of disease from cardiomyopathy associated with thick filament mutations. A number of distinct clinical findings appear to be correlated with thin-filament mutations: greater degrees of restrictive cardiomyopathy and relatively less left ventricular (LV) hypertrophy and LV outflow tract obstruction than that seen with thick filament mutations, increased morbidity associated with heart failure, increased arrhythmia burden and potentially higher mortality. Most therapies that improve outcomes in heart failure blunt the neurohormonal pathways involved in cardiac remodeling, while most therapies for hypertrophic cardiomyopathy involve use of negative inotropes to reduce LV hypertrophy or septal reduction therapies to reduce LV outflow tract obstruction. None of these therapies directly address the underlying sarcomeric dysfunction associated with thin-filament mutations. With mounting evidence that thin filament cardiomyopathies occur through a distinct mechanism, there is need for therapies targeting the unique, underlying mechanisms tailored for each patient depending on a given mutation.
Collapse
Affiliation(s)
- Lucas K. Keyt
- Department of Internal Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jason M. Duran
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Quan M. Bui
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Chao Chen
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | | | - Jorge Silva Enciso
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Jil C. Tardiff
- Department of Medicine and Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Eric D. Adler
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
8
|
Hulsurkar MM, Lahiri SK, Karch J, Wang MC, Wehrens XHT. Targeting calcium-mediated inter-organellar crosstalk in cardiac diseases. Expert Opin Ther Targets 2022; 26:303-317. [PMID: 35426759 PMCID: PMC9081256 DOI: 10.1080/14728222.2022.2067479] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/14/2022] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Abnormal calcium signaling between organelles such as the sarcoplasmic reticulum (SR), mitochondria and lysosomes is a key feature of heart diseases. Calcium serves as a secondary messenger mediating inter-organellar crosstalk, essential for maintaining the cardiomyocyte function. AREAS COVERED This article examines the available literature related to calcium channels and transporters involved in inter-organellar calcium signaling. The SR calcium-release channels ryanodine receptor type-2 (RyR2) and inositol 1,4,5-trisphosphate receptor (IP3R), and calcium-transporter SR/ER-ATPase 2a (SERCA2a) are illuminated. The roles of mitochondrial voltage-dependent anion channels (VDAC), the mitochondria Ca2+ uniporter complex (MCUC), and the lysosomal H+/Ca2+ exchanger, two pore channels (TPC), and transient receptor potential mucolipin (TRPML) are discussed. Furthermore, recent studies showing calcium-mediated crosstalk between the SR, mitochondria, and lysosomes as well as how this crosstalk is dysregulated in cardiac diseases are placed under the spotlight. EXPERT OPINION Enhanced SR calcium release via RyR2 and reduced SR reuptake via SERCA2a, increased VDAC and MCUC-mediated calcium uptake into mitochondria, and enhanced lysosomal calcium-release via lysosomal TPC and TRPML may all contribute to aberrant calcium homeostasis causing heart disease. While mechanisms of this crosstalk need to be studied further, interventions targeting these calcium channels or combinations thereof might represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Mohit M Hulsurkar
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Satadru K Lahiri
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jason Karch
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Meng C Wang
- Baylor College of Medicine, Houston TX USA
- Huffington Center on Aging, Baylor College of Medicine, Houston TX USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Xander H T Wehrens
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Cheng Z, Fang T, Huang J, Guo Y, Alam M, Qian H. Hypertrophic Cardiomyopathy: From Phenotype and Pathogenesis to Treatment. Front Cardiovasc Med 2021; 8:722340. [PMID: 34760939 PMCID: PMC8572854 DOI: 10.3389/fcvm.2021.722340] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a very common inherited cardiovascular disease (CAD) and the incidence is about 1/500 of the common population. It is caused by more than 1,400 mutations in 11 or more genes encoding the proteins of the cardiac sarcomere. HCM presents a heterogeneous clinical profile and complex pathophysiology and HCM is the most important cause of sudden cardiac death (SCD) in young people. HCM also contributes to functional disability from heart failure and stroke (caused by atrial fibrillation). Current treatments for HCM (medication, myectomy, and alcohol septal ablation) are geared toward slowing down the disease progression and symptom relief and implanted cardiac defibrillator (ICD) to prevent SCD. HCM is, however, entering a period of tight translational research that holds promise for the major advances in disease-specific therapy. Main insights into the genetic landscape of HCM have improved our understanding of molecular pathogenesis and pointed the potential targets for the development of therapeutic agents. We reviewed the critical discoveries about the treatments, mechanism of HCM, and their implications for future research.
Collapse
Affiliation(s)
- Zeyi Cheng
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Fang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinglei Huang
- School of Medicine, Lanzhou University, Lanzhou, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mahboob Alam
- Division of Cardiovascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Hong Qian
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Cheng Z, Qi M, Zhang C, Mao Y. Myocardial Fibrosis in the Pathogenesis, Diagnosis, and Treatment of Hypertrophic Cardiomyopathy. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2021. [DOI: 10.15212/cvia.2021.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a type of hereditary cardiomyopathy caused by gene mutation. Its histological features include cardiomyocyte hypertrophy and disarray as well as myocardial fibrosis. Gene mutation, abnormal signal transduction, and abnormal energy metabolism are
considered the main mechanisms of myocardial fibrosis. There is a strong correlation between myocardial fibrosis and the occurrence, development, and prognosis of HCM. We review the application of myocardial fibrosis in the diagnosis and treatment of HCM, focusing on research progress and
the application of magnetic resonance imaging on the basis of the characteristics of fibrosis in the diagnosis and prognosis of HCM.
Collapse
Affiliation(s)
- Zeyi Cheng
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041 Sichuan, China
| | - Miaomiao Qi
- Department of Cardiology, The Second Hospital of Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Chengyuan Zhang
- The Second Medical School of Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Yanxia Mao
- The Second Medical School of Lanzhou University, Lanzhou, 730000 Gansu, China
| |
Collapse
|
11
|
Bezzerides VJ, Prondzynski M, Carrier L, Pu WT. Gene therapy for inherited arrhythmias. Cardiovasc Res 2020; 116:1635-1650. [PMID: 32321160 PMCID: PMC7341167 DOI: 10.1093/cvr/cvaa107] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/13/2020] [Accepted: 04/15/2020] [Indexed: 01/16/2023] Open
Abstract
Inherited arrhythmias are disorders caused by one or more genetic mutations that increase the risk of arrhythmia, which result in life-long risk of sudden death. These mutations either primarily perturb electrophysiological homeostasis (e.g. long QT syndrome and catecholaminergic polymorphic ventricular tachycardia), cause structural disease that is closely associated with severe arrhythmias (e.g. hypertrophic cardiomyopathy), or cause a high propensity for arrhythmia in combination with altered myocardial structure and function (e.g. arrhythmogenic cardiomyopathy). Currently available therapies offer incomplete protection from arrhythmia and fail to alter disease progression. Recent studies suggest that gene therapies may provide potent, molecularly targeted options for at least a subset of inherited arrhythmias. Here, we provide an overview of gene therapy strategies, and review recent studies on gene therapies for catecholaminergic polymorphic ventricular tachycardia and hypertrophic cardiomyopathy caused by MYBPC3 mutations.
Collapse
Affiliation(s)
- Vassilios J Bezzerides
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Maksymilian Prondzynski
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Lucie Carrier
- Institute of Experimental and Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - William T Pu
- Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Arrhythmogenic Cardiomyopathy: Molecular Insights for Improved Therapeutic Design. J Cardiovasc Dev Dis 2020; 7:jcdd7020021. [PMID: 32466575 PMCID: PMC7345706 DOI: 10.3390/jcdd7020021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by structural and electrical cardiac abnormalities, including myocardial fibro-fatty replacement. Its pathological ventricular substrate predisposes subjects to an increased risk of sudden cardiac death (SCD). ACM is a notorious cause of SCD in young athletes, and exercise has been documented to accelerate its progression. Although the genetic culprits are not exclusively limited to the intercalated disc, the majority of ACM-linked variants reside within desmosomal genes and are transmitted via Mendelian inheritance patterns; however, penetrance is highly variable. Its natural history features an initial “concealed phase” that results in patients being vulnerable to malignant arrhythmias prior to the onset of structural changes. Lack of effective therapies that target its pathophysiology renders management of patients challenging due to its progressive nature, and has highlighted a critical need to improve our understanding of its underlying mechanistic basis. In vitro and in vivo studies have begun to unravel the molecular consequences associated with disease causing variants, including altered Wnt/β-catenin signaling. Characterization of ACM mouse models has facilitated the evaluation of new therapeutic approaches. Improved molecular insight into the condition promises to usher in novel forms of therapy that will lead to improved care at the clinical bedside.
Collapse
|
13
|
Chowdhury SAK, Warren CM, Simon JN, Ryba DM, Batra A, Varga P, Kranias EG, Tardiff JC, Solaro RJ, Wolska BM. Modifications of Sarcoplasmic Reticulum Function Prevent Progression of Sarcomere-Linked Hypertrophic Cardiomyopathy Despite a Persistent Increase in Myofilament Calcium Response. Front Physiol 2020; 11:107. [PMID: 32210830 PMCID: PMC7075858 DOI: 10.3389/fphys.2020.00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/30/2020] [Indexed: 01/12/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in different genes mainly encoding myofilament proteins and therefore called a “disease of the sarcomere.” Despite the discovery of sarcomere protein mutations linked to HCM almost 30 years ago, the cellular mechanisms responsible for the development of this disease are not completely understood and likely vary among different mutations. Moreover, despite many efforts to develop effective treatments for HCM, these have largely been unsuccessful, and more studies are needed to better understand the cellular mechanisms of the disease. In experiments reported here, we investigated a mouse model expressing the mutant cTnT-R92Q, which is linked to HCM and induces an increase in myofilament Ca2+ sensitivity and diastolic dysfunction. We found that early correction of the diastolic dysfunction by phospholamban knockout (PLNKO) was able to prevent the development of the HCM phenotype in troponin T (TnT)-R92Q transgenic (TG) mice. Four groups of mice in FVB/N background were generated and used for the experiments: (1) non-transgenic (NTG)/PLN mice, which express wild-type TnT and normal level of PLN; (2) NTG/PLNKO mice, which express wild-type TnT and no PLN; (3) TG/PLN mice, which express TnT-R92Q and normal level of PLN; (4) TG/PLNKO mice, which express TnT-R92Q and no PLN. Cardiac function was determined using both standard echocardiographic parameters and speckle tracking strain measurements. We found that both atrial morphology and diastolic function were altered in TG/PLN mice but normal in TG/PLNKO mice. Histological analysis showed a disarray of myocytes and increased collagen deposition only in TG/PLN hearts. We also observed increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation only in TG/PLN hearts but not in TG/PLNKO hearts. The rescue of the HCM phenotype was not associated with differences in myofilament Ca2+ sensitivity between TG/PLN and TG/PLNKO mice. Moreover, compared to standard systolic echo parameters, such as ejection fraction (EF), speckle strain measurements provided a more sensitive approach to detect early systolic dysfunction in TG/PLN mice. In summary, our results indicate that targeting diastolic dysfunction through altering Ca2+ fluxes with no change in myofilament response to Ca2+ was able to prevent the development of the HCM phenotype and should be considered as a potential additional treatment for HCM patients.
Collapse
Affiliation(s)
- Shamim A K Chowdhury
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Chad M Warren
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jillian N Simon
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - David M Ryba
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ashley Batra
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Peter Varga
- Department of Pediatrics, Section of Cardiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Jil C Tardiff
- Department of Medicine, Division of Cardiology, The University of Arizona, Tucson, AZ, United States
| | - R John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Beata M Wolska
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States.,Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
14
|
Gannon MP, Link MS. Phenotypic variation and targeted therapy of hypertrophic cardiomyopathy using genetic animal models. Trends Cardiovasc Med 2019; 31:20-31. [PMID: 31862214 DOI: 10.1016/j.tcm.2019.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) has a variable clinical presentation due to the diversity of causative genetic mutations. Animal models allow in vivo study of genotypic expression through non-invasive imaging, pathologic sampling, and force analysis. This review focuses on the spontaneous and induced mutations in various animal models affecting mainly sarcomere proteins. The sarcomere is comprised of thick (myosin) filaments and related proteins including myosin heavy chain and myosin binding protein-C; thin (actin) filament proteins and their associated regulators including tropomyosin, troponin I, troponin C, and troponin T. The regulatory milieu including transcription factors and cell signaling also play a significant role. Animal models provide a layered approach of understanding beginning with the causative mutation as a foundation. The functional consequences of protein energy utilization and calcium sensitivity in vivo and ex vivo can be studied. Beyond pathophysiologic disruption of sarcomere function, these models demonstrate the clinical sequalae of diastolic dysfunction, heart failure, and arrhythmogenic death. Through this cascade of understanding the mutation followed by their functional significance, targeted therapies have been developed and are briefly discussed.
Collapse
Affiliation(s)
- Michael P Gannon
- National Heart, Lung and Blood Institute, National Institutes of Health, US Department of Health and Human Services, Bldg 10, Rm B1D416, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Mark S Link
- University of Texas Southwestern Medical Center, USA
| |
Collapse
|
15
|
Rosas PC, Warren CM, Creed HA, Trzeciakowski JP, Solaro RJ, Tong CW. Cardiac Myosin Binding Protein-C Phosphorylation Mitigates Age-Related Cardiac Dysfunction: Hope for Better Aging? JACC Basic Transl Sci 2019; 4:817-830. [PMID: 31998850 PMCID: PMC6978553 DOI: 10.1016/j.jacbts.2019.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/29/2022]
Abstract
Cardiac myosin binding protein-C (cMyBP-C) phosphorylation prevents aging-related cardiac dysfunction. We tested this hypothesis by aging genetic mouse models of hypophosphorylated cMyBP-C, wild-type equivalent, and phosphorylated-mimetic cMyBP-C for 18 to 20 months. Phosphorylated-mimetic cMyBP-C mice exhibited better survival, better preservation of systolic and diastolic functions, and unchanging wall thickness. Wild-type equivalent mice showed decreasing cMyBP-C phosphorylation along with worsening cardiac function and hypertrophy approaching those found in hypophosphorylated cMyBP-C mice. Intact papillary muscle experiments suggested that cMyBP-C phosphorylation increased cross-bridge detachment rates as the underlying mechanism. Thus, phosphorylating cMyBP-C is a novel mechanism with potential to treat aging-related cardiac dysfunction.
Collapse
Key Words
- 3SA, mutated 3 serines to 3 alanines to mimic hypophosphorylated cardiac myosin binding protein-C (S273A, S282A, and S302A)
- 3SD, mutated 3 serines to 3 aspartic acids to mimic phosphorylated cMyBP-C (S273D, S282D, and S302D)
- ANOVA, analysis of variance
- EF, ejection fraction
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HOP, hydroxyproline
- LV, left ventricular
- aging
- cMyBP-C, cardiac myosin binding protein-C
- cTnI, cardiac troponin I
- cardiac myosin binding protein-C
- dyastolic dysfunction
- heart failure
- phosphorylation
Collapse
Affiliation(s)
- Paola C. Rosas
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Chad M. Warren
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Heidi A. Creed
- Department of Medical Physiology, Texas A and M University Health Science Center, College of Medicine, College Station, Texas
| | - Jerome P. Trzeciakowski
- Department of Medical Physiology, Texas A and M University Health Science Center, College of Medicine, College Station, Texas
| | - R. John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Carl W. Tong
- Department of Medical Physiology, Texas A and M University Health Science Center, College of Medicine, College Station, Texas
- Catholic Health Initiatives-St. Joseph Health, Bryan, Texas
| |
Collapse
|
16
|
Abstract
Heritable cardiomyopathies are a class of heart diseases caused by variations in a number of genetic loci. Genetic variants on one allele lead to either a degraded protein, which causes a haploinsufficiency of that protein, or a nonfunctioning protein that subverts the molecular system within which the protein works. Over years, both of these mechanisms eventually lead to diseased heart tissue and symptoms of a failing heart. Most cardiomyopathy treatments repurpose heart failure drugs to manage these symptoms and avoid adverse outcomes. There are few therapies that correct the underlying pathogenic genetic or molecular mechanism. This review will reflect on this unmet clinical need in genetic cardiomyopathies and consider a variety of therapies that address the mechanism of disease rather than patient symptoms. These therapies are genetic, targeting a defective gene or transcript, or ameliorating a genetic insufficiency. However, there are also a number of small molecules under exploration that modulate downstream faulty protein products affected in cardiomyopathies.
Collapse
Affiliation(s)
- Giuliana G Repetti
- From the Department of Genetics, Harvard Medical School, Boston, MA (G.G.R., C.N.T., J.G.S., C.E.S.)
| | - Christopher N Toepfer
- From the Department of Genetics, Harvard Medical School, Boston, MA (G.G.R., C.N.T., J.G.S., C.E.S.)
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (C.N.T.)
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA (C.N.T., C.E.S.)
| | - Jonathan G Seidman
- From the Department of Genetics, Harvard Medical School, Boston, MA (G.G.R., C.N.T., J.G.S., C.E.S.)
| | - Christine E Seidman
- From the Department of Genetics, Harvard Medical School, Boston, MA (G.G.R., C.N.T., J.G.S., C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| |
Collapse
|
17
|
Li J, Gresham KS, Mamidi R, Doh CY, Wan X, Deschenes I, Stelzer JE. Sarcomere-based genetic enhancement of systolic cardiac function in a murine model of dilated cardiomyopathy. Int J Cardiol 2018; 273:168-176. [PMID: 30279005 DOI: 10.1016/j.ijcard.2018.09.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 09/20/2018] [Indexed: 01/28/2023]
Abstract
Diminished cardiac contractile function is a characteristic feature of dilated cardiomyopathy (DCM) and many other heart failure (HF) causing etiologies. We tested the hypothesis that targeting the sarcomere to increase cardiac contractility can effectively prevent the DCM phenotype in muscle-LIM protein knockout (MLP-/-) mice. The ablation of cardiac myosin binding protein C (MYBPC3-/-) protected the MLP-/- mice from developing the DCM phenotype. We examined the in vivo cardiac function and morphology of the resultant mouse model lacking both MLP and MYBPC3 (DKO) by echocardiography and pressure-volume catheterization and found a significant reduction in hypertrophy, as evidenced by normalized wall thickness and chamber dimensions, and improved systolic function, as evidenced by enhanced ejection fraction (~26% increase compared MLP-/- mice) and rate of pressure development (DKO 7851.0 ± 504.8 vs. MLP-/- 4496.4 ± 196.8 mmHg/s). To investigate the molecular basis for the improved DKO phenotype we performed mechanical experiments in skinned myocardium isolated from WT and the individual KO mice. Skinned myocardium isolated from DKO mice displayed increased Ca2+ sensitivity of force generation, and significantly accelerated rate of cross-bridge detachment (+63% compared to MLP-/-) and rate of XB recruitment (+58% compared to MLP-/-) at submaximal Ca2+ activations. The in vivo and in vitro functional enhancement of DKO mice demonstrates that enhancing the sarcomeric contractility can be cardioprotective in HF characterized by reduced cardiac output, such as in cases of DCM.
Collapse
Affiliation(s)
- Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Kenneth S Gresham
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States of America
| | - Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Xiaoping Wan
- The Heart and Vascular Research Center, Metro Health, Cleveland, OH, United States of America
| | - Isabelle Deschenes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America; The Heart and Vascular Research Center, Metro Health, Cleveland, OH, United States of America
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Cardiomyopathies due to genetic mutations are a heterogeneous group of disorders that comprise diseases of contractility, myocardial relaxation, and arrhythmias. Our goal here is to discuss a limited list of genetically inherited cardiomyopathies and the specific therapeutic strategies used to treat them. RECENT FINDINGS Research into the molecular pathophysiology of the development of these cardiomyopathies is leading to the development of novel treatment approaches. Therapies targeting these specific mutations with gene therapy vectors are on the horizon, while other therapies which indirectly affect the physiologic derangements of the mutations are currently being studied and used clinically. Many of these therapies are older medications being given new roles such as mexiletine for Brugada syndrome and diflunisal for transthyretin amyloid cardiomyopathy. A newer targeted therapy, the inhibitor of myosin ATPase MYK-461, has been shown to suppress the development of ventricular hypertrophy, fibrosis, and myocyte disarray and is being studied as a potential therapy in patients with hypertrophic cardiomyopathy. While this field is too large to be completely contained in a single review, we present a large cross section of recent developments in the field of therapeutics for inherited cardiomyopathies. New therapies are on the horizon, and their development will likely result in improved outcomes for patients inflicted by these conditions.
Collapse
Affiliation(s)
- Kenneth Varian
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44195, USA
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44195, USA. .,Center for Clinical Genomics, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
19
|
Wang PX, Li ZM, Cai SD, Li JY, He P, Huang Y, Feng GS, Luo HB, Chen SR, Liu PQ. C33(S), a novel PDE9A inhibitor, protects against rat cardiac hypertrophy through upregulating cGMP signaling. Acta Pharmacol Sin 2017. [PMID: 28649129 DOI: 10.1038/aps.2017.38] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phosphodiesterase-9A (PDE9A) expression is upregulated during cardiac hypertrophy and heart failure. Accumulating evidence suggests that PDE9A might be a promising therapeutic target for heart diseases. The present study sought to investigate the effects and underlying mechanisms of C33(S), a novel selective PDE9A inhibitor, on cardiac hypertrophy in vitro and in vivo. Treatment of neonatal rat cardiomyocytes (NRCMs) with PE (100 μmol/L) or ISO (1 μmol/L) induced cardiac hypertrophy characterized by significantly increased cell surface areas and increased expression of fetal genes (ANF and BNP). Furthermore, PE or ISO significantly increased the expression of PDE9A in the cells; whereas knockdown of PDE9A significantly alleviated PE-induced hypertrophic responses. Moreover, pretreatment with PDE9A inhibitor C33(S) (50 and 500 nmol/L) or PF-7943 (2 μmol/L) also alleviated the cardiac hypertrophic responses in PE-treated NRCMs. Abdominal aortic constriction (AAC)-induced cardiac hypertrophy and ISO-induced heart failure were established in SD rats. In ISO-treated rats, oral administration of C33(S) (9, 3, and 1 mg·kg-1·d-1, for 3 consecutive weeks) significantly increased fractional shortening (43.55%±3.98%, 54.79%±1.95%, 43.98%±7.96% vs 32.18%±6.28%), ejection fraction (72.97%±4.64%, 84.29%±1.56%, 73.41%±9.37% vs 49.17%±4.20%) and cardiac output (60.01±9.11, 69.40±11.63, 58.08±8.47 mL/min vs 48.97±2.11 mL/min) but decreased the left ventricular internal diameter, suggesting that the transition to heart failure was postponed by C33(S). We further revealed that C33(S) significantly elevated intracellular cGMP levels, phosphorylation of phospholamban (PLB) and expression of SERCA2a in PE-treated NRCMs in vitro and in ISO-induced heart failure model in vivo. Our results demonstrate that C33(S) effectively protects against cardiac hypertrophy and postpones the transition to heart failure, suggesting that it is a promising agent in the treatment of cardiac diseases.
Collapse
|
20
|
Coppini R, Mazzoni L, Ferrantini C, Gentile F, Pioner JM, Laurino A, Santini L, Bargelli V, Rotellini M, Bartolucci G, Crocini C, Sacconi L, Tesi C, Belardinelli L, Tardiff J, Mugelli A, Olivotto I, Cerbai E, Poggesi C. Ranolazine Prevents Phenotype Development in a Mouse Model of Hypertrophic Cardiomyopathy. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.116.003565. [PMID: 28255011 DOI: 10.1161/circheartfailure.116.003565] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/30/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Current therapies are ineffective in preventing the development of cardiac phenotype in young carriers of mutations associated with hypertrophic cardiomyopathy (HCM). Ranolazine, a late Na+ current blocker, reduced the electromechanical dysfunction of human HCM myocardium in vitro. METHODS AND RESULTS To test whether long-term treatment prevents cardiomyopathy in vivo, transgenic mice harboring the R92Q troponin-T mutation and wild-type littermates received an oral lifelong treatment with ranolazine and were compared with age-matched vehicle-treated animals. In 12-months-old male R92Q mice, ranolazine at therapeutic plasma concentrations prevented the development of HCM-related cardiac phenotype, including thickening of the interventricular septum, left ventricular volume reduction, left ventricular hypercontractility, diastolic dysfunction, left-atrial enlargement and left ventricular fibrosis, as evaluated in vivo using echocardiography and magnetic resonance. Left ventricular cardiomyocytes from vehicle-treated R92Q mice showed marked excitation-contraction coupling abnormalities, including increased diastolic [Ca2+] and Ca2+ waves, whereas cells from treated mutants were undistinguishable from those from wild-type mice. Intact trabeculae from vehicle-treated mutants displayed inotropic insufficiency, increased diastolic tension, and premature contractions; ranolazine treatment counteracted the development of myocardial mechanical abnormalities. In mutant myocytes, ranolazine inhibited the enhanced late Na+ current and reduced intracellular [Na+] and diastolic [Ca2+], ultimately preventing the pathological increase of calmodulin kinase activity in treated mice. CONCLUSIONS Owing to the sustained reduction of intracellular Ca2+ and calmodulin kinase activity, ranolazine prevented the development of morphological and functional cardiac phenotype in mice carrying a clinically relevant HCM-related mutation. Pharmacological inhibitors of late Na+ current are promising candidates for an early preventive therapy in young phenotype-negative subjects carrying high-risk HCM-related mutations.
Collapse
Affiliation(s)
- Raffaele Coppini
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.).
| | - Luca Mazzoni
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Cecilia Ferrantini
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Francesca Gentile
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Josè Manuel Pioner
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Annunziatina Laurino
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Lorenzo Santini
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Valentina Bargelli
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Matteo Rotellini
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Gianluca Bartolucci
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Claudia Crocini
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Leonardo Sacconi
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Chiara Tesi
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Luiz Belardinelli
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Jil Tardiff
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Alessandro Mugelli
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Iacopo Olivotto
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Elisabetta Cerbai
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Corrado Poggesi
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| |
Collapse
|
21
|
Chen A, Li W, Chen X, Shen Y, Dai W, Dong Q, Li X, Ou C, Chen M. Trimetazidine attenuates pressure overload-induced early cardiac energy dysfunction via regulation of neuropeptide Y system in a rat model of abdominal aortic constriction. BMC Cardiovasc Disord 2016; 16:225. [PMID: 27855650 PMCID: PMC5112876 DOI: 10.1186/s12872-016-0399-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/08/2016] [Indexed: 01/08/2023] Open
Abstract
Background Metabolism remodeling has been recognized as an early event following cardiac pressure overload. However, its temporal association with ventricular hypertrophy has not been confirmed. Moreover, whether trimetazidine could favorably affect this process also needs to be determined. The aim of the study was to explore the temporal changes of myocardial metabolism remodeling following pressure-overload induced ventricular hypertrophy and the potential favorable effect of trimetazidine on myocardial metabolism remodeling. Methods A rat model of abdominal aortic constriction (AAC)-induced cardiac pressure overload was induced. These rats were grouped as the AAC (no treatment) or TMZ group according to whether oral trimetazidine (TMZ, 40 mg/kg/d, for 5 days) was administered. Changes in cardiac structures were sequentially evaluated via echocardiography. The myocardial ADP/ATP ratio was determined to reflect the metabolic status, and changes in serum neuropeptide Y systems were evaluated. Results Myocardial metabolic disorder was acutely induced as evidenced by an increased ADP/ATP ratio within 7 days of AAC before the morphological changes in the myocardium, accompanied by up-regulation of serum oxidative stress markers and expression of fetal genes related to hypertrophy. Moreover, the serum NPY and myocardial NPY-1R, 2R, and 5R levels were increased within the acute phase of AAC-induced cardiac pressure overload. Pretreatment with TMZ could partly attenuate myocardial energy metabolic homeostasis, decrease serum levels of oxidative stress markers, attenuate the induction of hypertrophy-related myocardial fetal genes, inhibit the up-regulation of serum NPY levels, and further increase the myocardial expression of NPY receptors. Conclusions Cardiac metabolic remodeling is an early change in the myocardium before the presence of typical morphological ventricular remodeling following cardiac pressure overload, and pretreatment with TMZ may at least partly reverse the acute metabolic disturbance, perhaps via regulation of the NPY system.
Collapse
Affiliation(s)
- Ailan Chen
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wanglin Li
- Department of Gastrointestinal Surgery, Affiliated Guangzhou First Municipal People's Hospital, Guangzhou Medical University, Guangzhou, 51018, China
| | - Xinyu Chen
- Department of Pathogenic Biology, Guangzhou Hoffmann Institute of Immunology, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuechun Shen
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wenjun Dai
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Qi Dong
- Department of Physiology, Department of Medical Experimental Center, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xinchun Li
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Caiwen Ou
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
| | - Minsheng Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
22
|
Wilder T, Ryba DM, Wieczorek DF, Wolska BM, Solaro RJ. N-acetylcysteine reverses diastolic dysfunction and hypertrophy in familial hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2015; 309:H1720-30. [PMID: 26432840 DOI: 10.1152/ajpheart.00339.2015] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/25/2015] [Indexed: 12/15/2022]
Abstract
S-glutathionylation of cardiac myosin-binding protein C (cMyBP-C) induces Ca(2+) sensitization and a slowing of cross-bridge kinetics as a result of increased oxidative signaling. Although there is evidence for a role of oxidative stress in disorders associated with hypertrophic cardiomyopathy (HCM), this mechanism is not well understood. We investigated whether oxidative myofilament modifications may be in part responsible for diastolic dysfunction in HCM. We administered N-acetylcysteine (NAC) for 30 days to 1-mo-old wild-type mice and to transgenic mice expressing a mutant tropomyosin (Tm-E180G) and nontransgenic littermates. Tm-E180G hearts demonstrate a phenotype similar to human HCM. After NAC administration, the morphology and diastolic function of Tm-E180G mice was not significantly different from controls, indicating that NAC had reversed baseline diastolic dysfunction and hypertrophy in our model. NAC administration also increased sarco(endo)plasmic reticulum Ca(2+) ATPase protein expression, reduced extracellular signal-related kinase 1/2 phosphorylation, and normalized phosphorylation of phospholamban, as assessed by Western blot. Detergent-extracted fiber bundles from NAC-administered Tm-E180G mice showed nearly nontransgenic (NTG) myofilament Ca(2+) sensitivity. Additionally, we found that NAC increased tension cost and rate of cross-bridge reattachment. Tm-E180G myofilaments were found to have a significant increase in S-glutathionylation of cMyBP-C, which was returned to NTG levels upon NAC administration. Taken together, our results indicate that oxidative myofilament modifications are an important mediator in diastolic function, and by relieving this modification we were able to reverse established diastolic dysfunction and hypertrophy in HCM.
Collapse
Affiliation(s)
- Tanganyika Wilder
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois; Department of Biology, College of Science and Technology, Florida A & M University, Tallahassee, Florida
| | - David M Ryba
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - David F Wieczorek
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Beata M Wolska
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois; Department of Medicine, Section of Cardiology, University of Illinois at Chicago, Chicago, Illinois; and
| | - R John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois;
| |
Collapse
|
23
|
Leviner DB, Hochhauser E, Arad M. Inherited cardiomyopathies--Novel therapies. Pharmacol Ther 2015; 155:36-48. [PMID: 26297672 DOI: 10.1016/j.pharmthera.2015.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2015] [Indexed: 01/10/2023]
Abstract
Cardiomyopathies arising due to a single gene defect represent various pathways that evoke adverse remodeling and cardiac dysfunction. While the gene therapy approach is slowly evolving and has not yet reached clinical "prime time" and gene correction approaches are applicable at the bench but not at the bedside, major advances are being made with molecular and drug therapies. This review summarizes the contemporary drugs introduced or being tested to help manage these unique disorders bearing a major impact on the quality of life and survival of the affected individuals. The restoration of the RNA reading frame facilitates the expression of partly functional protein to salvage or alleviate the disease phenotype. Chaperones are used to prevent the degradation of abnormal but still functional proteins, while other molecules are given for pathogen silencing, to prevent aggregation or to enhance clearance of protein deposits. The absence of protein may be managed by viral gene delivery or protein therapy. Enzyme replacement therapy is already a clinical reality for a series of metabolic diseases. The progress in molecular biology, based on the knowledge of the gene defect, helps generate small molecules and pharmaceuticals targeting the key events occurring in the malfunctioning element of the sick organ. Cumulatively, these tools augment the existing armamentarium of phenotype oriented symptomatic and evidence-based therapies for patients with inherited cardiomyopathies.
Collapse
Affiliation(s)
- Dror B Leviner
- Department of Cardiothoracic Surgery, Rabin Medical Center, Petah Tikva, Israel; Cardiac Research Laboratory, Felsenstein Medical Research Center, Petah Tikva and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Center, Petah Tikva and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Tel Hashomer and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
24
|
Mamidi R, Gresham KS, Li A, dos Remedios CG, Stelzer JE. Molecular effects of the myosin activator omecamtiv mecarbil on contractile properties of skinned myocardium lacking cardiac myosin binding protein-C. J Mol Cell Cardiol 2015; 85:262-72. [PMID: 26100051 DOI: 10.1016/j.yjmcc.2015.06.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/28/2015] [Accepted: 06/15/2015] [Indexed: 01/03/2023]
Abstract
Decreased expression of cardiac myosin binding protein-C (cMyBP-C) in the myocardium is thought to be a contributing factor to hypertrophic cardiomyopathy in humans, and the initial molecular defect is likely abnormal cross-bridge (XB) function which leads to impaired force generation, decreased contractile performance, and hypertrophy in vivo. The myosin activator omecamtiv mecarbil (OM) is a pharmacological drug that specifically targets the myosin XB and recent evidence suggests that OM induces a significant decrease in the in vivo motility velocity and an increase in the XB duty cycle. Thus, the molecular effects of OM maybe beneficial in improving contractile function in skinned myocardium lacking cMyBP-C because absence of cMyBP-C in the sarcomere accelerates XB kinetics and enhances XB turnover rate, which presumably reduces contractile efficiency. Therefore, parameters of XB function were measured in skinned myocardium lacking cMyBP-C prior to and following OM incubation. We measured ktr, the rate of force redevelopment as an index of XB transition from both the weakly- to strongly-bound state and from the strongly- to weakly-bound states and performed stretch activation experiments to measure the rates of XB detachment (krel) and XB recruitment (kdf) in detergent-skinned ventricular preparations isolated from hearts of wild-type (WT) and cMyBP-C knockout (KO) mice. Samples from donor human hearts were also used to assess the effects of OM in cardiac muscle expressing a slow β-myosin heavy chain (β-MHC). Incubation of skinned myocardium with OM produced large enhancements in steady-state force generation which were most pronounced at low levels of [Ca(2+)] activations, suggesting that OM cooperatively recruits additional XB's into force generating states. Despite a large increase in steady-state force generation following OM incubation, parallel accelerations in XB kinetics as measured by ktr were not observed, and there was a significant OM-induced decrease in krel which was more pronounced in the KO skinned myocardium compared to WT skinned myocardium (58% in WT vs. 76% in KO at pCa 6.1), such that baseline differences in krel between KO and WT skinned myocardium were no longer apparent following OM-incubation. A significant decrease in the kdf was also observed following OM incubation in all groups, which may be related to the increase in the number of cooperatively recruited XB's at low Ca(2+)-activations which slows the overall rate of force generation. Our results indicate that OM may be a useful pharmacological approach to normalize hypercontractile XB kinetics in myocardium with decreased cMyBP-C expression due to its molecular effects on XB behavior.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Amy Li
- Muscle Research Unit, Bosch Institute, University of Sydney, Sydney Australia
| | | | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA.
| |
Collapse
|
25
|
SERCA2 Haploinsufficiency in a Mouse Model of Darier Disease Causes a Selective Predisposition to Heart Failure. BIOMED RESEARCH INTERNATIONAL 2015; 2015:251598. [PMID: 26064889 PMCID: PMC4433638 DOI: 10.1155/2015/251598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 12/28/2022]
Abstract
Null mutations in one copy of ATP2A2, the gene encoding sarco/endoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2), cause Darier disease in humans, a skin condition involving keratinocytes. Cardiac function appears to be unimpaired in Darier disease patients, with no evidence that SERCA2 haploinsufficiency itself causes heart disease. However, SERCA2 deficiency is widely considered a contributing factor in heart failure. We therefore analyzed Atp2a2 heterozygous mice to determine whether SERCA2 haploinsufficiency can exacerbate specific heart disease conditions. Despite reduced SERCA2a levels in heart, Atp2a2 heterozygous mice resembled humans in exhibiting normal cardiac physiology. When subjected to hypothyroidism or crossed with a transgenic model of reduced myofibrillar Ca(2+)-sensitivity, SERCA2 deficiency caused no enhancement of the disease state. However, when combined with a transgenic model of increased myofibrillar Ca(2+)-sensitivity, SERCA2 haploinsufficiency caused rapid onset of hypertrophy, decompensation, and death. These effects were associated with reduced expression of the antiapoptotic Hax1, increased levels of the proapoptotic genes Chop and Casp12, and evidence of perturbations in energy metabolism. These data reveal myofibrillar Ca(2+)-sensitivity to be an important determinant of the cardiac effects of SERCA2 haploinsufficiency and raise the possibility that Darier disease patients are more susceptible to heart failure under certain conditions.
Collapse
|
26
|
Ablation of plasma membrane Ca(2+)-ATPase isoform 4 prevents development of hypertrophy in a model of hypertrophic cardiomyopathy. J Mol Cell Cardiol 2014; 77:53-63. [PMID: 25280781 DOI: 10.1016/j.yjmcc.2014.09.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 11/20/2022]
Abstract
The mechanisms linking the expression of sarcomeric mutant proteins to the development of pathological hypertrophy in hypertrophic cardiomyopathy (HCM) remain poorly understood. We investigated the role of the plasma membrane Ca(2+)-ATPase PMCA4 in the HCM phenotype using a transgenic model that expresses mutant (Glu180Gly) α-tropomyosin (Tm180) in heart. Immunoblot analysis revealed that cardiac PMCA4 expression was upregulated early in Tm180 disease pathogenesis. This was accompanied by an increase in levels of the L-type Ca(2+)-channel, which is implicated in pathological hypertrophy. When Tm180 mice were crossed with a PMCA4-null line, loss of PMCA4 caused the abrogation of hypertrophy in Tm180/PMCA4-null double mutant mice. RT-PCR analysis of Tm180/PMCA4-null hearts revealed blunting of the fetal program and reversion of pro-fibrotic Col1a1 and Col3a1 gene expression to wild-type levels. This was accompanied by evidence of reduced L-type Ca(2+)-channel expression, and diminished calcineurin activity. Expression of the metabolic substrate transporters glucose transporter 4 and carnitine palmitoyltransferase 1b was preserved and Tm180-related changes in mRNA levels of various contractile stress-related proteins including the cardiac ankyrin protein CARP and the N2B isoform of titin were reversed in Tm180/PMCA4-null hearts. cGMP levels were increased and phosphorylation of vasodilator-stimulated phosphoprotein was elevated in Tm180/PMCA4-null hearts. These changes were associated with a sharp reduction in left ventricular end-diastolic pressure in Tm180/PMCA4-null hearts, which occurred despite persistence of Tm180-related impairment of relaxation dynamics. These results reveal a novel and specific role for PMCA4 in the Tm180 hypertrophic phenotype, with the "protective" effects of PMCA4 deficiency encompassing multiple determinants of HCM-related hypertrophy.
Collapse
|
27
|
Koshman YE, Chu M, Kim T, Kalmanson O, Farjah M, Kumar M, Lewis W, Geenen DL, de Tombe P, Goldspink PH, Solaro RJ, Samarel AM. Cardiomyocyte-specific expression of CRNK, the C-terminal domain of PYK2, maintains ventricular function and slows ventricular remodeling in a mouse model of dilated cardiomyopathy. J Mol Cell Cardiol 2014; 72:281-91. [PMID: 24713463 PMCID: PMC4064715 DOI: 10.1016/j.yjmcc.2014.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/22/2014] [Accepted: 03/29/2014] [Indexed: 01/06/2023]
Abstract
Up-regulation and activation of PYK2, a member of the FAK family of protein tyrosine kinases, is involved in the pathogenesis of left ventricular (LV) remodeling and heart failure (HF). PYK2 activation can be prevented by CRNK, the C-terminal domain of PYK2. We previously demonstrated that adenoviral-mediated CRNK gene transfer improved survival and LV function, and slowed LV remodeling in a rat model of coronary artery ligation-induced HF. We now interrogate whether cardiomyocyte-specific, transgenic CRNK expression prevents LV remodeling and HF in a mouse model of dilated cardiomyopathy (DCM) caused by constitutively active Protein Kinase Cε (caPKCε). Transgenic (TG; FVB/N background) mice were engineered to express rat CRNK under control of the α-myosin heavy chain promoter, and crossed with FVB/N mice with cardiomyocyte-specific expression of caPKCε to create double TG mice. LV structure, function, and gene expression were evaluated in all 4 groups (nonTG FVB/N; caPKCε(+/-); CRNK(+/-); and caPKCε×CRNK (PXC) double TG mice) at 1, 3, 6, 9 and 12mo of age. CRNK expression followed a Mendelian distribution, and CRNK mice developed and survived normally through 12mo. Cardiac structure, function and selected gene expression of CRNK mice were similar to nonTG littermates. CRNK had no effect on caPKCε expression and vice versa. PYK2 was up-regulated ~6-fold in caPKCε mice, who developed a non-hypertrophic, progressive DCM with reduced systolic (Contractility Index=151±5 vs. 90±4s(-1)) and diastolic (Tau=7.5±0.5 vs. 14.7±1.3ms) function, and LV dilatation (LV Remodeling Index (LVRI)=4.2±0.1 vs. 6.0±0.3 for FVB/N vs. caPKCε mice, respectively; P<0.05 for each at 12mo). In double TG PXC mice, CRNK expression significantly prolonged survival, improved contractile function (Contractile Index=115±8s(-1); Tau=9.5±1.0ms), and reduced LV remodeling (LVRI=4.9±0.1). Cardiomyocyte-specific expression of CRNK improves contractile function and slows LV remodeling in a mouse model of DCM.
Collapse
Affiliation(s)
- Yevgeniya E Koshman
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | - Miensheng Chu
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | - Taehoon Kim
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | - Olivia Kalmanson
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | - Mariam Farjah
- Department of Physiology and Biophysics, University of Illinois - Chicago, Chicago, IL 60612, USA
| | - Mohit Kumar
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | - William Lewis
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David L Geenen
- Department of Physiology and Biophysics, University of Illinois - Chicago, Chicago, IL 60612, USA
| | - Pieter de Tombe
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | - Paul H Goldspink
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - R John Solaro
- Department of Physiology and Biophysics, University of Illinois - Chicago, Chicago, IL 60612, USA
| | - Allen M Samarel
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA; Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA.
| |
Collapse
|
28
|
Alves ML, Dias FAL, Gaffin RD, Simon JN, Montminy EM, Biesiadecki BJ, Hinken AC, Warren CM, Utter MS, Davis RT, Sakthivel S, Robbins J, Wieczorek DF, Solaro RJ, Wolska BM. Desensitization of myofilaments to Ca2+ as a therapeutic target for hypertrophic cardiomyopathy with mutations in thin filament proteins. ACTA ACUST UNITED AC 2014; 7:132-143. [PMID: 24585742 DOI: 10.1161/circgenetics.113.000324] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a common genetic disorder caused mainly by mutations in sarcomeric proteins and is characterized by maladaptive myocardial hypertrophy, diastolic heart failure, increased myofilament Ca(2+) sensitivity, and high susceptibility to sudden death. We tested the following hypothesis: correction of the increased myofilament sensitivity can delay or prevent the development of the HCM phenotype. METHODS AND RESULTS We used an HCM mouse model with an E180G mutation in α-tropomyosin (Tm180) that demonstrates increased myofilament Ca(2+) sensitivity, severe hypertrophy, and diastolic dysfunction. To test our hypothesis, we reduced myofilament Ca(2+) sensitivity in Tm180 mice by generating a double transgenic mouse line. We crossed Tm180 mice with mice expressing a pseudophosphorylated cardiac troponin I (S23D and S24D; TnI-PP). TnI-PP mice demonstrated a reduced myofilament Ca(2+) sensitivity compared with wild-type mice. The development of pathological hypertrophy did not occur in mice expressing both Tm180 and TnI-PP. Left ventricle performance was improved in double transgenic compared with their Tm180 littermates, which express wild-type cardiac troponin I. Hearts of double transgenic mice demonstrated no changes in expression of phospholamban and sarcoplasmic reticulum Ca(2+) ATPase, increased levels of phospholamban and troponin T phosphorylation, and reduced phosphorylation of TnI compared with Tm180 mice. Moreover, expression of TnI-PP in Tm180 hearts inhibited modifications in the activity of extracellular signal-regulated kinase and zinc finger-containing transcription factor GATA in Tm180 hearts. CONCLUSIONS Our data strongly indicate that reduction of myofilament sensitivity to Ca(2+) and associated correction of abnormal relaxation can delay or prevent development of HCM and should be considered as a therapeutic target for HCM.
Collapse
Affiliation(s)
- Marco L Alves
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL.,Department of Physiology and Department of Cell Biology, Federal University of Parana, Curitiba, Brazil
| | - Fernando A L Dias
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL.,Department of Physiology and Department of Cell Biology, Federal University of Parana, Curitiba, Brazil
| | - Robert D Gaffin
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| | - Jillian N Simon
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| | - Eric M Montminy
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| | - Brandon J Biesiadecki
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL.,Department of Physiology and Cell Biology, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH
| | - Aaron C Hinken
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| | - Chad M Warren
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| | - Megan S Utter
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| | - Robert T Davis
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| | - Sadayappan Sakthivel
- Division of Molecular Cardiovascular Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - Jeffrey Robbins
- Division of Molecular Cardiovascular Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - David F Wieczorek
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine
| | - R John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| | - Beata M Wolska
- Department of Medicine, Section of Cardiology, University of Illinois, Chicago, IL.,Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois, Chicago, IL
| |
Collapse
|
29
|
Schulz EM, Wilder T, Chowdhury SAK, Sheikh HN, Wolska BM, Solaro RJ, Wieczorek DF. Decreasing tropomyosin phosphorylation rescues tropomyosin-induced familial hypertrophic cardiomyopathy. J Biol Chem 2013; 288:28925-35. [PMID: 23960072 DOI: 10.1074/jbc.m113.466466] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Studies indicate that tropomyosin (Tm) phosphorylation status varies in different mouse models of cardiac disease. Investigation of basal and acute cardiac function utilizing a mouse model expressing an α-Tm protein that cannot be phosphorylated (S283A) shows a compensated hypertrophic phenotype with significant increases in SERCA2a expression and phosphorylation of phospholamban Ser-16 (Schulz, E. M., Correll, R. N., Sheikh, H. N., Lofrano-Alves, M. S., Engel, P. L., Newman, G., Schultz Jel, J., Molkentin, J. D., Wolska, B. M., Solaro, R. J., and Wieczorek, D. F. (2012) J. Biol. Chem. 287, 44478-44489). With these results, we hypothesized that decreasing α-Tm phosphorylation may be beneficial in the context of a chronic, intrinsic stressor. To test this hypothesis, we utilized the familial hypertrophic cardiomyopathy (FHC) α-Tm E180G model (Prabhakar, R., Boivin, G. P., Grupp, I. L., Hoit, B., Arteaga, G., Solaro, R. J., and Wieczorek, D. F. (2001) J. Mol. Cell. Cardiol. 33, 1815-1828). These FHC hearts are characterized by increased heart:body weight ratios, fibrosis, increased myofilament Ca(2+) sensitivity, and contractile defects. The FHC mice die by 6-8 months of age. We generated mice expressing both the E180G and S283A mutations and found that the hypertrophic phenotype was rescued in the α-Tm E180G/S283A double mutant transgenic animals; these mice exhibited no signs of cardiac hypertrophy and displayed improved cardiac function. These double mutant transgenic hearts showed increased phosphorylation of phospholamban Ser-16 and Thr-17 compared with the α-Tm E180G mice. This is the first study to demonstrate that decreasing phosphorylation of tropomyosin can rescue a hypertrophic cardiomyopathic phenotype.
Collapse
Affiliation(s)
- Emily M Schulz
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | | | | | | | | | | | | |
Collapse
|
30
|
Passariello CL, Gayanilo M, Kritzer MD, Thakur H, Cozacov Z, Rusconi F, Wieczorek D, Sanders M, Li J, Kapiloff MS. p90 ribosomal S6 kinase 3 contributes to cardiac insufficiency in α-tropomyosin Glu180Gly transgenic mice. Am J Physiol Heart Circ Physiol 2013; 305:H1010-9. [PMID: 23913705 DOI: 10.1152/ajpheart.00237.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial interstitial fibrosis is an important contributor to the development of heart failure. Type 3 p90 ribosomal S6 kinase (RSK3) was recently shown to be required for concentric myocyte hypertrophy under in vivo pathological conditions. However, the role of RSK family members in myocardial fibrosis remains uninvestigated. Transgenic expression of α-tropomyosin containing a Glu180Gly mutation (TM180) in mice of a mixed C57BL/6:FVB/N background induces a cardiomyopathy characterized by a small left ventricle, interstitial fibrosis, and diminished systolic and diastolic function. Using this mouse model, we now show that RSK3 is required for the induction of interstitial fibrosis in vivo. TM180 transgenic mice were crossed to RSK3 constitutive knockout (RSK3(-/-)) mice. Although RSK3 knockout did not affect myocyte growth, the decreased cardiac function and mild pulmonary edema associated with the TM180 transgene were attenuated by RSK3 knockout. The improved cardiac function was consistent with reduced interstitial fibrosis in the TM180;RSK3(-/-) mice as shown by histology and gene expression analysis, including the decreased expression of collagens. The specific inhibition of RSK3 should be considered as a potential novel therapeutic strategy for improving cardiac function and the prevention of sudden cardiac death in diseases in which interstitial fibrosis contributes to the development of heart failure.
Collapse
Affiliation(s)
- Catherine L Passariello
- Cardiac Signal Transduction and Cellular Biology Laboratory, Interdisciplinary Stem Cell Institute, Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida; and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rajan S, Pena JR, Jegga AG, Aronow BJ, Wolska BM, Wieczorek DF. Microarray analysis of active cardiac remodeling genes in a familial hypertrophic cardiomyopathy mouse model rescued by a phospholamban knockout. Physiol Genomics 2013; 45:764-73. [PMID: 23800848 DOI: 10.1152/physiolgenomics.00023.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Familial hypertrophic cardiomyopathy (FHC) is a disease characterized by ventricular hypertrophy, fibrosis, and aberrant systolic and/or diastolic function. Our laboratories have previously developed two mouse models that affect cardiac performance. One mouse model encodes an FHC-associated mutation in α-tropomyosin: Glu → Gly at amino acid 180, designated as Tm180. These mice display a phenotype that is characteristic of FHC, including severe cardiac hypertrophy with fibrosis and impaired physiological performance. The other model was a gene knockout of phospholamban (PLN KO), a regulator of calcium uptake in the sarcoplasmic reticulum of cardiomyocytes; these hearts exhibit hypercontractility with no pathological abnormalities. Previous work in our laboratories shows that when mice were genetically crossed between the PLN KO and Tm180, the progeny (PLN KO/Tm180) display a rescued hypertrophic phenotype with improved morphology and cardiac function. To understand the changes in gene expression that occur in these models undergoing cardiac remodeling (Tm180, PLN KO, PLN KO/Tm180, and nontransgenic control mice), we conducted microarray analyses of left ventricular tissue at 4 and 12 mo of age. Expression profiling reveals that 1,187 genes changed expression in direct response to the three genetic models. With these 1,187 genes, 11 clusters emerged showing normalization of transcript expression in the PLN KO/Tm180 hearts. In addition, 62 transcripts are highly involved in suppression of the hypertrophic phenotype. Confirmation of the microarray analysis was conducted by quantitative RT-PCR. These results provide insight into genes that alter expression during cardiac remodeling and are active during modulation of the cardiomyopathic phenotype.
Collapse
Affiliation(s)
- Sudarsan Rajan
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524, USA
| | | | | | | | | | | |
Collapse
|
32
|
Schulz EM, Correll RN, Sheikh HN, Lofrano-Alves MS, Engel PL, Newman G, Schultz JEJ, Molkentin JD, Wolska BM, Solaro RJ, Wieczorek DF. Tropomyosin dephosphorylation results in compensated cardiac hypertrophy. J Biol Chem 2012; 287:44478-89. [PMID: 23148217 DOI: 10.1074/jbc.m112.402040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of tropomyosin (Tm) has been shown to vary in mouse models of cardiac hypertrophy. Little is known about the in vivo role of Tm phosphorylation. This study examines the consequences of Tm dephosphorylation in the murine heart. Transgenic (TG) mice were generated with cardiac specific expression of α-Tm with serine 283, the phosphorylation site of Tm, mutated to alanine. Echocardiographic analysis and cardiomyocyte cross-sectional area measurements show that α-Tm S283A TG mice exhibit a hypertrophic phenotype at basal levels. Interestingly, there are no alterations in cardiac function, myofilament calcium (Ca(2+)) sensitivity, cooperativity, or response to β-adrenergic stimulus. Studies of Ca(2+) handling proteins show significant increases in sarcoplasmic reticulum ATPase (SERCA2a) protein expression and an increase in phospholamban phosphorylation at serine 16, similar to hearts under exercise training. Compared with controls, the decrease in phosphorylation of α-Tm results in greater functional defects in TG animals stressed by transaortic constriction to induce pressure overload-hypertrophy. This is the first study to investigate the in vivo role of Tm dephosphorylation under both normal and cardiac stress conditions, documenting a role for Tm dephosphorylation in the maintenance of a compensated or physiological phenotype. Collectively, these results suggest that modification of the Tm phosphorylation status in the heart, depending upon the cardiac state/condition, may modulate the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Emily M Schulz
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Knöll R. Myosin binding protein C: implications for signal-transduction. J Muscle Res Cell Motil 2011; 33:31-42. [PMID: 22173300 PMCID: PMC3351598 DOI: 10.1007/s10974-011-9281-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/28/2011] [Indexed: 12/29/2022]
Abstract
Myosin binding protein C (MYBPC) is a crucial component of the sarcomere and an important regulator of muscle function. While mutations in different myosin binding protein C (MYBPC) genes are well known causes of various human diseases, such as hypertrophic (HCM) and dilated (DCM) forms of cardiomyopathy as well as skeletal muscular disorders, the underlying molecular mechanisms remain not well understood. A variety of MYBPC3 (cardiac isoform) mutations have been studied in great detail and several corresponding genetically altered mouse models have been generated. Most MYBPC3 mutations may cause haploinsufficiency and with it they may cause a primary increase in calcium sensitivity which is potentially able to explain major features observed in HCM patients such as the hypercontractile phenotype and the well known secondary effects such as myofibrillar disarray, fibrosis, myocardial hypertrophy and remodelling including arrhythmogenesis. However the presence of poison peptides in some cases cannot be fully excluded and most probably other mechanisms are also at play. Here we shall discuss MYBPC interacting proteins and possible pathways linked to cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Ralph Knöll
- Imperial College, National Heart and Lung Institute, British Heart Foundation-Centre for Research Excellence, Myocardial Genetics, London, UK.
| |
Collapse
|
34
|
Ashrafian H, McKenna WJ, Watkins H. Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy. Circ Res 2011; 109:86-96. [PMID: 21700950 DOI: 10.1161/circresaha.111.242974] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As described in earlier reviews in this series on the molecular basis of hypertrophic cardiomyopathy (HCM), HCM is one of the archetypal monogenic cardiovascular disorders to be understood at the molecular level. Twenty years after the discovery of the first HCM disease gene, genetic studies still confirm that HCM is principally a disease of the sarcomere. At the biophysical level, myofilament mutations generally enhance Ca(2+) sensitivity, maximal force production, and ATPase activity. These defects ultimately appear to converge on energy deficiency and altered Ca(2+) handling as major common paths leading to the anatomic (hypertrophy, myofiber disarray, and fibrosis) and functional features (pathological signaling and diastolic dysfunction) characteristic of HCM. In this review, we provide an account of the consequences of HCM mutations and describe how specifically targeting these molecular features has already yielded early promise for novel therapies for HCM. Although substantial efforts are still required to understand the molecular link between HCM mutations and their clinical consequences, HCM endures as an exemplar of how novel insights derived from molecular characterization of Mendelian disorders can inform the understanding of biological processes and translate into rational therapies.
Collapse
Affiliation(s)
- Houman Ashrafian
- Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
35
|
Gaffin RD, Peña JR, Alves MSL, Dias FAL, Chowdhury SAK, Heinrich LS, Goldspink PH, Kranias EG, Wieczorek DF, Wolska BM. Long-term rescue of a familial hypertrophic cardiomyopathy caused by a mutation in the thin filament protein, tropomyosin, via modulation of a calcium cycling protein. J Mol Cell Cardiol 2011; 51:812-20. [PMID: 21840315 DOI: 10.1016/j.yjmcc.2011.07.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/05/2011] [Accepted: 07/28/2011] [Indexed: 11/17/2022]
Abstract
We have recently shown that a temporary increase in sarcoplasmic reticulum (SR) cycling via adenovirus-mediated overexpression of sarcoplasmic reticulum ATPase (SERCA2) transiently improves relaxation and delays hypertrophic remodeling in a familial hypertrophic cardiomyopathy (FHC) caused by a mutation in the thin filament protein, tropomyosin (i.e., α-TmE180G or Tm180). In this study, we sought to permanently alter calcium fluxes via phospholamban (PLN) gene deletion in Tm180 mice in order to sustain long-term improvements in cardiac function and adverse cardiac remodeling/hypertrophy. While similar work has been done in FHCs resulting from mutations in thick myofilament proteins, no one has studied these effects in an FHC resulting from a thin filament protein mutation. Tm180 transgenic (TG) mice were crossbred with PLN knockout (KO) mice and four groups were studied in parallel: 1) non-TG (NTG), 2) Tm180, 3) PLNKO/NTG and 4) PLNKO/Tm180. Tm180 mice exhibit increased heart weight/body weight and hypertrophic gene markers compared to NTG mice, but levels in PLNKO/Tm180 mice were similar to NTG. Tm180 mice also displayed altered function as assessed via in situ pressure-volume analysis and echocardiography at 3-6 months and one year; however, altered function in Tm180 mice was rescued back to NTG levels in PLNKO/Tm180 mice. Collagen deposition, as assessed by Picrosirius Red staining, was increased in Tm180 mice but was similar in NTG and in PLNKO/Tm180 mice. Extracellular signal-regulated kinase (ERK1/2) phosphorylation increased in Tm180 mice while levels in PLNKO/Tm180 mice were similar to NTGs. The present study shows that by modulating SR calcium cycling, we were able to rescue many of the deleterious aspects of FHC caused by a mutation in the thin filament protein, Tm.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Body Weight
- Calcium/metabolism
- Calcium-Binding Proteins/deficiency
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/therapeutic use
- Cardiomyopathy, Hypertrophic, Familial/diagnostic imaging
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/metabolism
- Cardiomyopathy, Hypertrophic, Familial/physiopathology
- Cardiomyopathy, Hypertrophic, Familial/therapy
- Disease Models, Animal
- Echocardiography
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression
- Humans
- Mice
- Mice, Transgenic
- Mutation
- Myocardial Contraction/genetics
- Myocardium/cytology
- Myocardium/metabolism
- Organ Size
- Phosphorylation
- Real-Time Polymerase Chain Reaction
- Sarcoplasmic Reticulum/genetics
- Sarcoplasmic Reticulum/metabolism
- Tropomyosin/genetics
- Tropomyosin/metabolism
Collapse
Affiliation(s)
- Robert D Gaffin
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gaffin RD, Chowdhury SAK, Alves MSL, Dias FAL, Ribeiro CTD, Fogaca RTH, Wieczorek DF, Wolska BM. Effects of nicotine administration in a mouse model of familial hypertrophic cardiomyopathy, α-tropomyosin D175N. Am J Physiol Heart Circ Physiol 2011; 301:H1646-55. [PMID: 21743000 DOI: 10.1152/ajpheart.00277.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects of nicotine (NIC) on normal hearts are fairly well established, yet its effects on hearts displaying familial hypertrophic cardiomyopathy have not been tested. We studied both the acute and chronic effects of NIC on a transgenic (TG) mouse model of FHC caused by a mutation in α-tropomyosin (Tm; i.e., α-Tm D175N TG, or Tm175). For acute effects, intravenously injected NIC increased heart rate, left ventricular (LV) pressure, and the maximal rate of LV pressure increase (+dP/dt) in non-TG (NTG) and Tm175 mice; however, Tm175 showed a significantly smaller increase in the maximal rate of LV pressure decrease (-dP/dt) compared with NTGs. Western blots revealed phosphorylation of phospholamban Ser16 and Thr17 residue increased in NTG mice following NIC injection but not in Tm175 mice. In contrast, phosphorylation of troponin I at serine residues 23 and 24 increased equally in both NTG and Tm175. Thus the attenuated increase in relaxation in Tm175 mice following acute NIC appears to result primarily from attenuated phospholamban phosphorylation. Chronic NIC administration (equivalent to smoking 2 packs of cigarettes/day for 4 mo) also increased +dP/dt in NTG and Tm175 mice compared with chronic saline. However, chronic NIC had little effect on heart rate, LV pressure, -dP/dt, LV wall and chamber dimensions, or collagen content for either group of mice.
Collapse
Affiliation(s)
- Robert D Gaffin
- Department of Physiology and Biophysics, Section of Cardiology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Pinto JR, Yang SW, Hitz MP, Parvatiyar MS, Jones MA, Liang J, Kokta V, Talajic M, Tremblay N, Jaeggi M, Andelfinger G, Potter JD. Fetal cardiac troponin isoforms rescue the increased Ca2+ sensitivity produced by a novel double deletion in cardiac troponin T linked to restrictive cardiomyopathy: a clinical, genetic, and functional approach. J Biol Chem 2011; 286:20901-12. [PMID: 21502316 DOI: 10.1074/jbc.m111.234336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel double deletion in cardiac troponin T (cTnT) of two highly conserved amino acids (Asn-100 and Glu-101) was found in a restrictive cardiomyopathic (RCM) pediatric patient. Clinical evaluation revealed the presence of left atrial enlargement and marked left ventricle diastolic dysfunction. The explanted heart examined by electron microscopy revealed myofibrillar disarray and mild fibrosis. Pedigree analysis established that this mutation arose de novo. The patient tested negative for six other sarcomeric genes. The single and double recombinant cTnT mutants were generated, and their functional consequences were analyzed in porcine skinned cardiac muscle. In the adult Tn environment (cTnT3 + cardiac troponin I), the single cTnT3-ΔN100 and cTnT3-ΔE101 mutations had opposing effects on the Ca(2+) sensitivity of force development compared with WT, whereas the double deletion cTnT3-ΔN100/ΔE101 increased the Ca(2+) sensitivity + 0.19 pCa units. In addition, cTnT3-ΔN100/ΔE101 decreased the cooperativity of force development, suggesting alterations in intrafilament protein-protein interactions. In the fetal Tn environment, (cTnT1 + slow skeletal troponin I), the single (cTnT1-ΔN110) and double (cTnT1-ΔN110/ΔE111) deletions did not change the Ca(2+) sensitivity compared with control. To recreate the patient's heterozygous genotype, we performed a reconstituted ATPase activity assay. Thin filaments containing 50:50 cTnT3-ΔN100/ΔE101:cTnT3-WT also increased the myofilament Ca(2+) sensitivity compared with WT. Co-sedimentation of thin filament proteins indicated that no significant changes occurred in the binding of Tn containing the RCM cTnT mutation to actin-Tm. This report reveals the protective role of Tn fetal isoforms as they rescue the increased Ca(2+) sensitivity produced by a cTnT-RCM mutation and may account for the lack of lethality during gestation.
Collapse
Affiliation(s)
- Jose Renato Pinto
- University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|