1
|
Mohammadpour YH, Khodayar MJ, Khorsandi L, Kalantar H. Betaine alleviates doxorubicin-related cardiotoxicity via suppressing oxidative stress and inflammation via the NLRP3/SIRT1 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03261-x. [PMID: 38953971 DOI: 10.1007/s00210-024-03261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Cardiotoxicity is one of the side effects of the anti-cancer drug doxorubicin (DOX) that limits its clinical application. Betaine (BT) is a natural agent with promising useful effects against inflammation and oxidative stress (OS). We assessed the effects of BT on DOX-induced cardiotoxicity in mice. Forty-two male NMRI mice were assigned to six groups: I: control; II: BT (200 mg/kg; orally, alone); III: DOX (2.5 mg/kg; six injections (ip)) for two weeks; IV, V, VI: BT (50 mg/kg, 100 mg/kg, and 200 mg/kg; orally, once a day for two weeks, respectively) plus DOX administration. The cardiac enzymes like cardiac troponin-I (cTn-I), lactate dehydrogenase (LDH), and creatine kinase-MB (CK-MB) were assessed in serum. Oxidative/inflammatory markers like nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reduced glutathione level (GSH), and glutathione peroxidase (GPx) activities were determined in cardiac tissue. The expressions of NOD-like receptor protein 3 (NLRP3), caspase-1, interleukin (IL)-1β, and silent information regulator 1 (SIRT1) proteins were also evaluated in cardiac tissue. The results indicated that DOX significantly increased LDH, CK-MB, cTn-I, MDA, and NO levels and also the caspase-1, NLRP3, and IL-1β expression. Furthermore, DOX caused a significant reduction in the GSH levels and SOD, CAT, GPX activities, and the expression of SIRT1 protein in heart tissue. However, BT significantly improved all studied parameters. The findings were confirmed by histopathological assessments of the heart. BT can protect against DOX-induced cardiotoxicity by suppressing the activation of NLRP3 and OS by stimulating the SIRT1 pathway.
Collapse
Affiliation(s)
- Yasaman Hamidavi Mohammadpour
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Zhan J, Jin K, Xie R, Fan J, Tang Y, Chen C, Li H, Wang DW. AGO2 Protects Against Diabetic Cardiomyopathy by Activating Mitochondrial Gene Translation. Circulation 2024; 149:1102-1120. [PMID: 38126189 DOI: 10.1161/circulationaha.123.065546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Diabetes is associated with cardiovascular complications. microRNAs translocate into subcellular organelles to modify genes involved in diabetic cardiomyopathy. However, functional properties of subcellular AGO2 (Argonaute2), a core member of miRNA machinery, remain elusive. METHODS We elucidated the function and mechanism of subcellular localized AGO2 on mouse models for diabetes and diabetic cardiomyopathy. Recombinant adeno-associated virus type 9 was used to deliver AGO2 to mice through the tail vein. Cardiac structure and functions were assessed by echocardiography and catheter manometer system. RESULTS AGO2 was decreased in mitochondria of diabetic cardiomyocytes. Overexpression of mitochondrial AGO2 attenuated diabetes-induced cardiac dysfunction. AGO2 recruited TUFM, a mitochondria translation elongation factor, to activate translation of electron transport chain subunits and decrease reactive oxygen species. Malonylation, a posttranslational modification of AGO2, reduced the importing of AGO2 into mitochondria in diabetic cardiomyopathy. AGO2 malonylation was regulated by a cytoplasmic-localized short isoform of SIRT3 through a previously unknown demalonylase function. CONCLUSIONS Our findings reveal that the SIRT3-AGO2-CYTB axis links glucotoxicity to cardiac electron transport chain imbalance, providing new mechanistic insights and the basis to develop mitochondria targeting therapies for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.Z.)
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University, China (J.Z.)
| | - Kunying Jin
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Rong Xie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Jiahui Fan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Yuyan Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| |
Collapse
|
3
|
Chen C, Hu S, Hu HJ, Liu ZX, Wu XT, Zou T, Su H. Dronedarone Attenuates Ang II-Induced Myocardial Hypertrophy Through Regulating SIRT1/FOXO3/PKIA Axis. Korean Circ J 2024; 54:172-186. [PMID: 38654563 PMCID: PMC11040268 DOI: 10.4070/kcj.2023.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Long-term pathological myocardial hypertrophy (MH) seriously affects the normal function of the heart. Dronedarone was reported to attenuate left ventricular hypertrophy of mice. However, the molecular regulatory mechanism of dronedarone in MH is unclear. METHODS Angiotensin II (Ang II) was used to induce cell hypertrophy of H9C2 cells. Transverse aortic constriction (TAC) surgery was performed to establish a rat model of MH. Cell size was evaluated using crystal violet staining and rhodamine phalloidin staining. Reverse transcription quantitative polymerase chain reaction and western blot were performed to detect the mRNA and protein expressions of genes. JASPAR and luciferase activity were conducted to predict and validate interaction between forkhead box O3 (FOXO3) and protein kinase inhibitor alpha (PKIA) promoter. RESULTS Ang II treatment induced cell hypertrophy and inhibited sirtuin 1 (SIRT1) expression, which were reversed by dronedarone. SIRT1 overexpression or PKIA overexpression enhanced dronedarone-mediated suppression of cell hypertrophy in Ang II-induced H9C2 cells. Mechanistically, SIRT1 elevated FOXO3 expression through SIRT1-mediated deacetylation of FOXO3 and FOXO3 upregulated PKIA expression through interacting with PKIA promoter. Moreover, SIRT1 silencing compromised dronedarone-mediated suppression of cell hypertrophy, while PKIA upregulation abolished the influences of SIRT1 silencing. More importantly, dronedarone improved TAC surgery-induced MH and impairment of cardiac function of rats via affecting SIRT1/FOXO3/PKIA axis. CONCLUSIONS Dronedarone alleviated MH through mediating SIRT1/FOXO3/PKIA axis, which provide more evidences for dronedarone against MH.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Song Hu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Heng-Jing Hu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhi-Xuan Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xin-Teng Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Tao Zou
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hua Su
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
4
|
Lei W, Xu X, Li N, Zhang Y, Tang R, Li X, Tang J, Wu X, Lu C, Bai Y, Yao Y, Qiu Z, Yang Y, Zheng X. Isopropyl 3-(3,4-dihydroxyphenyl) 2-hydroxypropanoate protects septic myocardial injury via regulating GAS6/Axl-AMPK signaling pathway. Biochem Pharmacol 2024; 221:116035. [PMID: 38301968 DOI: 10.1016/j.bcp.2024.116035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
In a previous study, we used metabolomic techniques to identify a new metabolite of Danshen Dripping Pills called isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate (IDHP), which has potential as a drug candidate for cardiovascular diseases. This study aimed to explore the protective effects of IDHP against septic myocardial injury, as well as its molecular mechanism. Wild type or GAS6 knockout mice injured by cecal ligation and puncture (CLP) were used to observe the effect of IDHP. Here, we found that a specific concentration of IDHP (60 mg/kg) significantly increased the survival rate of septic mice to about 75 % at 72 h post CLP, and showed improvements in sepsis score, blood biochemistry parameters, cardiac function, and myocardial tissue damage. Furthermore, IDHP inhibited myocardial oxidative stress, inflammatory response, apoptosis, and mitochondrial dysfunction. Molecularly, we discovered that IDHP treatment reversed the CLP-induced downregulation of GAS6, Axl, and p-AMPK/AMPK expression. In addition, GAS6 knockout reversed the positive effect of IDHP in septic mice, indicated by more severe myocardial tissue damage, oxidative stress, inflammatory response, and mitochondrial dysfunction. GAS6 knockout also resulted in decreased levels of GAS6, Axl, and p-AMPK/AMPK. Taken together, our study provides evidence that IDHP has significant cardioprotective effects against sepsis by regulating the GAS6/Axl-AMPK signaling pathway. This finding has important therapeutic potential for treating sepsis.
Collapse
Affiliation(s)
- Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Ning Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Yan Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Ran Tang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Xiaoru Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xue Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Chenxi Lu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Yajun Bai
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yu Yao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Zhenye Qiu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China.
| | - Xiaohui Zheng
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China.
| |
Collapse
|
5
|
Wu D, Sun Y, Gu Y, Zhu D. Cystathionine γ-lyase S-sulfhydrates SIRT1 to attenuate myocardial death in isoprenaline-induced heart failure. Redox Rep 2023; 28:2174649. [PMID: 36757027 PMCID: PMC9930813 DOI: 10.1080/13510002.2023.2174649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVE Hydrogen sulfide (H2S), the third gasotransmitter, plays a critical role in protecting against heart failure. Sirtuin-1 (SIRT1) is a highly conserved histone deacetylase that has a protective role in the treatment of heart failure by regulating the deacetylation of some functional proteins. This study investigates the interaction between SIRT1 and H2S in heart failure and the underlying mechanisms. METHODS AND RESULTS Using endogenous H2S-generating enzyme cystathionine γ-lyase (CSE) knockout mice, we found that CSE deficiency aggravated isoprenaline-induced cardiac injury. Treatment with H2S attenuated atrial natriuretic peptide level, brain natriuretic peptide level, improved cardiac function. Moreover, H2S treatment potentiated myocardial SIRT1 expression. Silencing CSE abolished intracellular SIRT1 expression. Furthermore, CSE/ H2S S-sulfhydrated SIRT1 at its zinc finger domains and augmented its zinc ion binding activity to stabilize the alpha-helix structure. DISCUSSION In conclusion, these results uncover that a novel mechanism that CSE/H2S S-sulfhydrated SIRT1 to prevent heart dysfunction through modulating its activity.
Collapse
Affiliation(s)
- Dan Wu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yuanyuan Sun
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, People’s Republic of China
| | - Yijing Gu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Deqiu Zhu
- Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China, Deqiu Zhu Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, People’s Republic of China
| |
Collapse
|
6
|
Zhou Y, Suo W, Zhang X, Liang J, Zhao W, Wang Y, Li H, Ni Q. Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs. Biomed Pharmacother 2023; 168:115669. [PMID: 37820568 DOI: 10.1016/j.biopha.2023.115669] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
Diabetic cardiomyopathy is a chronic cardiovascular complication caused by diabetes that is characterized by changes in myocardial structure and function, ultimately leading to heart failure and even death. Mitochondria serve as the provider of energy to cardiomyocytes, and mitochondrial dysfunction plays a central role in the development of diabetic cardiomyopathy. In response to a series of pathological changes caused by mitochondrial dysfunction, the mitochondrial quality control system is activated. The mitochondrial quality control system (including mitochondrial biogenesis, fusion and fission, and mitophagy) is core to maintaining the normal structure of mitochondria and performing their normal physiological functions. However, mitochondrial quality control is abnormal in diabetic cardiomyopathy, resulting in insufficient mitochondrial fusion and excessive fission within the cardiomyocyte, and fragmented mitochondria are not phagocytosed in a timely manner, accumulating within the cardiomyocyte resulting in cardiomyocyte injury. Currently, there is no specific therapy or prevention for diabetic cardiomyopathy, and glycemic control remains the mainstay. In this review, we first elucidate the pathogenesis of diabetic cardiomyopathy and explore the link between pathological mitochondrial quality control and the development of diabetic cardiomyopathy. Then, we summarize how clinically used hypoglycemic agents (including sodium-glucose cotransport protein 2 inhibitions, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, thiazolidinediones, metformin, and α-glucosidase inhibitors) exert cardioprotective effects to treat and prevent diabetic cardiomyopathy by targeting the mitochondrial quality control system. In addition, the mechanisms of complementary alternative therapies, such as active ingredients of traditional Chinese medicine, exercise, and lifestyle, targeting mitochondrial quality control for the treatment of diabetic cardiomyopathy are also added, which lays the foundation for the excavation of new diabetic cardioprotective drugs.
Collapse
Affiliation(s)
- Yutong Zhou
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Wendong Suo
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinai Zhang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Jiaojiao Liang
- Zhengzhou Shuqing Medical College, Zhengzhou 450064, China
| | - Weizhe Zhao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100105, China
| | - Yue Wang
- Capital Medical University, Beijing 100069, China
| | - Hong Li
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qing Ni
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
| |
Collapse
|
7
|
Liao Y, Ke B, Long X, Xu J, Wu Y. Abnormalities in the SIRT1-SIRT3 axis promote myocardial ischemia-reperfusion injury through ferroptosis caused by silencing the PINK1/Parkin signaling pathway. BMC Cardiovasc Disord 2023; 23:582. [PMID: 38012584 PMCID: PMC10683361 DOI: 10.1186/s12872-023-03603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury (MIRI) is one of the main reasons for poor prognosis in patients with ischemic cardiomyopathy (ICM). To date, the mechanism remains unknown. As members of the silent information regulator 2 (SIR2) family, both SIRT1 and SIRT3 have been shown to play critical roles in protecting cardiomyocytes against MIRI, but their specific protective mechanism, their interact between the two and their relationship with ferroptosis are still unclear. Hence, in this study, we investigated the interact and specific mechanism of SIRT1 and SIRT3 in protecting cardiomyocytes against MIRI, as well as their association with ferroptosis. METHODS Bioinformatics analysis methods were used to explore the expression of SIRT1 and SIRT3 during MIRI, and then a cell hypoxia/reoxygenation injury model was constructed to verify the results. Then, Pearson correlation analysis was further used to explore the relationship between SIRT1 and SIRT3, whose roles in the regulation of ferroptosis were also analysed by gene knock down, Western Blotting and flow cytometry. Several biomarkers, such as Fe2+ concentration, lipid peroxidation marker MDA and mitochondrial membrane potential (MMP), were used to evaluate changes in ferroptosis. RESULTS The expression of SIRT1 and SIRT3 was abnormal during MIRI, and SIRT1 was significantly negatively correlated with SIRT3 in the SIRT1-SIRT3 axis. Further analysis revealed that the SIRT1-SIRT3 axis was closely correlated with ferroptosis, and its silencing effectively increase the incidence of ferroptosis. Furthermore, SIRT1-SIRT3 axis silencing was accompanied by changes in PINK1, Parkin, P62/SQSTM1 and LC3 expression. PINK1 silencing significantly increased the incidence of ferroptosis, while resveratrol (Res) and/or honokiol (HKL) effectively reversed the outcome. CONCLUSION Abnormalities in the SIRT1-SIRT3 axis promote MIRI through ferroptosis caused by silencing the PINK1/Parkin signaling pathway.
Collapse
Affiliation(s)
- Yunfei Liao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- East China Digital Medical Engineering Research Institute, Shangrao, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoyan Long
- East China Digital Medical Engineering Research Institute, Shangrao, China
| | - Jianjun Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Yongbing Wu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
8
|
Lin KH, Ramesh S, Agarwal S, Kuo WW, Kuo CH, Chen MYC, Lin YM, Ho TJ, Huang PC, Huang CY. Fisetin attenuates doxorubicin-induced cardiotoxicity by inhibiting the insulin-like growth factor II receptor apoptotic pathway through estrogen receptor-α/-β activation. Phytother Res 2023; 37:3964-3981. [PMID: 37186468 DOI: 10.1002/ptr.7855] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023]
Abstract
Doxorubicin (DOX), an effective chemotherapeutic drug, has been used to treat various cancers; however, its cardiotoxic side effects restrict its therapeutic efficacy. Fisetin, a flavonoid phytoestrogen derived from a range of fruits and vegetables, has been reported to exert cardioprotective effects against DOX-induced cardiotoxicity; however, the underlying mechanisms remain unclear. This study investigated fisetin's cardioprotective role and mechanism against DOX-induced cardiotoxicity in H9c2 cardiomyoblasts and ovariectomized (OVX) rat models. MTT assay revealed that fisetin treatment noticeably rescued DOX-induced cell death in a dose-dependent manner. Moreover, western blotting and TUNEL-DAPI staining showed that fisetin significantly attenuated DOX-induced cardiotoxicity in vitro and in vivo by inhibiting the insulin-like growth factor II receptor (IGF-IIR) apoptotic pathway through estrogen receptor (ER)-α/-β activation. The echocardiography, biochemical assay, and H&E staining results demonstrated that fisetin reduced DOX-induced cardiotoxicity by alleviating cardiac dysfunction, myocardial injury, oxidative stress, and histopathological damage. These findings imply that fisetin has a significant therapeutic potential against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Research and Innovation, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, India
| | - Sakshi Agarwal
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Michael Yu-Chih Chen
- Department of Cardiology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yueh-Min Lin
- Department of Medical Technology, Jen-The Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Pei-Chen Huang
- Department of Obstetrics and Gynecology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
9
|
Zhang Q, Zhang Y, Xie B, Liu D, Wang Y, Zhou Z, Zhang Y, King E, Tse G, Liu T. Resveratrol activation of SIRT1/MFN2 can improve mitochondria function, alleviating doxorubicin-induced myocardial injury. CANCER INNOVATION 2023; 2:253-264. [PMID: 38089747 PMCID: PMC10686119 DOI: 10.1002/cai2.64] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 10/11/2023]
Abstract
Background Doxorubicin is a widely used cytotoxic chemotherapy agent for treating different malignancies. However, its use is associated with dose-dependent cardiotoxicity, causing irreversible myocardial damage and significantly reducing the patient's quality of life and survival. In this study, an animal model of doxorubicin-induced cardiomyopathy was used to investigate the pathogenesis of doxorubicin-induced myocardial injury. This study also investigated a possible treatment strategy for alleviating myocardial injury through resveratrol therapy in vitro. Methods Adult male C57BL/6J mice were randomly divided into a control group and a doxorubicin group. Body weight, echocardiography, surface electrocardiogram, and myocardial histomorphology were measured. The mechanisms of doxorubicin cardiotoxicity in H9c2 cell lines were explored by comparing three groups (phosphate-buffered saline, doxorubicin, and doxorubicin with resveratrol). Results Compared to the control group, the doxorubicin group showed a lower body weight and higher systolic arterial pressure, associated with reduced left ventricular ejection fraction and left ventricular fractional shortening, prolonged PR interval, and QT interval. These abnormalities were associated with vacuolation and increased disorder in the mitochondria of cardiomyocytes, increased protein expression levels of α-smooth muscle actin and caspase 3, and reduced protein expression levels of Mitofusin2 (MFN2) and Sirtuin1 (SIRT1). Compared to the doxorubicin group, doxorubicin + resveratrol treatment reduced caspase 3 and manganese superoxide dismutase, and increased MFN2 and SIRT1 expression levels. Conclusion Doxorubicin toxicity leads to abnormal mitochondrial morphology and dysfunction in cardiomyocytes and induces apoptosis by interfering with mitochondrial fusion. Resveratrol ameliorates doxorubicin-induced cardiotoxicity by activating SIRT1/MFN2 to improve mitochondria function.
Collapse
Affiliation(s)
- Qingling Zhang
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Yunpeng Zhang
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Bingxin Xie
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Daiqi Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Yueying Wang
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Zandong Zhou
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Yue Zhang
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Emma King
- Epidemiology Research Unit, Cardiovascular Analytics GroupChina‐UK CollaborationHong KongChina
| | - Gary Tse
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
- Epidemiology Research Unit, Cardiovascular Analytics GroupChina‐UK CollaborationHong KongChina
- Kent and Medway Medical SchoolCanterburyKentUK
| | - Tong Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Tianjin Institute of CardiologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
10
|
Van Le TN, Zoungrana LI, Wang H, Fatmi MK, Ren D, Krause-Hauch M, Li J. Sirtuin 1 aggravates hypertrophic heart failure caused by pressure overload via shifting energy metabolism. Biochem Biophys Res Commun 2022; 637:170-180. [PMID: 36403480 PMCID: PMC9752708 DOI: 10.1016/j.bbrc.2022.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
Sirtuin1 (SIRT1) is involved in regulating substrate metabolism in the cardiovascular system. Metabolic homeostasis plays a critical role in hypertrophic heart failure. We hypothesize that cardiac SIRT1 can modulate substrate metabolism during pressure overload-induced heart failure. The inducible cardiomyocyte Sirt1 knockout (icSirt1-/-) and its wild type littermates (Sirt1f/f) C57BL/6J mice were subjected to transverse aortic constriction (TAC) surgery to induce pressure overload. The pressure overload induces upregulation of cardiac SIRT1 in Sirt1f/f but not icSirt1-/- mice. The cardiac contractile dysfunctions caused by TAC-induced pressure overload occurred in Sirt1f/f but not in icSirt1-/- mice. Intriguingly, Sirt1f/f heart showed a drastic reduction in systolic contractility and electric signals during post-TAC surgery, whereas icSirt1-/- heart demonstrated significant resistance to pathological stress by TAC-induced pressure overload as evidenced by no significant changes in systolic contractile functions and electric properties. The targeted proteomics showed that the pressure overload triggered downregulation of the SIRT1-associated IDH2 (isocitrate dehydrogenase 2) that resulted in increased oxidative stress in mitochondria. Moreover, metabolic alterations were observed in Sirt1f/f but not in icSirt1-/- heart in response to TAC-induced pressure overload. Thus, SIRT1 interferes with metabolic homeostasis through mitochondrial IDH2 during pressure overload. Inhibition of SIRT1 activity benefits cardiac functions under pressure overload-related pathological conditions.
Collapse
Affiliation(s)
- Tran Ngoc Van Le
- Department of Surgery, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Linda Ines Zoungrana
- Department of Surgery, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Hao Wang
- Department of Surgery, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Mohammad Kasim Fatmi
- Department of Surgery, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Di Ren
- Department of Surgery, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Meredith Krause-Hauch
- Department of Surgery, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA; James A. Haley Veterans Hospital, Tampa, FL, 33612, USA
| | - Ji Li
- Department of Surgery, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA; James A. Haley Veterans Hospital, Tampa, FL, 33612, USA.
| |
Collapse
|
11
|
DiNicolantonio JJ, McCarty MF, O'Keefe JH. Nutraceutical activation of Sirt1: a review. Open Heart 2022; 9:openhrt-2022-002171. [PMID: 36522127 PMCID: PMC9756291 DOI: 10.1136/openhrt-2022-002171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The deacetylase sirtuin 1 (Sirt1), activated by calorie restriction and fasting, exerts several complementary effects on cellular function that are favourable to healthspan; it is often thought of as an 'anti-aging' enzyme. Practical measures which might boost Sirt1 activity are therefore of considerable interest. A number of nutraceuticals have potential in this regard. Nutraceuticals reported to enhance Sirt1 synthesis or protein expression include ferulic acid, tetrahydrocurcumin, urolithin A, melatonin, astaxanthin, carnosic acid and neochlorogenic acid. The half-life of Sirt1 protein can be enhanced with the natural nicotinamide catabolite N1-methylnicotinamide. The availability of Sirt1's obligate substrate NAD+ can be increased in several ways: nicotinamide riboside and nicotinamide mononucleotide can function as substrates for NAD+ synthesis; activators of AMP-activated kinase-such as berberine-can increase expression of nicotinamide phosphoribosyltransferase, which is rate limiting for NAD+ synthesis; and nutraceutical quinones such as thymoquinone and pyrroloquinoline quinone can boost NAD+ by promoting oxidation of NADH. Induced ketosis-as via ingestion of medium-chain triglycerides-can increase NAD+ in the brain by lessening the reduction of NAD+ mediated by glycolysis. Post-translational modifications of Sirt1 by O-GlcNAcylation or sulfonation can increase its activity, suggesting that administration of glucosamine or of agents promoting hydrogen sulfide synthesis may aid Sirt1 activity. Although resveratrol has poor pharmacokinetics, it can bind to Sirt1 and activate it allosterically-as can so-called sirtuin-activating compound drugs. Since oxidative stress can reduce Sirt1 activity in multiple ways, effective antioxidant supplementation that blunts such stress may also help preserve Sirt1 activity in some circumstances. Combination nutraceutical regimens providing physiologically meaningful doses of several of these agents, capable of activating Sirt1 in complementary ways, may have considerable potential for health promotion. Such measures may also amplify the benefits of sodium-glucose cotransporter-2 (SGLT2) inhibitors in non-diabetic disorders, as these benefits appear to reflect upregulation of Sirt1 and AMP-activated protein kinase activities.
Collapse
Affiliation(s)
- James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | - Mark F McCarty
- Catalytic Longevity Foundation, Encinitas, California, USA
| | - James H O'Keefe
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
12
|
Malakoti F, Mohammadi E, Akbari Oryani M, Shanebandi D, Yousefi B, Salehi A, Asemi Z. Polyphenols target miRNAs as a therapeutic strategy for diabetic complications. Crit Rev Food Sci Nutr 2022; 64:1865-1881. [PMID: 36069329 DOI: 10.1080/10408398.2022.2119364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MiRNAs are a large group of non-coding RNAs which participate in different cellular pathways like inflammation and oxidation through transcriptional, post-transcriptional, and epigenetic regulation. In the post-transcriptional regulation, miRNA interacts with the 3'-UTR of mRNAs and prevents their translation. This prevention or dysregulation can be a cause of pathological conditions like diabetic complications. A huge number of studies have revealed the association between miRNAs and diabetic complications, including diabetic nephropathy, cardiomyopathy, neuropathy, retinopathy, and delayed wound healing. To address this issue, recent studies have focused on the use of polyphenols as selective and safe drugs in the treatment of diabetes complications. In this article, we will review the involvement of miRNAs in diabetic complications' occurrence or development. Finally, we will review the latest findings on targeting miRNAs by polyphenols like curcumin, resveratrol, and quercetin for diabetic complications therapy.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Mohammadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Darioush Shanebandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Salehi
- Faculty of Pharmacy, Islamic Azad University of Tehran Branch, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
13
|
Zhang J, Xie B, Tang Y, Zhou B, Wang Q, Ge Q, Zhou Y, Gu T. Downregulation of miR-34c-5p alleviates chronic intermittent hypoxia-induced myocardial damage by targeting sirtuin 1. J Biochem Mol Toxicol 2022; 36:e23164. [PMID: 35848756 DOI: 10.1002/jbt.23164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/28/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Numerous microRNAs (miRs) are abnormally expressed in response to hypoxia-induced myocardial damage. Herein, miR-34c-5p as a potential pharmaco-target was investigated in a mouse model of chronic intermittent hypoxia (CIH)-induced myocardial damage. A mouse model of myocardial damage was established using CIH with 7% or 21% O2 alternating 60 s for 12 h/day, 21% O2 for 12 h/day. AntagomiR-34c-5p (20 nM/0.1 ml; once a week for 12 weeks) was used as a miR-34c-5p inhibitor in a mouse model with tail-vein injection. In another experiment, mice were administrated with Sirt1 activator SRT1720 (50 mg/kg/day) by intraperitoneal injection. Gene Expression Omnibus database showed a significant upregulation of miR-34c-5p expression in the ischemic myocardium of male mice. In CIH-stimulated mice, miR-34c-5p expression was also significantly increased compared with normal mice. Treatment of antagomiR-34c-5p significantly restrained CIH-triggered myocardial apoptosis. After administration of antagomiR-34c-5p or Sirt1 activator SRT1720, cardiac hypertrophy and oxidative stress were attenuated in CIH-stimulated mice. We also found sirtuin 1 (Sirt1) as a direct target of miR-34c-5p, which was able to mediate Sirt1 protein expression in cardiomyocytes. AntagomiR-34c-5p injection markedly elevated Sirt1 protein expression in CIH-stimulated mice. AntagomiR-34c-5p or Sirt1 activator SRT1720 administration exhibited the antioxidative activity and cardioprotective roles in CIH-stimulated mice.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Bo Xie
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Yanrong Tang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Bo Zhou
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Qiong Wang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Qing Ge
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Yufei Zhou
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Tongqing Gu
- School of Foreign Languages, Chengdu University of Information Technology, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Beegum F, P V A, George KT, K P D, Begum F, Krishnadas N, Shenoy RR. Sirtuins as therapeutic targets for improving delayed wound healing in diabetes. J Drug Target 2022; 30:911-926. [PMID: 35787722 DOI: 10.1080/1061186x.2022.2085729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sirtuins are a vast family of histone deacetylases, which are NAD+ dependent enzymes, consisting of seven members, namely SIRT 1, SIRT 6 and SIRT 7 located within the nucleus, SIRT 2 in the cytoplasm and SIRT 3, SIRT 4, and SIRT 5 in the mitochondria. They have vital roles in regulating various biological functions such as age-related metabolic disorders, inflammation, stress response, cardiovascular and neuronal functions. Delayed wound healing is one of the complication of diabetes, which can lead to lower limb amputation if not treated timely. SIRT 1, 3 and 6 are potent targets for diabetic wound healing. SIRT 1 deficiency reduces recruitment of fibroblasts, macrophages, mast cells, neutrophils to wound site and delays wound healing; negatively expressing MMP-9. The SIRT 1 mediated signalling pathway in diabetic wound healing is the SIRT 1-foxo-C-Myc pathway. On the contrary SIRT 3 deficiency, impairs proliferation and migration of fibroblasts and SIRT 6 deficiency impairs wound closure rate and interrupts the vascular remodelling. This review focuses on the role of sirtuins in improving delayed wound healing in diabetes and its natural modulators with their specific functions towards healing diabetic wounds.
Collapse
Affiliation(s)
- Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Anuranjana P V
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Krupa Thankam George
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Divya K P
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Nandakumar Krishnadas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
15
|
Ren FF, Xie ZY, Jiang YN, Guan X, Chen QY, Lai TF, Li L. Dapagliflozin attenuates pressure overload-induced myocardial remodeling in mice via activating SIRT1 and inhibiting endoplasmic reticulum stress. Acta Pharmacol Sin 2022; 43:1721-1732. [PMID: 34853445 PMCID: PMC9253115 DOI: 10.1038/s41401-021-00805-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Endoplasmic reticulum stress-mediated apoptosis plays a vital role in the occurrence and development of heart failure. Dapagliflozin (DAPA), a new type of sodium-glucose cotransporter 2 (SGLT2) inhibitor, is an oral hypoglycemic drug that reduces glucose reabsorption by the kidneys and increases glucose excretion in the urine. Studies have shown that DAPA may have the potential to treat heart failure in addition to controlling blood sugar. This study explored the effect of DAPA on endoplasmic reticulum stress-related apoptosis caused by heart failure. In vitro, we found that DAPA inhibited the expression of cleaved caspase 3, Bax, C/EBP homologous protein (CHOP), and glucose-regulated protein78 (GRP78) and upregulated the cardiomyoprotective protein Bcl-2 in angiotensin II (Ang II)-treated cardiomyocytes. In addition, DAPA promoted the expression of silent information regulator factor 2-related enzyme 1 (SIRT1) and suppressed the expression of activating transcription factor 4 (ATF4) and the ratios p-PERK/PERK and p-eIF2α/eIF2α. Notably, the therapeutic effect of DAPA was weakened by pretreatment with the SIRT1 inhibitor EX527 (10 μM). Simultaneous administration of DAPA inhibited the Ang II-induced transformation of fibroblasts into myofibroblasts and inhibited fibroblast migration. In summary, our present findings first indicate that DAPA could inhibit the PERK-eIF2α-CHOP axis of the ER stress response through the activation of SIRT1 in Ang II-treated cardiomyocytes and ameliorate heart failure development in vivo.
Collapse
Affiliation(s)
- Fang-fang Ren
- grid.417384.d0000 0004 1764 2632Department of Cardiology, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 China
| | - Zuo-yi Xie
- grid.417384.d0000 0004 1764 2632Department of Cardiology, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 China
| | - Yi-na Jiang
- grid.417384.d0000 0004 1764 2632Department of Cardiology, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 China
| | - Xuan Guan
- grid.417384.d0000 0004 1764 2632Department of Cardiology, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 China
| | - Qiao-ying Chen
- grid.417384.d0000 0004 1764 2632Department of Cardiology, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 China
| | - Teng-fang Lai
- grid.460081.bDepartment of Cardiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000 China
| | - Lei Li
- Department of Cardiology, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
16
|
Cardiac SIRT1 ameliorates doxorubicin-induced cardiotoxicity by targeting sestrin 2. Redox Biol 2022; 52:102310. [PMID: 35452917 PMCID: PMC9043985 DOI: 10.1016/j.redox.2022.102310] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/19/2023] Open
Abstract
Although it is known that the expression and activity of sirtuin 1 (SIRT1) significantly decrease in doxorubicin (DOX)-induced cardiomyopathy, the role of interaction between SIRT1 and sestrin 2 (SESN2) is largely unknown. In this study, we investigated whether SESN2 could be a crucial target of SIRT1 and the effect of their regulatory interaction and mechanism on DOX-induced cardiac injury. Here, using DOX-treated cardiomyocytes and cardiac-specific Sirt1 knockout mice models, we found SIRT1 deficiency aggravated DOX-induced cardiac structural abnormalities and dysfunction, whereas the activation of SIRT1 by resveratrol (RES) treatment or SIRT1 overexpression possessed cardiac protective effects. Further studies indicated that SIRT1 exerted these beneficial effects by markedly attenuating DOX-induced oxidative damage and apoptosis in a SESN2-dependent manner. Knockdown of Sesn2 impaired RES/SIRT1-mediated protective effects, while upregulation of SESN2 efficiently rescued DOX-induced oxidative damage and apoptosis. Most importantly, SIRT1 activation could reduce DOX-induced SESN2 ubiquitination possibly through reducing the interaction of SESN2 with mouse double minute 2 (MDM2). The recovery of SESN2 stability in DOX-impaired primary cardiomyocytes by SIRT1 was confirmed by Mdm2-siRNA transfection. Taken together, our findings indicate that disrupting the interaction between SESN2 and MDM2 by SIRT1 to reduce the ubiquitination of SESN2 is a novel regulatory mechanism for protecting hearts from DOX-induced cardiotoxicity and suggest that the activation of SIRT1-SESN2 axis has potential as a therapeutic approach to prevent DOX-induced cardiotoxicity.
Collapse
|
17
|
Fang Y, Fan W, Xu X, Janoshazi AK, Fargo DC, Li X. SIRT1 regulates cardiomyocyte alignment during maturation. J Cell Sci 2022; 135:274667. [PMID: 35260907 PMCID: PMC9016619 DOI: 10.1242/jcs.259076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiomyocyte elongation and alignment, a critical step in cardiomyocyte maturation starting from the perinatal stage, is crucial for formation of the highly organized intra- and inter-cellular structures for spatially and temporally ordered contraction in adult cardiomyocytes. However, the mechanism(s) underlying the control of cardiomyocyte alignment remains elusive. Here, we report that SIRT1, the most conserved NAD+-dependent protein deacetylase highly expressed in perinatal heart, plays an important role in regulating cardiomyocyte remodeling during development. We observed that SIRT1 deficiency impairs the alignment of cardiomyocytes/myofibrils and disrupts normal beating patterns at late developmental stages in an in vitro differentiation system from human embryonic stem cells. Consistently, deletion of SIRT1 at a late developmental stage in mouse embryos induced the irregular distribution of cardiomyocytes and misalignment of myofibrils, and reduced the heart size. Mechanistically, the expression of several genes involved in chemotaxis, including those in the CXCL12/CXCR4 and CCL2/CCR2/CCR4 pathways, was dramatically blunted during maturation of SIRT1-deficient cardiomyocytes. Pharmacological inhibition of CCL2 signaling suppressed cardiomyocyte alignment. Our study identifies a regulatory factor that modulates cardiomyocyte alignment at the inter-cellular level during maturation.
Collapse
Affiliation(s)
- Yi Fang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA,Authors for correspondence (; )
| | - Wei Fan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xiaojiang Xu
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Agnes K. Janoshazi
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA,Fluorescence Microscopy and Imaging Center, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - David C. Fargo
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA,Authors for correspondence (; )
| |
Collapse
|
18
|
Chen Y, An N, Zhou X, Mei L, Sui Y, Chen G, Chen H, He S, Jin C, Hu Z, Li W, Wang Y, Lin Z, Chen P, Jin L, Guan X, Wang X. Fibroblast growth factor 20 attenuates pathological cardiac hypertrophy by activating the SIRT1 signaling pathway. Cell Death Dis 2022; 13:276. [PMID: 35351862 PMCID: PMC8964679 DOI: 10.1038/s41419-022-04724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 11/08/2022]
Abstract
Cardiac hypertrophy occurs initially in response to an increased cardiac load as a compensatory mechanism to maintain cardiac output. However, sustained pathological hypertrophy can develop into heart failure and cause sudden death. Fibroblast growth factor 20 (FGF20) is a member of the fibroblast growth factor family, which involved in apoptosis, aging, inflammation, and autophagy. The precise function of FGF20 in pathological cardiac hypertrophy is unclear. In this study, we demonstrated that FGF20 was significantly decreased in response to hypertrophic stimulation. In contrast, overexpression of FGF20 protected against pressure overload-induced cardiac hypertrophy. Mechanistically, we found that FGF20 upregulates SIRT1 expression, causing deacetylation of FOXO1; this effect promotes the transcription of downstream antioxidant genes, thus inhibits oxidative stress. In content, the anti-hypertrophic effect of FGF20 was largely counteracted in SIRT1-knockout mice, accompanied by an increase in oxidative stress. In summary, our findings reveal a previously unknown protective effect of FGF20 on pathological cardiac hypertrophy by reducing oxidative stress through activation of the SIRT1 signaling pathway. FGF20 is a potential novel molecular target for preventing and treating pressure overload-induced myocardial injury.
Collapse
Affiliation(s)
- Yunjie Chen
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, PR China
| | - Ning An
- Department of Pharmacy, Ningbo Medical Center Lihuili Hospital, 315041, Ningbo, PR China
| | - Xuan Zhou
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, PR China
| | - Lin Mei
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Yanru Sui
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Huinan Chen
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Shengqu He
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Cheng Jin
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Zhicheng Hu
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Wanqian Li
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Yang Wang
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Zhu Lin
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, PR China
| | - Peng Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China.
| | - Xueqiang Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, PR China.
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China.
| |
Collapse
|
19
|
Chen Y, He T, Zhang Z, Zhang J. Activation of SIRT1 by Resveratrol Alleviates Pressure Overload-Induced Cardiac Hypertrophy via Suppression of TGF-β1 Signaling. Pharmacology 2021; 106:667-681. [PMID: 34518478 DOI: 10.1159/000518464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Silent information regulator 1 (SIRT1) has been extensively investigated in the cardiovascular system and has been shown to play a pivotal role in mediating cell death/survival, energy production, and oxidative stress. However, the functional role of SIRT1 in pressure overload-induced cardiac hypertrophy and dysfunction remains unclear. Resveratrol (Rsv), a widely used activator of SIRT1, has been reported to protect against cardiovascular disease. We here examine whether activation of SIRT1 by Rsv attenuate pressure overload-induced cardiac hypertrophy and to identify the underlying molecular mechanisms. METHODS In vivo, rat model of pressure overload-induced myocardial hypertrophy was established by abdominal aorta constriction (AAC) procedure. In vitro, Angiotensin II (Ang II) was applied to induce hypertrophy in cultured neonatal rat cardiomyocytes (NCMs). Hemodynamics and histological analyses of the heart were evaluated. The expression of SIRT1, transforming growth factor-β1 (TGF-β1)/phosphorylated (p)-small mother against decapentaplegic (Smad)3 and hypertrophic markers were determined by immunofluorescence, real-time PCR, and Western blotting techniques. RESULTS In the current study, Rsv treatment improved left ventricular function and reduced left ventricular hypertrophy and cardiac fibrosis significantly in the pressure overload rats. The expression of SIRT1 was significantly reduced, while the expression of TGF-β1/p-Smad3 was significantly enhanced in AAC afflicted rat heart. Strikingly, treatment with Rsv restored the expressions of SIRT1 and TGF-β1/p-Smad3 under AAC influence. However, SIRT1 inhibitor Sirtinol (Snl) markedly prevented the effects of Rsv, which suggest that SIRT1 signaling pathway was involved in the cardiac protective effect of Rsv. In vitro studies performed in Ang II-induced hypertrophy in NCMs confirmed the cardiac protective effect of Rsv. Furthermore, the study presented that SIRT1 negatively correlated with the cardiac hypertrophy, cardiac fibrosis, and the TGF-β1/p-Smad3 expression. CONCLUSIONS Taken together, these results indicated that activation of SIRT1 by Rsv attenuates cardiac hypertrophy, cardiac fibrosis, and improves cardiac function possibly via regulation of the TGF-β1/p-Smad3 signaling pathway. Our study may provide a potential therapeutic strategy for cardiac hypertrophy.
Collapse
Affiliation(s)
- Yong Chen
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China.,Department of Neurosurgery, Shenzhen University Clinical Medical Academy, Shenzhen, China.,Department of Neurosurgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Ting He
- Department of Anesthesiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Zhongjun Zhang
- Department of Anesthesiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Anesthesiology, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Junzhi Zhang
- Department of Anesthesiology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,Department of Anesthesiology, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
20
|
Asensio-Lopez MC, Sassi Y, Soler F, Fernandez Del Palacio MJ, Pascual-Figal D, Lax A. The miRNA199a/SIRT1/P300/Yy1/sST2 signaling axis regulates adverse cardiac remodeling following MI. Sci Rep 2021; 11:3915. [PMID: 33594087 PMCID: PMC7887255 DOI: 10.1038/s41598-021-82745-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/25/2021] [Indexed: 01/14/2023] Open
Abstract
Left ventricular remodeling following myocardial infarction (MI) is related to adverse outcome. It has been shown that an up-regulation of plasma soluble ST2 (sST2) levels are associated with lower pre-discharge left ventricular (LV) ejection fraction, adverse cardiovascular outcomes and mortality outcome after MI. The mechanisms involved in its modulation are unknown and there is not specific treatment capable of lowering plasma sST2 levels in acute-stage HF. We recently identified Yin-yang 1 (Yy1) as a transcription factor related to circulating soluble ST2 isoform (sST2) expression in infarcted myocardium. However, the underlying mechanisms involved in this process have not been thoroughly elucidated. This study aimed to evaluate the pathophysiological implication of miR-199a-5p in cardiac remodeling and the expression of the soluble ST2 isoform. Myocardial infarction (MI) was induced by permanent ligation of the left anterior coronary artery in C57BL6/J mice that randomly received antimiR199a therapy, antimiR-Ctrl or saline. A model of biomechanical stretching was also used to characterize the underlying mechanisms involved in the activation of Yy1/sST2 axis. Our results show that the significant upregulation of miR-199a-5p after myocardial infarction increases pathological cardiac hypertrophy by upregulating circulating soluble sST2 levels. AntimiR199a therapy up-regulates Sirt1 and inactivates the co-activator P300 protein, thus leading to Yy1 inhibition which decreases both expression and release of circulating sST2 by cardiomyocytes after myocardial infarction. Pharmacological inhibition of miR-199a rescues cardiac hypertrophy and heart failure in mice, offering a potential therapeutic approach for cardiac failure.
Collapse
Affiliation(s)
- Maria Carmen Asensio-Lopez
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Fernando Soler
- Biochemical and Molecular Biology Department, University of Murcia, Murcia, Spain
| | | | - Domingo Pascual-Figal
- Cardiology Department, Hospital Virgen de la Arrixaca, IMIB-Arrixaca, University of Murcia, Murcia, Spain.
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBERCV, Madrid, Spain.
| | - Antonio Lax
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, Murcia, Spain.
| |
Collapse
|
21
|
Conti V, Corbi G, Polito MV, Ciccarelli M, Manzo V, Torsiello M, De Bellis E, D’Auria F, Vitulano G, Piscione F, Carrizzo A, Di Pietro P, Vecchione C, Ferrara N, Filippelli A. Sirt1 Activity in PBMCs as a Biomarker of Different Heart Failure Phenotypes. Biomolecules 2020; 10:biom10111590. [PMID: 33238655 PMCID: PMC7700185 DOI: 10.3390/biom10111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Heart Failure (HF) is a syndrome, which implies the existence of different phenotypes. The new categorization includes patients with preserved ejection fraction (HFpEF), mid-range EF (HFmrEF), and reduced EF (HFrEF) but the molecular mechanisms involved in these HF phenotypes have not yet been exhaustively investigated. Sirt1 plays a crucial role in biological processes strongly related to HF. This study aimed to evaluate whether Sirt1 activity was correlated with EF and other parameters in HFpEF, HFmrEF, and HFrEF. Seventy patients, HFpEF (n = 23), HFmrEF (n = 23) and HFrEF (n = 24), were enrolled at the Cardiology Unit of the University Hospital of Salerno. Sirt1 activity was measured in peripheral blood mononuclear cells (PBMCs). Angiotensin-Converting Enzyme 2 (ACE2) activity, Tumor Necrosis Factor-alpha (TNF-α) and Brain Natriuretic Peptide (BNP) levels were quantified in plasma. HFpEF showed lower Sirt1 and ACE2 activities than both HFmrEF and HFrEF (p < 0.0001), without difference compared to No HF controls. In HFmrEF and HFrEF a very strong correlation was found between Sirt1 activity and EF (r2 = 0.899 and r2 = 0.909, respectively), and between ACE2 activity and Sirt1 (r2 = 0.801 and r2 = 0.802, respectively). HFrEF showed the highest TNF-α levels without reaching statistical significance. Significant differences in BNP were found among the groups, with the highest levels in the HFrEF. Determining Sirt1 activity in PBMCs is useful to distinguish the HF patients’ phenotypes from each other, especially HFmrEF/HFrEF from HFpEF.
Collapse
Affiliation(s)
- Valeria Conti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (M.V.P.); (M.C.); (M.T.); (E.D.B.); (F.D.); (G.V.); (F.P.); (A.C.); (P.D.P.); (C.V.); (A.F.)
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Maria Vincenza Polito
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (M.V.P.); (M.C.); (M.T.); (E.D.B.); (F.D.); (G.V.); (F.P.); (A.C.); (P.D.P.); (C.V.); (A.F.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (M.V.P.); (M.C.); (M.T.); (E.D.B.); (F.D.); (G.V.); (F.P.); (A.C.); (P.D.P.); (C.V.); (A.F.)
| | - Valentina Manzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (M.V.P.); (M.C.); (M.T.); (E.D.B.); (F.D.); (G.V.); (F.P.); (A.C.); (P.D.P.); (C.V.); (A.F.)
- Correspondence: ; Tel.: +39-089-672-424
| | - Martina Torsiello
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (M.V.P.); (M.C.); (M.T.); (E.D.B.); (F.D.); (G.V.); (F.P.); (A.C.); (P.D.P.); (C.V.); (A.F.)
| | - Emanuela De Bellis
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (M.V.P.); (M.C.); (M.T.); (E.D.B.); (F.D.); (G.V.); (F.P.); (A.C.); (P.D.P.); (C.V.); (A.F.)
| | - Federica D’Auria
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (M.V.P.); (M.C.); (M.T.); (E.D.B.); (F.D.); (G.V.); (F.P.); (A.C.); (P.D.P.); (C.V.); (A.F.)
| | - Gennaro Vitulano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (M.V.P.); (M.C.); (M.T.); (E.D.B.); (F.D.); (G.V.); (F.P.); (A.C.); (P.D.P.); (C.V.); (A.F.)
| | - Federico Piscione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (M.V.P.); (M.C.); (M.T.); (E.D.B.); (F.D.); (G.V.); (F.P.); (A.C.); (P.D.P.); (C.V.); (A.F.)
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (M.V.P.); (M.C.); (M.T.); (E.D.B.); (F.D.); (G.V.); (F.P.); (A.C.); (P.D.P.); (C.V.); (A.F.)
- Department of Vascular Physiopathology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (M.V.P.); (M.C.); (M.T.); (E.D.B.); (F.D.); (G.V.); (F.P.); (A.C.); (P.D.P.); (C.V.); (A.F.)
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (M.V.P.); (M.C.); (M.T.); (E.D.B.); (F.D.); (G.V.); (F.P.); (A.C.); (P.D.P.); (C.V.); (A.F.)
- Department of Vascular Physiopathology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy;
- Istituti Clinici Scientifici Maugeri SPA-Società Benefit, IRCCS, 82037 Telese Terme (BN), Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.C.); (M.V.P.); (M.C.); (M.T.); (E.D.B.); (F.D.); (G.V.); (F.P.); (A.C.); (P.D.P.); (C.V.); (A.F.)
| |
Collapse
|
22
|
Lin B, Zhao H, Li L, Zhang Z, Jiang N, Yang X, Zhang T, Lian B, Liu Y, Zhang C, Wang J, Wang F, Feng D, Xu J. Sirt1 improves heart failure through modulating the NF-κB p65/microRNA-155/BNDF signaling cascade. Aging (Albany NY) 2020; 13:14482-14498. [PMID: 33206628 PMCID: PMC8202895 DOI: 10.18632/aging.103640] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022]
Abstract
Heart failure (HF) affects over 26 million people worldwide, yet the pathologies of this complex syndrome have not been completely understood. Here, we investigated the involvement of deacetylase Sirtuin 1 (Sirt1) in HF and its downstream signaling pathways. A HF model was induced by the ligation of the left coronary artery in rats, where factors associated with left ventricular echocardiography, heart hemodynamics and ventricular mass indexes were recorded. Collagen volume fraction in heart tissues was determined by Masson's trichrome staining. Cell models of HF were also established (H2O2, 30 min) in cardiomyocytes harvested from suckling rats. HF rats presented with downregulated expressions of Sirt1, brain-derived neurotrophic factor (BDNF) and exhibited upregulated expressions of NF-κB p65 and miR-155. Repressed Sirt1 expression increased acetylation of NF-κB p65, resulting in the elevation of NF-κB p65 expression. NF-κB p65 silencing improved heart functions, decreased ventricular mass and reduced apoptosis in cardiomyocytes. MiR-155 inhibition upregulated its target gene BDNF, thereby reducing cardiomyocyte apoptosis. Sirt1 overexpression upregulated BDNF, improved heart function, and reduced apoptosis in cardiomyocytes. In conclusion, Sirt1 alleviates HF in rats through the NF-κB p65/miR-155/BDNF signaling cascade.
Collapse
Affiliation(s)
- Bin Lin
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Hui Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Li Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Zhenzhen Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Nan Jiang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Xiaowei Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Tao Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Bowen Lian
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Yaokai Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Chi Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Jiaxiang Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Feng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Deguang Feng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Jing Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| |
Collapse
|
23
|
Xu W, Li L, Zhang L. NAD + Metabolism as an Emerging Therapeutic Target for Cardiovascular Diseases Associated With Sudden Cardiac Death. Front Physiol 2020; 11:901. [PMID: 32903597 PMCID: PMC7438569 DOI: 10.3389/fphys.2020.00901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to its central role in mediating oxidation reduction in fuel metabolism and bioenergetics, nicotinamide adenine dinucleotide (NAD+) has emerged as a vital co-substrate for a number of proteins involved in diverse cellular processes, including sirtuins, poly(ADP-ribose) polymerases and cyclic ADP-ribose synthetases. The connection with aging and age-associated diseases has led to a new wave of research in the cardiovascular field. Here, we review the basics of NAD+ homeostasis, the molecular physiology and new advances in ischemic-reperfusion injury, heart failure, and arrhythmias, all of which are associated with increased risks for sudden cardiac death. Finally, we summarize the progress of NAD+-boosting therapy in human cardiovascular diseases and the challenges for future studies.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Le Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
24
|
Testai L, Citi V, Martelli A, Brogi S, Calderone V. Role of hydrogen sulfide in cardiovascular ageing. Pharmacol Res 2020; 160:105125. [PMID: 32783975 DOI: 10.1016/j.phrs.2020.105125] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are the main cause of morbidity and mortality in the Western society and ageing is a relevant non-modifiable risk factor. Morphological and functional alterations at endothelial level represent first events of ageing, inevitably followed by vascular dysfunction and consequent atherosclerosis that deeply influences cardiovascular health. Indeed, myocardial hypertrophy and fibrosis typically occur and contribute to compromise overall cardiac output. As regards the intracellular molecular mechanisms involved in the cardiovascular ageing, an intricate network is emerging, revealing a role for many mediators, including SIRT1/AMPK/PCG1α pathway, anti-oxidants factors (i.e. Nrf-2 and FOXOs) and pro-inflammatory cytokines. Thus, the search for pharmacological and non-pharmacological strategies that can promote a "healthy ageing", in order to slow down age-related machinery, are currently an exciting challenge for the biomedical research. Interestingly, hydrogen sulfide (H2S) has been recently recognized as a new player capable to influence intracellular machinery involved in ageing and then it is view as a potential target for preventing cardiovascular diseases. Therefore, this review is focused on the role of H2S in cardiovascular ageing, and on the evidence of the relationship between progressive decline in endogenous H2S levels and the onset of various cardiovascular age-related diseases.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy.
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy
| |
Collapse
|
25
|
Wang Z, Zhao YT, Zhao TC. Histone deacetylases in modulating cardiac disease and their clinical translational and therapeutic implications. Exp Biol Med (Maywood) 2020; 246:213-225. [PMID: 32727215 DOI: 10.1177/1535370220944128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases are the leading cause of mortality and morbidity worldwide. Histone deacetylases (HDACs) play an important role in the epigenetic regulation of genetic transcription in response to stress or pathological conditions. HDACs interact with a complex co-regulatory network of transcriptional regulators, deacetylate histones or non-histone proteins, and modulate gene expression in the heart. The selective HDAC inhibitors have been considered to be a critical target for the treatment of cardiac disease, especially for ameliorating cardiac dysfunction. In this review, we discuss our current knowledge of the cellular and molecular basis of HDACs in mediating cardiac development and hypertrophy and related pharmacologic interventions in heart disease.
Collapse
Affiliation(s)
- Zhengke Wang
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, RI 02908, USA
| | - Yu Tina Zhao
- University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ting C Zhao
- Departments of Surgery and Plastic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
26
|
Zhao L, Cao J, Hu K, He X, Yun D, Tong T, Han L. Sirtuins and their Biological Relevance in Aging and Age-Related Diseases. Aging Dis 2020; 11:927-945. [PMID: 32765955 PMCID: PMC7390530 DOI: 10.14336/ad.2019.0820] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Sirtuins, initially described as histone deacetylases and gene silencers in yeast, are now known to have many more functions and to be much more abundant in living organisms. The increasing evidence of sirtuins in the field of ageing and age-related diseases indicates that they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. Here, we summarize some of the recent discoveries in sirtuin biology that clearly implicate the functions of sirtuins in the regulation of aging and age-related diseases. Furthermore, human sirtuins are considered promising therapeutic targets for anti-aging and ageing-related diseases and have attracted interest in scientific communities to develop small molecule activators or drugs to ameliorate a wide range of ageing disorders. In this review, we also summarize the discovery and development status of sirtuin-targeted drug and further discuss the potential medical strategies of sirtuins in delaying aging and treating age-related diseases.
Collapse
Affiliation(s)
- Lijun Zhao
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Jianzhong Cao
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kexin Hu
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Xiaodong He
- 2Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dou Yun
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Tanjun Tong
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| | - Limin Han
- 1Peking University Research Center on Aging, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Beijing, China
| |
Collapse
|
27
|
Zuurbier CJ, Bertrand L, Beauloye CR, Andreadou I, Ruiz‐Meana M, Jespersen NR, Kula‐Alwar D, Prag HA, Eric Botker H, Dambrova M, Montessuit C, Kaambre T, Liepinsh E, Brookes PS, Krieg T. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med 2020; 24:5937-5954. [PMID: 32384583 PMCID: PMC7294140 DOI: 10.1111/jcmm.15180] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/13/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Reducing infarct size during a cardiac ischaemic-reperfusion episode is still of paramount importance, because the extension of myocardial necrosis is an important risk factor for developing heart failure. Cardiac ischaemia-reperfusion injury (IRI) is in principle a metabolic pathology as it is caused by abruptly halted metabolism during the ischaemic episode and exacerbated by sudden restart of specific metabolic pathways at reperfusion. It should therefore not come as a surprise that therapy directed at metabolic pathways can modulate IRI. Here, we summarize the current knowledge of important metabolic pathways as therapeutic targets to combat cardiac IRI. Activating metabolic pathways such as glycolysis (eg AMPK activators), glucose oxidation (activating pyruvate dehydrogenase complex), ketone oxidation (increasing ketone plasma levels), hexosamine biosynthesis pathway (O-GlcNAcylation; administration of glucosamine/glutamine) and deacetylation (activating sirtuins 1 or 3; administration of NAD+ -boosting compounds) all seem to hold promise to reduce acute IRI. In contrast, some metabolic pathways may offer protection through diminished activity. These pathways comprise the malate-aspartate shuttle (in need of novel specific reversible inhibitors), mitochondrial oxygen consumption, fatty acid oxidation (CD36 inhibitors, malonyl-CoA decarboxylase inhibitors) and mitochondrial succinate metabolism (malonate). Additionally, protecting the cristae structure of the mitochondria during IR, by maintaining the association of hexokinase II or creatine kinase with mitochondria, or inhibiting destabilization of FO F1 -ATPase dimers, prevents mitochondrial damage and thereby reduces cardiac IRI. Currently, the most promising and druggable metabolic therapy against cardiac IRI seems to be the singular or combined targeting of glycolysis, O-GlcNAcylation and metabolism of ketones, fatty acids and succinate.
Collapse
Affiliation(s)
- Coert J. Zuurbier
- Department of AnesthesiologyLaboratory of Experimental Intensive Care and AnesthesiologyAmsterdam Infection & ImmunityAmsterdam Cardiovascular SciencesAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Luc Bertrand
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Christoph R. Beauloye
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
- Cliniques Universitaires Saint‐LucBrusselsBelgium
| | - Ioanna Andreadou
- Laboratory of PharmacologyFaculty of PharmacyNational and Kapodistrian University of AthensAthensGreece
| | - Marisol Ruiz‐Meana
- Department of CardiologyHospital Universitari Vall d’HebronVall d’Hebron Institut de Recerca (VHIR)CIBER‐CVUniversitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red‐CVMadridSpain
| | | | | | - Hiran A. Prag
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Hans Eric Botker
- Department of CardiologyAarhus University HospitalAarhus NDenmark
| | - Maija Dambrova
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Christophe Montessuit
- Department of Pathology and ImmunologyUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Tuuli Kaambre
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Edgars Liepinsh
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Paul S. Brookes
- Department of AnesthesiologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Thomas Krieg
- Department of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
28
|
Sun Z, Lu W, Lin N, Lin H, Zhang J, Ni T, Meng L, Zhang C, Guo H. Dihydromyricetin alleviates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome through activation of SIRT1. Biochem Pharmacol 2020; 175:113888. [PMID: 32112883 DOI: 10.1016/j.bcp.2020.113888] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/24/2020] [Indexed: 12/21/2022]
Abstract
Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug whose clinical application is limited by serious cardiotoxic side effects. Dihydromyricetin (DHM), a flavonoid compound extracted from the Japanese raisin tree (Hovenia dulcis), is cardioprotective in patients with heart failure; however, the underlying mechanisms are poorly understood. The aim of this study was to assess the possible anti-inflammatory properties of DHM in a rat model of DOX-induced cardiotoxicity and DOX-treated H9C2 cells, and gain insights into the molecular mechanisms that mediate these effects. The results showed that DHM treatment significantly improved the myocardial structure and function in DOX-exposed rats by alleviating NLRP3 inflammasome-mediated inflammation. DHM also inhibited DOX-induced activation of the NLRP3 inflammasome in H9C2 cells. This effect was mediated by inhibition of caspase-1 activity, suppression of IL-1β and IL-18 release, and upregulation of SIRT1 protein levels in vivo and in vitro. Moreover, selective inhibition of SIRT1 blocked the protective effects of DHM. Collectively, our findings indicate that DHM protects against DOX-induced cardiotoxicity by inhibiting NLRP3 inflammasome activation via stimulation of the SIRT1 pathway.
Collapse
Affiliation(s)
- Zhenzhu Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Wenqiang Lu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Na Lin
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jie Zhang
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Tingjuan Ni
- Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | | | - Hangyuan Guo
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China.
| |
Collapse
|
29
|
Akhondzadeh F, Astani A, Najjari R, Samadi M, Rezvani ME, Zare F, Ranjbar AM, Safari F. Resveratrol suppresses interleukin-6 expression through activation of sirtuin 1 in hypertrophied H9c2 cardiomyoblasts. J Cell Physiol 2020; 235:6969-6977. [PMID: 32026477 DOI: 10.1002/jcp.29592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
Abstract
Inflammatory cytokine, interleukin-6 (IL-6), plays an important role in the pathogenesis of cardiac hypertrophy. Recent studies have documented that resveratrol exhibits cardioprotective effects. The present study attempts to explore whether resveratrol suppreses IL-6 in hypertrophied H9c2 cardiomyoblasts through histone deacetylase, sirtuin 1 (SIRT1). To induce hypertrophy, the cells were incubated with angiotensin II (Ang II). Treatment groups were treated with different doses (1, 10, 25, 50, 75, and 100 μM) of resveratrol (R). Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell size was determined using crystal violet staining. Gene expression was assessed by real-time polymerase chain reaction technique. Enzyme-linked immunosorbent assay was used to measure IL-6 concentration. The results showed that cell area and ANP messenger RNA (mRNA) levels decreased significantly in R25+Ang, R50+Ang, and R100+Ang groups, as compared with Ang group. Therefore, 10, 20, 30, 40, and 50 μM of resveratrol were used to to evaluate its anti-inflammatory effects. The results revealed that Ang II upregulated IL-6 at both mRNA and protein levels (p < .001 vs. normal) and resveratrol (50 μM) decreased IL-6 mRNA (p < .01) and protein (p < .05) significantly in comparison to Ang group. However, in groups in which the cells were pretreated with SIRT1 inhibitor, EX-527, the response of resveratrol was partially reversed. Transcription levels of IL-6 receptor components (gp130 and gp80) did not change significantly among the experimental groups. The current data suggests that resveratrol protects H9c2 cells against Ang II-induced hypertrophy by suppression of IL-6 through SIRT1 activation.
Collapse
Affiliation(s)
- Fariba Akhondzadeh
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Akram Astani
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Najjari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Morteza Samadi
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Zare
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Mohammad Ranjbar
- Department of Pharmacognosy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
30
|
Qiu Z, Wei Y, Song Q, Du B, Wang H, Chu Y, Hu Y. The Role of Myocardial Mitochondrial Quality Control in Heart Failure. Front Pharmacol 2019; 10:1404. [PMID: 31866862 PMCID: PMC6910121 DOI: 10.3389/fphar.2019.01404] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022] Open
Abstract
At present, the treatment of heart failure has entered the plateau phase, and it is necessary to thoroughly study the pathogenesis of heart failure and find out the corresponding treatment methods. Myocardial mitochondria is the main site of cardiac energy metabolism, whose dysfunction is an important factor leading to cardiac dysfunction and heart failure. Mitochondria are highly dynamic organelles. Continuous biogenesis, fusion, fission and mitophagy, contribute to the balance of mitochondria's morphology, quantity, and quality, which is called mitochondrial quality control. Mitochondrial quality control is the cornerstone of normal mitochondrial function and is found to play an important role in the pathological process of heart failure. Here, we provide an overview of the mechanisms of mitochondrial quality control and recent studies on mitochondrial quality control in heart failure, hoping to provide new ideas for drug development in heart failure.
Collapse
Affiliation(s)
- Zhiling Qiu
- Department of General Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wei
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingqiao Song
- Department of General Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai Du
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuguang Chu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Darby JRT, Saini BS, Soo JY, Lock MC, Holman SL, Bradshaw EL, McInnes SJP, Voelcker NH, Macgowan CK, Seed M, Wiese MD, Morrison JL. Subcutaneous maternal resveratrol treatment increases uterine artery blood flow in the pregnant ewe and increases fetal but not cardiac growth. J Physiol 2019; 597:5063-5077. [PMID: 31483497 DOI: 10.1113/jp278110] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/28/2019] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS Substrate restriction during critical developmental windows of gestation programmes offspring for a predisposition towards cardiovascular disease in adult life. This study aimed to determine the effect of maternal resveratrol (RSV) treatment in an animal model in which chronic fetal catheterisation is possible and the timing of organ maturation reflects that of the human. Maternal RSV treatment increased uterine artery blood flow, fetal oxygenation and fetal weight. RSV was not detectable in the fetal circulation, indicating that it may not cross the sheep placenta. This study highlights RSV as a possible intervention to restore fetal substrate supply in pregnancies affected by placental insufficiency. ABSTRACT Suboptimal in utero environments with reduced substrate supply during critical developmental windows of gestation predispose offspring to non-communicable diseases such as cardiovascular disease (CVD). Improving fetal substrate supply in these pregnancies may ameliorate the predisposition these offspring have toward adult-onset CVD. This study aimed to determine the effect of maternal resveratrol (RSV) supplementation on uterine artery blood flow and the direct effects of RSV on the fetal heart in a chronically catheterised sheep model of human pregnancy. Maternal RSV treatment significantly increased uterine artery blood flow as measured by phase contrast magnetic resonance imaging, mean gestational fetal P a O 2 and S a O 2 as well as fetal weight. RSV was not detectable in the fetal circulation, and mRNA and protein expression of the histone/protein deacetylase SIRT1 did not differ between treatment groups. No effect of maternal RSV supplementation on AKT/mTOR or CAMKII signalling in the fetal left ventricle was observed. Maternal RSV supplementation is capable of increasing fetal oxygenation and growth in an animal model in which cardiac development parallels that of the human.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Brahmdeep S Saini
- Univeristy of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Emma L Bradshaw
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Steven J P McInnes
- Future Industries Institute, University of South Australia, Adelaide, SA, Australia.,School of Engineering, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, SA, Australia, 5095
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia.,Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | | | - Mike Seed
- Univeristy of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Wiese
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia, 5001.,School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, Australia, 5001
| |
Collapse
|
32
|
Abstract
The sirtuin family of nicotinamide adenine dinucleotide-dependent deacylases (SIRT1-7) are thought to be responsible, in large part, for the cardiometabolic benefits of lean diets and exercise and when upregulated can delay key aspects of aging. SIRT1, for example, protects against a decline in vascular endothelial function, metabolic syndrome, ischemia-reperfusion injury, obesity, and cardiomyopathy, and SIRT3 is protective against dyslipidemia and ischemia-reperfusion injury. With increasing age, however, nicotinamide adenine dinucleotide levels and sirtuin activity steadily decrease, and the decline is further exacerbated by obesity and sedentary lifestyles. Activation of sirtuins or nicotinamide adenine dinucleotide repletion induces angiogenesis, insulin sensitivity, and other health benefits in a wide range of age-related cardiovascular and metabolic disease models. Human clinical trials testing agents that activate SIRT1 or boost nicotinamide adenine dinucleotide levels are in progress and show promise in their ability to improve the health of cardiovascular and metabolic disease patients.
Collapse
Affiliation(s)
- Alice E Kane
- From the Department of Genetics, Harvard Medical School, Boston, MA (A.E.K., D.A.S.)
| | - David A Sinclair
- From the Department of Genetics, Harvard Medical School, Boston, MA (A.E.K., D.A.S.).,Department of Pharmacology, The University of New South Wales, Sydney, Australia (D.A.S.)
| |
Collapse
|
33
|
Landim-Vieira M, Schipper JM, Pinto JR, Chase PB. Cardiomyocyte nuclearity and ploidy: when is double trouble? J Muscle Res Cell Motil 2019; 41:329-340. [PMID: 31317457 DOI: 10.1007/s10974-019-09545-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/12/2019] [Indexed: 01/23/2023]
Abstract
Considerable effort has gone into investigating mechanisms that underlie the developmental transition in which mammalian cardiomyocytes (CMs) switch from being able to proliferate during development, to essentially having lost that ability at maturity. This problem is interesting not only for scientific curiosity, but also for its clinical relevance because controlling the ability of mature CMs to replicate would provide a much-needed approach for restoring cardiac function in damaged hearts. In this review, we focus on the propensity of mature mammalian CMs to be multinucleated and polyploid, and the extent to which this may be necessary for normal physiology yet possibly disadvantageous in some circumstances. In this context, we explore whether the concept of the myonuclear domain (MND) in multinucleated skeletal muscle fibers might apply to cardiomyocytes, and whether cardio-MND size might be related to the transition of CMs to become multinuclear. Nuclei in CMs are almost certainly integrators of not only biochemical, but also-because of their central location within the myofibrils-mechanical information, and this multimodal, integrative function in adult CMs-involving molecules that have been extensively studied along with newly identified possibilities-could influence both gene expression as well as replication of the genome and the nuclei themselves.
Collapse
Affiliation(s)
- Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Joslyn M Schipper
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.,Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - J Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL, USA. .,Department of Biological Science, Florida State University, Biology Unit One Room 206, 81 Chieftain Way, Tallahassee, FL, 32306-4370, USA.
| |
Collapse
|
34
|
Sárközy M, Gáspár R, Zvara Á, Kiscsatári L, Varga Z, Kővári B, Kovács MG, Szűcs G, Fábián G, Diószegi P, Cserni G, Puskás LG, Thum T, Kahán Z, Csont T, Bátkai S. Selective Heart Irradiation Induces Cardiac Overexpression of the Pro-hypertrophic miR-212. Front Oncol 2019; 9:598. [PMID: 31380269 PMCID: PMC6646706 DOI: 10.3389/fonc.2019.00598] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
Background: A deleterious, late-onset side effect of thoracic radiotherapy is the development of radiation-induced heart disease (RIHD). It covers a spectrum of cardiac pathology including also heart failure with preserved ejection fraction (HFpEF) characterized by left ventricular hypertrophy (LVH) and diastolic dysfunction. MicroRNA-212 (miR-212) is a crucial regulator of pathologic LVH via FOXO3-mediated pathways in pressure-overload-induced heart failure. We aimed to investigate whether miR-212 and its selected hypertrophy-associated targets play a role in the development of RIHD. Methods: RIHD was induced by selective heart irradiation (50 Gy) in a clinically relevant rat model. One, three, and nineteen weeks after selective heart irradiation, transthoracic echocardiography was performed to monitor cardiac morphology and function. Cardiomyocyte hypertrophy and fibrosis were assessed by histology at week 19. qRT-PCR was performed to measure the gene expression changes of miR-212 and forkhead box O3 (FOXO3) in all follow-up time points. The cardiac transcript level of other selected hypertrophy-associated targets of miR-212 including extracellular signal-regulated kinase 2 (ERK2), myocyte enhancer factor 2a (MEF2a), AMP-activated protein kinase, (AMPK), heat shock protein 40 (HSP40), sirtuin 1, (SIRT1), calcineurin A-alpha and phosphatase and tensin homolog (PTEN) were also measured at week 19. Cardiac expression of FOXO3 and phospho-FOXO3 were investigated at the protein level by Western blot at week 19. Results: In RIHD, diastolic dysfunction was present at every time point. Septal hypertrophy developed at week 3 and a marked LVH with interstitial fibrosis developed at week 19 in the irradiated hearts. In RIHD, cardiac miR-212 was overexpressed at week 3 and 19, and FOXO3 was repressed at the mRNA level only at week 19. In contrast, the total FOXO3 protein level failed to decrease in response to heart irradiation at week 19. Other selected hypertrophy-associated target genes failed to change at the mRNA level in RIHD at week 19. Conclusions: LVH in RIHD was associated with cardiac overexpression of miR-212. However, miR-212 seems to play a role in the development of LVH via FOXO3-independent mechanisms in RIHD. As a central regulator of pathologic remodeling, miR-212 might become a novel target for RIHD-induced LVH and heart failure.
Collapse
Affiliation(s)
- Márta Sárközy
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Renáta Gáspár
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Ágnes Zvara
- Laboratory for Functional Genomics, Biological Research Center of the Hungarian Academy of Sciences, Institute of Genetics, Szeged, Hungary
| | - Laura Kiscsatári
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán Varga
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Bence Kővári
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - Mónika G Kovács
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Gergő Szűcs
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Gabriella Fábián
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Petra Diószegi
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Gábor Cserni
- Department of Pathology, University of Szeged, Szeged, Hungary
| | - László G Puskás
- Laboratory for Functional Genomics, Biological Research Center of the Hungarian Academy of Sciences, Institute of Genetics, Szeged, Hungary
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hanover Medical School, Hanover, Germany
| | - Zsuzsanna Kahán
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Sándor Bátkai
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hanover Medical School, Hanover, Germany
| |
Collapse
|
35
|
Fibroblast growth factor 21 protects the heart from angiotensin II-induced cardiac hypertrophy and dysfunction via SIRT1. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1241-1252. [DOI: 10.1016/j.bbadis.2019.01.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/29/2018] [Accepted: 01/16/2019] [Indexed: 12/22/2022]
|
36
|
Darby JRT, Mohd Dollah MHB, Regnault TRH, Williams MT, Morrison JL. Systematic review: Impact of resveratrol exposure during pregnancy on maternal and fetal outcomes in animal models of human pregnancy complications-Are we ready for the clinic? Pharmacol Res 2019; 144:264-278. [PMID: 31029765 DOI: 10.1016/j.phrs.2019.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Resveratrol (RSV) has been reported to have potential beneficial effects in the complicated pregnancy. Various pregnancy complications lead to a suboptimal in utero environment that impacts fetal growth during critical windows of development. Detrimental structural changes to key organ systems in utero persist into adult life and predispose offspring to an increased risk of chronic non-communicable metabolic diseases such as cardiovascular disease, diabetes and obesity. The aim of this systematic review was to determine the effect of gestational RSV exposure on both maternal and fetal outcomes. Publicly available databases (n = 8) were searched for original studies reporting maternal and/or fetal outcomes after RSV exposure during pregnancy irrespective of species. Of the 115 studies screened, 31 studies were included in this review. RSV exposure occurred for different durations across a range of species (Rats n = 18, Mice n = 7, Japanese Macaques n = 3 and Sheep n = 3), models of complicated pregnancy (eg. maternal dietary manipulations, gestational diabetes, maternal hypoxia, teratogen exposure, etc.), dosages and administration routes. Maternal and fetal outcomes differed not only based on the model of complicated pregnancy assessed but also as a result of species. Given the heterogenic nature of these studies, further investigation assessing RSV exposure during the complicated pregnancy is warranted. In order to make an informed decision regarding the use of RSV to intervene in pregnancy complications, we suggest a minimum data set for consideration in future studies.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Murni H B Mohd Dollah
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Timothy R H Regnault
- Departments of Obstetrics and Gynaecology and Physiology and Pharmacology, Western University, 1151 Richmond Street, London, ON, N6A 5C1, Canada; Children's Health Research Institute, 800 Commissioners Road East, London, ON, N6C 2V5, Canada
| | - Marie T Williams
- Health and Alliance for Research in Exercise, Nutrition and Activity (ARENA), School of Health Sciences, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
37
|
Sárközy M, Gáspár R, Zvara Á, Siska A, Kővári B, Szűcs G, Márványkövi F, Kovács MG, Diószegi P, Bodai L, Zsindely N, Pipicz M, Gömöri K, Kiss K, Bencsik P, Cserni G, Puskás LG, Földesi I, Thum T, Bátkai S, Csont T. Chronic kidney disease induces left ventricular overexpression of the pro-hypertrophic microRNA-212. Sci Rep 2019; 9:1302. [PMID: 30718600 PMCID: PMC6362219 DOI: 10.1038/s41598-018-37690-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) is a public health problem that increases the risk of cardiovascular morbidity and mortality. Heart failure with preserved ejection fraction (HFpEF) characterized by left ventricular hypertrophy (LVH) and diastolic dysfunction is a common cardiovascular complication of CKD. MicroRNA-212 (miR-212) has been demonstrated previously to be a crucial regulator of pathologic LVH in pressure-overload-induced heart failure via regulating the forkhead box O3 (FOXO3)/calcineurin/nuclear factor of activated T-cells (NFAT) pathway. Here we aimed to investigate whether miR-212 and its hypertrophy-associated targets including FOXO3, extracellular signal-regulated kinase 2 (ERK2), and AMP-activated protein kinase (AMPK) play a role in the development of HFpEF in CKD. CKD was induced by 5/6 nephrectomy in male Wistar rats. Echocardiography and histology revealed LVH, fibrosis, preserved systolic function, and diastolic dysfunction in the CKD group as compared to sham-operated animals eight and/or nine weeks later. Left ventricular miR-212 was significantly overexpressed in CKD. However, expressions of FOXO3, AMPK, and ERK2 failed to change significantly at the mRNA or protein level. The protein kinase B (AKT)/FOXO3 and AKT/mammalian target of rapamycin (mTOR) pathways are also proposed regulators of LVH induced by pressure-overload. Interestingly, phospho-AKT/total-AKT ratio was increased in CKD without significantly affecting phosphorylation of FOXO3 or mTOR. In summary, cardiac overexpression of miR-212 in CKD failed to affect its previously implicated hypertrophy-associated downstream targets. Thus, the molecular mechanism of the development of LVH in CKD seems to be independent of the FOXO3, ERK1/2, AMPK, and AKT/mTOR-mediated pathways indicating unique features in this form of LVH.
Collapse
Affiliation(s)
- Márta Sárközy
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary.
| | - Renáta Gáspár
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Ágnes Zvara
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6701, Szeged, Hungary
| | - Andrea Siska
- Department of Laboratory Medicine, Faculty of Medicine, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| | - Bence Kővári
- Department of Pathology, University of Szeged, Állomás utca 1, Szeged, H-6725, Hungary
| | - Gergő Szűcs
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Fanni Márványkövi
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Mónika G Kovács
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Petra Diószegi
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, H-6726, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Krisztina Kiss
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Péter Bencsik
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| | - Gábor Cserni
- Department of Pathology, University of Szeged, Állomás utca 1, Szeged, H-6725, Hungary
| | - László G Puskás
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6701, Szeged, Hungary
| | - Imre Földesi
- Department of Laboratory Medicine, Faculty of Medicine, University of Szeged, Semmelweis utca 6, Szeged, H-6725, Hungary
| | - Thomas Thum
- IMTTS, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover, 30625, Germany
| | - Sándor Bátkai
- IMTTS, Hannover Medical School, Carl-Neuberg Strasse 1, Hannover, 30625, Germany
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling Group, Department of Biochemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary
| |
Collapse
|
38
|
Wu B, Feng J, Yu L, Wang Y, Chen Y, Wei Y, Han J, Feng X, Zhang Y, Di S, Ma Z, Fan C, Ha X. Icariin protects cardiomyocytes against ischaemia/reperfusion injury by attenuating sirtuin 1-dependent mitochondrial oxidative damage. Br J Pharmacol 2018; 175:4137-4153. [PMID: 30051466 PMCID: PMC6177614 DOI: 10.1111/bph.14457] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Icariin, a major active ingredient in traditional Chinese medicines, is attracting increasing attention because of its unique pharmacological effects against ischaemic heart disease. The histone deacetylase, sirtuin-1, plays a protective role in ischaemia/reperfusion (I/R) injury, and this study was designed to investigate the protective role of icariin in models of cardiac I/R injury and to elucidate the potential involvement of sirtuin-1. EXPERIMENTAL APPROACH I/R injury was simulated in vivo (mouse hearts), ex vivo (isolated rat hearts) and in vitro (neonatal rat cardiomyocytes and H9c2 cells). Prior to I/R injury, animals or cells were exposed to icariin, with or without inhibitors of sirtuin-1 (sirtinol and SIRT1 siRNA). KEY RESULTS In vivo and in vitro, icariin given before I/R significantly improved post-I/R heart contraction and limited the infarct size and leakage of creatine kinase-MB and LDH from the damaged myocardium. Icariin also attenuated I/R-induced mitochondrial oxidative damage, decreasing malondialdehyde content and increasing superoxide dismutase activity and expression of Mn-superoxide dismutase. Icariin significantly improved mitochondrial membrane homeostasis by increasing mitochondrial membrane potential and cytochrome C stabilization, which further inhibited cell apoptosis. Sirtuin-1 was significantly up-regulated in hearts treated with icariin, whereas Ac-FOXO1 was simultaneously down-regulated. Importantly, sirtinol and SIRT1 siRNA either blocked icariin-induced cardioprotection or disrupted icariin-mediated mitochondrial homeostasis. CONCLUSIONS AND IMPLICATIONS Pretreatment with icariin protected cardiomyocytes from I/R-induced oxidative stress through activation of sirtuin-1 /FOXO1 signalling.
Collapse
Affiliation(s)
- Bing Wu
- Department of GeriatricsLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
- Department of CardiologyTangdu Hospital, Fourth Military Medical UniversityXi'anChina
| | - Jian‐yu Feng
- Department of Cardiovascular Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Li‐ming Yu
- Department of Cardiovascular SurgeryGeneral Hospital of Shenyang Military Area CommandShenyangChina
| | - Yan‐chun Wang
- Department of GeriatricsLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
| | - Yong‐qing Chen
- Department of CardiologyLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
| | - Yan Wei
- Department of ophthalmologyLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
| | - Jin‐song Han
- Department of Cardiovascular SurgeryGeneral Hospital of Shenyang Military Area CommandShenyangChina
| | - Xiao Feng
- Department of Cardiovascular Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yu Zhang
- Department of Cardiovascular SurgeryLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
| | - Shou‐yin Di
- Department of Thoracic SurgeryTangdu Hospital, Fourth Military Medical UniversityXi'anChina
| | - Zhi‐qiang Ma
- Department of Thoracic SurgeryTangdu Hospital, Fourth Military Medical UniversityXi'anChina
| | - Chong‐xi Fan
- Department of Thoracic SurgeryTangdu Hospital, Fourth Military Medical UniversityXi'anChina
- Department of Biomedical EngineeringFourth Military Medical UniversityXi'anChina
| | - Xiao‐qin Ha
- Department of Clinical LaboratoryLanzhou General Hospital of the People's Liberation ArmyLanzhouChina
| |
Collapse
|
39
|
Mehra P, Guo Y, Nong Y, Lorkiewicz P, Nasr M, Li Q, Muthusamy S, Bradley JA, Bhatnagar A, Wysoczynski M, Bolli R, Hill BG. Cardiac mesenchymal cells from diabetic mice are ineffective for cell therapy-mediated myocardial repair. Basic Res Cardiol 2018; 113:46. [PMID: 30353243 PMCID: PMC6314032 DOI: 10.1007/s00395-018-0703-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 01/17/2023]
Abstract
Although cell therapy improves cardiac function after myocardial infarction, highly variable results and limited understanding of the underlying mechanisms preclude its clinical translation. Because many heart failure patients are diabetic, we examined how diabetic conditions affect the characteristics of cardiac mesenchymal cells (CMC) and their ability to promote myocardial repair in mice. To examine how diabetes affects CMC function, we isolated CMCs from non-diabetic C57BL/6J (CMCWT) or diabetic B6.BKS(D)-Leprdb/J (CMCdb/db) mice. When CMCs were grown in 17.5 mM glucose, CMCdb/db cells showed > twofold higher glycolytic activity and a threefold higher expression of Pfkfb3 compared with CMCWT cells; however, culture of CMCdb/db cells in 5.5 mM glucose led to metabolic remodeling characterized by normalization of metabolism, a higher NAD+/NADH ratio, and a sixfold upregulation of Sirt1. These changes were associated with altered extracellular vesicle miRNA content as well as proliferation and cytotoxicity parameters comparable to CMCWT cells. To test whether this metabolic improvement of CMCdb/db cells renders them suitable for cell therapy, we cultured CMCWT or CMCdb/db cells in 5.5 mM glucose and then injected them into infarcted hearts of non-diabetic mice (CMCWT, n = 17; CMCdb/db, n = 13; Veh, n = 14). Hemodynamic measurements performed 35 days after transplantation showed that, despite normalization of their properties in vitro, and unlike CMCWT cells, CMCdb/db cells did not improve load-dependent and -independent parameters of left ventricular function. These results suggest that diabetes adversely affects the reparative capacity of CMCs and that modulating CMC characteristics via culture in lower glucose does not render them efficacious for cell therapy.
Collapse
Affiliation(s)
- Parul Mehra
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Yiru Guo
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Yibing Nong
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Pawel Lorkiewicz
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Marjan Nasr
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Qianhong Li
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Senthilkumar Muthusamy
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - James A Bradley
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Aruni Bhatnagar
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Marcin Wysoczynski
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Roberto Bolli
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA
| | - Bradford G Hill
- Division of Cardiovascular Medicine, Department of Medicine, Institute of Molecular Cardiology, Envirome Institute, Diabetes and Obesity Center, University of Louisville School of Medicine, 580 S. Preston St., Rm 321E, Louisville, KY, 40202, USA.
| |
Collapse
|
40
|
Piegari E, Russo R, Cappetta D, Esposito G, Urbanek K, Dell'Aversana C, Altucci L, Berrino L, Rossi F, De Angelis A. MicroRNA-34a regulates doxorubicin-induced cardiotoxicity in rat. Oncotarget 2018; 7:62312-62326. [PMID: 27694688 PMCID: PMC5308729 DOI: 10.18632/oncotarget.11468] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022] Open
Abstract
New strategies to prevent and early detect the cardiotoxic effects of the anticancer drug doxorubicin (DOXO) are required. MicroRNAs emerged as potential diagnostic, therapeutic and prognostic approaches in cardiovascular diseases. MiR-34a has a role in cardiac dysfunction and ageing and is involved in several cellular processes associated with DOXO cardiotoxicity. Our in vitro and in vivo results indicated that after DOXO exposure the levels of miR-34a are enhanced in cardiac cells, including Cardiac Progenitor Cells (CPCs). Since one of the determining event responsible for the initiation and evolution of the DOXO toxicity arises at the level of the CPC compartment, we evaluated if miR-34a pharmacological inhibition in these cells ameliorates the detrimental aftermath of the drug. AntimiR-34a has beneficial consequences on vitality, proliferation, apoptosis and senescence of DOXO-treated rat CPC. These effects are mediated by an increase of prosurvival miR-34a targets Bcl-2 and SIRT1, accompanied by a decrease of acetylated-p53 and p16INK4a. Importantly, miR-34a silencing also reduces the release of this miRNA from DOXO-exposed rCPCs, decreasing its negative paracrine effects on other rat cardiac cells. In conclusion, the silencing of miR-34a could represent a future therapeutic option for cardioprotection in DOXO toxicity and at the same time, it could be considered as a circulating biomarker for anthracycline-induced cardiac damage.
Collapse
Affiliation(s)
- Elena Piegari
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Rosa Russo
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Grazia Esposito
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | | | - Lucia Altucci
- Institute of Genetics and Biophysics, IGB 'Adriano Buzzati-Traverso', Naples, Italy.,Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| |
Collapse
|
41
|
Cheng Y, Di S, Fan C, Cai L, Gao C, Jiang P, Hu W, Ma Z, Jiang S, Dong Y, Li T, Wu G, Lv J, Yang Y. SIRT1 activation by pterostilbene attenuates the skeletal muscle oxidative stress injury and mitochondrial dysfunction induced by ischemia reperfusion injury. Apoptosis 2018; 21:905-16. [PMID: 27270300 DOI: 10.1007/s10495-016-1258-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ischemia reperfusion (IR) injury is harmful to skeletal muscles and causes mitochondrial oxidative stress. Pterostilbene (PTE), an analogue of resveratrol, has organic protective effects against oxidative stress. However, no studies have investigated whether PTE can protect against IR-related skeletal muscular injury. In this study, we sought to evaluate the protective effect of PTE against IR-related skeletal muscle injury and to determine the mechanisms in this process. Male Sprague-Dawley rats were pretreated with PTE for a week and then underwent limb IR surgery. The IR injury induced segmental necrosis and apoptosis, myofilament disintegration, thicker interstitial spaces, and inflammatory cell infiltration. Furthermore, mitochondrial respiratory chain activity in the muscular tissue was inhibited, methane dicarboxylic aldehyde concentration and myeloperoxidase activity were up-regulated, and superoxide dismutase was down-regulated after IR. However, these effects were significantly inhibited by PTE in a dose-dependent manner. The mechanism underlying IR injury is attributed to the down-regulation of silent information regulator 1 (SIRT1)-FOXO1/p53 pathway and the increase of the Bax/Bcl2 ratio, Cleaved poly ADP-ribose polymerase 1, Cleaved Caspase 3, which can be reversed with PTE. Furthermore, EX527, an SIRT1 inhibitor, counteracted the protective effects of PTE on IR-related muscle injury. In conclusion, PTE has protective properties against IR injury of the skeletal muscles. The mechanism of this protective effect depends on the activation of the SIRT1-FOXO1/p53 signaling pathway and the decrease of the apoptotic ratio in skeletal muscle cells.
Collapse
Affiliation(s)
- Yedong Cheng
- Department of Orthopaedics, The 82th Hospital of PLA, 100# Jiankang Road, Huaian, 213002, China. .,Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Liping Cai
- Department of Orthopaedics, The 82th Hospital of PLA, 100# Jiankang Road, Huaian, 213002, China
| | - Chao Gao
- Department of Orthopaedics, The 82th Hospital of PLA, 100# Jiankang Road, Huaian, 213002, China
| | - Peng Jiang
- Department of Orthopaedics, The 82th Hospital of PLA, 100# Jiankang Road, Huaian, 213002, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Shenyang Military Area Command, 83 Wenhua Road, Shenyang, 110016, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Guiling Wu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
42
|
Suppression of Oxidative Stress and Apoptosis in Electrically Stimulated Neonatal Rat Cardiomyocytes by Resveratrol and Underlying Mechanisms. J Cardiovasc Pharmacol 2017; 70:396-404. [DOI: 10.1097/fjc.0000000000000534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Han D, Li X, Li S, Su T, Fan L, Fan WS, Qiao HY, Chen JW, Fan MM, Li XJ, Wang YB, Ma S, Qiu Y, Tian ZH, Cao F. Reduced silent information regulator 1 signaling exacerbates sepsis-induced myocardial injury and mitigates the protective effect of a liver X receptor agonist. Free Radic Biol Med 2017; 113:291-303. [PMID: 28993270 DOI: 10.1016/j.freeradbiomed.2017.10.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/26/2017] [Accepted: 10/05/2017] [Indexed: 12/29/2022]
Abstract
Myocardial injury and dysfunction are critical manifestations of sepsis. Previous studies have reported that liver X receptor (LXR) activation is protective during sepsis. However, whether LXR activation protects against septic heart injury and its underlying mechanisms remain elusive. This study was designed to determine the role of LXR activation in the septic heart with a focus on SIRT1 (silent information regulator 1) signaling. Male cardiac-specific SIRT1 knockout mice (SIRT1-/-) and their wild-type littermates were subjected to sepsis by cecal ligation and puncture (CLP) in the presence or absence of LXR agonist T0901317. The survival rate of mice was recorded during the 7-day period post CLP. Our results demonstrated that SIRT1-/- mice suffered from exacerbated mortality and myocardial injury in comparison with their wild-type littermates. Meanwhile, T0901317 treatment improved mice survival, accompanied by significant ameliorations of myocardial injury and dysfunction in wild-type mice but not in SIRT1-/- mice. Furthermore, the levels of myocardial inflammatory cytokines (TNF-α, IL-6, IL-1β, MCP-1, MPO and HMGB1), oxidative stress (ROS generation, MDA), endoplasmic-reticulum (ER) stress (protein levels of CHOP, GRP78, GRP94, IRE1α, and ATF6), and cardiac apoptosis following CLP were inhibited by T0901317 treatment in wild-type mice but not in SIRT1-/- mice. Mechanistically, T0901317 enhanced SIRT1 signaling and the subsequent deacetylation and activation of antioxidative FoxO1 and anti-ER stress HSF1, as well as the deacetylation and inhibition of pro-inflammatory NF-ΚB and pro-apoptotic P53, thereby alleviating sepsis-induced myocardial injury and dysfunction. Our data support the promise of LXR activation as an effective strategy for relieving heart septic injury.
Collapse
Affiliation(s)
- Dong Han
- National Clinical Research Center for Geriatric Diseases & Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiang Li
- National Clinical Research Center for Geriatric Diseases & Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shuang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Cardiology, Chengdu Military General Hospital, Chengdu, China, 610083
| | - Tao Su
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Li Fan
- National Clinical Research Center for Geriatric Diseases & Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Wen-Si Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hong-Yu Qiao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiang-Wei Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Miao-Miao Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiu-Juan Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ya-Bin Wang
- National Clinical Research Center for Geriatric Diseases & Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Sai Ma
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ya Qiu
- National Clinical Research Center for Geriatric Diseases & Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zu-Hong Tian
- Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases & Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
44
|
Homma T, Homma M, Huang Y, Mayurasakorn K, Rodi NM, Hamid AAA, Hurwitz S, Yao T, Adler GK, Pojoga LH, Williams GH, Romero JR. Combined Salt and Caloric Restrictions: Potential Adverse Outcomes. J Am Heart Assoc 2017; 6:e005374. [PMID: 29021272 PMCID: PMC5721821 DOI: 10.1161/jaha.116.005374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/25/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND We hypothesized that caloric restriction (CR) and salt restriction (ResS) would have similar effects on reducing cardiovascular risk markers and that combining CR and ResS would be synergistic in modulating these markers. METHODS AND RESULTS To test our hypothesis, rats were randomized into 2 groups: ad libitum liberal salt diet (ad libitum/high-sodium, 1.6% sodium) or ResS diet (ad libitum/ResS, 0.03% sodium). CR was initiated in half of the rats in each group by reducing caloric intake to 60% while maintaining sodium intake constant (CR/high-sodium, 2.7% sodium or CR/ResS, 0.05% sodium) for 4 weeks. CR in rats on a high-sodium diet improved metabolic parameters, renal transforming growth factor-β and collagen-1α1 and increased plasma adiponectin and renal visfatin and NAD+ protein levels. Although CR produced some beneficial cardiovascular effects (increased sodium excretion and reduced blood pressure), it also was associated with potentially adverse cardiovascular effects. Adrenal zona glomerulosa cell responsiveness and aldosterone levels and activation were inappropriately increased for the volume state of the rodent. Like CR on HS, CR on a ResS diet also produced relative increased zona glomerulosa responsiveness and an increased blood pressure with no improvement in metabolic parameters. CONCLUSIONS These results suggest that combining CR and ResS may decrease the beneficial effects of each alone. Furthermore, CR, regardless of dietary salt intake, inappropriately activates aldosterone production. Thus, caution should be used in combining ResS and CR because the combination may lead to increased cardiovascular risk.
Collapse
Affiliation(s)
- Tsuyoshi Homma
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Mika Homma
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Yuefei Huang
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Korapat Mayurasakorn
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Nurul Mahamad Rodi
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | | | - Shelley Hurwitz
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Tham Yao
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Gail K Adler
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Luminita H Pojoga
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Gordon H Williams
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Jose R Romero
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
45
|
Kura B, Babal P, Slezak J. Implication of microRNAs in the development and potential treatment of radiation-induced heart disease. Can J Physiol Pharmacol 2017; 95:1236-1244. [PMID: 28679064 DOI: 10.1139/cjpp-2016-0741] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Radiotherapy is the most commonly used methodology to treat oncological disease, one of the most widespread causes of death worldwide. Oncological patients cured by radiotherapy applied to the mediastinal area have been shown to suffer from cardiovascular disease. The increase in the prevalence of radiation-induced heart disease has emphasized the need to seek new therapeutic targets to mitigate the negative impact of radiation on the heart. In this regard, microRNAs (miRNAs) have received considerable interest. miRNAs regulate post-transcriptional gene expression by their ability to target various mRNA sequences because of their imperfect pairing with mRNAs. It has been recognized that miRNAs modulate a diverse spectrum of cardiac functions with developmental, pathophysiological, and clinical implications. This makes them promising potential targets for diagnosis and treatment. This review summarizes the recent findings about the possible involvement of miRNAs in radiation-induced heart disease and their potential use as diagnostic or treatment targets in this respect.
Collapse
Affiliation(s)
- Branislav Kura
- a Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovak Republic
| | - Pavel Babal
- b Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava and University Hospital Bratislava, Sasinkova 4, 811 08 Bratislava, Slovak Republic
| | - Jan Slezak
- a Institute for Heart Research, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovak Republic
| |
Collapse
|
46
|
Dorri Mashhadi F, Zavvar Reza J, Jamhiri M, Hafizi Z, Zare Mehrjardi F, Safari F. The effect of resveratrol on angiotensin II levels and the rate of transcription of its receptors in the rat cardiac hypertrophy model. J Physiol Sci 2017; 67:303-309. [PMID: 27324786 PMCID: PMC10717376 DOI: 10.1007/s12576-016-0465-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
Abstract
This study investigated the effect of resveratrol on serum and cardiac levels of angiotensin II and transcription of its main receptors following pressure overload induced-hypertrophy. Rats were divided into untreated (Hyp) and resveratrol treated hypertrophied groups (H + R). Intact animals served as the control (Ctl). Cardiac hypertrophy was induced by abdominal aortic banding. Blood pressure (BP) was recorded via left carotid artery cannula. Fibrosis was confirmed by Masson trichrome staining. Angiotensin II level was measured using an ELIZA test. Gene expression was assessed by a real time PCR (RT-PCR) technique. We observed that in the H + R group BP and heart weight/body weight were decreased significantly (p < 0.001, p < 0.05, respectively vs Hyp). The cardiac levels of angiotensin II and AT1a mRNA were increased in the Hyp group (p < 0.01 vs Ctl). In the H + R group the AT1a mRNA level was decreased significantly (p < 0.05 vs Hyp). It could be concluded that resveratrol protects the heart against hypertrophy progression in part by affecting cardiac AT1a transcription.
Collapse
Affiliation(s)
- Fahimeh Dorri Mashhadi
- Department of Medical Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Zavvar Reza
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohabbat Jamhiri
- Department of Medical Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeinab Hafizi
- Department of Medical Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Zare Mehrjardi
- Department of Medical Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Safari
- Department of Medical Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
47
|
Tanshinone IIA inhibits myocardial remodeling induced by pressure overload via suppressing oxidative stress and inflammation: Possible role of silent information regulator 1. Eur J Pharmacol 2016; 791:632-639. [DOI: 10.1016/j.ejphar.2016.09.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022]
|
48
|
Wan X, Wen JJ, Koo SJ, Liang LY, Garg NJ. SIRT1-PGC1α-NFκB Pathway of Oxidative and Inflammatory Stress during Trypanosoma cruzi Infection: Benefits of SIRT1-Targeted Therapy in Improving Heart Function in Chagas Disease. PLoS Pathog 2016; 12:e1005954. [PMID: 27764247 PMCID: PMC5072651 DOI: 10.1371/journal.ppat.1005954] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022] Open
Abstract
Chronic chagasic cardiomyopathy (CCM) is presented by increased oxidative/inflammatory stress and decreased mitochondrial bioenergetics. SIRT1 senses the redox changes and integrates mitochondrial metabolism and inflammation; and SIRT1 deficiency may be a major determinant in CCM. To test this, C57BL/6 mice were infected with Trypanosoma cruzi (Tc), treated with SIRT1 agonists (resveratrol or SRT1720), and monitored during chronic phase (~150 days post-infection). Resveratrol treatment was partially beneficial in controlling the pathologic processes in Chagas disease. The 3-weeks SRT1720 therapy provided significant benefits in restoring the left ventricular (LV) function (stroke volume, cardiac output, ejection fraction etc.) in chagasic mice, though cardiac hypertrophy presented by increased thickness of the interventricular septum and LV posterior wall, increased LV mass, and disproportionate synthesis of collagens was not controlled. SRT1720 treatment preserved the myocardial SIRT1 activity and PGC1α deacetylation (active-form) that were decreased by 53% and 9-fold respectively, in chagasic mice. Yet, SIRT1/PGC1α-dependent mitochondrial biogenesis (i.e., mitochondrial DNA content, and expression of subunits of the respiratory complexes and mtDNA replication machinery) was not improved in chronically-infected/SRT1720-treated mice. Instead, SRT1720 therapy resulted in 2-10-fold inhibition of Tc-induced oxidative (H2O2 and advanced oxidation protein products), nitrosative (inducible nitric oxide synthase, 4-hydroxynonenal, 3-nitrotyrosine), and inflammatory (IFNγ, IL1β, IL6 and TNFα) stress and inflammatory infiltrate in chagasic myocardium. These benefits were delivered through SIRT1-dependent inhibition of NFκB transcriptional activity. We conclude that Tc inhibition of SIRT1/PGC1α activity was not a key mechanism in mitochondrial biogenesis defects during Chagas disease. SRT1720-dependent SIRT1 activation led to suppression of NFκB transcriptional activity, and subsequently, oxidative/nitrosative and inflammatory pathology were subdued, and antioxidant status and LV function were enhanced in chronic chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Xianxiu Wan
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Jian-jun Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Sue-Jie Koo
- Department of Pathology, UTMB, Galveston, Texas
| | - Lisa Yi Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
- Department of Pathology, UTMB, Galveston, Texas
- Institute for Human Infections and Immunity, UTMB, Galveston, Texas
- * E-mail:
| |
Collapse
|
49
|
Zhang J, Wang C, Nie H, Wu D, Ying W. SIRT2 plays a significant role in maintaining the survival and energy metabolism of PIEC endothelial cells. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2016; 8:120-127. [PMID: 27785339 PMCID: PMC5078484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/28/2016] [Indexed: 06/06/2023]
Abstract
SIRT2, a member of the sirtuin (SIRT1-7) family, is a tubulin deacetylase. It has been reported that SIRT2 mediates cellular stress responses and is highly expressed in vascular endothelial cells, while its roles in cell survival and energy metabolism of endothelial cells remain unknown. In the current study, we tested our hypothesis that SIRT2 plays an important role in the cell survival and energy metabolism of endothelial cells, using a porcine vascular endothelial cell line (PIEC) as a cellular model. Our study showed that both SIRT2 inhibitor AGK2 and SIRT2 siRNA led to a significant reduction of the cell survival of PIEC cells. Our FACS-based Annexin V/7-AAD assay and Hoechst staining showed that both SIRT2 inhibitor and SIRT2 siRNA led to a significant increase in apoptosis and necrosis of the cells. Moreover, the SIRT2 inhibition led to both mitochondrial depolarization and decreases in the intracellular ATP level of the cells. Collectively, our study has provided the first evidence suggesting that SIRT2 plays a significant role in maintaining both the survival and the mitochondrial membrane potential of PIEC cells, which may account for the major effects of SIRT2 on the intracellular ATP level of the cells.
Collapse
Affiliation(s)
- Jie Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai 200030, P.R. China
| | - Caixia Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai 200030, P.R. China
| | - Hui Nie
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai 200030, P.R. China
| | - Danhong Wu
- Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 201999, P.R. China
| | - Weihai Ying
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghai 200030, P.R. China
| |
Collapse
|
50
|
Huang PC, Kuo WW, Shen CY, Chen YF, Lin YM, Ho TJ, Padma VV, Lo JF, Huang CY, Huang CY. Anthocyanin Attenuates Doxorubicin-Induced Cardiomyotoxicity via Estrogen Receptor-α/β and Stabilizes HSF1 to Inhibit the IGF-IIR Apoptotic Pathway. Int J Mol Sci 2016; 17:E1588. [PMID: 27657062 PMCID: PMC5037853 DOI: 10.3390/ijms17091588] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/23/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022] Open
Abstract
Doxorubicin (Dox) is extensively used for chemotherapy in different types of cancer, but its use is limited to because of its cardiotoxicity. Our previous studies found that doxorubicin-induced insulin-like growth factor II receptor (IGF-IIR) accumulation causes cardiomyocytes apoptosis via down-regulation of HSF1 pathway. In these studies, we demonstrated a new mechanism through which anthocyanin protects cardiomyoblast cells against doxorubicin-induced injury. We found that anthocyanin decreased IGF-IIR expression via estrogen receptors and stabilized heat shock factor 1 (HSF1) to inhibit caspase 3 activation and apoptosis of cardiomyocytes. Therefore, the phytoestrogen from plants has been considered as another potential treatment for heart failure. It has been reported that the natural compound anthocyanin (ACN) has the ability to reduce the risk of cardiovascular disease (CVD). Here, we demonstrated that anthocyanin acts as a cardioprotective drug against doxorubicin-induced heart failure by attenuating cardiac apoptosis via estrogen receptors to stabilize HSF1 expression and down-regulated IGF-IIR-induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Pei-Chen Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
- Department of Obstetrics and Gynecology, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Chia-Yao Shen
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung 91202, Taiwan.
| | - Yu-Feng Chen
- Section of Cardiology, Yuan Rung Hospital, Yuanlin 51045, Taiwan.
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan.
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan.
| | - Tsung-Jung Ho
- Chinese Medicine Department, China Medical University Beigang Hospital, Taichung 40402, Taiwan.
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, India.
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- Graduate Institute of Chinese Medical Science, China Medical University, Hsueh-Shih Road, Taichung 40402, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 40402, Taiwan.
| |
Collapse
|